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BC,-Type Multivariable Matrix Functions and
Matrix Spherical Functions

by
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Abstract

Matrix spherical functions associated to the compact symmetric pair (SU(m+2), S(U(2) x
U(m))), m > 2, having a reduced root system of type BCp, are studied. We consider an
irreducible K-representation (m, V') arising from the U(2)-part of K, and the induced
representation Ind%r splits multiplicity-free. The corresponding spherical functions, i.e.
®: G — End(V) satisfying ®(kigks) = 7(k1)®(g)m(k2) for all g € G, k1,ke € K, are
studied by examining certain leading terms which involve hypergeometric functions. This
is done explicitly using the action of the radial part of the Casimir operator on these func-
tions and their leading terms. To suitably grouped matrix spherical functions we associate
two-variable matrix orthogonal polynomials giving a matrix analogue of Koornwinder’s
1970s two-variable orthogonal polynomials, which are Heckman—-Opdam polynomials for
BCa. In particular, we find explicit orthogonality relations with the matrix polynomials
being eigenfunctions to an explicit second-order matrix partial differential operator. The
scalar part of the matrix weight is less general than Koornwinder’s weight.

Mathematics Subject Classification 2020: 33CAT (primary); 22E30, 33C52 (secondary).
Keywords: matrix spherical functions, Lie groups, multiplicity-free triples, matrix ortho-
gonal polynomials, multivariable functions.

§1. Introduction

Spherical functions on compact symmetric spaces and orthogonal polynomials
have been known to be closely related ever since the work of E. Cartan; see e.g.
[6, 10, 38]. The notion of a spherical function taking values in a matrix algebra
goes back to the initial introduction of the notion of spherical functions; see e.g.
[6, Introduction] and references given there. In the case of a matrix spherical

Communicated by T. Arakawa. Received October 12, 2021.

E. Koelink: IMAPP, Radboud Universiteit, P.O. Box 9010, 6500 GL Nijmegen, Netherlands;
e-mail: e.koelink@math.ru.nl

J. Liu: School of Public Affairs, Zhejiang University, 310058 Hangzhou, P. R. China; IMAPP,
Radboud Universiteit, P.O. Box 9010, 6500 GL Nijmegen, Netherlands;

e-mail: jie_1liu@zju.edu.cn, liujiemath@hotmail.com

(© 2024 Research Institute for Mathematical Sciences, Kyoto University.
This work is licensed under a CC BY 4.0 license.


mailto:e.koelink@math.ru.nl
mailto:jie\protect _liu@zju.edu.cn
mailto:liujiemath@hotmail.com
https://creativecommons.org/licenses/by/4.0/

306 E. KOELINK AND J. LiU

function for a compact symmetric space of rank one, there is a connection to matrix
orthogonal polynomials. One of the first papers in this direction is Koornwinder
[26] introducing vector-valued polynomials, which can be written as matrix ortho-
gonality; see also [21, 22]. The vector polynomials are evaluated in an explicit
way in terms of the representations of SU(2); see [26, Prop. 3.2]. Another seminal
paper making this connection to matrix polynomials explicit is Griitnbaum, Pachar-
oni and Tirao [7], where the rank-one symmetric space (SU(3),U(2)) is studied.
The approach of [7] relies on invariant differential operators on the corresponding
homogeneous space. Since then several other approaches have been explored, and
many other rank-one cases have been studied in detail. For this paper the approach
of [21, 22, 23] is the most relevant; see Griinbaum, Pacharoni, Tirao [13, Chap. 13]
for other approaches and references.

Scalar spherical functions on symmetric spaces have been vastly generalised
in the work of Heckman and Opdam; see Heckman’s lecture notes [9], or Heckman
and Opdam [27, Chap. 8]. The root multiplicities, i.e. dimensions of root spaces,
arising from the symmetric spaces are considered to be more general continuous
parameters, and the second-order partial differential operator extending the radial
part of the Casimir operator for the symmetric space plays an important role. A
first important step was taken by Koornwinder in the 1970s, who studied several
sets of orthogonal polynomials in two variables, generalising the spherical functions
arising for types Ay and BCs. As a first step for a matrix generalisation, matrix
spherical functions and the corresponding matrix orthogonal polynomials need to
be considered. For type A, this is done in [23], and the purpose of this paper
is to study matrix spherical functions and the corresponding matrix orthogonal
polynomials for type BCsy. A possible next step is more general parameters: one
possibility is to use shift operators for the classical case of BCy (see Opdam [30,
§2]) and to employ the same shift operator in the matrix case as well. This has been
done successfully in the rank-one case to go from matrix Chebyshev polynomials
to matrix Gegenbauer polynomials; see [19]. We expect that this interpretation can
lead to more properties of the corresponding matrix orthogonal polynomials stud-
ied in this paper. Moreover, the relation to possible applications in mathematical
physics needs to be investigated; see e.g. [33] for more information and references
given there.

In this paper we study matrix spherical functions for the compact symmetric
pair (G, K) = (SU(m +2),S(U(2) x U(m))), and we study matrix spherical func-
tions and corresponding matrix orthogonal polynomials as described in Section 1.1
for the case of an irreducible representation of K arising from the U(2)-component
in K. The results of Section 1.1 follow [23, Part I], but there are slight variations on
this approach; see [31, §9]. In fact, we use the classification of [31] in order to find
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the right K-representations satisfying the multiplicity-free Condition 1.1, but [31]
gives more possibilities, i.e. also involving other K-representations. In this paper
we restrict to the K-representations arising from the U(2)-block in K with a slight
assumption on this representation. In this paper we show that instead of studying
the more complicated matrix spherical functions, we can study the simpler leading
terms of matrix spherical functions. The leading terms turn out to be homogen-
eous polynomials, and homogeneity considerations allow us to prove some results,
e.g. on the indecomposability of the corresponding matrix weight and the expli-
cit derivation of the second-order matrix partial differential equation. Initially, we
study the leading terms of matrix spherical functions for labels in B(u) as defined
in Condition 1.2; see Theorem 4.5. Note that to study matrix spherical functions
explicitly we need explicit control over the K-intertwiner embedding a specific K-
representation into a larger irreducible G-representation. This is in general hard
to do explicitly, but this approach is used successfully in [23] for the symmetric
pair corresponding to the group case for type A. In this paper we take an altern-
ative approach and we construct the embedding of the specific K-representation
into a larger tensor product G-representation containing the required irreducible
G-representation as a constituent in the decomposition. Then we have to show
that the embedding indeed “sees” the appropriate irreducible G-representation.
Of course, there are many ways to do this, and in this paper we motivate the
choice we make as follows. First, it leads to a leading term whose components are
homogeneous polynomials, and second, the radial part of the Casimir operator on
the leading term has a simple expression; see Lemma 6.5. The approach taken is
motivated by the van Pruijssen preprint [36].

In order to make explicit the connection between leading terms and matrix
spherical functions, we need the action of the radial part of the Casimir operator
as an operator acting on matrix-valued functions on A. For completeness this
action is derived in the Appendix. For matrix spherical functions corresponding
to elements from B(u) as in Condition 1.2, we find an explicit expression in this
way involving the leading terms; see Proposition 6.4. Then in Section 8 we obtain
the leading terms for the general case, and we show that the radial part of the
Casimir operator acts in a lower triangular way with respect to the partial ordering.
This is analogous to the case for the (scalar) Heckman—Opdam polynomials; see
[9, §1.3]. The main result is Theorem 7.1 in which we explicitly give the matrix
orthogonality for the corresponding family of two-variable orthogonal polynomials
with an explicit matrix weight on a region bounded by two straight lines and a
parabola; see Figure 1. Theorem 7.1 also states that these matrix polynomials are
eigenfunctions of a second-order matrix partial differential operator.
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We now describe the content of the paper in brief. In the remaining part of
the introduction we briefly recall in Section 1.1 the set-up to go from matrix spher-
ical functions to matrix orthogonal polynomials, where the number of variables is
equal to the rank of the compact symmetric space. This follows [23, Part I]. In
Section 2 we briefly describe the structure theory and notation for the compact
symmetric pair (G, K) = (SU(m +2),S(U(2) x U(m))), m > 2, and we show that
the conditions in Section 1.1 are satisfied in this case. In Section 3 we develop the
building blocks for the leading terms. These are essentially the leading terms in the
case of the K-representation in Section 1.1 corresponding to the trivial representa-
tion and to the natural representation of the U(2)-block in K. Building on this we
study the leading term for matrix spherical functions corresponding to B(u) as in
Condition 1.2. The leading terms can be fully described in terms of single-variable
Krawtchouk polynomials, and hence as single-variable hypergeometric functions.
Next, in Section 4 we use the radial part of the Casimir operator to give an explicit
expression for the matrix spherical functions corresponding to B(u) in terms of
the leading terms. In Section 5 we describe the two-variable matrix weight, and we
show that the weight is indecomposable and that its determinant is nonvanishing
on the interior of the integration region. In Section 7 we describe two-variable mat-
rix orthogonal polynomials, and we describe the corresponding eigenvalue equation
involving a second-order matrix partial differential operator. We have chosen the
coordinates in Theorem 7.1 to match the notation of Koornwinder [25, 24]; see
also [32]. Theorem 7.1 generalises the results of [25, 24, 32] to the matrix case, but
the scalar part of the weight measure in [25, 24, 32| is more general than that in
Theorem 7.1. Theorem 7.1 also contains the case [9, Chap. 5] for this particular
symmetric pair (corresponding to the case a = 0 in the notation of Section 7). In
Section 8 we then derive the leading term for general matrix spherical functions,
and we show that the radial part of the Casimir operator acts in a lower trian-
gular fashion on such a leading term. Finally, in Section 9 we discuss briefly the
remaining cases of K-representations of this type.

In the course of several proofs we have to manipulate several expressions
involving functions in two variables. We have used computer algebra, in particular
Maple and Maxima, to check these computations.

§1.1. General set-up

In this subsection we recall notation and the necessary results. We follow [23,
Part 1], but see also [31, §11], [35]. We consider a compact symmetric pair (G, K)
and for its structure theory and results we refer to [10]. For the explicit case
(G,K) = (SU(m + 2),S(U(2) x U(m))) the structure theory is explicitly given
in Section 2. We label the representations of G, respectively K, by the highest
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weights Pa? , respectively Pj7, and such a representation is denoted by (7§, V&),
A€ P(';", and similarly for K. We now fix u € P;.

In order to apply the general approach of [23] we need to establish three
conditions.

Condition 1.1. Ind?(ﬂ'ff splits multiplicity-free.

By Frobenius reciprocity this is equivalent to [7§ | : Wf ] <1lforall A€ Pf,
and we put

(1.1) Ph(p)={re Pt | [n§|k: k] =1}.

So, if Condition 1.1 holds, we have

dr = @ V.
AePZ (1)

For \ € PG+ (1) we define the corresponding matrix spherical functions
(1.2) Y G — End(V,[), ®4(9) =poms(g9)oj,

where j € Hom K(VMK , VAG) is the unitary intertwiner and p = j* is the correspond-
ing K-equivariant orthogonal projection. Then (1.2) is independent of the choice
of j and we have

(1.3) O (kigka) = m) (k1) @A ()7 (k2) Vki ko € K, VgeG.

The space of regular functions ®: G — End(VHK ) satisfying the left and right
K transformation behaviour as in (1.3) is denoted by E*. Using the Peter—Weyl
decomposition we see that {®4 | A € P (1)} forms a linear basis for E#. Then E°
is the space of scalar continuous bi- K -invariant functions, and E* is an E°-module.
Moreover, Schur orthogonality gives

(dim VMK )?

——r 7 AN e Ph).
dim V)\G ) G (ﬂ‘)

(1.4) /G Te(B(9)(%(9))°) dg = S x

Note that the integrand is a bi-K-invariant function, so contained in E°.
Let A be the abelian subgroup and M = Zk(A) as in [23, §2]. By the Cartan
decomposition, G = KAK, and by (1.3) it suffices to consider

(1.5) K[ 4: A — Endpy (V,),
since w5 (m)®4 (a) = ®4(ma) = 4 (am) = ®4(a)wk (m). So we need to know the

decomposition

N
(16) VMK|1\/I g@vo']\fa
i=1
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where og; € PJ\'Z are the corresponding highest weights for M. The decomposition
(1.6) is again a multiplicity-free decomposition; see [35] and also [4, 17].

