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by
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Abstract

Matrix spherical functions associated to the compact symmetric pair (SU(m+2), S(U(2)×
U(m))), m ≥ 2, having a reduced root system of type BC2, are studied. We consider an
irreducible K-representation (π, V ) arising from the U(2)-part of K, and the induced
representation IndG

Kπ splits multiplicity-free. The corresponding spherical functions, i.e.
Φ: G → End(V ) satisfying Φ(k1gk2) = π(k1)Φ(g)π(k2) for all g ∈ G, k1, k2 ∈ K, are
studied by examining certain leading terms which involve hypergeometric functions. This
is done explicitly using the action of the radial part of the Casimir operator on these func-
tions and their leading terms. To suitably grouped matrix spherical functions we associate
two-variable matrix orthogonal polynomials giving a matrix analogue of Koornwinder’s
1970s two-variable orthogonal polynomials, which are Heckman–Opdam polynomials for
BC2. In particular, we find explicit orthogonality relations with the matrix polynomials
being eigenfunctions to an explicit second-order matrix partial differential operator. The
scalar part of the matrix weight is less general than Koornwinder’s weight.

Mathematics Subject Classification 2020: 33C47 (primary); 22E30, 33C52 (secondary).
Keywords: matrix spherical functions, Lie groups, multiplicity-free triples, matrix ortho-
gonal polynomials, multivariable functions.

§1. Introduction

Spherical functions on compact symmetric spaces and orthogonal polynomials

have been known to be closely related ever since the work of É. Cartan; see e.g.

[6, 10, 38]. The notion of a spherical function taking values in a matrix algebra

goes back to the initial introduction of the notion of spherical functions; see e.g.

[6, Introduction] and references given there. In the case of a matrix spherical
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function for a compact symmetric space of rank one, there is a connection to matrix

orthogonal polynomials. One of the first papers in this direction is Koornwinder

[26] introducing vector-valued polynomials, which can be written as matrix ortho-

gonality; see also [21, 22]. The vector polynomials are evaluated in an explicit

way in terms of the representations of SU(2); see [26, Prop. 3.2]. Another seminal

paper making this connection to matrix polynomials explicit is Grünbaum, Pachar-

oni and Tirao [7], where the rank-one symmetric space (SU(3),U(2)) is studied.

The approach of [7] relies on invariant differential operators on the corresponding

homogeneous space. Since then several other approaches have been explored, and

many other rank-one cases have been studied in detail. For this paper the approach

of [21, 22, 23] is the most relevant; see Grünbaum, Pacharoni, Tirao [13, Chap. 13]

for other approaches and references.

Scalar spherical functions on symmetric spaces have been vastly generalised

in the work of Heckman and Opdam; see Heckman’s lecture notes [9], or Heckman

and Opdam [27, Chap. 8]. The root multiplicities, i.e. dimensions of root spaces,

arising from the symmetric spaces are considered to be more general continuous

parameters, and the second-order partial differential operator extending the radial

part of the Casimir operator for the symmetric space plays an important role. A

first important step was taken by Koornwinder in the 1970s, who studied several

sets of orthogonal polynomials in two variables, generalising the spherical functions

arising for types A2 and BC2. As a first step for a matrix generalisation, matrix

spherical functions and the corresponding matrix orthogonal polynomials need to

be considered. For type An this is done in [23], and the purpose of this paper

is to study matrix spherical functions and the corresponding matrix orthogonal

polynomials for type BC2. A possible next step is more general parameters: one

possibility is to use shift operators for the classical case of BC2 (see Opdam [30,

§2]) and to employ the same shift operator in the matrix case as well. This has been

done successfully in the rank-one case to go from matrix Chebyshev polynomials

to matrix Gegenbauer polynomials; see [19]. We expect that this interpretation can

lead to more properties of the corresponding matrix orthogonal polynomials stud-

ied in this paper. Moreover, the relation to possible applications in mathematical

physics needs to be investigated; see e.g. [33] for more information and references

given there.

In this paper we study matrix spherical functions for the compact symmetric

pair (G,K) = (SU(m+ 2),S(U(2)×U(m))), and we study matrix spherical func-

tions and corresponding matrix orthogonal polynomials as described in Section 1.1

for the case of an irreducible representation of K arising from the U(2)-component

inK. The results of Section 1.1 follow [23, Part I], but there are slight variations on

this approach; see [31, §9]. In fact, we use the classification of [31] in order to find
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the right K-representations satisfying the multiplicity-free Condition 1.1, but [31]

gives more possibilities, i.e. also involving other K-representations. In this paper

we restrict to the K-representations arising from the U(2)-block in K with a slight

assumption on this representation. In this paper we show that instead of studying

the more complicated matrix spherical functions, we can study the simpler leading

terms of matrix spherical functions. The leading terms turn out to be homogen-

eous polynomials, and homogeneity considerations allow us to prove some results,

e.g. on the indecomposability of the corresponding matrix weight and the expli-

cit derivation of the second-order matrix partial differential equation. Initially, we

study the leading terms of matrix spherical functions for labels in B(µ) as defined

in Condition 1.2; see Theorem 4.5. Note that to study matrix spherical functions

explicitly we need explicit control over the K-intertwiner embedding a specific K-

representation into a larger irreducible G-representation. This is in general hard

to do explicitly, but this approach is used successfully in [23] for the symmetric

pair corresponding to the group case for type A. In this paper we take an altern-

ative approach and we construct the embedding of the specific K-representation

into a larger tensor product G-representation containing the required irreducible

G-representation as a constituent in the decomposition. Then we have to show

that the embedding indeed “sees” the appropriate irreducible G-representation.

Of course, there are many ways to do this, and in this paper we motivate the

choice we make as follows. First, it leads to a leading term whose components are

homogeneous polynomials, and second, the radial part of the Casimir operator on

the leading term has a simple expression; see Lemma 6.5. The approach taken is

motivated by the van Pruijssen preprint [36].

In order to make explicit the connection between leading terms and matrix

spherical functions, we need the action of the radial part of the Casimir operator

as an operator acting on matrix-valued functions on A. For completeness this

action is derived in the Appendix. For matrix spherical functions corresponding

to elements from B(µ) as in Condition 1.2, we find an explicit expression in this

way involving the leading terms; see Proposition 6.4. Then in Section 8 we obtain

the leading terms for the general case, and we show that the radial part of the

Casimir operator acts in a lower triangular way with respect to the partial ordering.

This is analogous to the case for the (scalar) Heckman–Opdam polynomials; see

[9, §1.3]. The main result is Theorem 7.1 in which we explicitly give the matrix

orthogonality for the corresponding family of two-variable orthogonal polynomials

with an explicit matrix weight on a region bounded by two straight lines and a

parabola; see Figure 1. Theorem 7.1 also states that these matrix polynomials are

eigenfunctions of a second-order matrix partial differential operator.
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We now describe the content of the paper in brief. In the remaining part of

the introduction we briefly recall in Section 1.1 the set-up to go from matrix spher-

ical functions to matrix orthogonal polynomials, where the number of variables is

equal to the rank of the compact symmetric space. This follows [23, Part I]. In

Section 2 we briefly describe the structure theory and notation for the compact

symmetric pair (G,K) = (SU(m+ 2),S(U(2)×U(m))), m > 2, and we show that

the conditions in Section 1.1 are satisfied in this case. In Section 3 we develop the

building blocks for the leading terms. These are essentially the leading terms in the

case of the K-representation in Section 1.1 corresponding to the trivial representa-

tion and to the natural representation of the U(2)-block in K. Building on this we

study the leading term for matrix spherical functions corresponding to B(µ) as in

Condition 1.2. The leading terms can be fully described in terms of single-variable

Krawtchouk polynomials, and hence as single-variable hypergeometric functions.

Next, in Section 4 we use the radial part of the Casimir operator to give an explicit

expression for the matrix spherical functions corresponding to B(µ) in terms of

the leading terms. In Section 5 we describe the two-variable matrix weight, and we

show that the weight is indecomposable and that its determinant is nonvanishing

on the interior of the integration region. In Section 7 we describe two-variable mat-

rix orthogonal polynomials, and we describe the corresponding eigenvalue equation

involving a second-order matrix partial differential operator. We have chosen the

coordinates in Theorem 7.1 to match the notation of Koornwinder [25, 24]; see

also [32]. Theorem 7.1 generalises the results of [25, 24, 32] to the matrix case, but

the scalar part of the weight measure in [25, 24, 32] is more general than that in

Theorem 7.1. Theorem 7.1 also contains the case [9, Chap. 5] for this particular

symmetric pair (corresponding to the case a = 0 in the notation of Section 7). In

Section 8 we then derive the leading term for general matrix spherical functions,

and we show that the radial part of the Casimir operator acts in a lower trian-

gular fashion on such a leading term. Finally, in Section 9 we discuss briefly the

remaining cases of K-representations of this type.

In the course of several proofs we have to manipulate several expressions

involving functions in two variables. We have used computer algebra, in particular

Maple and Maxima, to check these computations.

§1.1. General set-up

In this subsection we recall notation and the necessary results. We follow [23,

Part 1], but see also [31, §11], [35]. We consider a compact symmetric pair (G,K)

and for its structure theory and results we refer to [10]. For the explicit case

(G,K) = (SU(m + 2),S(U(2) × U(m))) the structure theory is explicitly given

in Section 2. We label the representations of G, respectively K, by the highest
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weights P+
G , respectively P+

K , and such a representation is denoted by (πG
λ , V

G
λ ),

λ ∈ P+
G , and similarly for K. We now fix µ ∈ P+

K .

In order to apply the general approach of [23] we need to establish three

conditions.

Condition 1.1. IndGKπ
K
µ splits multiplicity-free.

By Frobenius reciprocity this is equivalent to [πG
λ |K : πK

µ ] ≤ 1 for all λ ∈ P+
G ,

and we put

(1.1) P+
G (µ) =

{
λ ∈ P+

G

∣∣ [πG
λ |K : πK

µ ] = 1
}
.

So, if Condition 1.1 holds, we have

IndGKπ
K
µ =

⊕
λ∈P+

G (µ)

V G
λ .

For λ ∈ P+
G (µ) we define the corresponding matrix spherical functions

(1.2) Φµ
λ : G→ End(V K

µ ), Φµ
λ(g) = p ◦ πG

λ (g) ◦ j,

where j ∈ HomK(V K
µ , V G

λ ) is the unitary intertwiner and p = j∗ is the correspond-

ing K-equivariant orthogonal projection. Then (1.2) is independent of the choice

of j and we have

(1.3) Φµ
λ(k1gk2) = πK

µ (k1)Φ
µ
λ(g)π

K
µ (k2) ∀ k1, k2 ∈ K, ∀ g ∈ G.

The space of regular functions Φ: G → End(V K
µ ) satisfying the left and right

K transformation behaviour as in (1.3) is denoted by Eµ. Using the Peter–Weyl

decomposition we see that {Φµ
λ | λ ∈ P+

G (µ)} forms a linear basis for Eµ. Then E0

is the space of scalar continuous bi-K-invariant functions, and Eµ is an E0-module.

Moreover, Schur orthogonality gives

(1.4)

∫
G

Tr
(
Φµ

λ(g)(Φ
µ
λ′(g))

∗) dg = δλ,λ′
(dimV K

µ )2

dimV G
λ

, λ, λ′ ∈ P+
G (µ).

Note that the integrand is a bi-K-invariant function, so contained in E0.

Let A be the abelian subgroup and M = ZK(A) as in [23, §2]. By the Cartan

decomposition, G = KAK, and by (1.3) it suffices to consider

(1.5) Φµ
λ|A : A→ EndM (V K

µ ),

since πK
µ (m)Φµ

λ(a) = Φµ
λ(ma) = Φµ

λ(am) = Φµ
λ(a)π

K
µ (m). So we need to know the

decomposition

(1.6) V K
µ |M ∼=

N⊕
i=1

VM
σi
,
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where σi ∈ P+
M are the corresponding highest weights for M . The decomposition

(1.6) is again a multiplicity-free decomposition; see [35] and also [4, 17].

Note that if the representation πK
µ induces multiplicity-free, then also its dual

(or contragredient) representation (πK
µ )∗ = πK

µ∗ induces multiplicity-free, where

µ∗ corresponds to the highest weight of the dual representation. Then P+
G (µ∗)

consists of those G-representations for which the dual is in P+
G (µ), i.e. P+

G (µ∗) =

{λ∗ | λ ∈ P+
G (µ)}, where λ∗ corresponds to the highest weight of the dual of the

G-representation with highest weight λ. Then we obtain

(1.7) (Φµ∗

λ∗(a)v
∗)(v) = v∗(Φµ

λ(a
−1)v), a∈A, v ∈V K

µ , v∗ ∈ Hom(V K
µ ,C)=V K

µ∗ .

Note that if Condition 1.1 holds, then it also holds for the dual µ∗ ∈ P+
K . Moreover,

taking duals gives an involution on the spherical weights P+
G (0).

Condition 1.2. There exists a set of weights B(µ) ⊂ P+
G , so that for λ ∈ P+

G (µ)

there exist unique elements ν ∈ B(µ) and λsph ∈ P+
G (0) with λ = ν + λsph. The

restriction map of the torus of GC to the torus of MC gives a bijection B(µ)
∼=−→

{σ ∈ P+
M | [V K

µ |M : VM
σ ] = 1}.

Assuming Condition 1.2 is satisfied for µ ∈ P+
K , then Condition 1.2 is also

satisfied for the dual K-representation with highest weight µ∗.

Taking µ = 0, P+
G (0) corresponds to the spherical weights, and P+

G (0) =⊕n
i=1 Nλi, where λ1, . . . , λn are the generators for the spherical weights and n is the

rank of the compact symmetric space (G,K). We let ϕi = Φ0
λi
: G→ C, which gen-

erate the algebra of bi-K-invariant polynomials on G. For λ =
∑n

i=1 diλi ∈ P+
G (0)

we put |λ| =
∑n

i=1 di. We use the notation PG(λ) for all the weights occurring in

the G-representation πG
λ of highest weight λ ∈ P+

G , and similarly for other groups.