Note that if the representation 7rff induces multiplicity-free, then also its dual
K)* — 7T.K
K n*
p* corresponds to the highest weight of the dual representation. Then Pg (u*)
consists of those G-representations for which the dual is in PZ (n), i.e. PF(u*) =
{X*| XA € PA(u)}, where \* corresponds to the highest weight of the dual of the

G-representation with highest weight A\. Then we obtain

(or contragredient) representation (m induces multiplicity-free, where

(1.7) (@4 (a)v*)(v) = v*(@h(a ), a€A, veVE, v* e Hom(VE, C)=VE.

Note that if Condition 1.1 holds, then it also holds for the dual p* € P}-. Moreover,
taking duals gives an involution on the spherical weights Pg (0).

Condition 1.2. There exists a set of weights B(u) C Pg, so that for A € PZ (1)
there exist unique elements v € B(u) and Aspn € P2 (0) with A = v + Agpn. The

restriction map of the torus of G to the torus of M® gives a bijection B(u) —
{c € P]‘V”} | [VHK|M: VM) =1}.

Assuming Condition 1.2 is satisfied for p € P]'(" , then Condition 1.2 is also
satisfied for the dual K-representation with highest weight p*.

Taking p = 0, PZ(0) corresponds to the spherical weights, and P (0) =
EB;L:I NJ);, where Ay, ..., A, are the generators for the spherical weights and n is the
rank of the compact symmetric space (G, K). We let ¢; = (I’E{i : G — C, which gen-
erate the algebra of bi-K-invariant polynomials on G. For A = """ d;\; € Pg (0)
we put |A| = Y7, d;. We use the notation Pg(\) for all the weights occurring in
the G-representation 7§ of highest weight \ € Pg , and similarly for other groups.

Condition 1.3. For all weights v € B(u), for all generators A; of the spherical
weights PZ (0) and for all weights € Pg()\;) such that v +n € PZ (1), we have
by Condition 1.2 a unique v’ € B(u) such that v +n = v/ + X with A € P£(0).
Then |\ < 1.

Note that if Condition 1.3 holds for u, then it also holds for the dual p* € P;.
Assuming Conditions 1.1, 1.2 and 1.3, one can show that for a spherical weight
Asph = Z:Zl dr A, € Pg(O), d = (dy,...,d,) € N™ there exist unique n-variable

polynomials pj,  , of total degree |d| = [Aspn| so that for A = v; + Agpn € PL(p)
and a € A,

N
(1.8) Ph(a) = D 4y (@) =D 0, a(01(0), o dn(a) @ (a)
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using a slightly different labelling from [23]. Using this expansion in the orthogon-
ality relations (1.4) and reducing the integral for bi-K-invariant functions to an
integral over A (see [10, Prop. X.1.19]), we find the matrix orthogonality relations

(1.9) /APd(QS(a))W(aS( a))(Par(¢(a)))"[6(a)| da = cba,a Ha,
where
(dim V)2
(Hd)i,j = 5zyma

¢(a) = (¢1(a), ..., ¢nla)),

( (a)) (pl/“llj (¢1(G),...,¢n( )))1] 1°
7 7 \\ &V
W(¢(a)) :( ((I)’ (a )(q)ﬁfj(a)) ))i,j:l
and ¢ > 0 is determined by ¢ = [, |d(a)|da and § is given in [10, Prop. X.1.19],
where it is denoted by D

§2. Structure theory and multiplicity-free triples

In this section we specialise to the compact symmetric pair (G, K) = (SU(m +
2),5(U(2) xU(m))), m > 2, for which we study matrix spherical functions and the
related orthogonal polynomials in detail. First we describe the structure theory (see
e.g. [10]) needed in order to associate the corresponding orthogonal polynomials
in Section 2.1. In the remaining part we show that for explicit K-representations
the conditions of [23, Part I] are satisfied in this case.

§2.1. Structure theory

From now on we take G = SU(m + 2), m > 2, K = S(U(2) x U(m)) embedded
block-diagonally. We view U(2) C K as a subgroup as the upper-left (2 x 2)-block
of K. The abelian subgroup is A = {ay = ay, +,) | t1,t2 € R}, with

costy 0O 0---0 0 =sinty
0 costy O---0zsinty O
0 0O 1---0 O 0

(2.1) ag = ag ) = [ oo o
0 0 0---1 0 0
0 2sinta0---0 costy O

isinty 0 0---0 0 costy
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where the middle block is the ((m—2) x (m—2))-identity matrix. Then M = Z (A)
is given by matrices m which are block diagonal of size 2 x 2, (m — 2) x (m — 2),
2 x 2 of the form

(2.2)

Dl 0 0 eisl O eng 0
m = 0 M; 0 s D, = ( 0 6i52> s M, € U(m - 2)7 Dy = ( 0 61’51)
0 0 D,

with det(m) = 1.
As the torus of G® we take the diagonal elements, and we take this also as
the torus of K. Explicitly,

(23) TGC = TKC = {diag(tl, e m+2 | tk € (C Hm+2t = 1}
We take the torus of MC as contained in the torus of G€ and K©C:

TMC = {diag(tl, . ,tm+2) | tm+1 = tg, tm+2 = tl, Zn—,l—Q i = 1}
(2.4) C Tgc = TKC.

By g, £, m and a we denote the corresponding complexified Lie algebras of
G, K, M and A. Then the root system A of g is of type A,,+1, and we denote
the standard simple roots a;, 1 < ¢ < m+1. We put E; = FE; ;41, F; = Eifq1,,
H; = E;11,41 — E;;, where E; ; is the matrix with all zeros except the (i, j)th
entry. The roots and positive roots are denoted by Qg = @m+1 Zoy and QF =
EBm+1 Na;. The partial order 0 5 nisn—o0 € QF.

With this choice of positive roots, we define the fundamental weights for G,
K and M by

1
wi: Tge = Tge — C, wi(diag(ty, ..., tmi2)) = Htj, 1<i<m+42,
j=1
i
ni: Tore — C, ni(diag(ty, to, .. tm, ta, 1)) = [[ 5, 1<i<m.
j=1

Note that 71, 12 are characters of M. Then we find

(2.5) wilry,e =m (1 <i<m), wnlr,ec =T Wntilr,c =M.
Then we have

(2.6) {Zl Law;i |az €Z, a; €N, i #2}, P = P Nu.

Considering U(2) C K, we see that the U(2) representations correspond to the
elements of P;f with a; = 0 for j > 3.
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The reduced root system is of type BCs, and the corresponding reduced Weyl
group is generated by s; and sg, and we put ny,ne € Ng(A) by

Jo 0 0
(2.7) n=|017IL,20|, ne=dag(l,—il,...,1,4,1)
——
0 0 J2 m—2

using the notation of Appendix A.l for the flip J. Then nlatnfl = as,¢t and
ngatngl = as,¢ With s1t = (to,t1) and sat = (t1, —t2).

§2.2. Multiplicity-free triples

The triple (G, K, i), i € Pj, is a multiplicity-free triple if Condition 1.1 is satis-
fied. Since (G, K) is a symmetric pair, the triple (G, K, 0), where u = 0 corresponds
to the trivial K-representation, is a multiplicity-free triple. Then we have the spher-
ical weights

(28) Pg(O) =NMN &NX\g, A =wi +Wmt1, A2 = w2 + W3

see Kramer [28, Table 1]. More generally, the multiplicity-free triples and the set
PA(w) for a multiplicity-free triple (G, K, yt) are determined by Pezzini and van
Pruijssen [31]. We focus on representations of K that correspond to representations
of U(2) C K, i.e. we assume pu = aw; + bws, a € N, b € Z.

Proposition 2.1. The triple (G, K, ), with 4 = awy + bwa, a € N, b € Z, is
multiplicity-free. Moreover, P (u) = B(u) + PZ(0). In the case b € N we have
B(p) = {vi = vi(n) = (a — w1 + (i + b)ws + iwm41 | 0 < i < a}.

In the case b < —a we have

B(p) = {vi = vi(p) = (a = iJwr + (=i = D)wm + iwm 1 [ 0 <i < af,
and in the case —a < b < 0 we have

B(/J) = {Vi = I/,'(,u) = (CL — i)CU1 + (—Z — b)w'm + iwm+1 | 0 <1< —b}

U{vi = vi(p) = (a — i)wr + (b4 i)ws + iwmy1 | —b <i < a}.

Remark 2.2. Recall that the G-representation of highest weight w; can be real-
ised in the exterior power A*V, where V = C™%2 is the natural G-representation.
It follows that w} = wy,42-4, and this determines A*. For the spherical weights (see
(2.8)), A = A1 and A5 = Aa. The dual of the K-representation of highest weight

i = awi + bwy is the K-representation of highest weight u* = aw; — (a + b)ws.
Indeed, the map v — (v,v,), with v,, the highest weight vector of VMK , is the lowest
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weight vector of (VX)* of weight —aw; — bws. Then B(u*) = (B(u))*, and more
precisely, in the notation of Proposition 2.1, v;(u*) = (Ve—i(u))*.

Proof of Proposition 2.1. The proof is a verification using the results and nota-
tion of [31], in particular [31, Table B.2.1]. As noted after [31, Def. 9.1], we have
] = 1if and only if (A, —p) is an element of the so-called extended
weight monoid f(G /P), P C K© corresponding parabolic subgroup, correspond-
ing to G/K. Now we use [31, Table B.2.1] to see that the elements of I'(G/P) are

nonnegative integral linear combinations of

[ﬂ'ﬂK: T

(Wl +Wm+170)7 (w17_w1)7 (WQ,_OJQ), (wm,UJQ), (wm+17w2 _wl)'

We then see that (\,0) € I(G/K) if and only if A € P} (0), i.e. A is a spherical
weight. It is now a straightforward calculation to determine the A € Pg satisfying
(A, awy + bwy) € T'(G/K). O

Note that the representation of K with highest weight p = aw; + bws has
dimension a + 1. Denoting the highest weight vector by v, we see that VHK has
an orthogonal basis {vy = Ff - v, | 0 < k < a} by considering the represent-
ation as a U(2)-representation. It follows that, taking m € M as in (2.2), we
have 75 (m)vy, = el@tb=R)s1gi(b+k)s2q, 5o that this corresponds to the M-weight

m
(@ —2k)m + (b+ k)n2. So

(2.9) Vi =@V on=ouln) = (a = 2k)m + (b + k),
k=0

splits multiplicity-free into 1-dimensional M-representations. Since the M-repre-
sentations are 1-dimensional, we find o}, = —oy, and o (") = oa—i(p)*.
In any of the cases of Proposition 2.1 we have v;(u)|r, . = oi(p) using (2.5).

This leads to Corollary 2.3.

Corollary 2.3. For y = awy + bwy € PI'(", a €N, beZ, Conditions 1.1 and 1.2
are satisfied.

Proof. The statement can obtained by analysing more carefully the extended
weight monoid of [31] used in the proof of Proposition 2.1, but it can also be
done directly having the B(u) at hand. Assume A € PZ(u) can be written as
Vi + Asph = Vj +)\;ph, with Agph = n1A1 +n2Aa, )\;ph = miA1 +moAa. Assume first
i = awy + bwy with b € N. Then we have, using Proposition 2.1 and (2.8),

O:V,;+)\Sphfuj—/\;ph:(jfiJrnl—ml)wl

+ (i —j+ny—ma)wa+ (ng —ma)wm + (1 — 5+ 11 — m1)wma1-
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This gives no = ms, ¢ = j and ny = my, and uniqueness follows. The case b < —a
follows by duality, and the case —a < b < 0 can be proved similarly, taking into
account the different cases in Proposition 2.1.

The fact that the restriction map gives an isomorphism of B(u) and the set
of irreducible M-modules in VHK |ar follows from (2.9) and (2.5). O

§2.3. Condition 1.3

In order to able to apply the general theory described in Section 1.1 we need to
check Condition 1.3. Recall that a; = —w;—1 + 2w; — w;41 with the convention
wWo = W42 = 0, which gives

m+1 m
(2.10) M= i, d=oa1tama+2)
=1 =2

Note that for weights n € Pg()\;), we have n < \;, or \; — 0 € QE, so that the
coefficient of a; (or ay,+1) in 7 is less than or equal to 1. Moreover, we see from
(2.10) that for A € PZ(0) the degree |A| is equal to the coefficient of a; (or am1)
in A.

Proposition 2.4. For p = aw; +bws € P;;, a €7Z,be Z, Condition 1.3 satisfied.

Proof. We first assume b € N. Let n € Pg();), and assume v; +1 = v + Asph €
P (p) with Aspn € P (0). Then

Asph — 1 = Vi —v; = (i — j) (w2 + Wmt1 — wi1).

Since wo + w1 — w1 = ZZ:F; ag, we see that in the expansion of simple roots,
the coefficient of oy in Agpn equals the coefficient of «y in n, which is less than or
equal to 1. Since this coefficient is nonnegative and since |Agpn| is the coefficient of
aq, we get that |Aspn| < 1. This proves Condition 1.3 in the case b € N. By duality
it follows for b < —a.

In the case —a < b < 0, Proposition 2.1 gives two possible forms for v; and
v;. In the case that they have the same form, a similar argument to above proves
[Asph| < 1. Assume v; = (a — 9)wi + (—i — b)ws, + twpmyr for 0 < ¢ < —b and
vi = (a— jlwi + (b+ jlwz + jwmi1 for —b < j < a. Then

Asph =N =V —v; = (j —)wi — (b+ jwz — (b+ 1)wm + (i — J)wm+1
= (b4 i) (w1 +wm — wWmt1) — (b+J) (w1 + w2 + wint1),

and now we additionally use wy + Wy, — Wit1 = D peq Q- Since —(b+14) > 0
and —(b + j) < 0, the coefficient of ay,41 In Aspn — 7 = v; — v; is nonpositive.
Since the coefficient of ;41 in 7 is at most 1, the coefficient of a1 in Agpp is
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at most 1, and thus |Aspn| < 1. The other situation, with the form of the v; and
v; interchanged, can be proved analogously. O

Note that we have the following corollary of the proof of Proposition 2.4.

Corollary 2.5. For u = aw; + bwy € P, a € N, b € N, we have v;(p) = v;()
fori>j.

A similar statement holds for b < —a, but not for —a < b < 0. Then not all
elements can be compared in the partial ordering.

The reduced Weyl group W = Ng(A)/M acts on the M-types in V“K . Let
Ny € Nig(A) be a representative of w. Then (1.3) shows

P (ayt) = @ﬁ(nwatngl) = Wf(nw)éi(at)wf(n;l) € EndM(V#K).

For T € Endy (V,J), the action w - T = 7/ (ny,)Tnf (ny,') is well defined, and
preserves orthogonal projections, and so it induces an action of W on the M-
types in VHK . In this case, the decomposition (2.9) splits into 1-dimensional M-
representations. From (2.7), we see that so € W acts trivially on the M-types, since
it commutes with M. For s; we see that it acts on the characters as s1-1n1 = 72 —n1,

51 - M2 = 12 leading to

(211) 8§10k = O0q—k, S92 0O = O

§3. Special cases

In this section we give the simplest cases of embedding of K-representations in
tensor products of G-representations in order to obtain the leading term. The first
case concerns the zonal spherical functions for the weights A; and Ay generating
the spherical weights. This is based on suitable embeddings of the K-fixed vector
in a twofold tensor product. Next we find the embedding for the fundamental K-
representation Vw}f in a twofold tensor product of G-representations. This will be
used in Section 4 to obtain the leading terms of special matrix spherical functions.
We first prove Lemma 3.1, which we use on several occasions.

Lemma 3.1. Fori < j we have

min(i,m+2—7j)

G G G
qu’, ® ij = @ Vwi—r+wj+r’

r=0

with the convention wy = 0 = wy42.
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Proof. Observe that the fundamental weights for the root system of type A are
minuscule weights (see e.g. [2, p.230]), and for this case one has the multiplicity-
free decomposition
Vuf ® VUJG] = @ VwGi-i—wwjv

wEW/ij

witww; EPF
where W = Sy, 42 is the Weyl group for G and W, = {w € W | ww; = w;} =
S; X Spyo—j is the stabiliser subgroup; see e.g. [14, Prop. 1], [29, Cor. 3.5]. Since
W,,, is a parabolic subgroup, we can take coset representatives of minimal length
[11, §1.10]. Such an element is determined by a sequence k1 < kg < --- < k; of
numbers from {1,2,...,m + 2}, defined by w(j) = k; and extended such that
w has minimal length. Using the expression for w; as in [2, Planche I, we get
Ww; = Z;zl Wk, —Wk,—1. It remains to determine the choices leading to w; +ww; €

P(J;r = @1";{1 Nw;. It follows that the sequence {ki,ks2,...,k;} can have at most
one hole. Keeping track of these possibilities yields the result. O

§3.1. Spherical functions on A

We first construct explicit generators for the algebra of spherical functions for
(G, K). The natural representation Vwcf =V = C™*2 of G is equipped with the
standard orthonormal basis (e, ..., ey,t2). Recall that Vwcj =~ ATV,

Lemma 3.2. We have Vwcf ® Vw(fnﬂ = Vﬁ @ VT and define
v =€e1QeaNesNA--Nepmya—ea®eg ANeg A Aepmio € VWG1®VWGM+1.

Then v1 is a K-invariant vector, i.e. vy is contained in the 2-dimensional space

(VK & (V)X and vy has a nonzero component in (Vwcf+wm+1)K = (VaE.

Proof. The tensor product decomposition follows from Lemma 3.1. From (2.8)
we know that 0,A\1 = w1 + w1 € PG (0), so that (VS )% and (V)" are
1-dimensional. It is a straightforward calculation to check that v, is a K-fixed
vector, and the easiest way is to check that E;-v; = 0,4 € {1,...,m+1}\ {2} and
H;-v1=0,i€{1,2,...,m+ 1}. Note that E5 - v; # 0, so that v is not contained
K. O

in (V&)X = C, and so has a nonzero component in (Vw(iererl

Having v; given explicitly in Lemma 3.2 we can calculate the corresponding
matrix entry restricted to A explicitly using a¢ in (2.1), and we obtain

G

Wm 41

Lemma 3.3. Define ¢;1: A — C, 11(ay) = cos?t; + cos? ty and let ¢1: A — C be
the spherical function associated to Vﬁ. Then there exists a positive constant &}

<(7r§1 ® Y(ag)v1,v1) = cos? t; + cos® to.

and a nonnegative constant £, so that 1y = &1d + &Y as functions on A.
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The constants &1, £ can be calculated explicitly; see Lemma 6.2. Moreover,
we can also consider the identity as an identity for functions on G by interpreting
the matrix entries as functions on G.

Proof of Lemma 3.3. Put (V)X = Cd, ||0]| = 1, and let V¥ = Co. Then ¢ (a¢) =
<7r§1 (at)0,0). In Lemma 3.2 we see that v = a® + b0 with 0 # a € C. Then

Pi(ar) = (x5 @ 7S, )(a)v,v)

= la]* (x5 (ay)0,9) + |b*( (as)7, T) = |al?¢1(ac) + [bf?,
proving the result. O
In order to find the second spherical function, we proceed similarly.
Lemma 3.4. We have VS @ VS = Vg @ V/\G1 ®VE and define

02261/\62®€3/\'~'/\€m+2EVWC;(@VG

Wm

Then vy is a K-invariant vector, and v has a nonzero component in (V/\Cj)K.
Moreover,

PYo: A= C, afar) = (x5, @75 )(ag)va,v2) = (costy)?(costs)?

and g = E3¢o + E3p1 + €9, where ¢o is the spherical function corresponding to
Ao € Pg(O) and the constants £3 > 0 and &3 and £9 are nonnegative.

The proof of Lemma 3.4 follows the lines of the proofs of Lemmas 3.2 and
3.3. It is possible to calculate the constants &} explicitly; see Lemma 6.2.

Proof of Lemma 3.4. The tensor product decomposition follows from Lemma 3.1.
The K-invariance of vy follows from E; - vy = 0, 4 € {1,...,m + 1} \ {2} and
H; -vy=0,4€{l,...,m+ 1}, which follows straightforwardly. Then the matrix
entry can be calculated using (2.1), and this gives the statement of the explicit
expression for ¥s(at). Since vy is a linear combination of the K-fixed vectors of
Vg, Vﬁ and V&, we find analogously that 1), is a linear combination of ¢y, ¢2 and
the constant with nonnegative coefficients. Since the function (cost;)?(costs)? is
not a linear combination of (cost;)? + (costz)? and the constants, the coefficient
of ¢o has to be nonzero. O

Remark 3.5. Note that AN M = Z/27 x Z/27, and so the spherical functions,
satisfying ¢(may) = ¢(ag) for m € AN M, show that the spherical functions in
Lemmas 3.2 and 3.4, have to be invariant under (costy, costs) + (& costy, £ costs)
for all choices of signs.
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§3.2. The special case p = w;

From Proposition 2.1 we know that B(w;) consists of w; and ws + wyy41. The K-
equivariant map waf — Vﬁ is the standard embedding, which sends the highest
weight vector for K to the highest weight vector for G in the natural representation.
We need to understand the K-equivariant map waf — VWC; w1

understand the K-highest weight vector in V. . We proceed as in Section 3.1.

w2 +Wm41

and it suffices to

Lemma 3.6. We have Vg ® Vw(fnﬂ =RV &) Vﬁ and we define the vector

w2 +Wm41

110:61/\€2®€1/\63/\"'/\€m+2EVg@VG

Wm+1"

Then vy is a K-highest weight vector of weight wy. The vector vy has a nonzero

; G
component in Vw2+wm+1.

It follows from the tensor product decomposition and Proposition 2.1 for
1 = wi that there is a 2-dimensional space of K-highest weight vectors of weight
w1. It is possible to explicitly write down a linearly independent vector and give
the K-highest weight vectors of weight w; in V¢ and Vﬁ .

w2 tWm+t1

Proof of Lemma 3.6. Lemma 3.1 proves the first statement. Note that both rep-
resentations in the direct sum correspond to B(wy) = {wi,ws + w1} It is
straightforward to check that E;-vg =0,¢ € {1,...,m+1}\ {2} and H; -vg = vy,
H; vy=0,1€{2,...,m+ 1}, so that vy is a K-highest weight vector of weight
w1 . Note that the K-highest weight vector of weight w; in Vﬁ is also a G-highest
weight vector of weight wy, but Fs - vg # 0. So the vector vy has a nonzero com-
ponent in V¢ O

w2tWm1”

§4. The leading term of matrix spherical functions for B(u)

We focus on the case y = awy + bws, with b € N, and then discuss the case b < 0
briefly in Section 9. In this case, v; = (@ — i)wy + i(ws + Wny1) + bwe, 0 < i < g
see Proposition 2.1. Instead of trying to determine the K-equivariant embedding
V#K — V,f, we embed V#K in a much bigger G-representation containing Vl,(i;, in
which we can identify a K-highest weight of weight p that “sees” Vf, i.e. has a
nonzero component in Vf.

Recall that the representation Vﬁwl can be realised in the space of polynomials
in variables (x1,xa, ..., Zm12) which are homogeneous of degree N. Its G-highest
weight vector is #&V. Now define the tensor product representation with specific
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element u:
US =V§ o, ®(VEeVS e VS5,
(4.1) Uzm?_i®vo®"'®1}o®€1/\€2®"'®€1/\62,

7 times b times

where vy is as in Lemma 3.6. Then w is a K-highest weight vector of weight
W= awi + bwe by Lemma 3.6, since e; A eg € Vg is the G- and K-highest weight
vector of weight wy. Moreover,

(4.2) US =V o @ vy,
A<v;

for certain multiplicities ny. Since we are only interested in A € PZ (1), we need
Lemma 4.1.