Condition 1.3. For all weights ν ∈ B(µ), for all generators λi of the spherical

weights P+
G (0) and for all weights η ∈ PG(λi) such that ν + η ∈ P+

G (µ), we have

by Condition 1.2 a unique ν′ ∈ B(µ) such that ν + η = ν′ + λ with λ ∈ P+
G (0).

Then |λ| ≤ 1.

Note that if Condition 1.3 holds for µ, then it also holds for the dual µ∗ ∈ P+
K .

Assuming Conditions 1.1, 1.2 and 1.3, one can show that for a spherical weight

λsph =
∑n

r=1 drλr ∈ P+
G (0), d = (d1, . . . , dn) ∈ Nn, there exist unique n-variable

polynomials pµνi,vr;d
of total degree |d| = |λsph| so that for λ = νi + λsph ∈ P+

G (µ)

and a ∈ A,

(1.8) Φµ
λ(a) = Φµ

νi+λsph
(a) =

N∑
r=1

pµνi,νr;d
(ϕ1(a), . . . , ϕn(a))Φ

µ
νr
(a)
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using a slightly different labelling from [23]. Using this expansion in the orthogon-

ality relations (1.4) and reducing the integral for bi-K-invariant functions to an

integral over A (see [10, Prop. X.1.19]), we find the matrix orthogonality relations

(1.9)

∫
A

Pd(ϕ(a))W (ϕ(a))
(
Pd′(ϕ(a))

)∗|δ(a)| da = cδd,d′Hd,

where

(Hd)i,j = δi,j
(dimV K

µ )2

dimV G
νi+λsph

,

ϕ(a) = (ϕ1(a), . . . , ϕn(a)),

Pd(ϕ(a)) =
(
pνi,νj ;d(ϕ1(a), . . . , ϕn(a))

)N
i,j=1

,

W (ϕ(a)) =
(
Tr
(
Φµ

νi
(a)(Φµ

νj
(a))∗

))N
i,j=1

and c > 0 is determined by c =
∫
A
|δ(a)| da and δ is given in [10, Prop. X.1.19],

where it is denoted by D∗.

§2. Structure theory and multiplicity-free triples

In this section we specialise to the compact symmetric pair (G,K) = (SU(m +

2),S(U(2)×U(m))), m > 2, for which we study matrix spherical functions and the

related orthogonal polynomials in detail. First we describe the structure theory (see

e.g. [10]) needed in order to associate the corresponding orthogonal polynomials

in Section 2.1. In the remaining part we show that for explicit K-representations

the conditions of [23, Part I] are satisfied in this case.

§2.1. Structure theory

From now on we take G = SU(m + 2), m > 2, K = S(U(2) × U(m)) embedded

block-diagonally. We view U(2) ⊂ K as a subgroup as the upper-left (2× 2)-block

of K. The abelian subgroup is A = {at = a(t1,t2) | t1, t2 ∈ R}, with

(2.1) at = a(t1,t2) =



cos t1 0 0 · · · 0 0 i sin t1
0 cos t2 0 · · · 0 i sin t2 0

0 0 1 · · · 0 0 0
...

...
. . .

...
...

0 0 0 · · · 1 0 0

0 i sin t2 0 · · · 0 cos t2 0

i sin t1 0 0 · · · 0 0 cos t1


,
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where the middle block is the ((m−2)×(m−2))-identity matrix. ThenM = ZK(A)

is given by matrices m which are block diagonal of size 2× 2, (m− 2)× (m− 2),

2× 2 of the form

(2.2)

m =

D1 0 0

0 M1 0

0 0 D2

 , D1 =

(
eis1 0

0 eis2

)
, M1 ∈ U(m− 2), D2 =

(
eis2 0

0 eis1

)

with det(m) = 1.

As the torus of GC we take the diagonal elements, and we take this also as

the torus of KC. Explicitly,

(2.3) TGC = TKC =
{
diag(t1, . . . , tm+2)

∣∣ tk ∈ C,
∏m+2

i=1 ti = 1
}
.

We take the torus of MC as contained in the torus of GC and KC:

TMC =
{
diag(t1, . . . , tm+2)

∣∣ tm+1 = t2, tm+2 = t1,
∏m+2

i=1 ti = 1
}

⊂ TGC = TKC .(2.4)

By g, k, m and a we denote the corresponding complexified Lie algebras of

G, K, M and A. Then the root system ∆ of g is of type Am+1, and we denote

the standard simple roots αi, 1 ≤ i ≤ m + 1. We put Ei = Ei,i+1, Fi = Ei+1,i,

Hi = Ei+1,i+1 − Ei,i, where Ei,j is the matrix with all zeros except the (i, j)th

entry. The roots and positive roots are denoted by QG =
⊕m+1

i=1 Zαi and Q+
G =⊕m+1

i=1 Nαi. The partial order σ ≼ η is η − σ ∈ Q+
G.

With this choice of positive roots, we define the fundamental weights for G,

K and M by

ωi : TGC = TKC → C, ωi(diag(t1, . . . , tm+2)) =

i∏
j=1

tj , 1 ≤ i < m+ 2,

ηi : TMC → C, ηi(diag(t1, t2, . . . , tm, t2, t1)) =

i∏
j=1

tj , 1 ≤ i < m.

Note that η1, η2 are characters of M . Then we find

(2.5) ωi|T
MC = ηi (1 ≤ i < m), ωm|T

MC = −η2, ωm+1|T
MC = −η1.

Then we have

(2.6) P+
K =

{∑m+1
i=1 aiωi

∣∣ a2 ∈ Z, ai ∈ N, i ̸= 2
}
, P+

G =
⊕m+1

i=1 Nωi.

Considering U(2) ⊂ K, we see that the U(2) representations correspond to the

elements of P+
K with aj = 0 for j ≥ 3.
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The reduced root system is of type BC2, and the corresponding reduced Weyl

group is generated by s1 and s2, and we put n1, n2 ∈ NK(A) by

(2.7) n1 =

J2 0 0

0 Im−2 0

0 0 J2

 , n2 = diag(1,−i, 1, . . . , 1︸ ︷︷ ︸
m−2

, i, 1)

using the notation of Appendix A.1 for the flip J2. Then n1atn
−1
1 = as1t and

n2atn
−1
2 = as2t with s1t = (t2, t1) and s2t = (t1,−t2).

§2.2. Multiplicity-free triples

The triple (G,K, µ), µ ∈ P+
K , is a multiplicity-free triple if Condition 1.1 is satis-

fied. Since (G,K) is a symmetric pair, the triple (G,K, 0), where µ = 0 corresponds

to the trivialK-representation, is a multiplicity-free triple. Then we have the spher-

ical weights

(2.8) P+
G (0) = Nλ1 ⊕ Nλ2, λ1 = ω1 + ωm+1, λ2 = ω2 + ωm;

see Krämer [28, Table 1]. More generally, the multiplicity-free triples and the set

P+
G (µ) for a multiplicity-free triple (G,K, µ) are determined by Pezzini and van

Pruijssen [31]. We focus on representations ofK that correspond to representations

of U(2) ⊂ K, i.e. we assume µ = aω1 + bω2, a ∈ N, b ∈ Z.

Proposition 2.1. The triple (G,K, µ), with µ = aω1 + bω2, a ∈ N, b ∈ Z, is

multiplicity-free. Moreover, P+
G (µ) = B(µ) + P+

G (0). In the case b ∈ N we have

B(µ) =
{
νi = νi(µ) = (a− i)ω1 + (i+ b)ω2 + iωm+1

∣∣ 0 ≤ i ≤ a
}
.

In the case b ≤ −a we have

B(µ) =
{
νi = νi(µ) = (a− i)ω1 + (−i− b)ωm + iωm+1

∣∣ 0 ≤ i ≤ a
}
,

and in the case −a < b < 0 we have

B(µ) =
{
νi = νi(µ) = (a− i)ω1 + (−i− b)ωm + iωm+1

∣∣ 0 ≤ i < −b
}

∪
{
νi = νi(µ) = (a− i)ω1 + (b+ i)ω2 + iωm+1

∣∣ −b ≤ i ≤ a
}
.

Remark 2.2. Recall that the G-representation of highest weight ωi can be real-

ised in the exterior power ΛiV , where V = Cm+2 is the natural G-representation.

It follows that ω∗
i = ωm+2−i, and this determines λ∗. For the spherical weights (see

(2.8)), λ∗1 = λ1 and λ∗2 = λ2. The dual of the K-representation of highest weight

µ = aω1 + bω2 is the K-representation of highest weight µ∗ = aω1 − (a + b)ω2.

Indeed, the map v 7→ ⟨v, vµ⟩, with vµ the highest weight vector of V K
µ , is the lowest
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weight vector of (V K
µ )∗ of weight −aω1 − bω2. Then B(µ∗) = (B(µ))∗, and more

precisely, in the notation of Proposition 2.1, νi(µ
∗) = (νa−i(µ))

∗.

Proof of Proposition 2.1. The proof is a verification using the results and nota-

tion of [31], in particular [31, Table B.2.1]. As noted after [31, Def. 9.1], we have

[πG
λ |K : πK

µ ] = 1 if and only if (λ,−µ) is an element of the so-called extended

weight monoid Γ̃(G/P ), P ⊂ KC corresponding parabolic subgroup, correspond-

ing to G/K. Now we use [31, Table B.2.1] to see that the elements of Γ̃(G/P ) are

nonnegative integral linear combinations of

(ω1 + ωm+1, 0), (ω1,−ω1), (ω2,−ω2), (ωm, ω2), (ωm+1, ω2 − ω1).

We then see that (λ, 0) ∈ Γ̃(G/K) if and only if λ ∈ P+
G (0), i.e. λ is a spherical

weight. It is now a straightforward calculation to determine the λ ∈ P+
G satisfying

(λ, aω1 + bω2) ∈ Γ̃(G/K).

Note that the representation of K with highest weight µ = aω1 + bω2 has

dimension a + 1. Denoting the highest weight vector by vµ we see that V K
µ has

an orthogonal basis {vk = F k
1 · vµ | 0 ≤ k ≤ a} by considering the represent-

ation as a U(2)-representation. It follows that, taking m ∈ M as in (2.2), we

have πK
µ (m)vk = ei(a+b−k)s1ei(b+k)s2vk, so that this corresponds to the M -weight

(a− 2k)η1 + (b+ k)η2. So

(2.9) V K
µ |M =

a⊕
k=0

VM
σk
, σk = σk(µ) = (a− 2k)η1 + (b+ k)η2,

splits multiplicity-free into 1-dimensional M -representations. Since the M -repre-

sentations are 1-dimensional, we find σ∗
k = −σk and σk(µ

∗) = σa−k(µ)
∗.

In any of the cases of Proposition 2.1 we have νi(µ)|T
MC = σi(µ) using (2.5).

This leads to Corollary 2.3.

Corollary 2.3. For µ = aω1 + bω2 ∈ P+
K , a ∈ N, b ∈ Z, Conditions 1.1 and 1.2

are satisfied.

Proof. The statement can obtained by analysing more carefully the extended

weight monoid of [31] used in the proof of Proposition 2.1, but it can also be

done directly having the B(µ) at hand. Assume λ ∈ P+
G (µ) can be written as

νi+λsph = νj +λ
′
sph, with λsph = n1λ1+n2λ2, λ

′
sph = m1λ1+m2λ2. Assume first

µ = aω1 + bω2 with b ∈ N. Then we have, using Proposition 2.1 and (2.8),

0 = νi + λsph − νj − λ′sph = (j − i+ n1 −m1)ω1

+ (i− j + n2 −m2)ω2 + (n2 −m2)ωm + (i− j + n1 −m1)ωm+1.
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This gives n2 = m2, i = j and n1 = m1, and uniqueness follows. The case b ≤ −a
follows by duality, and the case −a < b < 0 can be proved similarly, taking into

account the different cases in Proposition 2.1.

The fact that the restriction map gives an isomorphism of B(µ) and the set

of irreducible M -modules in V K
µ |M follows from (2.9) and (2.5).

§2.3. Condition 1.3

In order to able to apply the general theory described in Section 1.1 we need to

check Condition 1.3. Recall that αi = −ωi−1 + 2ωi − ωi+1 with the convention

ω0 = ωm+2 = 0, which gives

(2.10) λ1 =

m+1∑
i=1

αi, λ2 = α1 + αm+1 + 2

m∑
i=2

αi.

Note that for weights η ∈ PG(λi), we have η ≼ λi, or λi − η ∈ Q+
G, so that the

coefficient of α1 (or αm+1) in η is less than or equal to 1. Moreover, we see from

(2.10) that for λ ∈ P+
G (0) the degree |λ| is equal to the coefficient of α1 (or αm+1)

in λ.

Proposition 2.4. For µ = aω1+bω2 ∈ P+
K , a ∈ Z, b ∈ Z, Condition 1.3 satisfied.

Proof. We first assume b ∈ N. Let η ∈ PG(λi), and assume νi + η = νj + λsph ∈
P+
G (µ) with λsph ∈ P+

G (0). Then

λsph − η = νi − νj = (i− j)(ω2 + ωm+1 − ω1).

Since ω2 + ωm+1 − ω1 =
∑m+1

k=2 αk, we see that in the expansion of simple roots,

the coefficient of α1 in λsph equals the coefficient of α1 in η, which is less than or

equal to 1. Since this coefficient is nonnegative and since |λsph| is the coefficient of

α1, we get that |λsph| ≤ 1. This proves Condition 1.3 in the case b ∈ N. By duality

it follows for b ≤ −a.
In the case −a < b < 0, Proposition 2.1 gives two possible forms for νi and

νj . In the case that they have the same form, a similar argument to above proves

|λsph| ≤ 1. Assume νi = (a − i)ω1 + (−i − b)ωm + iωm+1 for 0 ≤ i ≤ −b and

νj = (a− j)ω1 + (b+ j)ω2 + jωm+1 for −b ≤ j ≤ a. Then

λsph − η = νi − νj = (j − i)ω1 − (b+ j)ω2 − (b+ i)ωm + (i− j)ωm+1

− (b+ i)(ω1 + ωm − ωm+1)− (b+ j)(−ω1 + ω2 + ωm+1),

and now we additionally use ω1 + ωm − ωm+1 =
∑m

k=1 αk. Since −(b + i) ≥ 0

and −(b + j) ≤ 0, the coefficient of αm+1 in λsph − η = νi − νj is nonpositive.

Since the coefficient of αm+1 in η is at most 1, the coefficient of αm+1 in λsph is
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at most 1, and thus |λsph| ≤ 1. The other situation, with the form of the νi and

νj interchanged, can be proved analogously.

Note that we have the following corollary of the proof of Proposition 2.4.

Corollary 2.5. For µ = aω1 + bω2 ∈ P+
K , a ∈ N, b ∈ N, we have νi(µ) ≻ νj(µ)

for i > j.

A similar statement holds for b ≤ −a, but not for −a < b < 0. Then not all

elements can be compared in the partial ordering.

The reduced Weyl group W = NK(A)/M acts on the M -types in V K
µ . Let

nw ∈ NK(A) be a representative of w. Then (1.3) shows

Φµ
λ(awt) = Φµ

λ(nwatn
−1
w ) = πK

µ (nw)Φ
µ
λ(at)π

K
µ (n−1

w ) ∈ EndM (V K
µ ).

For T ∈ EndM (V K
µ ), the action w · T = πK

µ (nw)Tπ
K
µ (n−1

w ) is well defined, and

preserves orthogonal projections, and so it induces an action of W on the M -

types in V K
µ . In this case, the decomposition (2.9) splits into 1-dimensional M -

representations. From (2.7), we see that s2 ∈W acts trivially on theM -types, since

it commutes withM . For s1 we see that it acts on the characters as s1 ·η1 = η2−η1,
s1 · η2 = η2 leading to

(2.11) s1 · σk = σa−k, s2 · σk = σk

§3. Special cases

In this section we give the simplest cases of embedding of K-representations in

tensor products of G-representations in order to obtain the leading term. The first

case concerns the zonal spherical functions for the weights λ1 and λ2 generating

the spherical weights. This is based on suitable embeddings of the K-fixed vector

in a twofold tensor product. Next we find the embedding for the fundamental K-

representation V K
ω1

in a twofold tensor product of G-representations. This will be

used in Section 4 to obtain the leading terms of special matrix spherical functions.

We first prove Lemma 3.1, which we use on several occasions.

Lemma 3.1. For i ≤ j we have

V G
ωi

⊗ V G
ωj

∼=
min(i,m+2−j)⊕

r=0

V G
ωi−r+ωj+r

,

with the convention ω0 = 0 = ωm+2.
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Proof. Observe that the fundamental weights for the root system of type A are

minuscule weights (see e.g. [2, p. 230]), and for this case one has the multiplicity-

free decomposition

V G
ωi

⊗ V G
ωj

∼=
⊕

w∈W/Wωj

ωi+wωj∈P+
G

V G
ωi+wωj

,

where W = Sm+2 is the Weyl group for G and Wωj = {w ∈ W | wωj = ωj} =

Sj × Sm+2−j is the stabiliser subgroup; see e.g. [14, Prop. 1], [29, Cor. 3.5]. Since

Wωj is a parabolic subgroup, we can take coset representatives of minimal length

[11, §1.10]. Such an element is determined by a sequence k1 < k2 < · · · < kj of

numbers from {1, 2, . . . ,m + 2}, defined by w(j) = kj and extended such that

w has minimal length. Using the expression for ωj as in [2, Planche I], we get

wωj =
∑j

p=1 ωkp
−ωkp−1. It remains to determine the choices leading to ωi+wωj ∈

P+
G =

⊕m+1
i=1 Nωi. It follows that the sequence {k1, k2, . . . , kj} can have at most

one hole. Keeping track of these possibilities yields the result.

§3.1. Spherical functions on A

We first construct explicit generators for the algebra of spherical functions for

(G,K). The natural representation V G
ω1

= V = Cm+2 of G is equipped with the

standard orthonormal basis (e1, . . . , em+2). Recall that V
G
ωj

∼= ΛjV .

Lemma 3.2. We have V G
ω1

⊗ V G
ωm+1

∼= V G
λ1

⊕ V G
0 and define

v1 = e1 ⊗ e2 ∧ e3 ∧ · · · ∧ em+2 − e2 ⊗ e1 ∧ e3 ∧ · · · ∧ em+2 ∈ V G
ω1

⊗ V G
ωm+1

.

Then v1 is a K-invariant vector, i.e. v1 is contained in the 2-dimensional space

(V G
λ1
)K ⊕ (V G

0 )K and v1 has a nonzero component in (V G
ω1+ωm+1

)K = (V G
λ1
)K .

Proof. The tensor product decomposition follows from Lemma 3.1. From (2.8)

we know that 0, λ1 = ω1 + ωm+1 ∈ P+
G (0), so that (V G

ω1+ωm+1
)K and (V G

0 )K are

1-dimensional. It is a straightforward calculation to check that v1 is a K-fixed

vector, and the easiest way is to check that Ei ·v1 = 0, i ∈ {1, . . . ,m+1}\{2} and

Hi · v1 = 0, i ∈ {1, 2, . . . ,m+ 1}. Note that E2 · v1 ̸= 0, so that v is not contained

in (V G
0 )K ∼= C, and so has a nonzero component in (V G

ω1+ωm+1
)K .

Having v1 given explicitly in Lemma 3.2 we can calculate the corresponding

matrix entry restricted to A explicitly using at in (2.1), and we obtain

⟨(πG
ω1

⊗ πG
ωm+1

)(at)v1, v1⟩ = cos2 t1 + cos2 t2.

Lemma 3.3. Define ψ1 : A→ C, ψ1(at) = cos2 t1 + cos2 t2 and let ϕ1 : A→ C be

the spherical function associated to V G
λ1
. Then there exists a positive constant ξ11

and a nonnegative constant ξ01 , so that ψ1 = ξ11ϕ1 + ξ01 as functions on A.
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The constants ξ11 , ξ
0
1 can be calculated explicitly; see Lemma 6.2. Moreover,

we can also consider the identity as an identity for functions on G by interpreting

the matrix entries as functions on G.

Proof of Lemma 3.3. Put (V G
λ1
)K = Cv̂, ∥v̂∥ = 1, and let V G

0 = Cṽ. Then ϕ1(at) =
⟨πG

λ1
(at)v̂, v̂⟩. In Lemma 3.2 we see that v1 = av̂ + bṽ with 0 ̸= a ∈ C. Then

ψ1(at) = ⟨(πG
ω1

⊗ πG
ωm+1

)(at)v, v⟩

= |a|2⟨πG
λ1
(at)v̂, v̂⟩+ |b|2⟨πG

0 (at)ṽ, ṽ⟩ = |a|2ϕ1(at) + |b|2,

proving the result.

In order to find the second spherical function, we proceed similarly.

Lemma 3.4. We have V G
ω2

⊗ V G
ωm

∼= V G
λ2

⊕ V G
λ1

⊕ V G
0 and define

v2 = e1 ∧ e2 ⊗ e3 ∧ · · · ∧ em+2 ∈ V G
ω2

⊗ V G
ωm
.

Then v2 is a K-invariant vector, and v2 has a nonzero component in (V G
λ2
)K .

Moreover,

ψ2 : A→ C, ψ2(at) = ⟨(πG
ω2

⊗ πG
ωm

)(at)v2, v2⟩ = (cos t1)
2(cos t2)

2

and ψ2 = ξ22ϕ2 + ξ12ϕ1 + ξ02 , where ϕ2 is the spherical function corresponding to

λ2 ∈ P+
G (0) and the constants ξ22 > 0 and ξ12 and ξ02 are nonnegative.

The proof of Lemma 3.4 follows the lines of the proofs of Lemmas 3.2 and

3.3. It is possible to calculate the constants ξi2 explicitly; see Lemma 6.2.

Proof of Lemma 3.4. The tensor product decomposition follows from Lemma 3.1.

The K-invariance of v2 follows from Ei · v2 = 0, i ∈ {1, . . . ,m + 1} \ {2} and

Hi · v2 = 0, i ∈ {1, . . . ,m + 1}, which follows straightforwardly. Then the matrix

entry can be calculated using (2.1), and this gives the statement of the explicit

expression for ψ2(at). Since v2 is a linear combination of the K-fixed vectors of

V G
λ2
, V G

λ1
and V G

0 , we find analogously that ψ2 is a linear combination of ϕ1, ϕ2 and

the constant with nonnegative coefficients. Since the function (cos t1)
2(cos t2)

2 is

not a linear combination of (cos t1)
2 + (cos t2)

2 and the constants, the coefficient

of ϕ2 has to be nonzero.

Remark 3.5. Note that A ∩M ∼= Z/2Z× Z/2Z, and so the spherical functions,

satisfying ϕ(mat) = ϕ(at) for m ∈ A ∩M , show that the spherical functions in

Lemmas 3.2 and 3.4, have to be invariant under (cos t1, cos t2) 7→ (± cos t1,± cos t2)

for all choices of signs.
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§3.2. The special case µ = ω1

From Proposition 2.1 we know that B(ω1) consists of ω1 and ω2 + ωm+1. The K-

equivariant map V K
ω1

→ V G
ω1

is the standard embedding, which sends the highest

weight vector forK to the highest weight vector forG in the natural representation.

We need to understand the K-equivariant map V K
ω1

→ V G
ω2+ωm+1

, and it suffices to

understand theK-highest weight vector in V G
ω2+ωm+1

. We proceed as in Section 3.1.

Lemma 3.6. We have V G
ω2

⊗ V G
ωm+1

∼= V G
ω2+ωm+1

⊕ V G
ω1

and we define the vector

v0 = e1 ∧ e2 ⊗ e1 ∧ e3 ∧ · · · ∧ em+2 ∈ V G
ω2

⊗ V G
ωm+1

.

Then v0 is a K-highest weight vector of weight ω1. The vector v0 has a nonzero

component in V G
ω2+ωm+1

.

It follows from the tensor product decomposition and Proposition 2.1 for

µ = ω1 that there is a 2-dimensional space of K-highest weight vectors of weight

ω1. It is possible to explicitly write down a linearly independent vector and give

the K-highest weight vectors of weight ω1 in V G
ω2+ωm+1

and V G
ω1
.

Proof of Lemma 3.6. Lemma 3.1 proves the first statement. Note that both rep-

resentations in the direct sum correspond to B(ω1) = {ω1, ω2 + ωm+1}. It is

straightforward to check that Ei · v0 = 0, i ∈ {1, . . . ,m+1} \ {2} and H1 · v0 = v0,

Hi · v0 = 0, i ∈ {2, . . . ,m + 1}, so that v0 is a K-highest weight vector of weight

ω1. Note that the K-highest weight vector of weight ω1 in V G
ω1

is also a G-highest

weight vector of weight ω1, but E2 · v0 ̸= 0. So the vector v0 has a nonzero com-

ponent in V G
ω2+ωm+1

.

§4. The leading term of matrix spherical functions for B(µ)

We focus on the case µ = aω1 + bω2, with b ∈ N, and then discuss the case b < 0

briefly in Section 9. In this case, νi = (a− i)ω1 + i(ω2 + ωm+1) + bω2, 0 ≤ i ≤ a;

see Proposition 2.1. Instead of trying to determine the K-equivariant embedding

V K
µ → V G

νi
, we embed V K

µ in a much bigger G-representation containing V G
νi
, in

which we can identify a K-highest weight of weight µ that “sees” V G
νi
, i.e. has a

nonzero component in V G
νi
.

Recall that the representation V G
Nω1

can be realised in the space of polynomials

in variables (x1, x2, . . . , xm+2) which are homogeneous of degree N . Its G-highest

weight vector is xN1 . Now define the tensor product representation with specific
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element u:

(4.1)

UG
νi

= V G
(a−i)ω1

⊗ (V G
ω2

⊗ V G
ωm+1

)⊗i ⊗ (V G
ω2
)⊗b,

u = xa−i
1 ⊗ v0 ⊗ · · · ⊗ v0︸ ︷︷ ︸

i times

⊗ e1 ∧ e2 ⊗ · · · ⊗ e1 ∧ e2︸ ︷︷ ︸
b times

,

where v0 is as in Lemma 3.6. Then u is a K-highest weight vector of weight

µ = aω1 + bω2 by Lemma 3.6, since e1 ∧ e2 ∈ V G
ω2

is the G- and K-highest weight

vector of weight ω2. Moreover,

(4.2) UG
νi

= V G
νi

⊕
⊕
λ≺νi

nλV
G
λ ,

for certain multiplicities nλ. Since we are only interested in λ ∈ P+
G (µ), we need

Lemma 4.1.

Lemma 4.1. Let µ = aω1 + bω2 with b ∈ N. Then {λ ∈ P+
G (µ) | λ ≼ νi} =

{ν0, . . . , νi}.

Proof. Using the ideas and identities of Section 2.3 we assume νj +n1λ1+n2λ2 ≼
νi, n1, n2 ∈ N. Writing

νi − (νj + n1λ1 + n2λ2)

= (i− j)(−ω1 + ω2 + ωm+1)− n1(ω1 + ωm+1)− n2(ω2 + ωm)

= (−n1 − n2)α1 + (i− j − n1 − n2)αm+1 + (i− j − n1 − 2n2)

m∑
k=2

αk,

we see that this is in Q+
G if and only if n1 = n2 = 0 and i ≥ j.

Our next objective is to give an explicit expression for the matrix-valued

spherical function associated to the K-equivariant embedding V K
µ → UG

νi
, which

maps the highest weight vector of V K
µ to u. In order to describe the result, we

need the Krawtchouk polynomials; see e.g. [12, §6.2], [18, §9.11]. The Krawtchouk

polynomials are defined as a terminating hypergeometric series and are generated

by a generating function:

(4.3)

Kn(x; p,N) = 2F1

(−n,−x
−N

;
1

p

)
, N ∈ N, x, n ∈ {0, 1, . . . , N},

N∑
n=0

(
N

n

)
Kn(x; p,N)tn =

(
1− 1− p

p
t
)x

(1 + t)N−x.

Note that the Krawtchouk polynomials are self-dual: Kn(x; p,N) = Kx(n; p,N),

and K0(x; p,N) = 1 = Kn(0; p,N).
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Proposition 4.2. Let µ = aω1 + bω2, b ∈ N, νi = (a− i)ω1 + i(ω2 +ωm+1)+ bω2

and UG
νi

be the representation defined in (4.1). Then, for k, l ∈ {0, 1, . . . , a},

⟨πUG
νi
(at)F

k
1 · u, F l

1 · u⟩

= δk,l∥F k
1 · u∥2(cos t1)a+b−k(cos t2)

b+2i+kKi

(
k;

cos2 t2
cos2 t2 − cos2 t1

, a
)
,

with at as in (2.1) and the Krawtchouk polynomials as in (4.3).