Lemma 4.1. Let p = awy + bwo with b € N. Then {\ € P (n) | A < v} =

{l/(), .. .,I/i}.

Proof. Using the ideas and identities of Section 2.3 we assume v; +n1 A1 + 122 <
vi, n1,n2 € N. Writing

Vi — (l/j + 77,1)\1 + 77,2)\2)

= (i — j)(—w1 + w2 + wWpg1) — N1 (W1 + Wing1) — N2(w2 + wi)
=(—n1 —ng)ag + (i —j—n1 —n2)my1 + (1 —j —n1 — 2n2) Zak,
k=2

we see that this is in Qg if and only if ny =ny =0 and i > j. O

Our next objective is to give an explicit expression for the matrix-valued
spherical function associated to the K-equivariant embedding VMK — Ug , which
maps the highest weight vector of VMK to u. In order to describe the result, we
need the Krawtchouk polynomials; see e.g. [12, §6.2], [18, §9.11]. The Krawtchouk
polynomials are defined as a terminating hypergeometric series and are generated

by a generating function:

—n,—z 1
Kn(‘rvp7N):2F1( T,NCE;];)? NGN& x,nG{O,l,...,N},
(4.3) N
N . n __ 1*]7 * N—z
;(n)Kn(z,p,N)t 7(1 ; )(1+t) .

Note that the Krawtchouk polynomials are self-dual: K,,(z;p, N) = K, (n;p, N),
and Ko(z;p, N) =1= K,(0;p,N).
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Proposition 4.2. Let p = awi +bws, b €N, v; = (a — i)wy + i(ws + wim+1) + bwo
and US be the representation defined in (4.1). Then, for k,1 € {0,1,...,a},

(mug (ag) FY - u, Fi - u)

_ ; cos? ty
= S| FF -l (cos 1) (eos ) HREG (s g a),

with ag as in (2.1) and the Krawtchouk polynomials as in (4.3).

Remark 4.3. We make the following observations related to Proposition 4.2:

(i) The fact that we get zero for k # [ follows from the fact that matrix
spherical functions restricted to A are M-intertwiners and the vectors F* - cor-
respond to different M-types for different k. Indeed, u spans a 1-dimensional
M -representation of weight oo(u) = am + bns by (4.1) and Lemma 3.6, and
more generally F*.u corresponds to the 1-dimensional M-representation of weight
or(p) = (a—2k)n + (b+ k)ne; see (2.9) for the K-representation generated by w.

(ii) For k = [, the right-hand side is a polynomial in (costq,costs), and it is
a homogeneous polynomial of degree a + 2b + 27 in (costy,costs). Note that the
degree of homogeneity is independent of k. Indeed, for k = [, the right-hand side
of Proposition 4.2 equals

min(i,k)
— —k )
IFF - ul?(costy )tk H " W(cos%z—0082tl)p(costg)b””k_%,
p=0 R

using (4.3) and the notation for Pochhammer symbols (z), = f;ol (x+41); see e.g.

1, 12, 18].

(iii) Using ®(may) = 7/ (m)®(ay) for m € AN M, the decomposition (2.9)
and oy, (diag(¢1,C2, 1,...,1,C0, (1)) = CEPP=FEETR for ¢ € 7/27, we see that the
right-hand side has to be invariant up to (—1)%**~* under cost; ++ —cost; and
invariant up to (—1)*** under costy + — costs; cf. Remark 3.5. This also follows
directly from the explicit expression of Proposition 4.2.

Proof of Proposition 4.2. We put ay(r, s) = exp(sE1)at exp(rF1). Then using the
unitarity of the representation UVCj we obtain

al
r=0 @

ak

(44) (mug (a)FY - u, Fl - u) = 5F

o \mog (ag(r, s))u, u).
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Now,

AO0B
at(ns): 010, A= costy + rscosty scosts ’
7 CcOosto cos to

co0D

B_ s-is'intzisintl o= T-is'intgisintg D= costy 0 7
18inty 0 18inty 0 0 costy

and we can calculate the action of ag(r, s) on each of the factors in u € U,/Cj. We
get

{ag(r, s) -x’f‘i,x’f_i> = (costy + rscos tg)“*i@:‘f_i, z‘f"},

(ag(r, s) - v, vg) = costy costa(costs + rscosty)(vg, vg),

(ag(r,8) - e1 A ea,e1 A eg) = costycostale; Aea,eq Aes),
and this gives

(mug (ae(r, 5))u.u)

(4.5) = (cost; +rscosty)? (costy + rscosty ) (costy costa) T (u, u).

The first two factors can be expanded in terms of Krawtchouk polynomials using
the generating function of (4.3), and this gives
<7TU,2 (at (Ta S))ua u>

(u, u)

a 2
. 3¢ ¢ 5 n
= (costy)?P(costy)bH2 g <a>Kn(i S a) (7“scob 2) .
n

" cos2ty —cos2ty’ costy

n=0
Now the statement of the proposition follows using (4.4). O
Remark 4.4. Note that the right-hand side of (4.5) is a polynomial of the product
rs. This follows from (4.4) being zero for k # [, and this follows from the fact that

ay commutes with M and F* - u and F! - u realise different 1-dimensional M-
representations for k # [; cf. Remark 4.3(i).

We can now collect the results of this section into Theorem 4.5.

Theorem 4.5. Let i = aw; + bws, a,b € N, and let v; = (a — i)wy + i(wa +
Wint1) + bwy € B(p), i € {0,...,a}. Let v, be the highest weight vector of VK,
and define j: VMK — Ug to be the K-equivariant map sending v, — u. Then

Qb: G = End(V,S), g j omyg(g)oj
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is a matriz spherical function and restricted to A we have

ll/ti (a’t)(l 1k ! UM) = qllji,ak (at)} lk ! IUM?
2
cos“ to

— +b—k b+2i+k .
qﬁi;"'k (at) = (COSt])a (COStQ) * Ki (k,m,a).

Moreover, as matriz spherical functions on G we have
i
no__ i FM A T
Q. = E a,®% . a.€C, a; #0.
r=0

So we see that the transition of the elements ®% , i € {0,...,a} to Q¥ ,
i € {0,...,a} is given by a triangular matrix with nonzero diagonal entries. Hence,
(Qh )iy and (@£ )f_, span the same space of matrix spherical functions, from
which the matrix part W of the weight as in (1.9) can be obtained.

Corollary 4.6. Fori € {0,...,a} we have ® = S!_ diQ¥ with d\. € C and
dr 0.

Corollary 4.6 and the degree consideration of Remark 4.3 motivate us to
consider the explicit matrix spherical function Q. as the leading term of the
matrix spherical function ®% of Section 1.1. Note that d]. = (a.)~".

Proof of Theorem 4.5. The first statement follows from the general set-up in Sec-
tion 1.1 and Proposition 4.2. For the last statement we recall that {®§ | X €
PZ(p)} forms a basis for matrix spherical functions; see Section 1.1. By (4.2) and
Lemma 4.1 we find that the only matrix spherical functions of type p occurring in
US are ®  r € {0,...,i}. It remains to show that a # 0.

In the case 7 = 0 we have Q/ = ®% since both are the identity in End(V,[)
for the identity in G, so a) = 1. Assume that a¢ # 0 for i € {0,...,r — 1},
1 <r <a, and a] = 0. We show that this leads to a contradiction. Indeed, then
Q4 can be expressed in terms of q){fj, 7 < r, which in turn can be expressed in
terms of Q’Ifj, J < r. Hence, there is a nontrivial linear dependence between the
matrix spherical functions Z;ZO ch{fj = 0. Evaluating at a¢, acting on the K-
highest weight vector v,, € V#K and taking inner products with v, and using the
first part of the theorem, i.e. Proposition 4.2, we get a nontrivial linear dependence

of the form

ch(costl)“+b(cost2)b+2j =0 Vty,to.
=0

This is the required contradiction. O
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§5. The matrix weight

We keep p = awy + bwo with a,b € N fixed. Then we identify EndM(VuK) >~ Cotl
by Schur’s lemma and (2.9) and we set

(5.1) ¢§,gk(at)5 A—=C, (I)‘,\L(at)|val‘g = ¢§f,gk (at) Idv;‘k{
for A € PS(u), k € {0,...,a}. Note that W-invariance leads to (see (2.11))

(5.2) ¢l,<,gk($1at) = ¢/,<,ga,,€(at)a ¢f\t70k (s2a¢) = ¢f\b,g,€ (at),

and similarly for qﬁyok (at) because of Theorem 4.5. The nontrivial action for
qiak (at) corresponds to Pfaff’s transformation formula for o F-series; see e.g. [1,
Thm. 2.2.5].

We define the lower triangular matrix L by L;; = d%, j < i, with d} as
in Corollary 4.6. Then L is invertible. Upon defining the matrices ®¢ and Qg
on A by (®0):; = ¢}, ,, and (Qo)i,; = d, ,,, We see that Corollary 4.6 can be
rephrased as &g = L@y, and we calculate L explicitly in Proposition 6.7. Moreover,
Do(s1ay) = Po(ag)J, where J;; = 1 if i +j = a and J;; = 0 otherwise, and
similarly Qo(s1at¢) = Qo(ag)J by (5.2).

As a function on A we see that the matrix weight W in (1.9) can be written
as PPy, for which each matrix entry is a polynomial in (¢1, ¢2). Note that the
weight W is a matrix function on A which is invariant for the action of the reduced
Weyl group. We switch from the matrix weight W on A to the matrix weight S =
Qo(Qo)*, so that W = LSL* as functions on A for the constant lower triangular
matrix L. Note that S as a matrix function on A is invariant for the action of the
reduced Weyl group. Note that S is a polynomial in (¢)1,12) and we have for the
matrix entries S; ; of the weight S,

Sii(W1(a), v2(ar)) = D b, o, (a)ab; o (ar)

k=0

a
— Z(COS t1)2a+2b72k (COS t2)2b+2k+2i+2j

k=0

2 2
. cos“ to . cos” ty

5.3 x K (z;—,a)K ( ;—,a),

(5.3) F\" cos? ty — cos2 t; R\ Cos? ty— cos?t;

and by this expression we see that S; ;(11(ag), ¥2(at)) is a homogeneous polyno-
mial in (costy, costs) of degree 2a + 4b+ 2i + 25. The simplest nonscalar cases for
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a =1 and a = 2 give the following expressions for S (1, 2):

o Vi—ts S 313
(5.4) wé( ' 2) and ¥4 [ 3uivhe 203 + s Syl
M2 V192 302 Syl YA(0E— )

Note that in (5.4) the matrix part of S is determined by a, and the b-dependence
is only in the scalar part 1. This follows in general from (5.3).

Proposition 5.1. The matrix weight S is indecomposable, i.e.

A={T € My1(C) | TS(¢h1(ar), v2(as)) = S(vh1(ar), v2(ae))T* Vi1, t2} = RId,
A = {T S Ma+1((C) ‘ TS(¢1(CL1;>,’(/J2((L1;)) = S(’lﬂ1<at),w2<at))T Vthtg} =CId.

Remark 5.2. These notions of indecomposability of the matrix weight for mul-
tivariable weights have not yet been introduced, but it follows the definition of the
single variable case [20, 34], which can be generalised directly. Note that A’, which
is denoted A in [20], is a *-algebra, and A is a real vector space. The corresponding
vector spaces for the weight W = LSL* are then also trivial, which follows directly
for A and the invertibility of L. For A’ this follows from [20, Thm 2.3].