Remark 4.3. We make the following observations related to Proposition 4.2:

(i) The fact that we get zero for k ̸= l follows from the fact that matrix

spherical functions restricted to A are M -intertwiners and the vectors F k · u cor-

respond to different M -types for different k. Indeed, u spans a 1-dimensional

M -representation of weight σ0(µ) = aη1 + bη2 by (4.1) and Lemma 3.6, and

more generally F k ·u corresponds to the 1-dimensionalM -representation of weight

σk(µ) = (a− 2k)η1+(b+ k)η2; see (2.9) for the K-representation generated by u.

(ii) For k = l, the right-hand side is a polynomial in (cos t1, cos t2), and it is

a homogeneous polynomial of degree a + 2b + 2i in (cos t1, cos t2). Note that the

degree of homogeneity is independent of k. Indeed, for k = l, the right-hand side

of Proposition 4.2 equals

∥F k
1 · u∥2(cos t1)a+b−k

min(i,k)∑
p=0

(−i)p(−k)p
p!(−a)p

(cos2 t2 − cos2 t1)
p(cos t2)

b+2i+k−2p,

using (4.3) and the notation for Pochhammer symbols (x)p =
∏p−1

i=0 (x+ i); see e.g.

[1, 12, 18].

(iii) Using Φ(mat) = πK
µ (m)Φ(at) for m ∈ A ∩M , the decomposition (2.9)

and σk(diag(ζ1, ζ2, 1, . . . , 1, ζ2, ζ1)) = ζa+b−k
1 ζb+k

2 for ζi ∈ Z/2Z, we see that the

right-hand side has to be invariant up to (−1)a+b−k under cos t1 7→ − cos t1 and

invariant up to (−1)b+k under cos t2 7→ − cos t2; cf. Remark 3.5. This also follows

directly from the explicit expression of Proposition 4.2.

Proof of Proposition 4.2. We put at(r, s) = exp(sE1)at exp(rF1). Then using the

unitarity of the representation UG
νi

we obtain

(4.4) ⟨πUG
νi
(at)F

k
1 · u, F l

1 · u⟩ =
∂k

∂rk

∣∣∣
r=0

∂l

∂sl

∣∣∣
s=0

⟨πUG
νi
(at(r, s))u, u⟩.
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Now,

at(r, s) =

A 0 B

0 I 0

C 0D

 , A =

(
cos t1 + rs cos t2 s cos t2

r cos t2 cos t2

)
,

B =

(
si sin t2 i sin t1
i sin t2 0

)
, C =

(
ri sin t2 i sin t2
i sin t1 0

)
, D =

(
cos t2 0

0 cos t1

)
,

and we can calculate the action of at(r, s) on each of the factors in u ∈ UG
νi
. We

get

⟨at(r, s) · xa−i
1 , xa−i

1 ⟩ = (cos t1 + rs cos t2)
a−i⟨xa−i

1 , xa−i
1 ⟩,

⟨at(r, s) · v0, v0⟩ = cos t1 cos t2(cos t2 + rs cos t1)⟨v0, v0⟩,
⟨at(r, s) · e1 ∧ e2, e1 ∧ e2⟩ = cos t1 cos t2⟨e1 ∧ e2, e1 ∧ e2⟩,

and this gives

⟨πUG
νi
(at(r, s))u, u⟩

= (cos t1 + rs cos t2)
a−i(cos t2 + rs cos t1)

i(cos t1 cos t2)
b+i⟨u, u⟩.(4.5)

The first two factors can be expanded in terms of Krawtchouk polynomials using

the generating function of (4.3), and this gives

⟨πUG
νi
(at(r, s))u, u⟩
⟨u, u⟩

= (cos t1)
a+b(cos t2)

b+2i
a∑

n=0

(
a

n

)
Kn(i;

cos2 t2
cos2 t2 − cos2 t1

, a)
(
rs

cos t2
cos t1

)n
.

Now the statement of the proposition follows using (4.4).

Remark 4.4. Note that the right-hand side of (4.5) is a polynomial of the product

rs. This follows from (4.4) being zero for k ̸= l, and this follows from the fact that

at commutes with M and F k · u and F l · u realise different 1-dimensional M -

representations for k ̸= l; cf. Remark 4.3(i).

We can now collect the results of this section into Theorem 4.5.

Theorem 4.5. Let µ = aω1 + bω2, a, b ∈ N, and let νi = (a − i)ω1 + i(ω2 +

ωm+1) + bω2 ∈ B(µ), i ∈ {0, . . . , a}. Let vµ be the highest weight vector of V K
µ ,

and define j : V K
µ → UG

νi
to be the K-equivariant map sending vµ 7→ u. Then

Qµ
νi
: G→ End(V K

µ ), g 7→ j∗ ◦ πUG
νi
(g) ◦ j
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is a matrix spherical function and restricted to A we have

Qµ
νi
(at)(F

k
1 · vµ) = qµνi,σk

(at)F
k
1 · vµ,

qµνi,σk
(at) = (cos t1)

a+b−k(cos t2)
b+2i+kKi

(
k;

cos2 t2
cos2 t2 − cos2 t1

, a
)
.

Moreover, as matrix spherical functions on G we have

Qµ
νi

=

i∑
r=0

airΦ
µ
νr
, air ∈ C, arr ̸= 0.

So we see that the transition of the elements Φµ
νi
, i ∈ {0, . . . , a} to Qµ

νi
,

i ∈ {0, . . . , a} is given by a triangular matrix with nonzero diagonal entries. Hence,

(Qµ
νi
)ai=0 and (Φµ

νi
)ai=0 span the same space of matrix spherical functions, from

which the matrix part W of the weight as in (1.9) can be obtained.

Corollary 4.6. For i ∈ {0, . . . , a} we have Φµ
νi

=
∑i

r=0 d
i
rQ

µ
νr

with dir ∈ C and

drr ̸= 0.

Corollary 4.6 and the degree consideration of Remark 4.3 motivate us to

consider the explicit matrix spherical function Qµ
νi

as the leading term of the

matrix spherical function Φµ
νi

of Section 1.1. Note that drr = (arr)
−1.

Proof of Theorem 4.5. The first statement follows from the general set-up in Sec-

tion 1.1 and Proposition 4.2. For the last statement we recall that {Φµ
λ | λ ∈

P+
G (µ)} forms a basis for matrix spherical functions; see Section 1.1. By (4.2) and

Lemma 4.1 we find that the only matrix spherical functions of type µ occurring in

UG
νi

are Φµ
νr
, r ∈ {0, . . . , i}. It remains to show that arr ̸= 0.

In the case r = 0 we have Qµ
ν0

= Φµ
ν0

since both are the identity in End(V K
µ )

for the identity in G, so a00 = 1. Assume that aii ̸= 0 for i ∈ {0, . . . , r − 1},
1 ≤ r ≤ a, and arr = 0. We show that this leads to a contradiction. Indeed, then

Qµ
νr

can be expressed in terms of Φµ
νj
, j < r, which in turn can be expressed in

terms of Qµ
νj
, j < r. Hence, there is a nontrivial linear dependence between the

matrix spherical functions
∑r

j=0 cjQ
µ
νj

= 0. Evaluating at at, acting on the K-

highest weight vector vµ ∈ V K
µ and taking inner products with vµ and using the

first part of the theorem, i.e. Proposition 4.2, we get a nontrivial linear dependence

of the form
r∑

j=0

cj(cos t1)
a+b(cos t2)

b+2j = 0 ∀ t1, t2.

This is the required contradiction.
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§5. The matrix weight

We keep µ = aω1 + bω2 with a, b ∈ N fixed. Then we identify EndM (V K
µ ) ∼= Ca+1

by Schur’s lemma and (2.9) and we set

(5.1) ϕµλ,σk
(at) : A→ C, Φµ

λ(at)|V M
σk

= ϕµλ,σk
(at) IdV M

σk

for λ ∈ P+
G (µ), k ∈ {0, . . . , a}. Note that W -invariance leads to (see (2.11))

(5.2) ϕµλ,σk
(s1at) = ϕµλ,σa−k

(at), ϕµλ,σk
(s2at) = ϕµλ,σk

(at),

and similarly for qµλ,σk
(at) because of Theorem 4.5. The nontrivial action for

qµλ,σk
(at) corresponds to Pfaff’s transformation formula for 2F1-series; see e.g. [1,

Thm. 2.2.5].

We define the lower triangular matrix L by Li,j = dij , j ≤ i, with dij as

in Corollary 4.6. Then L is invertible. Upon defining the matrices Φ0 and Q0

on A by (Φ0)i,j = ϕµνi,σj
and (Q0)i,j = qµνi,σj

, we see that Corollary 4.6 can be

rephrased as Φ0 = LQ0, and we calculate L explicitly in Proposition 6.7. Moreover,

Φ0(s1at) = Φ0(at)J , where Ji,j = 1 if i + j = a and Ji,j = 0 otherwise, and

similarly Q0(s1at) = Q0(at)J by (5.2).

As a function on A we see that the matrix weight W in (1.9) can be written

as Φ0Φ
∗
0, for which each matrix entry is a polynomial in (ϕ1, ϕ2). Note that the

weightW is a matrix function on A which is invariant for the action of the reduced

Weyl group. We switch from the matrix weight W on A to the matrix weight S =

Q0(Q0)
∗, so that W = LSL∗ as functions on A for the constant lower triangular

matrix L. Note that S as a matrix function on A is invariant for the action of the

reduced Weyl group. Note that S is a polynomial in (ψ1, ψ2) and we have for the

matrix entries Si,j of the weight S,

Si,j(ψ1(at), ψ2(at)) =

a∑
k=0

qµνi,σk
(at)q

µ
νj ,σk(at)

=

a∑
k=0

(cos t1)
2a+2b−2k(cos t2)

2b+2k+2i+2j

×Kk

(
i;

cos2 t2
cos2 t2− cos2 t1

, a
)
Kk

(
j;

cos2 t2
cos2 t2− cos2 t1

, a
)
,(5.3)

and by this expression we see that Si,j(ψ1(at), ψ2(at)) is a homogeneous polyno-

mial in (cos t1, cos t2) of degree 2a+4b+2i+2j. The simplest nonscalar cases for
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a = 1 and a = 2 give the following expressions for S(ψ1, ψ2):

(5.4) ψb
2

(
ψ1 2ψ2

2ψ2 ψ1ψ2

)
and ψb

2

ψ2
1 − ψ2

3
2ψ1ψ2 3ψ2

2
3
2ψ1ψ2 2ψ2

2 +
1
4ψ

2
1ψ2

3
2ψ1ψ

2
2

3ψ2
2

3
2ψ1ψ

2
2 ψ2

2(ψ
2
1 − ψ2)

 .

Note that in (5.4) the matrix part of S is determined by a, and the b-dependence

is only in the scalar part ψb
2. This follows in general from (5.3).

Proposition 5.1. The matrix weight S is indecomposable, i.e.

A =
{
T ∈Ma+1(C) | TS(ψ1(at), ψ2(at)) = S(ψ1(at), ψ2(at))T

∗ ∀ t1, t2
}
= R Id,

A′ =
{
T ∈Ma+1(C) | TS(ψ1(at), ψ2(at)) = S(ψ1(at), ψ2(at))T ∀ t1, t2

}
= C Id .

Remark 5.2. These notions of indecomposability of the matrix weight for mul-

tivariable weights have not yet been introduced, but it follows the definition of the

single variable case [20, 34], which can be generalised directly. Note that A′, which

is denoted A in [20], is a ∗-algebra, and A is a real vector space. The corresponding

vector spaces for the weightW = LSL∗ are then also trivial, which follows directly

for A and the invertibility of L. For A′ this follows from [20, Thm 2.3].

Proof of Proposition 5.1. Recall that the degree of Si,j as a homogeneous polyno-

mial in (cos t1, cos t2) is 2a + 4b + 2i + 2j. Assume T ∈ A′ so that ST = TS. We

consider the (i, j)th entry:

a∑
k=0

Si,k(cos t1, cos t2)Tk,j =

a∑
r=0

Ti,rSr,j(cos t1, cos t2) ∀ t1, t2.

Consider this a polynomial identity in (cos t1, cos t2) and consider the total degree

of both sides. Assume that i < j; then we see that Ti,r = 0 for r > a + i − j.

Taking j = a, we see that Ti,r = 0 for r > i. So T is lower triangular. A similar

deduction for i > j shows that T is upper triangular, and so T is diagonal. Then we

obtain Si,j(cos t1, cos t2)Tj,j = Ti,iSi,j(cos t1, cos t2), and since Si,j(cos t1, cos t2) is

a nonzero function, we find Ti,i = Tj,j . So T is a multiple of the identity.

Assume T ∈ A so that TS = ST ∗. We consider the (i, j)th entry:

a∑
k=0

Si,k(cos t1, cos t2)Tj,k =

a∑
r=0

Ti,rSr,j(cos t1, cos t2) ∀ t1, t2.

Arguing as in the previous case, we see that i < j leads to T being lower triangular.

This gives
∑j

k=0 Si,k(cos t1, cos t2)Tj,k =
∑i

r=0 Ti,rSr,j(cos t1, cos t2). Considering

the homogeneous part of highest degree 2a + 4b + 2i + 2j gives Tj,j = Ti,i,
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so that each diagonal entry is equal to the same real number. Next, compar-

ing the homogeneous part of the same degree leads to Si,k(cos t1, cos t2)Tj,k =

Ti,k+i−jSk+i−j,j(cos t1, cos t2), so that in the case j > i we get Tj,k = 0 for

0 ≤ k < j − i. Taking i = 0 shows that T is upper triangular. Hence, T is a

real multiple of the identity.

Next we calculate the determinant of S. For this it suffices to calculate the

determinant of Q0 for which we use the orthogonality properties of the Krawtchouk

polynomials. Recall e.g. [12, §6.2], [18, §9.11], using the notation of (4.3), the

orthogonality relations

(5.5)

N∑
x=0

w(x; p,N)Kn(x; p,N)Km(x; p,N) = δm,nh(n; p,N),

where

w(x; p,N) =

(
N

x

)
px(1− p)N−x, h(n; p,N) =

(−1)nn!