Proof of Proposition 5.1. Recall that the degree of S; ; as a homogeneous polyno-
mial in (costy,costs) is 2a + 4b + 2i + 2j. Assume T € A’ so that ST = T'S. We
consider the (7, j)th entry:

Zslk (costy,coste)Ty,; = ZTlrSm(costl,costg) Vi, ts.
k=0 r=0

Consider this a polynomial identity in (cost;, costs) and consider the total degree
of both sides. Assume that i < j; then we see that T3, = 0 for » > a + i — j.
Taking j = a, we see that T; , = 0 for > i. So T is lower triangular. A similar
deduction for ¢ > j shows that T is upper triangular, and so 1" is diagonal. Then we
obtain S; j(costq,costa)T; ; = T;;S; j(costy,costs), and since S; j(costy, costs) is
a nonzero function, we find T;; = T} ;. So T' is a multiple of the identity.

Assume T € A so that T'S = ST*. We consider the (4, j)th entry:

a a
Z Si k(costy,costa)Ty, = ZTi,TST,j(cos ti,costy) Viq,to.
k=0 r=0

Arguing as in the previous case, we see that ¢ < j leads to T' being lower triangular.
This gives > 7 _o Sik(costr,costa)Tjr = > v _o TSy j(costy, costs). Considering

the homogeneous part of highest degree 2a + 4b + 2i 4 25 gives T} ; = T;;,
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so that each diagonal entry is equal to the same real number. Next, compar-
ing the homogeneous part of the same degree leads to S; ;(costy, cos tg)m =
T kti—jSk+ij,j(costi,costs), so that in the case j > i we get m = 0 for
0 < k < j—i. Taking ¢ = 0 shows that T' is upper triangular. Hence, T is a

real multiple of the identity. O

Next we calculate the determinant of S. For this it suffices to calculate the
determinant of () for which we use the orthogonality properties of the Krawtchouk
polynomials. Recall e.g. [12, §6.2], [18, §9.11], using the notation of (4.3), the
orthogonality relations

N
(5.5) > w(wsp, N)Kp (250, N) K (250, N) = S nh(n;p, N),

=0

where

w(zip, N) = (f)l)x(l —p)N7* h(n;p,N) = ((_ljz:):'(lpp)n’

which is a positive finite discrete measure for 0 < p < 1. Rewriting shows that the

matrix

B:< w(z;p, N) "

e N))

n,r=0

is an orthogonal matrix, so of determinant +1. Writing B as the product of a
diagonal matrix times the matrix whose entries are the Krawtchouk polynomials
times a diagonal matrix, and introducing additional parameters gives

det(t"s* K, (x;p, N))Y

n,x=0

N 1
(5:9) = ()2 (T htoi ) )

n=0

[N

ﬂw(:ﬂ;p,N)>_ :

=0

vl
7N

Proposition 5.3. For yp = awy + bws, a,b € N, ay € A we have

aer(sa)) = ( ] (z)>2<costl costg) 20D

n=0

x (costy costy(cos® t; — cos? tQ))a(a-H).

Proof. With Qo(at)i; = @b, .o, (at), 0 < 4,5 < a, expressed in Theorem 4.5 in
terms of Krawtchouk polynomials, we take out the terms independent of i, j, and
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we next apply (5.6) to get

1
costy ) zalatD) (cos? ty)ze(@+D)

det(Qo(at)) = £(cos® 0 t; cosb t5)2F! <

costy
@ ra\\ /1= py satatD) 1
() ¢ e
n=0 n p
with p = % as in Proposition 4.2, using that ((:1‘)12:1, = (Z) Here we

assume for the time being that 0 < p < 1, so that all square roots are well defined.
Simplifying gives

det(Qolar)) = i( I (Z))l(costl cos 1)@+

n=0

x (costy cos t2(0052 t1 — cos? t2)) %a(a+1)7

and this proves the statement for 0 < p < 1. Since we know all entries of S are
polynomial in (costy, costs), cf. Remark 4.3(ii), the determinant of S is polynomial
in (costy,costs) and the result holds for all at. O

Remark 5.4. Now, by the results of Section 1.1 and [10, Prop. X.1.19], we have
(1.9) involving the matrix weight W, hence S. In this case, 6: A — R is given by

8(ag) = (sint1)20" 2 (sin t5) 2™~ 2) sin(2t, ) sin(2t5) sin?(t1 +t5) sin® (¢, —t2)

(5.7) = 4(sinty)*™ 3 (sinty)*™ 3 cos t; costy(cos® t; — cos? ty)?

(see [10, §X.5]) using Appendix A.l. In particular, from Proposition 5.3 and (5.7)
we see that det(S(at)) = 0 implies d(ag) = 0.

§6. Radial part of the Casimir operator

In order to obtain precise information on matrix spherical functions in their rela-
tion to the matrix functions @}, in Theorem 4.5 and Corollary 4.6, we use the
Casimir operator. Since the Casimir operator acts as a multiple of the identity in
a representation 7§ with scalar ¢y = (A, A) + 2(X, p), where p = 33" A1 a (see
[16, Prop. 5.28]), we have

(6.1) RF(Q)PA| 4 = cxPh |4,

where R*(Q) is the radial part of the Casimir operator as in the Appendix. For
convenience, the explicit expression for R¥(2) is derived in the Appendix. The
functions ®|4 are eigenfunctions of a much larger class of differential operators
arising from a subalgebra of the universal enveloping algebra [5, Chap. 9], but we
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only use the Casimir operator. The eigenvalues play an important role in order to
distinguish the eigenfunctions.
Lemma 6.1. Let A\, A\ € PC}L with A1 < A2 and A\ # Ag; then ¢y, < ¢y, .
Proof. Rewriting c¢x = (A + p, A+ p) — (p, p), then
Cr —Cn = (A2+p A2+ p) — (M +p, A +p) = (A1 + A2 +2p, X2 — Ap),

and since A1 + A2 +2p is in the interior of the positive Weyl chamber and Ay — A\ €
Qg, the right-hand side is positive. O

As a first application we calculate the constants in Lemmas 3.3 and 3.4.

Lemma 6.2. With the notation of Section 3 we have as functions on A,

_ 2méy +4 m—1 2(m+1) 2(m+1)(2m — 1)

m+2 ¢22m+2¢2+(m+2)2 m2(m + 2)?2

P o1+

Remark 6.3. The relation is invertible:

(m+2) — 4 ~m(m A+ 1) — (m+ 1)1 + 2
) ¢2 - .
m m(m — 1)

¢1 =

Proof of Lemma 6.2. In the case u = 0, R°(Q) is an explicit second-order partial
differential operator (see (A.5)), where all terms involving 71'5 are set to zero. Put
fi(t1,t2) = 1(ag) = cos?t; + cos?ty. Then by a trigonometric calculation (or
using computer algebra), R%(Q)f; = (2m +4)f; — 8. Since

m+1 j—1

Cx, :<w1 +wm+1,2an>+2 Z <w1 +wm+1,zap> =2m+4

n=1 1<i<j<m+2 p=i

using (2.10), we get that —8a = ¢y, b when writing ¢ = a1 + b using Lemma 3.3
and R°(2)¢1 = cy, ¢1. Evaluating at the identity, using ¢1(e) = 1, ¥y (e) = 2, fixes
the constant.

For o, put fo(ty,ta) = 1(ay) = cos®ty cos®ty. Then we find RO(Q)fy =
(dm + 4)fo — 2f1. In this case ¢y, = 4m + 4, and we identify the expansion by
considering the eigenvalue equation and the evaluation at e using the first result
as well. O

Next we go back to the situation of y = aw; + bws with a,b € N. The basis
(FF “Up)%_gs Vu being the highest weight vector of V#K, gives the M-decomposition,
and

TR (B)FY vy = (a+b—k)Ff v, 78 (Bao)F vy = (b+ k)Ff - v,
7Tilf(Fl)Flk'Uu:FlkJrl'qu F;§<E1)F{C'Uu:k<a_k+1)Flkil'Um

(6.2)
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and we see that almost all actions of the Lie algebra in the expression for the
radial part of the Casimir operator R*(€) of (A.5) commute with the action
of M. Only for the third line of expression (A.6) for RM () corresponding to
the middle roots of BCy do we get a nontrivial interaction of the M-types. Put
Gr = (G()Ff v, Ff - v,): A — C for the scalar action of G: A — Endy (V)
on VAT C VK. Then we can rewrite the radial part of the Casimir operator (see
Appendix A.3) as

(R ()G, = (R“(Q )Gk

82Gk "
(6.3) ffZDGﬁ (RE(Q)G) + (Rl (DG + (R} (VG

where the respective parts are given by

1

(R#(Qm)G)k = m

(mla+b—k)> —4(a+b—k)(b+k)+m(b+ k)G

for the action corresponding to 2, the term for the short roots is equal to

2
" P cost; OGy,
(RE@IG) = ~(m—2) 3 T
the term for the middle roots gives
(R, ()G
_cos(t1 +t2) (6Gk 8Gk) B cos(t; — ta) (8Gk 3 6Gk)
Sil’l(tl + tg) 8151 (’9152 sin(t1 - tg) 8t1 8t2

3 (COS(tl + t9) cos(t1 ta)

sin®(ty +t2)  sin®(t; — t2)>((k +1)(a—k)Gri1 +k(a —k +1)Gr-1)

1 1
+ ( +
sin2 (tl + tg) sin2 (tl — tg)

) (((k + 1)(a — k) + k(a — k +1))Gx)

and the term for the long roots simplifies to

i cos( 8Gk (a+0b—k)? G (b+k)?
sin(2 2cos? ty kT 9 cos? to

Having described the radial part of the Casimir operator explicitly, we can
use the action to make the constants in Theorem 4.5 and Corollary 4.6 explicit.

Proposition 6.4. As functions A — Endy (V) we have
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The key ingredient in the proof of Proposition 6.4 is the action of the radial
part of the Casimir operator on the functions Qf : A — EndM(V,LK ).

Lemma 6.5. Foric {0,...,a} and Q¥ as in Theorem 4.5 we have
RHO)QY, = ¢, Q) — 2i(b+1)Qp,_,,

where c,, is the eigenvalue of @ for RM(Q):
1
cu, = 2i% + 2i(b4+m) + (m + 1)a + 2mb + ?((m +1)a?® + 2mb(a + b)).
m

Proof. Note that R*(Q)®4 = c,, @k with c,, = (v;,v3) +2(v4, p), and the explicit
value of c,, follows by a calculation. This shows that ¢,, < ¢,, ,. This also fol-
lows more generally from Corollary 2.5 and Lemma 6.1. Since the transition of the
basis of (®4 )¢ to the basis (QF )i is triangular, we find RH(Q)Q4 = ¢, QF. +
Zi;é CQ} for certain constants C,.. These constants can be determined consid-
ering the action on VM of this identity using ¢ , (a¢) = (cost1)*?(costy)>+
and

(64) gt , () = " (costs) " (cos ) F2H 4 L (cos )T+ (cos ) L,
19 a a[

where we use K (z;p, N) =1— piN for the Krawtchouk polynomials; see Theorem
4.5. Using this we find by a trigonometric calculation (using computer algebra),

(RM()QY )o = ¢y, (cos t1)4 0 (costy) T2 — 2i(b + 1) (costy )P (cos ty) P2,

The right-hand side is ¢, ¢}, , (as) —2i(b+i)ql, | ,, (at), so that C;_y = —2i(b+1)
and C, = 0 for r < ¢ — 1 since the functions ¢} , are independent for i €

{0,...,a}. O
Remark 6.6. The fact that the right-hand side of Lemma 6.5 consists of just two
matrix leading terms makes it possible to derive many explicit results for matrix

spherical functions. This is one of the main motivations to consider these specific
leading terms.