(−N)n

(1− p

p

)n
,

which is a positive finite discrete measure for 0 < p < 1. Rewriting shows that the

matrix

B =

(√
w(x; p,N)√
h(n; p,N)

Kn(x; p,N)

)N

n,x=0

is an orthogonal matrix, so of determinant ±1. Writing B as the product of a

diagonal matrix times the matrix whose entries are the Krawtchouk polynomials

times a diagonal matrix, and introducing additional parameters gives

det(tnsxKn(x; p,N))Nn,x=0

= ±(st)
1
2N(N+1)

( N∏
n=0

h(n; p,N)

) 1
2
( N∏

x=0

w(x; p,N)

)− 1
2

.(5.6)

Proposition 5.3. For µ = aω1 + bω2, a, b ∈ N, at ∈ A we have

det(S(at)) =

( a∏
n=0

(
a

n

))−2

(cos t1 cos t2)
2b(a+1)

× (cos t1 cos t2(cos
2 t1 − cos2 t2))

a(a+1).

Proof. With Q0(at)i,j = qµνi,σj
(at), 0 ≤ i, j ≤ a, expressed in Theorem 4.5 in

terms of Krawtchouk polynomials, we take out the terms independent of i, j, and
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we next apply (5.6) to get

det(Q0(at)) = ±(cosa+b t1 cos
b t2)

a+1
(cos t2
cos t1

) 1
2a(a+1)

(cos2 t2)
1
2a(a+1)

×
( a∏

n=0

(
a

n

))−1(1− p

p

) 1
2a(a+1)

(1− p)−
1
2a(a+1),

with p = cos2 t2
cos2 t2−cos2 t1

as in Proposition 4.2, using that (−a)n
(−1)nn! =

(
a
n

)
. Here we

assume for the time being that 0 < p < 1, so that all square roots are well defined.

Simplifying gives

det(Q0(at)) = ±
( a∏

n=0

(
a

n

))−1

(cos t1 cos t2)
b(a+1)

× (cos t1 cos t2(cos
2 t1 − cos2 t2))

1
2a(a+1),

and this proves the statement for 0 < p < 1. Since we know all entries of S are

polynomial in (cos t1, cos t2), cf. Remark 4.3(ii), the determinant of S is polynomial

in (cos t1, cos t2) and the result holds for all at.

Remark 5.4. Now, by the results of Section 1.1 and [10, Prop. X.1.19], we have

(1.9) involving the matrix weight W , hence S. In this case, δ : A→ R is given by

δ(at) = (sin t1)
2(m−2)(sin t2)

2(m−2) sin(2t1) sin(2t2) sin
2(t1+t2) sin

2(t1−t2)
= 4(sin t1)

2m−3(sin t2)
2m−3 cos t1 cos t2(cos

2 t1 − cos2 t2)
2(5.7)

(see [10, §X.5]) using Appendix A.1. In particular, from Proposition 5.3 and (5.7)

we see that det(S(at)) = 0 implies δ(at) = 0.

§6. Radial part of the Casimir operator

In order to obtain precise information on matrix spherical functions in their rela-

tion to the matrix functions Qµ
νi

in Theorem 4.5 and Corollary 4.6, we use the

Casimir operator. Since the Casimir operator acts as a multiple of the identity in

a representation πG
λ with scalar cλ = ⟨λ, λ⟩ + 2⟨λ, ρ⟩, where ρ = 1

2

∑
α∈∆+ α (see

[16, Prop. 5.28]), we have

(6.1) Rµ(Ω)Φµ
λ|A = cλΦ

µ
λ|A,

where Rµ(Ω) is the radial part of the Casimir operator as in the Appendix. For

convenience, the explicit expression for Rµ(Ω) is derived in the Appendix. The

functions Φµ
λ|A are eigenfunctions of a much larger class of differential operators

arising from a subalgebra of the universal enveloping algebra [5, Chap. 9], but we
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only use the Casimir operator. The eigenvalues play an important role in order to

distinguish the eigenfunctions.

Lemma 6.1. Let λ1, λ2 ∈ P+
G with λ1 ≺ λ2 and λ1 ̸= λ2; then cλ1

< cλ2
.

Proof. Rewriting cλ = ⟨λ+ ρ, λ+ ρ⟩ − ⟨ρ, ρ⟩, then

cλ2
− cλ1

= ⟨λ2 + ρ, λ2 + ρ⟩ − ⟨λ1 + ρ, λ1 + ρ⟩ = ⟨λ1 + λ2 + 2ρ, λ2 − λ1⟩,

and since λ1+λ2+2ρ is in the interior of the positive Weyl chamber and λ2−λ1 ∈
Q+

G, the right-hand side is positive.

As a first application we calculate the constants in Lemmas 3.3 and 3.4.

Lemma 6.2. With the notation of Section 3 we have as functions on A,

ψ1 =
2mϕ1 + 4

m+ 2
, ψ2 =

m− 1

m+ 2
ϕ2 +

2(m+ 1)

(m+ 2)2
ϕ1 +

2(m+ 1)(2m− 1)

m2(m+ 2)2
.

Remark 6.3. The relation is invertible:

ϕ1 =
(m+ 2)ψ1 − 4

m
, ϕ2 =

m(m+ 1)ψ2 − (m+ 1)ψ1 + 2

m(m− 1)
.

Proof of Lemma 6.2. In the case µ = 0, R0(Ω) is an explicit second-order partial

differential operator (see (A.5)), where all terms involving πK
µ are set to zero. Put

f1(t1, t2) = ψ1(at) = cos2 t1 + cos2 t2. Then by a trigonometric calculation (or

using computer algebra), R0(Ω)f1 = (2m+ 4)f1 − 8. Since

cλ1 =

〈
ω1 + ωm+1,

m+1∑
n=1

αn

〉
+ 2

∑
1≤i<j≤m+2

〈
ω1 + ωm+1,

j−1∑
p=i

αp

〉
= 2m+ 4

using (2.10), we get that −8a = cλ1b when writing ϕ1 = aψ1 + b using Lemma 3.3

and R0(Ω)ϕ1 = cλ1
ϕ1. Evaluating at the identity, using ϕ1(e) = 1, ψ1(e) = 2, fixes

the constant.

For ψ2, put f2(t1, t2) = ψ(at) = cos2 t1 cos
2 t2. Then we find R0(Ω)f2 =

(4m + 4)f2 − 2f1. In this case cλ2
= 4m + 4, and we identify the expansion by

considering the eigenvalue equation and the evaluation at e using the first result

as well.

Next we go back to the situation of µ = aω1 + bω2 with a, b ∈ N. The basis

(F k
1 ·vµ)ak=0, vµ being the highest weight vector of V K

µ , gives theM -decomposition,

and

(6.2)
πK
µ (E1,1)F

k
1 · vµ = (a+ b− k)F k

1 · vµ, πK
µ (E2,2)F

k
1 · vµ = (b+ k)F k

1 · vµ,
πK
µ (F1)F

k
1 · vµ = F k+1

1 · vµ, πK
µ (E1)F

k
1 · vµ = k(a− k + 1)F k−1

1 · vµ,
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and we see that almost all actions of the Lie algebra in the expression for the

radial part of the Casimir operator Rµ(Ω) of (A.5) commute with the action

of M . Only for the third line of expression (A.6) for Rµ
m(Ω) corresponding to

the middle roots of BC2 do we get a nontrivial interaction of the M -types. Put

Gk = ⟨G(·)F k
1 · vµ, F k

1 · vµ⟩ : A → C for the scalar action of G : A → EndM (V K
µ )

on VM
σk

⊂ V K
µ . Then we can rewrite the radial part of the Casimir operator (see

Appendix A.3) as

(Rµ(Ω)G)k = (Rµ(Ωm)G)k

− 1

2

2∑
p=1

∂2Gk

∂t2p
+ (Rµ

s (Ω)G)k + (Rµ
m(Ω)G)k + (Rµ

l (Ω)G)k,(6.3)

where the respective parts are given by

(Rµ(Ωm)G)k =
1

2(m+ 2)
(m(a+ b− k)2 − 4(a+ b− k)(b+ k) +m(b+ k)2)Gk

for the action corresponding to Ωm, the term for the short roots is equal to

(Rµ
s (Ω)G)k = −(m− 2)

2∑
i=1

cos ti
sin ti

∂Gk

∂ti
,

the term for the middle roots gives

(Rµ
m(Ω)G)k

= −cos(t1 + t2)

sin(t1 + t2)

(∂Gk

∂t1
+
∂Gk

∂t2

)
− cos(t1 − t2)

sin(t1 − t2)

(∂Gk

∂t1
− ∂Gk

∂t2

)
−
( cos(t1 + t2)

sin2(t1 + t2)
+

cos(t1 − t2)

sin2(t1 − t2)

)
((k + 1)(a− k)Gk+1 + k(a− k + 1)Gk−1)

+
( 1

sin2(t1 + t2)
+

1

sin2(t1 − t2)

)(
((k + 1)(a− k) + k(a− k + 1))Gk

)
and the term for the long roots simplifies to

(Rµ
l (Ω)G)k = −

2∑
i=1

cos(2ti)

sin(2ti)

∂Gk

∂ti
+

(a+ b− k)2

2 cos2 t1
Gk +

(b+ k)2

2 cos2 t2
Gk.

Having described the radial part of the Casimir operator explicitly, we can

use the action to make the constants in Theorem 4.5 and Corollary 4.6 explicit.

Proposition 6.4. As functions A→ EndM (V K
µ ) we have

Φµ
νi

=
(m+ b+ i)i

(m)i

i∑
r=0

(−i)i−r(−i− b)i−r

(i− r)!(1−m− 2i− b)i−r
Qµ

νr
.
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The key ingredient in the proof of Proposition 6.4 is the action of the radial

part of the Casimir operator on the functions Qµ
νi
: A→ EndM (V K

µ ).

Lemma 6.5. For i ∈ {0, . . . , a} and Qµ
νi

as in Theorem 4.5 we have

Rµ(Ω)Qµ
νi

= cνi
Qµ

νi
− 2i(b+ i)Qµ

νi−1
,

where cνi is the eigenvalue of Φµ
νi

for Rµ(Ω):

cνi
= 2i2 + 2i(b+m) + (m+ 1)a+ 2mb+

1

m+ 2
((m+ 1)a2 + 2mb(a+ b)).

Proof. Note that Rµ(Ω)Φµ
νi

= cνiΦ
µ
νi

with cνi = ⟨νi, νi⟩+2⟨νi, ρ⟩, and the explicit

value of cνi
follows by a calculation. This shows that cνi

< cνi+1
. This also fol-

lows more generally from Corollary 2.5 and Lemma 6.1. Since the transition of the

basis of (Φµ
νi
)ai=0 to the basis (Qµ

νi
)ai=0 is triangular, we find Rµ(Ω)Qµ

νi
= cνiQ

µ
νi
+∑i−1

r=0 CrQ
µ
νr

for certain constants Cr. These constants can be determined consid-

ering the action on VM
σ0

of this identity using qµνi,σ0
(at) = (cos t1)

a+b(cos t2)
b+2i

and

(6.4) qµνi,σ1
(at) =

a− i

a
(cos t1)

a+b−1(cos t2)
b+2i+1+

i

a
(cos t1)

a+b+1(cos t2)
b+2i−1,

where we use K1(x; p,N) = 1− x
pN for the Krawtchouk polynomials; see Theorem

4.5. Using this we find by a trigonometric calculation (using computer algebra),

(Rµ(Ω)Qµ
νi
)0 = cνi

(cos t1)
a+b(cos t2)

b+2i − 2i(b+ i)(cos t1)
a+b(cos t2)

b+2i−2.

The right-hand side is cνi
qµνi,σ0

(at)−2i(b+i)qµνi−1,σ0
(at), so that Ci−1 = −2i(b+i)

and Cr = 0 for r < i − 1 since the functions qµνi,σk
are independent for i ∈

{0, . . . , a}.

Remark 6.6. The fact that the right-hand side of Lemma 6.5 consists of just two

matrix leading terms makes it possible to derive many explicit results for matrix

spherical functions. This is one of the main motivations to consider these specific

leading terms.

Proof of Proposition 6.4. Apply Rµ(Ω) to Corollary 4.6, using that the Φµ
νi

are

eigenfunctions for Rµ(Ω), Lemma 6.5 and that the Qµ
νi

are linearly independent,

to find the recursion dircνi = dircνr − dir+12(r + 1)(b + r + 1) for r < i. Using the

value for cνi
as in Lemma 6.5 we obtain

dir(i− r)(b+m+ r + i) = −dir+1(r + 1)(b+ r + 1)

=⇒ dir =
(−i)i−r(−i− b)i−r

(i− r)!(1−m− 2i− b)i−r
dii
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by iteration and it remains to determine dii. Evaluating at the identity element

e ∈ A and using that Qµ
νr

and Φµ
νi

are the identity at e, we find

1

dii
=

i∑
r=0

(−i)i−r(−i− b)i−r

(i− r)!(1−m− 2i− b)i−r

= 2F1

( −i,−i− b

1−m− 2i− b
; 1
)
=

(1−m− i)i
(1−m− 2i− b)i

by the Chu–Vandermonde summation; see e.g. [1, Cor. 2.2.3], [12, §1.4]. Simplifying

dii gives the result.

As the next step we translate Proposition 6.4 into the transition for the matrix

weight W and S. Recall the matrix functions Φ0 and Q0 as defined in Section 5.

Proposition 6.7. We have Φ0 = LQ0 with the constant lower triangular matrix

L given by Li,j = 0 for j > i and

Li,j = (−1)i+j

(
i

j

)
(m+ b+ i)i

(m)i

(b+ j + 1)i−j

(m+ i+ j + b)i−j
, 0 ≤ j ≤ i ≤ a,

and its inverse is the lower triangular matrix given by (L−1)i,j = 0 for j > i and

(L−1)i,j =

(
i

j

)
(m)j

(m+ b+ j)j

(b+ j + 1)i−j

(m+ 2j + b− 1)i−j
, 0 ≤ j ≤ i ≤ a.