Proof of Proposition 6.4. Apply R*(Q) to Corollary 4.6, using that the ®% are
eigenfunctions for R*(Q2), Lemma 6.5 and that the Q¥ are linearly independent,
to find the recursion dic,, = di.c,, —d. 12(r 4+ 1)(b+r+1) for r < i. Using the
value for ¢,, as in Lemma 6.5 we obtain

di(i—r)b+m+7r+i)=—d.  (r+1)(b+r+1)

(=8)i—r(=1 = b)i—r i
(i —m)!(1—m—2i— b)i_rdi

i
Sd’,‘_
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by iteration and it remains to determine d!. Evaluating at the identity element
e € A and using that @} and ®f. are the identity at e, we find

- Z i_b)ir
h (i—r) lfm 2t —b)i_r

r=0

:2F1( —i,—i—b _1>:( (I —m—1);

1—-m—2i—b 1—m—2i—b);

by the Chu—Vandermonde summation; see e.g. [1, Cor. 2.2.3], [12, §1.4]. Simplifying
di gives the result. O

As the next step we translate Proposition 6.4 into the transition for the matrix
weight W and S. Recall the matrix functions ®¢ and Q¢ as defined in Section 5.

Proposition 6.7. We have &y = LQq with the constant lower triangular matriz
L given by L; j =0 for j > i and

Lij= (- 1)’+J(.)(m+b+l) (bfjﬂ)i‘j , 0<j<i<a,
’ J (m)i  (mA4i+j+0)iy

and its inverse is the lower triangular matrix given by (L_l)i,j =0 forj>1iand

- ' j b+j+1)i—; o
LY, = v (m); ( j b<ici<a
s (j)(m+b+j)j(m+2j+b1)i_jv <j<i<a

Proof. Recall from Section 5 and Proposition 6.4 that as functions on A we have

(Po)ik =B, 5 = (V)6 = Zdz k= Zdrqur oo = Lin(Qo)ri
r=0

with L; , = d.. for i <r and L;, = 0 for i > r. Rewriting gives the matrix L.

To show that L™! is as given, we need to show the nontrivial case: for j < i
we have to show Zi:j L;(L™1),; = &; j. Taking out the r-independent parts, we
see that this is equivalent to showing

i

= X0 () i (i

r=j

The right-hand side can be rewritten as

(b+i+j)iy <z> ’”Z. pm+i+j+b—1)
(m+i+j+b—1)—; \J E(m+2j +b)x

and the sum is a terminating o Fj-series at 1, which can be evaluated by the Chu—

Vandermonde summation (see e.g. [1, Cor. 2.2.3], [12, §1.4]) as % so that

the numerator gives 0 unless ¢ = j, in which case we find 1. O
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24 T2

Figure 1. Integration region I of Theorem 7.1.

§7. Matrix orthogonal polynomials in two variables

In Section 5 we established the matrix weight for the polynomials, and in this
section we establish some more properties for these matrix orthogonal polynomials
in two variables with BCs-symmetry. In particular, we make the orthogonality
relations more explicit. Moreover, we derive the matrix partial differential operator
to which these matrix polynomials are eigenfunctions.

First, the Haar measure on A is dt; dts on [—m, 7| X [—7, 7] and using the
invariance under the sign changes, we can reduce to the integral over [0, %7‘(‘] X
[0, 27]. Using (5.7) we find for the normalising constant in (1.9),

32
2 _

1 1
1 9 2™ 27

(7.1) o= /A |0(a)|da = 4 /0 /0 |0(at)| dty dta = mZ(mZ = 1)

In order to make the connection to the BCs-case as originally introduced
by Koornwinder [25, 24] (see also [32, 30]), we make an affine change of variable
P = %xl—i—l, Yo = ixg—l—ixl—i—i, or, in terms of t; and ta, £1 = cos(2t1)+cos(2ts),
x5 = cos(2t1) cos(2t2). Then the map sending (t1,t2) € [0, 37 x [0, 37 to (z1,x2)
is a 2 : 1 mapping onto the region bounded by the parabola 23 = 475 and the lines
To =21 — 1, xo = 1 — x1; see Figure 1. This is exactly the region of integration
for the polynomials studied in [25, 24, 32]. For d = (d1,dz2) € N? we define matrix
polynomials Rq of size (a + 1) X (a + 1) of degree d by

(7.2) Ra(x1,22) = Pa(¢1, $2)L,

where we use the notation for Py as in Section 1.1, the affine transformation from
(21, 22) to (Y1,12) as given above and the affine transformation from Lemma 6.2,
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and with L as in Proposition 6.7. Finally, we define the matrix weight

(7.3) S(x1,22) = S(¥1,2)

with S(¢1(at),¥2(at)) defined in (5.3) for the case a € N, b = 0, and using the
coordinate change of (11,v3) to (z1,2z2). In the case a = 1 we obtain

2 1 1 1
Sl(th):( o ety ;

%(1‘1 + 19 + 1) %(%l’l =+ 1)(1?1 + 2o + 1)

and for a = 2 we obtain that S?(x1,z2) equals

(ge1+1)? = 2EEE SGa + 1)(z1 + 22+ 1) (@ + s +1)?
1 2
$(Lay + 1) (a1 + g + 1) LaFeet VA DYGRAD) 8 (1) 1 1) (2) + 0 + 1)2
E - e 2((1, 2_ zytegtl
1%(:181 + 3 + 1)? g,%(%m + 1) (2 + 22+ 1)2 (e 42 tl) ((221;1) )

These examples follow from (5.4) taking b = 0 and ¢; = z1 + 1, ¥2 = a2 +
1 1
le + 1

Theorem 7.1. The matriz polynomials Rq defined by (7.2) are orthogonal on the
region of integration I as in Figure 1, and

//I Rd(xl,$2)Sa(x1,x2)(Rd/(x1,:vQ))*(l — X + 1'2)m72(1 —+ I —+ xg)b

X (xf - 4:1:2)% dxq dao

— 6d’d,22m+2b—10m2(m2 _ 1)Hd

where S is positive definite on I with positive determinant on the interior of 1.
Moreover, the weight function is indecomposable. Here the matriz Hq is a diagonal
matriz with (Ha)gr = (a+1)2/dim V.S, 4,

Moreover, the polynomials Rq are eigenfunctions to a second-order matriz
partial differential operator:

RaR%(Q) — RaC* + Ra(Ao + S) = AgqRa,

where Ag = diag(Cy, 1d, 7 +dsrs)img, d = (di,d2) € N?, Ag = Ao 0) and S is the
lower triangular matriz with one nonzero subdiagonal with Sy ,_1 = —2r(b+r).
The operator R°(Q) is the second-order partial differential operator acting from
the right as the identity times the classical partial differential operator
2 2 92

0
2 2
5 + (—2x7 + 45 + 45”2)67@ T ami{er - 1)396131’2

0 0
+2((m +2)x1 + 2m — 4)87:51 +2((m—2)x; +2+ (2m + Q)xg)a—@,
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and C*" s the first-order matriz differential operator %C{L + %Cﬁ, where CY'

and C% are tridiagonal polynomial matrices of degree 1 given by
(C)rr=2((a+b+r)z1 — 20— 2r),
(CY)rr = 2((b+7)(222 — 1) + az2 + 1)),
(C1)re1 = (C)pr1 = —1(21 + 22 + 1),
(COrrs1 = (CY)rrs1 = —4(a = 7).

Moreover, the matriz partial differential operator is symmetric with respect to the
matriz weight.

Remark 7.2. Note that the scalar part of the weight in Theorem 7.1 is the weight
considered by Koornwinder [25, 24] and Sprinkhuizen-Kuyper [32] for the special
case a = m—2, 8 =5b,v= % Similarly, in the case y = 0, i.e. a = b = 0,
the partial differential operator reduces to the partial differential operator studied
in [25, 24, 32] up to a scalar multiple for these choices of parameters. The case
a =0, b €N, gives the case of a nontrivial character of K, and this corresponds
to Heckman and Schlichtkrull [9, Chap. 5].

Note that in the scalar case, the 2-variable orthogonal polynomials can be
expressed in terms of Jacobi polynomials [24, eq. (3.13)], [32, Lem. 3.1]. It is not
clear whether in this case we also have an explicit expression for Rq(z1,22) in
terms of matrix Jacobi polynomials of a single variable.

Proof of the orthogonality in Theorem 7.1. Observe that the Jacobian for the
change of (t1,t2) to (x1,z2) is given by

32| sin(t;) sin(t2) cos(ty) cos(tz)(cos?(t1) — cos®(ts))]

and sin®(t1) sin®(t2) = +(1— 21 +22), (cos?(t1) —cos?(t2))? = 1 (2% —4a»). Keeping

track of the constants involved, the statements on the orthogonality follow from
(1.9) and from Section 5, in particular Proposition 5.3 and Remark 5.4, and S =
Qo Q) being positive. O

In order to prove the statement of Theorem 7.1 concerning the partial differ-
ential operator, we need to be able to rewrite the eigenvalue equation of the radial
part of the Casimir operator R*({2) acting on the eigenvector ®4|4 in terms of
an operator acting on the polynomials Rq. For this we need to conjugate R*(2)
with the matrix function Qo; see [23, §3.2]. We collect the technical results in
Lemma 7.3.
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Lemma 7.3. We have for i = 1,2, as matriz-valued functions on A,

904 9Qu | 0ui0Qy _
Oty Oti Oty Oty

Ci(1h1,v2)Qo,

where we consider the functions as functions of (t1,t2) by evaluating at ay € A.
Here C;(11,12) is a matriz polynomial in (11,12) of total degree at most 1, where
the nonzero entries are explicitly given by

C1(Y1,9%2)rr = 2(a+2b+ 2r — (a+ b+ 1)),

Co(P1,¥2)rr = 2((b+ 1)th1 — (a + 2b+ 2r)1bs),
Cr(¥1,92)rr—1 = C2(P1,%2)r,r—1 = 2112,
Cr(¥1,¥2)r 1 = Co(V1,¥2)r i1 = 2(a —1).

Note that the tridiagonal matrices coincide on the off-diagonal entries.

There are analogues of Lemma 7.3 with Qg replaced by ®, and ; replaced
by ¢; or z;; see also the first paragraph of the proof. However, in general it is
hard to calculate the right-hand side explicitly. In this case we can do the explicit
calculation because of the homogeneity properties of the entries of Q¢ and 1, 1.

Proof of Lemma 7.3. Lemma 3.9 of [23] implies that

06, 9% | 091 0%
8t1 8151 8t2 8t2

= Ci(¢1,¢2)®

for a matrix polynomial C! in (¢1, ¢2) of maximal total degree 1, where we use the
adjoint of [23, Lem. 3.9]. Using &y = L@ and the affine transformation of (¢1, ¢2)
to (11,12) given in Lemma 6.2 proves the general statement of the lemma, and it
remains to determine the polynomials C;.

Take ¢ = 1 and consider the (r, s)-entry of the left-hand side of the identity.
Since (Qo)r,s(at) = ¢& . (at) is a homogeneous polynomial of degree a + 2b + 2r
in (costy,costsy), we see by an explicit calculation that

5¢1 (QO)rs_i_awl (QO)’I‘S

4
(7.4) ot o Ota Oty

=2(a+2b+2r)(Qo)r,s + Ers,

where &, ; is a homogeneous polynomial of degree a+ 2b+2r+2 in (costy, costa).
Since 11, respectively 1, is homogeneous of degree 2, respectively 4, and the fact
that C1(¢1, 12) is of degree at most 1, we have &, s = a,11(Qo)r,s +br12(Qo)r—1,5+
¢r(Qo)r+1,s for coefficients a,, b, and ¢,. So we see that C7(¢1,2) is a tridiagonal
matrix, and we have to determine the coefficients. For this we take s = 0 and
recall from Theorem 4.5 that (Qo)ro(at) = (at) = (costy)?t(costq)bt?r.