Proof. Recall from Section 5 and Proposition 6.4 that as functions on A we have

(Φ0)i,k = ϕµνi,σk
= (Φµ

νi
)k =

i∑
r=0

dir(Q
µ
νr
)k =

i∑
r=0

dirq
µ
νr,σk

=

a∑
r=0

Li,r(Q0)r,k

with Li,r = dir for i ≤ r and Li,r = 0 for i > r. Rewriting gives the matrix L.

To show that L−1 is as given, we need to show the nontrivial case: for j ≤ i

we have to show
∑i

r=j Li,r(L
−1)r,j = δi,j . Taking out the r-independent parts, we

see that this is equivalent to showing

δi,j =

i∑
r=j

(−1)i+r

(
i

r

)
(b+ r + 1)i−r

(m+ i+ r + b)i−r

(
r

j

)
(b+ j + 1)r−j

(m+ 2j + b− 1)r−j
.

The right-hand side can be rewritten as

(b+ i+ j)i−j

(m+ i+ j + b− 1)i−j

(
i

j

)
(−1)i+j

i−j∑
k=0

(j − i)k(m+ i+ j + b− 1)k
k!(m+ 2j + b)k

and the sum is a terminating 2F1-series at 1, which can be evaluated by the Chu–

Vandermonde summation (see e.g. [1, Cor. 2.2.3], [12, §1.4]) as
(1+j−i)i−j

(m+2j+b)i−j
so that

the numerator gives 0 unless i = j, in which case we find 1.
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Figure 1. Integration region I of Theorem 7.1.

§7. Matrix orthogonal polynomials in two variables

In Section 5 we established the matrix weight for the polynomials, and in this

section we establish some more properties for these matrix orthogonal polynomials

in two variables with BC2-symmetry. In particular, we make the orthogonality

relations more explicit. Moreover, we derive the matrix partial differential operator

to which these matrix polynomials are eigenfunctions.

First, the Haar measure on A is dt1 dt2 on [−π, π] × [−π, π] and using the

invariance under the sign changes, we can reduce to the integral over [0, 12π] ×
[0, 12π]. Using (5.7) we find for the normalising constant in (1.9),

(7.1)
1

c
=

∫
A

|δ(a)| da = 42
∫ 1

2π

0

∫ 1
2π

0

|δ(at)| dt1 dt2 =
32

m2(m2 − 1)
.

In order to make the connection to the BC2-case as originally introduced

by Koornwinder [25, 24] (see also [32, 30]), we make an affine change of variable

ψ1 = 1
2x1+1, ψ2 = 1

4x2+
1
4x1+

1
4 , or, in terms of t1 and t2, x1 = cos(2t1)+cos(2t2),

x2 = cos(2t1) cos(2t2). Then the map sending (t1, t2) ∈ [0, 12π]× [0, 12π] to (x1, x2)

is a 2 : 1 mapping onto the region bounded by the parabola x21 = 4x2 and the lines

x2 = x1 − 1, x2 = 1 − x1; see Figure 1. This is exactly the region of integration

for the polynomials studied in [25, 24, 32]. For d = (d1, d2) ∈ N2 we define matrix

polynomials Rd of size (a+ 1)× (a+ 1) of degree d by

(7.2) Rd(x1, x2) = Pd(ϕ1, ϕ2)L,

where we use the notation for Pd as in Section 1.1, the affine transformation from

(x1, x2) to (ψ1, ψ2) as given above and the affine transformation from Lemma 6.2,
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and with L as in Proposition 6.7. Finally, we define the matrix weight

(7.3) Sa(x1, x2) = S(ψ1, ψ2)

with S(ψ1(at), ψ2(at)) defined in (5.3) for the case a ∈ N, b = 0, and using the

coordinate change of (ψ1, ψ2) to (x1, x2). In the case a = 1 we obtain

S1(x1, x2) =

(
1
2x1 + 1 1

2 (x1 + x2 + 1)
1
2 (x1 + x2 + 1) 1

4 (
1
2x1 + 1)(x1 + x2 + 1)

)
,

and for a = 2 we obtain that S2(x1, x2) equals ( 12x1 + 1)2 − x1+x2+1
4

3
8 (

1
2x1 + 1)(x1 + x2 + 1) 3

16 (x1 + x2 + 1)2

3
8 (

1
2x1 + 1)(x1 + x2 + 1)

(x1+x2+1)(2(x1+x2+1)+( 1
2x1+1)2)

16
3
32 (

1
2x1 + 1)(x1 + x2 + 1)2

3
16 (x1 + x2 + 1)2 3

32 (
1
2x1 + 1)(x1 + x2 + 1)2

(x1+x2+1)2(( 1
2x1+1)2− x1+x2+1

4 )

16

 .

These examples follow from (5.4) taking b = 0 and ψ1 = 1
2x1 + 1, ψ2 = 1

4x2 +
1
4x1 +

1
4 .

Theorem 7.1. The matrix polynomials Rd defined by (7.2) are orthogonal on the

region of integration I as in Figure 1, and∫∫
I

Rd(x1, x2)S
a(x1, x2)(Rd′(x1, x2))

∗(1− x1 + x2)
m−2(1 + x1 + x2)

b

× (x21 − 4x2)
1
2 dx1 dx2

= δd,d′22m+2b−10m2(m2 − 1)Hd

where Sa is positive definite on I with positive determinant on the interior of I.

Moreover, the weight function is indecomposable. Here the matrix Hd is a diagonal

matrix with (Hd)k,k = (a+ 1)2/dimV G
νk+d1λ1+d2λ2

.

Moreover, the polynomials Rd are eigenfunctions to a second-order matrix

partial differential operator:

RdR
0(Ω)−RdC

µ +Rd(Λ0 + S) = ΛdRd,

where Λd = diag(cνi+d1λ1+d2λ2
)ai=0, d = (d1, d2) ∈ N2, Λ0 = Λ(0,0) and S is the

lower triangular matrix with one nonzero subdiagonal with Sr,r−1 = −2r(b + r).

The operator R0(Ω) is the second-order partial differential operator acting from

the right as the identity times the classical partial differential operator

(2x21 − 4x2 − 4)
∂2

∂x21
+ (−2x21 + 4x22 + 4x2)

∂2

∂x22
+ 4x1(x2 − 1)

∂2

∂x1∂x2

+ 2((m+ 2)x1 + 2m− 4)
∂

∂x1
+ 2((m− 2)x1 + 2 + (2m+ 2)x2)

∂

∂x2
,
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and Cµ is the first-order matrix differential operator ∂
∂x1

Cµ
1 + ∂

∂x2
Cµ

2 , where C
µ
1

and Cµ
2 are tridiagonal polynomial matrices of degree 1 given by

(Cµ
1 )r,r = 2((a+ b+ r)x1 − 2b− 2r),

(Cµ
2 )r,r = 2((b+ r)(2x2 − x1) + a(x2 + 1)),

(Cµ
1 )r,r−1 = (Cµ

2 )r,r−1 = −r(x1 + x2 + 1),

(Cµ
1 )r,r+1 = (Cµ

2 )r,r+1 = −4(a− r).

Moreover, the matrix partial differential operator is symmetric with respect to the

matrix weight.

Remark 7.2. Note that the scalar part of the weight in Theorem 7.1 is the weight

considered by Koornwinder [25, 24] and Sprinkhuizen-Kuyper [32] for the special

case α = m − 2, β = b, γ = 1
2 . Similarly, in the case µ = 0, i.e. a = b = 0,

the partial differential operator reduces to the partial differential operator studied

in [25, 24, 32] up to a scalar multiple for these choices of parameters. The case

a = 0, b ∈ N, gives the case of a nontrivial character of K, and this corresponds

to Heckman and Schlichtkrull [9, Chap. 5].

Note that in the scalar case, the 2-variable orthogonal polynomials can be

expressed in terms of Jacobi polynomials [24, eq. (3.13)], [32, Lem. 3.1]. It is not

clear whether in this case we also have an explicit expression for Rd(x1, x2) in

terms of matrix Jacobi polynomials of a single variable.

Proof of the orthogonality in Theorem 7.1. Observe that the Jacobian for the

change of (t1, t2) to (x1, x2) is given by

32| sin(t1) sin(t2) cos(t1) cos(t2)(cos2(t1)− cos2(t2))|

and sin2(t1) sin
2(t2) =

1
4 (1−x1+x2), (cos

2(t1)−cos2(t2))
2 = 1

4 (x
2
1−4x2). Keeping

track of the constants involved, the statements on the orthogonality follow from

(1.9) and from Section 5, in particular Proposition 5.3 and Remark 5.4, and S =

Q0Q
∗
0 being positive.

In order to prove the statement of Theorem 7.1 concerning the partial differ-

ential operator, we need to be able to rewrite the eigenvalue equation of the radial

part of the Casimir operator Rµ(Ω) acting on the eigenvector Φµ
λ|A in terms of

an operator acting on the polynomials Rd. For this we need to conjugate Rµ(Ω)

with the matrix function Q0; see [23, §3.2]. We collect the technical results in

Lemma 7.3.
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Lemma 7.3. We have for i = 1, 2, as matrix-valued functions on A,

∂ψi

∂t1

∂Q0

∂t1
+
∂ψi

∂t2

∂Q0

∂t2
= Ci(ψ1, ψ2)Q0,

where we consider the functions as functions of (t1, t2) by evaluating at at ∈ A.

Here Ci(ψ1, ψ2) is a matrix polynomial in (ψ1, ψ2) of total degree at most 1, where

the nonzero entries are explicitly given by

C1(ψ1, ψ2)r,r = 2(a+ 2b+ 2r − (a+ b+ r)ψ1),

C2(ψ1, ψ2)r,r = 2((b+ r)ψ1 − (a+ 2b+ 2r)ψ2),

C1(ψ1, ψ2)r,r−1 = C2(ψ1, ψ2)r,r−1 = 2rψ2,

C1(ψ1, ψ2)r,r+1 = C2(ψ1, ψ2)r,r+1 = 2(a− r).

Note that the tridiagonal matrices coincide on the off-diagonal entries.

There are analogues of Lemma 7.3 with Q0 replaced by Φ0 and ψi replaced

by ϕi or xi; see also the first paragraph of the proof. However, in general it is

hard to calculate the right-hand side explicitly. In this case we can do the explicit

calculation because of the homogeneity properties of the entries of Q0 and ψ1, ψ2.

Proof of Lemma 7.3. Lemma 3.9 of [23] implies that

∂ϕi
∂t1

∂Φ0

∂t1
+
∂ϕi
∂t2

∂Φ0

∂t2
= C ′

i(ϕ1, ϕ2)Φ0

for a matrix polynomial C ′
i in (ϕ1, ϕ2) of maximal total degree 1, where we use the

adjoint of [23, Lem. 3.9]. Using Φ0 = LQ0 and the affine transformation of (ϕ1, ϕ2)

to (ψ1, ψ2) given in Lemma 6.2 proves the general statement of the lemma, and it

remains to determine the polynomials Ci.

Take i = 1 and consider the (r, s)-entry of the left-hand side of the identity.

Since (Q0)r,s(at) = qµνr,σs
(at) is a homogeneous polynomial of degree a+ 2b+ 2r

in (cos t1, cos t2), we see by an explicit calculation that

(7.4)
∂ψ1

∂t1

∂(Q0)r,s
∂t1

+
∂ψ1

∂t2

∂(Q0)r,s
∂t2

= 2(a+ 2b+ 2r)(Q0)r,s + Er,s,

where Er,s is a homogeneous polynomial of degree a+2b+2r+2 in (cos t1, cos t2).

Since ψ1, respectively ψ2, is homogeneous of degree 2, respectively 4, and the fact

that C1(ψ1, ψ2) is of degree at most 1, we have Er,s = arψ1(Q0)r,s+brψ2(Q0)r−1,s+

cr(Q0)r+1,s for coefficients ar, br and cr. So we see that C1(ψ1, ψ2) is a tridiagonal

matrix, and we have to determine the coefficients. For this we take s = 0 and

recall from Theorem 4.5 that (Q0)r,0(at) = qµνr,σ0
(at) = (cos t1)

a+b(cos t2)
b+2r.
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Therefore,

∂ψ1

∂t1

∂(Q0)r,0
∂t1

+
∂ψ1

∂t2

∂(Q0)r,0
∂t2

= 2(a+ b+ 2r)(Q0)r,0 − 2(a+ b)(cos t1)
a+b+2(cos t2)

b+2r

− 2(b+ 2r)(cos t1)
a+b(cos t2)

b+2r+2,

and comparing with the explicit form of Er,s we get ar + br = −2(a + b) and

ar + cr = −2(b + 2r). Writing br and cr in terms of ar, we now take s = 1 in

(7.4) and we use the explicit expression (6.4) in order to obtain by a calculation

(using computer algebra) that ar = −2a − 2b − 2r. This gives the expression for

C1(ψ1, ψ2).

In the case i = 2 we proceed similarly and we get

(7.5)
∂ψ2

∂t1

∂(Q0)r,s
∂t1

+
∂ψ2

∂t2

∂(Q0)r,s
∂t2

= −2(a+ 2b+ 2r)ψ2(Q0)r,s + Er,s,

where Er,s is a homogeneous polynomial of degree a+2b+2r+2 in (cos t1, cos t2)

as before and hence of the form Er,s = arψ1(Q0)r,s + brψ2(Q0)r−1,s + cr(Q0)r+1,s.

So also C2(ψ1, ψ2) is tridiagonal. Taking s = 0 in (7.5) we find by a calculation

that ar + br = 2(b+ 2r) and ar + cr = 2(a+ b) in this case. Eliminating br and cr
in terms of ar and now taking s = 1 in (7.5) and using the explicit form (6.4), we

find by a calculation (using computer algebra) that ar = 2b + 2r. This gives the

expression for C2(ψ1, ψ2).

In order to derive the partial differential operator of Theorem 7.1, we observe

that in this case we can rewrite (1.8) as

(7.6) Φµ
νi+λsph

(at) =

a∑
r=0

qµνi,vr;d
(ψ1(at), ψ2(at))Q

µ
νr
(at),

using Theorem 4.5 and Remark 6.3. Note that qµνi,vr;d
is a polynomial of total

degree |d|. Note that qµνi,vr;d
are entries of the matrix polynomials Rd up to

a change of coordinates. Since Φµ
νi+λsph

(at) is an eigenvector of the radial part

Rµ(Ω) of the Casimir operator, we need to derive the action Rµ(Ω) on t 7→
f(ψ1(at), ψ(at))Q

µ
νr
(at) for f a 2-variable scalar function. It can be checked from

(6.3) that (cf. the proof of [23, Lem. 3.9])

Rµ(Ω)(f(ψ1, ψ2)Q
µ
νr
) = f(ψ1, ψ2)(R

µ(Ω)Qµ
νr
)

+ (R0(Ω)f(ψ1, ψ2))Q
µ
νr

−
2∑

p=1

∂f

∂tp

∂Qµ
νr

∂tp
,(7.7)
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where the first term follows from Lemma 6.5 and the last term can be dealt with

using Lemma 7.3 and the chain rule. So we can rewrite Rµ(Ω)(f(ψ1, ψ2)Q
µ
νr
) com-

pletely in terms of the Qµ
νs
: we get an eigenvalue equation for the qµνi,νr;d

, which

is

cνi+λsph

a∑
r=0

qµνi,νr;d
(ψ1, ψ2)Q

µ
νr

=

a∑
r=0

(R0(Ω)qµνi,νr;d
(ψ1, ψ2))Q

µ
νr

+

a∑
r=0

qµνi,νr;d
(ψ1, ψ2)(cνrQ

µ
νr

− 2r(b+ r)Qµ
νr−1

)

−
2∑

p=1

a∑
r,u=0

∂qµνi,νr;d

∂ψp
(ψ1, ψ2)Cp(ψ1, ψ2)r,uQ

µ
νu
,(7.8)

where λsph = d1λ1 + d2λ2, d = (d1, d2) ∈ N2.

Lemma 7.4. Define Qd = Qd(ψ1, ψ2) the matrix polynomial by (Qd)i,j(ψ1, ψ2) =

qµνi,νj ;d
(ψ1, ψ2) using (7.6). Then

QdR
0(Ω)− ∂Qd

∂ψ1
C1(ψ1, ψ2)−

∂Qd

∂ψ2
C2(ψ1, ψ2) +Qd(Λ0 + S) = ΛdQd,

where Λd, Λ0 and S are as in Theorem 7.1, and Ci(ψ1, ψ2), i = 1, 2, are the matrix

polynomials of at most degree 1 (see Lemma 7.3). Moreover, R0(Ω) is a matrix

second-order partial differential operator in (ψ1, ψ2) acting entrywise, considered

as acting from the right.

Remark 7.5. Note that the radial part R0(Ω) acts as a matrix differential oper-

ator when considered as multiplied by the identity. This has to be rewritten as a

differential operator with respect to the variables (ψ1, ψ2), which can be done since

the spherical functions are polynomials in (ϕ1, ϕ2), hence in (ψ1, ψ2); see Vretare

[37]. For convenience, we write down the terms of R0(Ω)f , where f is a scalar

polynomial in (ψ1, ψ2). Then R
0(Ωm) is zero, − 1

2

∑2
p=1

∂2

∂t2p
in (6.3) corresponds to

(2ψ1 − 2)
∂f

∂ψ1
+ (4ψ2 − ψ1)

∂f

∂ψ2
+ (2ψ2

1 − 2ψ1 − 4ψ2)
∂2f

∂ψ2
1

+ (4ψ2
2 − 2ψ1ψ2)

∂2f

∂ψ2
2

+ (4ψ1ψ2 − 8ψ2)
∂2f

∂ψ1∂ψ2
,

R0
s(Ω)f corresponds to

2(m− 2)ψ1
∂f

∂ψ1
+ 4(m− 2)ψ2

∂f

∂ψ2
,
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R0
l (Ω)f corresponds to

(2ψ1 − 2)
∂f

∂ψ1
+ (4ψ2 − ψ1)

∂f

∂ψ2

and R0
m(Ω)f corresponds to

(4ψ1 − 4)
∂f

∂ψ1
+ 4ψ2

∂f

∂ψ2
.

Proof of Lemma 7.4. Writing (7.8) in matrix notation, we obtain the result of the

lemma multiplied by the matrix function Q0 from the right. Since Q0 is generically

invertible (see the proof of Proposition 5.3), the lemma follows.

Proof of the partial differential equation in Theorem 7.1. Comparing (7.6) with

(7.2) and (1.8), we see that Rd andQd are the same up to the change of coordinates

from (ψ1, ψ2) for Qd to (x1, x2) for Rd. Note that x1 = 2ψ1−2, x2 = 4ψ1−2ψ1+1,

making this affine change of coordinates give the expression for R0(Ω) in (x1, x2)-

coordinates as given in Theorem 7.1. It remains to make the change of coordinates

in the other terms involving first-order differentials, which is straightforward.

Note that the radial part Rµ(Ω) of the Casimir operator is symmetric with

respect to the inner product ⟨Φ,Ψ⟩ = 1
c

∫
A
Tr(Φ(a)(Ψ(a))∗)|δ(a)| da by (6.1), (1.4)

for matrix spherical functions Φ, Ψ, and the results given in Section 1.1. Since the

second-order matrix partial differential operator is obtained by conjugation by Q0,

we obtain the symmetry.

§8. The leading term of Φµ
λ

In Section 4 we introduced the leading term Qµ
ν of the matrix spherical functions

for Φµ
ν for ν ∈ B(µ). Using these results we can determine the leading term Qµ

λ of

the matrix spherical functions for Φµ
λ for λ ∈ P+

G (µ). We do this by introducing the

leading term from an embedding of V K
µ in a large tensor product representation,

similarly to the construction in Section 4. We then show, by using the radial part

of the Casimir operator, that this is indeed a leading term by establishing the

lower triangularity of the radial part of the Casimir operator on these functions.

Assume as before µ = aω1 + bω2 with a, b ∈ N and we take λ ∈ P+
G (µ). By

Condition 1.2 we can write λ = νi + d1λ1 + d2λ2 with νi ∈ B(µ), d1, d2 ∈ N.
Generalising the construction of ψ1, ψ2 and Qµ

νi
as in Sections 3 and 4, we define

the tensor product representation and an explicit element by

WG
λ = (V G

ω1
⊗ V G

ωm+1
)⊗d1 ⊗ (V G

ω2
⊗ V G

ωm
)⊗d2 ⊗ UG

νi
, w = v⊗d1

1 ⊗ v⊗d2
2 ⊗ u ∈WG

λ ,

using the notation of Lemmas 3.2 and 3.4 and (4.1). Using the results of Sections

3 and 4 we see that w is a K-highest weight vector of highest weight µ in WG
λ . So
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we get a K-intertwiner j : V K
µ →WG

λ mapping the highest weight vector vµ ∈ V K
µ

to w.

Proposition 8.1. Define the matrix spherical function Qµ
λ : G → End(V K

µ ) by

Qµ
λ(g) = j∗ ◦ πG

WG
λ
(g) ◦ j. Then

Qµ
λ(at) = (ψ1(at))

d1(ψ2(at))
d2Qµ

νi
(at)

and Qµ
λ|A =

∑
λ′≼λ;λ′∈P+

G (µ) aλ′Φµ
λ′ |A for constants aλ′ .

Note in particular, that the action of Qµ
λ(at) on the 1-dimensional constituent

VM
σk

in V K
µ is given by

(8.1) (ψ1(at))
d1(ψ2(at))

d2qµνi,σk
(at),

which is a homogeneous polynomial in (cos t1, cos t2) of degree 2d1 + 4d2 + 2a +

4b+ 2i; see Remark 4.3 and Theorem 4.5.

Proof of Proposition 8.1. As noted, w is a highest weight vector for the action of

K of highest weight µ, so by construction Qµ
λ is a matrix spherical function, and

by Section 1.1 it is a linear combination of Φµ
λ for λ ∈ P+

G (µ) by the Peter–Weyl

theorem. Since we have the decomposition WG
λ =

⊕
λ′≼λ nλ′V G

λ , with nλ = 1, by

repeated application of, e.g. [29, Lem. 3.1], the expression for Qµ
λ|A follows.

For the proof of the explicit expression, we use the notation in the proof of

Proposition 4.2. Since the matrix entry of at(r, s) acting on vi and taking the inner

product with vi is ψi(at) for i = 1, 2 by Lemmas 3.2 and 3.4, we find the result

from Theorem 4.5.

In order to understand the decomposition ofQµ
λ of Proposition 8.1 we calculate

the action of the radial part of the Casimir operator on Qµ
λ as a function on A.

Recall (7.7), and take f a polynomial in (ψ1, ψ2); this leads to Proposition 8.2.

Note that Proposition 8.2 generalises Lemma 6.5, but Lemma 6.5 is used in the

proof of Proposition 8.2.

Proposition 8.2. We have as functions on A,

Rµ(Ω)Qµ
λ = cλQ

µ
λ +

∑
λ′≺λ

λ′∈P+
G (µ)

bλ′Qµ
λ′ .

Corollary 8.3. In Proposition 8.1 we have aλ ̸= 0, so that there exist constants

bλ′ with

Φµ
λ =

∑
λ′≼λ

bλ′Qµ
λ, bλ ̸= 0.
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The statement of Corollary 8.3 motivates us to call the matrix spherical func-

tion Qµ
λ the leading term of Φµ

λ.

Proof of Corollary 8.3. In the case aλ = 0 in Proposition 8.1, we have Qµ
λ in the

span of Φµ
λ′ for λ′ ≺ λ which is an invariant space for the radial part of the Casimir

Rµ(Ω) with eigenvalues cλ′ . By Lemma 6.1 the eigenvalue cλ is not contained in

this set, but applying Propositions 8.2 and 8.1 to λ′ ≺ λ shows that the eigenvalue

cλ has to occur, since Rµ(Ω) acts in a lower triangular way on the Qµ
λ′ . This is the

required contradiction.

So this means that we can invert the relation of Proposition 8.1, giving the

stated expansion.

Proof of Proposition 8.2. Put f(ψ1, ψ2) = ψd1
1 ψ

d2
2 ; then the first term on the

right-hand side of (7.7) follows from Lemma 6.5. For the second term we have by

a calculation,

R0(µ)f = 2(d21 + d1(1 + 2d2 +m) + 2d22 + 2md2)ψ
d1
1 ψ

d2
2 − 2d22ψ

d1+1
1 ψd2−1

2

− 2d1(d1 + 4d2 + 3)ψd1−1
1 ψd2

2 − 4d1(d1 − 1)ψd1−2
1 ψd2+1

2 ,(8.2)

which follows from the explicit expression of the radial part of the Casimir oper-

ator, R0(Ω), in (ψ1, ψ2)-coordinates; see Remark 7.5. For the final term of (7.7),

−
∑2

p=1
∂f
∂tp

∂Qµ
νr

∂tp
, we consider the action on the constituent VM

σk
in V K

µ , and we

find

−
2∑

s=1

∂f

∂ψs
(Cs(ψ,ψ2)Q0)i,k

using the chain rule and Lemma 7.3. By the explicit expression of Lemma 7.3 this

term gives

− 2(d1ψ2 + d2ψ1)(iψ
d1−1
1 ψd2

2 Q
µ
νi−1

+ (a− i)ψd1−1
1 ψd2−1

2 Qµ
νi+1

)

− 2
(
(a+ b+ 2i)d1ψ2 + (b+ 2i)d2ψ

2
1

− (d1(a+ b+ i) + d2(a+ 2b+ 2i))ψ1ψ2

)
ψd1−1
1 ψd2−1

2 Qµ
νi
.(8.3)

So from (7.7), Lemma 6.5 and (8.2), (8.3), we collect the coefficient of Qµ
λ in

Rµ(Ω)Qµ
λ as

cνi
+ 2(d21 + d1(1 + 2d2 +m) + 2d22 + 2md2) + 2(a+ b+ i)d1 + 2(a+ 2b+ 2i)d2.

Write λ = νi + λsph, with λsph = d1λ1 + d2λ2. Then the eigenvalue cλ can be

written as

cλ = cνi
+ ⟨λsph, λsph⟩+ 2⟨λsph, νi + ρ⟩.
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Since ⟨λsph, λsph⟩ = 2d21 + 4d1d2 + 4d22, and ⟨λ1, νi + ρ⟩ = a + b + i + m + 1,

⟨λ2, νi + ρ⟩ = a + 2b + 2i + 2m, we see that the coefficient of Qµ
λ in Rµ(Ω)Qµ

λ is

cλ.

Note that the proof of Proposition 8.2 actually gives a complete expression

for the action of Rµ(Ω) on Qµ
λ. For completeness we list in Table 1 the λ′ ≺ λ for

which Qµ
λ′ occurs with a nonzero bλ′ whose explicit value is listed as well.

Indeed, all λ′ satisfy λ′ ∈ P+
G (µ) and λ′ ≺ λ, which can be checked using the

results of Section 2.

λ′ bλ′

(d1 − 1)λ1 + d2λ2 + νi −2d1(d1 + 4d2 + 3)− 2d1(a+ 2b+ 2i)

(d1 − 2)λ1 + (d2 + 1)λ2 + νi −2d1(d1 − 1)

(d1 + 1)λ1 + (d2 − 1)λ2 + νi −2d22 − 2d2(b+ i)

d1λ1 + d2λ2 + νi−1 −2i(b+ i)− 2id2

(d1 − 1)λ1 + (d2 + 1)λ2 + νi−1 −2id1

(d1 − 1)λ1 + d2λ2 + νi+1 −2(a− i)d1

d1λ1 + (d2 − 1)λ2 + νi+1 −2(a− i)d2

Table 1. Table for the remaining coefficients in Proposition 8.2.

§9. The case µ = aω1 + bω2 with b negative

In general, we obtain from (1.7) and σk(µ
∗) = σa−k(µ) for µ = aω1 + bω2, a ∈ N,

b ∈ Z (see Section 2.2) and a−1
t = a−t,

qµ
∗

νr(µ∗),σk(µ∗)(at) = qµνa−r(µ),σa−k(µ)
(a−t),

extending the notation (5.1) to more general µ and stressing the dependence on µ

and µ∗ in the corresponding weights. So, for the corresponding Φµ
0 , we obtain

(9.1) Φµ∗

0 (at) = JΦµ
0 (a−t)J, Ji,j = δi+j,a, 0 ≤ i, j ≤ a.