- qV7.70'0
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Therefore,

% a(QO)r,O + % a(QO)r,O
Btl 8161 8752 8152

=2(a+b+2r)(Qo)ro0 — 2(a+ b)(cos tl)“+b+2(cos tz)b+2r
—2(b+ 2r)(cost)* b (costy)T2rH2,

and comparing with the explicit form of &, 5 we get a, + b, = —2(a + b) and
a, + ¢, = —2(b+ 2r). Writing b, and ¢, in terms of a,, we now take s = 1 in
(7.4) and we use the explicit expression (6.4) in order to obtain by a calculation
(using computer algebra) that a, = —2a — 2b — 2r. This gives the expression for

Cl (/l/}la 11[}2)

In the case i = 2 we proceed similarly and we get

(7.5) oty 0ty Oty Oty

—2(a+2b+2r)2(Qo)r,s + Ers,

where &,  is a homogeneous polynomial of degree a +2b+2r 42 in (costq, costs)
as before and hence of the form &, s = a,;¥1(Qo)r,s + brY2(Q0)r—1,s + ¢ (Q0)r+1,s-
So also Cy(1)1,19) is tridiagonal. Taking s = 0 in (7.5) we find by a calculation
that a, + b, = 2(b+ 2r) and a, + ¢, = 2(a+ b) in this case. Eliminating b, and ¢,
in terms of a, and now taking s =1 in (7.5) and using the explicit form (6.4), we
find by a calculation (using computer algebra) that a, = 2b + 2r. This gives the
expression for Co (11, 12). O

In order to derive the partial differential operator of Theorem 7.1, we observe
that in this case we can rewrite (1.8) as

(7.6) o (a qu (¥1(ac), 2(a0)) QL (ar),
r=0

using Theorem 4.5 and Remark 6.3. Note that qﬁwr;d is a polynomial of total
degree |d|. Note that ¢ :
a change of coordinates. Since <I>V Y k(at) is an eigenvector of the radial part
R*(Q) of the Casimir operator, we need to derive the action R¥(2) on t +—
f(W1(at),¥(at))QL (ag) for f a 2-variable scalar function. It can be checked from
(6.3) that (cf. the proof of [23, Lem. 3.9])

REQ)(f (Y1, 12)@Q1,) = (b1, 92) (R (Q)Q)

2 HOH
& @ s -3 5] L.

.4 are entries of the matrix polynomials Rgq up to

Vi, Up
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where the first term follows from Lemma 6.5 and the last term can be dealt with
using Lemma 7.3 and the chain rule. So we can rewrite R*(€2)(f(v1,12)Q% ) com-
pletely in terms of the @} : we get an eigenvalue equation for the qﬁhw; q» Which
is

a

Coitram Do a1, 02)QU =D (ROl a(th1,12)) QL

r=0 r=0

+qu/1 vryd wlaw2)(curQH —27“(b+7‘) l/, 1)

(7.8) ZZ Q,,“l,m (V1,92)Cp (Y1, ¢2)r QY

p=1r,u=0

where )\sph =diA +doro, d = (dl,dz) e N2

Lemma 7.4. Define Qq = Qd(¥1,v2) the matriz polynomial by (Qa)i,; (Y1, ¥2) =
qgi,uj;d(w17w2) using (7.6). Then
9Qa

QuR(Q) — Z /=0, ) - 83“

where Aa, Ao and S are as in Theorem 7.1, and C;(11,13), i = 1,2, are the matriz
polynomials of at most degree 1 (see Lemma 7.3). Moreover, R°(Q) is a matrix

2(1,92) + Qa(Ao + 5) = AaQa,

second-order partial differential operator in (1,12) acting entrywise, considered
as acting from the right.

Remark 7.5. Note that the radial part R(f2) acts as a matrix differential oper-
ator when considered as multiplied by the identity. This has to be rewritten as a
differential operator with respect to the variables (11, 1), which can be done since
the spherical functions are polynomials in (¢1, ¢2), hence in (11, 12); see Vretare
[37]. For convenience, we write down the terms of R%(Q)f, where f is a scalar
polynomial in (¢1,%2). Then R°(€y) is zero, —% 22:1 g—; in (6.3) corresponds to

(2¢1 — 2)% + (42 — ¢1)aJ + (297 — 20y — 4%)81/;{
2 2
+ (493 — 21/111#2)21;2; + (4ap1ep — 8%)8@25@&2’

RY(Q) f corresponds to

2m — 2)1/11% +4(m — 24 81[
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RY(Q) f corresponds to

5f of
and R2 (Q)f corresponds to
af af
(441 — )Tw + 7/12aw

Proof of Lemma 7.4. Writing (7.8) in matrix notation, we obtain the result of the
lemma multiplied by the matrix function Qg from the right. Since Qg is generically
invertible (see the proof of Proposition 5.3), the lemma follows. O

Proof of the partial differential equation in Theorem 7.1. Comparing (7.6) with
(7.2) and (1.8), we see that Rq and Q4 are the same up to the change of coordinates
from (11, 12) for Qq to (z1, z2) for Rq. Note that x1 = 291 —2, 29 = 41p1 — 241 +1,
making this affine change of coordinates give the expression for R°(Q) in (21, x5)-
coordinates as given in Theorem 7.1. It remains to make the change of coordinates
in the other terms involving first-order differentials, which is straightforward.
Note that the radial part R*(Q2) of the Casimir operator is symmetric with
respect to the inner product (®,¥) = < [, Tr(®(a)(¥(a))*)|6(a)| da by (6.1), (1.4)
for matrix spherical functions @, \I/, and the results given in Section 1.1. Since the
second-order matrix partial differential operator is obtained by conjugation by Qo,
we obtain the symmetry. O

§8. The leading term of ®%

In Section 4 we introduced the leading term @Q# of the matrix spherical functions
for ®# for v € B(u). Using these results we can determine the leading term Q% of
the matrix spherical functions for ®4 for A € Pg (). We do this by introducing the
leading term from an embedding of VMK in a large tensor product representation,
similarly to the construction in Section 4. We then show, by using the radial part
of the Casimir operator, that this is indeed a leading term by establishing the
lower triangularity of the radial part of the Casimir operator on these functions.

Assume as before p1 = aw; + bwy with a,b € N and we take A € P (u). By
Condition 1.2 we can write A = v; + di A1 + daA2 with v; € B(u), di,ds € N.
Generalising the construction of 1, 92 and Q. as in Sections 3 and 4, we define
the tensor product representation and an explicit element by

WY =VSEeVsE )M eVieVs)® U, w=uv"@ud" @ue WY,

using the notation of Lemmas 3.2 and 3.4 and (4.1). Using the results of Sections
3 and 4 we see that w is a K-highest weight vector of highest weight y in W¢. So
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we get a K-intertwiner j: VNK — Wf mapping the highest weight vector v, € VILK
to w.

Proposition 8.1. Define the matriz spherical function QY: G — End(VMK) by
Q(g9) =j* o ﬂ-‘?Vf(g) oj. Then

Qh(ae) = (1(ae)) ™ (V2(ar)) 2 QL (at)
and QY|4 = ZA%A;A’ePg(m ax®,|a for constants ay .

Note in particular, that the action of QX (ay) on the 1-dimensional constituent
VUA,:[ in V#K is given by

(8.1) (¥1(a))™ (¥2(ac)) 4l o, (ac),

which is a homogeneous polynomial in (costq, costs) of degree 2d; + 4ds + 2a +
4b + 21; see Remark 4.3 and Theorem 4.5.

Proof of Proposition 8.1. As noted, w is a highest weight vector for the action of
K of highest weight p, so by construction QX is a matrix spherical function, and
by Section 1.1 it is a linear combination of ® for A € P (1) by the Peter-Weyl
theorem. Since we have the decomposition W' = @,, 5, na V¥, with ny = 1, by
repeated application of, e.g. [29, Lem. 3.1], the expression for Q4|4 follows.

For the proof of the explicit expression, we use the notation in the proof of
Proposition 4.2. Since the matrix entry of a4 (r, s) acting on v; and taking the inner
product with v; is 9;(at) for i = 1,2 by Lemmas 3.2 and 3.4, we find the result
from Theorem 4.5. O

In order to understand the decomposition of Q4 of Proposition 8.1 we calculate
the action of the radial part of the Casimir operator on Q4 as a function on A.
Recall (7.7), and take f a polynomial in (t)1,2); this leads to Proposition 8.2.
Note that Proposition 8.2 generalises Lemma 6.5, but Lemma 6.5 is used in the
proof of Proposition 8.2.

Proposition 8.2. We have as functions on A,

RM(Q) ﬁ\b = C)\Qg + Z bA/Qi/'
A=<
NePH(n)
Corollary 8.3. In Proposition 8.1 we have ay # 0, so that there exist constants
by with
=D byQY, by #0.

A
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The statement of Corollary 8.3 motivates us to call the matrix spherical func-
tion @ the leading term of ®4.

Proof of Corollary 8.3. In the case ay = 0 in Proposition 8.1, we have Q% in the
span of ®4, for X’ < X\ which is an invariant space for the radial part of the Casimir
RH(Q) with eigenvalues c¢y/. By Lemma 6.1 the eigenvalue ¢y is not contained in
this set, but applying Propositions 8.2 and 8.1 to A’ < X shows that the eigenvalue
¢y has to occur, since R*(€) acts in a lower triangular way on the @Q4,. This is the
required contradiction.

So this means that we can invert the relation of Proposition 8.1, giving the
stated expansion. O

Proof of Proposition 8.2. Put f(¢1,1¢9) = fl gz; then the first term on the
right-hand side of (7.7) follows from Lemma 6.5. For the second term we have by
a calculation,

RO(p)f = 2(d% 4 dy(1+ 2dy +m) + 2d§ + 2mdy ) sz — 2d3ep{r Typde
(8.2) — 2dy (dy + 4dy + 3)yP " yde — ad, (dy — 1) fl Pyt

which follows from the explicit expression of the radial part of the Casimir oper-
ator, RO(Q), in (41, 12)-coordinates; see Remark 7.5. For the final term of (7.7),

- § p=1 at g = we consider the action on the constituent VM in VK, and we
P
find

-y - o/ ~(Colw42)Qo)ik

using the chain rule and Lemma 7.3. By the explicit expression of Lemma 7.3 this

term gives
= 2Acitpr + dagpr) (WP QY + (e — DY TR TIQL,)
—2((a+b+2i)dio + (b+ 2@)d2¢f
(8:3) — (da(a+b+ i) + dala+ 2+ 20)rn) v R IQl

So from (7.7), Lemma 6.5 and (8.2), (8.3), we collect the coefficient of Q% in
RH(Q)QX as

v, +2(d? + dy (1 + 2dy +m) + 2d3 + 2mdy) + 2(a + b+ i)dy + 2(a + 2b + 2i)ds.

Write A = v; 4+ Agph, With Agph = di A1 + daXe. Then the eigenvalue ¢y can be
written as

C\ = Cy, + <)\sph7 )\sph> + 2<Aspha v; + ;0>
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Since (Asphs Asph) = 2d3 + 4dids + 4d3, and (A\1,v; +p) = a+b+i+m+ 1,
(A2, V5 + p) = a+ 2b+ 2i + 2m, we see that the coefficient of Qf in R*(Q)QY is
C). O

Note that the proof of Proposition 8.2 actually gives a complete expression
for the action of R*(Q) on Q. For completeness we list in Table 1 the X < A for
which @4, occurs with a nonzero by whose explicit value is listed as well.

Indeed, all )’ satisfy ' € PZ(u) and X' < A, which can be checked using the
results of Section 2.

N by
(di — DA1 +doda + v —2d;(dy + 4da + 3) — 2d1(a + 2b + 21)
(di =2)A1 4+ (da+ Do+ v —2dy(d; — 1)
(di + DA+ (da — DA+ v —2d% — 2dy(b + 1)
did + doda + vy —2i(b+ i) — 2ids
(di =DM+ (de+DAa+vim1  —2idy
(di — D)A1 + doda + Vi —2(a —1)dy
did1 + (da — DA+ v —2(a — 1)da

Table 1. Table for the remaining coefficients in Proposition 8.2.

89. The case u = awi + bws with b negative

In general, we obtain from (1.7) and ox(p*) = 04—k (1) for p = awy + bws, a € N,
b € Z (see Section 2.2) and a; ' = a_y,

*

H _u
o) (9) = D (),00 () (08

extending the notation (5.1) to more general p and stressing the dependence on p
and p* in the corresponding weights. So, for the corresponding ®, we obtain

(9.1) D8 (ag) = JOH(a_e)J, Jij = Oirjar 0<i,j<a.

Applying (1.7) to (1.8), using that A7, = Aspn and that spherical functions satisfy
$(ay) = ¢(a_y), we obtain for the matrix polynomials P§(¢1,¢2) = Pa(p1, ¢2)
introduced in (1.9),

(9.2) Py (61, ¢2) = JP4 (61, ¢2) .
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The weight function satisfies W* (¢1, ¢g) = JWH (o1, ¢2)J as follows from (9.1),
so we see that the matrix polynomials for y = aw; + bws and p* = aw; — (a+ b)ws
are essentially the same. So this covers the case b < —a.

It remains to consider the case —a < b < 0 with @ € N, b € Z, and using
duality we can restrict to the case —%a < b < 0. However, in this case we cannot
extend the method established for the case b > 0 easily, due to the fact that the
bottom splits into two parts. The results for each of these parts cannot be easily
related to each other.

Remark 9.1. The case that u* = p,i.e.a € 2Nand b = —%a or p = 2cwy —cws for
¢ € N, exhibits different behaviour. Assume ¢ > 1; we see that the corresponding
spaces A and A as in Proposition 5.1 for the matrix weight W (see Remark 5.2) are
no longer trivial, since A’ and A both contain J. Calculations for small values of ¢
in u = 2cwy — cws indicate that we may expect A’ = CJ®CId and A = RJHRId
with A’ and A defined as in Proposition 5.1.

Note that in the study of matrix orthogonal polynomials of a single variable
related to (SU(2) x SU(2),diag) the weight is also reducible; see [21, Prop. 6.4,
Thm. 6.5]. In that case the algebra A’ is also 2-dimensional with a similarly defined
nontrivial element. So we see that self-duality of the K-representations in these
cases leads to reducibility of the weight for the corresponding matrix orthogonal
polynomials. The precise relation requires more attention in general.

Appendix. Radial part of the Casimir operator

In general, the determination of the radial part of an operator arising from a
suitable element in the universal enveloping algebra is due to Harish-Chandra in
unpublished papers from 1960; see [8]. The result is mainly used for representations
of noncompact Lie groups; see [15, Chap. VIII], [38, Chap. 9]. In this case we need
to do this for the compact setting, and we derive the explicit expression from the
Casimir element in the centre of U(g). For this we follow Casselman and Mili¢ié

Appendix A.1l. Structure theory

In order to calculate the radial part of the Casimir operator following [3], we note
that K = GY with 6(g) = JgJ, J = diag(—1,—1,1,...,1). In order to do the
calculation we conjugate to the maximally split case. So we take

1 1
0 0 Jo ﬁh 0 WJQ
(A1) J =01, 20|, u= 0 I, O € SUm+2), u*J'u=J,
1 1
JQ 0 0 _EJZ 0 ﬁIQ
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BeER dim gg a € A with aly =8
fi—fa 2 €1 — €2, Em4+1 — Em42
fi+ fo 2 € — Emair 1 =1,2
2f;, 1 <i<2 1 €i — Em+3—i
fi,1<i<2 20m —2) & —eatj, Eotj — Emts—i, L<J<m—2
fo— N 2 €2 — €1, Em42 — Em—+1
—fi—f2 2 Emti — €y i =1,2
=2f;, 1<i<2 1 Em+3—i — Ei

—fi, 1<i<2  2(m—2) €245 —€is Emgs—i —E245, 1 <j<m—2

Table 2. The restricted root system of type BCs.

where J; = (91) and #'(g) = J'gJ', so that uf(g)u* = ¢ (u*gu) and K’ = G¥ =
uKu*. We use the same notation for the involutions § and 6’ for the complexified
Lie algebras. Now g = sl(m + 2, C) has the root system A = {&; — €, }1<izj<m+2,
g9 =h®P,ca o, where b is the Cartan subalgebra consisting of the diagonal ele-
ments in g. The matrix FE; ; spans ge, . ;; see Section 2.1. Then a’ = wau* consists
of diagonal matrices X = diag(dy,ds,0,...,0,—ds2, —d1), and we let f;(X) = d;,
i = 1,2. Then the reduced root system R is of type BCy and the identifica-
tion is given in Table 2. Then the positive roots of A and R correspond to
each other. Moreover, m’ = umu* = m. With A’ = wAu*, and a; = uau* =
diag(ei®r etz 1,...,1,e7 % =) we have M’ = Zy:/(A") = uZg(A)u* = M.
Let ny f1 + nofo be the character of A sending aj +— e?(mti+n2t2),
Then the root space decomposition for the action of A’ is given by

g=dome@e = P

BER a€lal=p

where, for o = ¢; —¢; € A, go = CY, with Y, = F; ;, where we use the same
notation B for the corresponding derivative 8: @' — C. Note that 6 gives an
action on A by 0'(«)(H) = «(¢'(H)) for H € h. Then —6’ is an involution of
{a € Al a|y =0} for B €R.

Appendix A.2. Casimir element

The Killing form on g is given by B(X,Y) = Tr(XY') up to a positive multiple, and
the Casimir element Q = >, X; X € Z(U(g)), where {X;}; is a basis for g and
{X}}; its dual basis with respect to B. Put H; = E; ; — Eppys—im+3—i, t = 1,2, as
the basis for a/, then H} = %HZ and note that E}; = Ej;; fori # j, or Yy =Y_,.
Observe that Blmxm is nondegenerate, and let €y, be the corresponding Casimir



344 E. KOELINK AND J. LiU

element. So we get

(A.2) Q=Qn+= ZH2+Z > (YaYoo+YooYa)
ﬂGRJralEA_%

Now we want to rewrite (A.2) following [3, §2]. So let a € A, i.e. B(a) # £1 for
all 3 € RT. Define X% = Ad(a™!)X, X € U(g), and let o € A with aly = 8.
Then (see [3, Lem. 2.2])

X, =Y, +0Y, =Y, + Yy, ¥,

(A.3) . B(a) a _
Vo= 2006 - pla) )

In order to obtain the infinitesimal Cartan decomposition of the Casimir element
7H(Q) (see [3, Thm. 2.1]), we need to write 2 as the sum of elements of the form
X*HY with X, Y e U(¥'), H € U(«'). Note that the first two terms in (A.2) are
of the right form. Using (A.3) we see that

> (YaYoo + VoY)

acAT
alqar=p

- T Z (XIX2, + X% X2+ Xo X0+ X_0Xa
oAt — Bla) T XEX o — Ba) X%, Xa
—B(a)Xo X, — Bla) ' X_oX2).

Next observe that

>OXOXE= ) Xgo X%, = Y XiXx°,,
aeAt acAT acAt
al =5 al =5 al =5

using the involution —#" and X, = Xg. Similarly, we can take other terms
together. Then only the last two terms are not yet of the right form.

Lemma A.1. For a € AT with a|y = 8 we have
(X8, Xoa] + [X 20, Xora] = (B(a) ™" = B(a))(Ha + H-ga) € @,
where Heifej = Eiﬂ' — Ej,j'

Proof. Using (A.3) we rewrite the commutators in terms of the Y,. The mixed
terms cancel and we are left with

(X8, Xoal+[X2g0, Xora] = (B(a) ™' =B(a))[Ya, Yool +(B(a) = B(a) 1) [Yora, Yopral
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in terms of commutators of the Y,. Since the right-hand side is in § and in the
—1-eigenspace of 8’ we see that it is contained in o’ O

Using this in the expression for the Casimir element leads to the infinitesimal
Cartan decomposition for €2:

o I 1 Bla)+Ba)
EREAEPILAS Be% B(a) — Bla)T 988
B(a) + Bla)”! .
2 X2X_,
& R 2,
al =08

1
. 22 Ha e 2, KaXtet Koo

BERt aeAt
alqa=p

where Hg = n1Hy + noHs for 8 = ny f1 + nafo.

Appendix A.3. The left-invariant differential operator corresponding
to the Casimir element

Let F: G — End(Vf/), where VK " is the same representation space as VK, and
the action is given by 7X'(k') = 7X(u*k'u), ¥ € K'. We assume F satisfies
F (K gky) = Wfl (k‘i)F(g)ﬂfl(ké), so that F' is determined by its restriction to A’
and, since M’ = M, we have F: A" — EndM(VMK/). Now the action of  as a
left-invariant operator satisfies (Q- F)|4» = R() - (F|a+), where R() is the radial
part of the Casimir element. In the decomposition (A.4), Q. acts as a scalar on
each M-type by Schur’s lemma. So the action of Q,, on F|4s is by multiplying by
a diagonal constant matrix. The second term acts as a second-order differential
operator, and the third term as a first-order differential operator by observing
that, after putting f(¢1,%2) = F(a;) we have iH, - f = %. The actions of the
differential operators do not involve the M-type. Then

XeX o (Fla) =78 (Xa)(Fla)ml (X ),
and similarly
XX o (Fla) = m (XaX o) (Fla)
and
XX o+ (Flar) = (Fla)nk’ (X, X o)
(see [3]), where we use the same notation for the representation of the Lie algebra.

In order to calculate these terms, we restrict to the K-representation of highest
weight u = aw; + bws, a € N, b € Z. We can then read off X, using Table 2,
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and next see which entry of u*X,u is in the upper left (2 x 2)-block. Finally,
we conjugate back and we find the following expression for the radial part of the
Casimir operator for a function F': A — EndM(VK) for 4 = aw; + bws, a € N,
b € Z, where G(t1,t2) = F(ay):

2
(RAQG) (b1, ta) = R (Om)Gtr,t2) — %Z o (t1,1)
(A5) + (RUQG) (11, t2) + (R ()G b1, t2) + (RE @G (1, t2)

where the action is split according to the short, middle and long roots of BCy. We
obtain

(REQ)G)(t1,12) = —(m —2) Z e t1.12)

since for the short roots f; the element u* X, u is not contained in the upper-left
(2 x 2)-block, and so the last three terms in (A.4) do not contribute for the short
roots. So the operator R¥(€) is independent of the K-representation 7 . For the
middle roots f; = fo we get that the operator R¥ () is defined by

_cos(t +12) oG
sin(ty + t2) (8t1 (b1, t2) + Oty
cos(ty — ta) oG
( (t1,t2) — ot (tl,tz))
B ( cos(ty + t2) cos(t; — ta) )
sin2 (tl —+ tg) sin2 (tl — tg)
X (T (B1)G(ty, t2)m ) (Fy) + 7 (F1)G(ty, t)mh (Ev))

(R, (Q)G)(t1,t2) = (t17t2)>

sin(t; — t2)

1( 1 n 1 )
2 Sin2 (tl + t2) sin2 (tl — tg)
(A6) X(?Tf(ElFl—i-FlEl)G(tl,t2)—|—G(t1,tz)ﬂf(ElFl—f—FlEl)),

and for the long roots 2f; we get

Q

cos(2t;) 0
sin(2t;) Ot;
cos(2t;)

— i (B )Gt ta)mh (B
s1n2(2tz)7rﬂ( )G ) (Bis)

(R ()G (t1,t2) =

(t1,t2)

I
S

1

plqm

1

1
Z m(ﬂf(Ei,i)QG(t17 ta) + G(t1, t2)mp (Eii)?).
i=1 g

.
Il

+

N |
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In order to describe the action of €2, we only need the action on the 1-dimensional
M -representation VUA;[ occurring in VMK; see (1.6). Let My = E1 1+ Eptomt2 —
2 S s By, and My = Eso + Epgtms1 — 725 2 ones Erp. Then the M; are
orthogonal to the ((m — 2) x (m — 2))-block of M, so that we only need to take
the action of M; and My into account. Note that Mj, respectively Ms, acts as
a+b—k, respectively b+ k on V2. Since

1 1
Mi=—"""_np - M, and Mf=—""_M,— M,
2(m +2) m+ 2 2(m +2) m + 2
this gives
1
RM( Q) |ym = (mla+b—k)?> —4(a+b—Ek)(b+ k) +m(b+k)?),

ok 2(m+2)
for k € {0,...,a}.
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