Applying (1.7) to (1.8), using that λ∗sph = λsph and that spherical functions satisfy

ϕ(at) = ϕ(a−t), we obtain for the matrix polynomials Pµ
d (ϕ1, ϕ2) = Pd(ϕ1, ϕ2)

introduced in (1.9),

(9.2) Pµ∗

d (ϕ1, ϕ2) = JPµ
d (ϕ1, ϕ2)J.
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The weight function satisfies Wµ∗
(ϕ1, ϕ2) = JWµ(ϕ1, ϕ2)J as follows from (9.1),

so we see that the matrix polynomials for µ = aω1+ bω2 and µ∗ = aω1− (a+ b)ω2

are essentially the same. So this covers the case b ≤ −a.
It remains to consider the case −a < b < 0 with a ∈ N, b ∈ Z, and using

duality we can restrict to the case − 1
2a ≤ b < 0. However, in this case we cannot

extend the method established for the case b ≥ 0 easily, due to the fact that the

bottom splits into two parts. The results for each of these parts cannot be easily

related to each other.

Remark 9.1. The case that µ∗ = µ, i.e. a ∈ 2N and b = − 1
2a or µ = 2cω1−cω2 for

c ∈ N, exhibits different behaviour. Assume c ≥ 1; we see that the corresponding

spaces A and A as in Proposition 5.1 for the matrix weightW (see Remark 5.2) are

no longer trivial, since A′ and A both contain J . Calculations for small values of c

in µ = 2cω1−cω2 indicate that we may expect A′ = CJ⊕C Id and A = RJ⊕R Id

with A′ and A defined as in Proposition 5.1.

Note that in the study of matrix orthogonal polynomials of a single variable

related to (SU(2) × SU(2),diag) the weight is also reducible; see [21, Prop. 6.4,

Thm. 6.5]. In that case the algebra A′ is also 2-dimensional with a similarly defined

nontrivial element. So we see that self-duality of the K-representations in these

cases leads to reducibility of the weight for the corresponding matrix orthogonal

polynomials. The precise relation requires more attention in general.

Appendix. Radial part of the Casimir operator

In general, the determination of the radial part of an operator arising from a

suitable element in the universal enveloping algebra is due to Harish-Chandra in

unpublished papers from 1960; see [8]. The result is mainly used for representations

of noncompact Lie groups; see [15, Chap. VIII], [38, Chap. 9]. In this case we need

to do this for the compact setting, and we derive the explicit expression from the

Casimir element in the centre of U(g). For this we follow Casselman and Miličić

[3].

Appendix A.1. Structure theory

In order to calculate the radial part of the Casimir operator following [3], we note

that K = Gθ with θ(g) = JgJ , J = diag(−1,−1, 1, . . . , 1). In order to do the

calculation we conjugate to the maximally split case. So we take

(A.1) J ′ =

 0 0 J2
0 Im−2 0

J2 0 0

, u =


1√
2
I2 0 1√

2
J2

0 Im−2 0

− 1√
2
J2 0 1√

2
I2

 ∈ SU(m+2), u∗J ′u = J,
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β ∈ R dim gβ α ∈ ∆ with α|a′ = β

f1 − f2 2 ε1 − ε2, εm+1 − εm+2

f1 + f2 2 εi − εm+i, i = 1, 2

2fi, 1 ≤ i ≤ 2 1 εi − εm+3−i

fi, 1 ≤ i ≤ 2 2(m− 2) εi − ε2+j , ε2+j − εm+3−i, 1 ≤ j ≤ m− 2

f2 − f1 2 ε2 − ε1, εm+2 − εm+1

−f1 − f2 2 εm+i − εi, i = 1, 2

−2fi, 1 ≤ i ≤ 2 1 εm+3−i − εi

−fi, 1 ≤ i ≤ 2 2(m− 2) ε2+j − εi, εm+3−i − ε2+j , 1 ≤ j ≤ m− 2

Table 2. The restricted root system of type BC2.

where J2 = ( 0 1
1 0 ) and θ

′(g) = J ′gJ ′, so that uθ(g)u∗ = θ′(u∗gu) and K ′ = Gθ′
=

uKu∗. We use the same notation for the involutions θ and θ′ for the complexified

Lie algebras. Now g = sl(m+ 2,C) has the root system ∆ = {εi − εj}1≤i̸=j≤m+2,

g = h⊕
⊕

α∈∆ gα, where h is the Cartan subalgebra consisting of the diagonal ele-

ments in g. The matrix Ei,j spans gεi−εj ; see Section 2.1. Then a′ = uau∗ consists

of diagonal matrices X = diag(d1, d2, 0, . . . , 0,−d2,−d1), and we let fi(X) = di,

i = 1, 2. Then the reduced root system R is of type BC2 and the identifica-

tion is given in Table 2. Then the positive roots of ∆ and R correspond to

each other. Moreover, m′ = umu∗ = m. With A′ = uAu∗, and a′t = uatu
∗ =

diag(eit1 , eit2 , 1, . . . , 1, e−it2 , e−it1), we have M ′ = ZK′(A′) = uZK(A)u∗ = M .

Let n1f1 + n2f2 be the character of A sending a′t 7→ ei(n1t1+n2t2).

Then the root space decomposition for the action of A′ is given by

g = a′ ⊕m′ ⊕
⊕
β∈R

gβ , gβ =
⊕

α∈∆,α|a′=β

gα,

where, for α = εi − εj ∈ ∆, gα = CYα with Yα = Ei,j , where we use the same

notation β for the corresponding derivative β : a′ → C. Note that θ′ gives an

action on ∆ by θ′(α)(H) = α(θ′(H)) for H ∈ h. Then −θ′ is an involution of

{α ∈ ∆ | α|a′ = β} for β ∈ R.

Appendix A.2. Casimir element

The Killing form on g is given by B(X,Y ) = Tr(XY ) up to a positive multiple, and

the Casimir element Ω =
∑

iXiX
∗
i ∈ Z(U(g)), where {Xi}i is a basis for g and

{X∗
i }i its dual basis with respect to B. Put Hi = Ei,i−Em+3−i,m+3−i, i = 1, 2, as

the basis for a′, then H∗
i = 1

2Hi and note that E∗
i,j = Ej,i for i ̸= j, or Y ∗

α = Y−α.

Observe that B|m×m is nondegenerate, and let Ωm be the corresponding Casimir
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element. So we get

(A.2) Ω = Ωm +
1

2

2∑
i=1

H2
i +

∑
β∈R+

∑
α∈∆+

α|a′=β

(YαY−α + Y−αYα).

Now we want to rewrite (A.2) following [3, §2]. So let a ∈ A′
reg, i.e. β(a) ̸= ±1 for

all β ∈ R+. Define Xa = Ad(a−1)X, X ∈ U(g), and let α ∈ ∆ with α|a′ = β.

Then (see [3, Lem. 2.2])

(A.3)

Xα = Yα + θ′Yα = Yα + Yθ′α ∈ k′,

Yα =
β(a)

1− β(a)2
(Xa

α − β(a)Xα).

In order to obtain the infinitesimal Cartan decomposition of the Casimir element

Γ−1
a (Ω) (see [3, Thm. 2.1]), we need to write Ω as the sum of elements of the form

XaHY with X,Y ∈ U(k′), H ∈ U(a′). Note that the first two terms in (A.2) are

of the right form. Using (A.3) we see that∑
α∈∆+

α|a′=β

(YαY−α + Y−αYα)

=
−1

(β(a)− β(a)−1)2

∑
α∈∆+

α|a′=β

(
Xa

αX
a
−α +Xa

−αX
a
α +XαX−α +X−αXα

− β(a)−1Xa
αX−α − β(a)Xa

−αXα

− β(a)XαX
a
−α − β(a)−1X−αX

a
α

)
.

Next observe that∑
α∈∆+

α|a′=β

Xa
−αX

a
α =

∑
α∈∆+

α|a′=β

Xa
θ′αX

a
−θ′α =

∑
α∈∆+

α|a′=β

Xa
αX

a
−α,

using the involution −θ′ and Xα = Xθ′α. Similarly, we can take other terms

together. Then only the last two terms are not yet of the right form.

Lemma A.1. For α ∈ ∆+ with α|a′ = β we have

[Xa
α, X−α] + [Xa

−θ′α, Xθ′α] = (β(a)−1 − β(a))(Hα +H−θ′α) ∈ a′,

where Hei−ej = Ei,i − Ej,j.

Proof. Using (A.3) we rewrite the commutators in terms of the Yα. The mixed

terms cancel and we are left with

[Xa
α, X−α]+[Xa

−θ′α, Xθ′α] = (β(a)−1−β(a))[Yα, Y−α]+(β(a)−β(a)−1)[Yθ′α, Y−θ′α]
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in terms of commutators of the Yα. Since the right-hand side is in h and in the

−1-eigenspace of θ′ we see that it is contained in a′.

Using this in the expression for the Casimir element leads to the infinitesimal

Cartan decomposition for Ω:

Ω = Ωm +
1

2

2∑
i=1

H2
i +

1

2

∑
β∈R+

β(a) + β(a)−1

β(a)− β(a)−1
dim gβHβ

+ 2
∑

β∈R+

β(a) + β(a)−1

(β(a)− β(a)−1)2

∑
α∈∆+

α|a′=β

Xa
αX−α

− 2
∑

β∈R+

1

(β(a)− β(a)−1)2

∑
α∈∆+

α|a′=β

Xa
αX

a
−α +XαX−α,(A.4)

where Hβ = n1H1 + n2H2 for β = n1f1 + n2f2.

Appendix A.3. The left-invariant differential operator corresponding

to the Casimir element

Let F : G → End(V K′

µ ), where V K′

µ is the same representation space as V K
µ , and

the action is given by πK′

µ (k′) = πK
µ (u∗k′u), k′ ∈ K ′. We assume F satisfies

F (k′1gk
′
2) = πK′

µ (k′1)F (g)π
K′

µ (k′2), so that F is determined by its restriction to A′

and, since M ′ = M , we have F : A′ → EndM (V K′

µ ). Now the action of Ω as a

left-invariant operator satisfies (Ω ·F )|A′ = R(Ω) · (F |A′), where R(Ω) is the radial

part of the Casimir element. In the decomposition (A.4), Ωm acts as a scalar on

each M -type by Schur’s lemma. So the action of Ωm on F |A′ is by multiplying by

a diagonal constant matrix. The second term acts as a second-order differential

operator, and the third term as a first-order differential operator by observing

that, after putting f(t1, t2) = F (a′t) we have iHp · f = ∂f
∂tp

. The actions of the

differential operators do not involve the M -type. Then

Xa
αX−α · (F |A′) = πK′

µ (Xα)(F |A′)πK′

µ (X−α),

and similarly

Xa
αX

a
−α · (F |A′) = πK′

µ (XαX−α)(F |A′)

and

XαX−α · (F |A′) = (F |A′)πK′

µ (XαX−α)

(see [3]), where we use the same notation for the representation of the Lie algebra.

In order to calculate these terms, we restrict to the K-representation of highest

weight µ = aω1 + bω2, a ∈ N, b ∈ Z. We can then read off Xα using Table 2,
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and next see which entry of u∗Xαu is in the upper left (2 × 2)-block. Finally,

we conjugate back and we find the following expression for the radial part of the

Casimir operator for a function F : A → EndM (V K
µ ) for µ = aω1 + bω2, a ∈ N,

b ∈ Z, where G(t1, t2) = F (at):

(Rµ(Ω)G)(t1, t2) = Rµ(Ωm)G(t1, t2)−
1

2

2∑
p=1

∂2G

∂t2p
(t1, t2)

+ (Rµ
s (Ω)G)(t1, t2) + (Rµ

m(Ω)G)(t1, t2) + (Rµ
l (Ω)G)(t1, t2),(A.5)

where the action is split according to the short, middle and long roots of BC2. We

obtain

(Rµ
s (Ω)G)(t1, t2) = −(m− 2)

2∑
i=1

cos ti
sin ti

∂G

∂ti
(t1, t2),

since for the short roots fi the element u∗Xαu is not contained in the upper-left

(2× 2)-block, and so the last three terms in (A.4) do not contribute for the short

roots. So the operator Rµ
s (Ω) is independent of the K-representation πK

µ . For the

middle roots f1 ± f2 we get that the operator Rµ
m(Ω) is defined by

(Rµ
m(Ω)G)(t1, t2) = −cos(t1 + t2)

sin(t1 + t2)

(∂G
∂t1

(t1, t2) +
∂G

∂t2
(t1, t2)

)
− cos(t1 − t2)

sin(t1 − t2)

(∂G
∂t1

(t1, t2)−
∂G

∂t2
(t1, t2)

)
−
( cos(t1 + t2)

sin2(t1 + t2)
+

cos(t1 − t2)

sin2(t1 − t2)

)
× (πK

µ (E1)G(t1, t2)π
K
µ (F1) + πK

µ (F1)G(t1, t2)π
K
µ (E1))

+
1

2

( 1

sin2(t1 + t2)
+

1

sin2(t1 − t2)

)
×(πK

µ (E1F1+F1E1)G(t1, t2)+G(t1, t2)π
K
µ (E1F1+F1E1)),(A.6)

and for the long roots 2fi we get

(Rµ
l (Ω)G)(t1, t2) = −

2∑
i=1

cos(2ti)

sin(2ti)

∂G

∂ti
(t1, t2)

−
2∑

i=1

cos(2ti)

sin2(2ti)
πK
µ (Ei,i)G(t1, t2)π

K
µ (Ei,i)

+
1

2

2∑
i=1

1

sin2(2ti)
(πK

µ (Ei,i)
2G(t1, t2) +G(t1, t2)π

K
µ (Ei,i)

2).
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In order to describe the action of Ωm we only need the action on the 1-dimensional

M -representation VM
σk

occurring in V K
µ ; see (1.6). Let M1 = E1,1 + Em+2,m+2 −

2
m−2

∑m
r=3Er,r and M2 = E2,2 + Em+1,m+1 − 2

m−2

∑m
r=3Er,r. Then the Mi are

orthogonal to the ((m − 2) × (m − 2))-block of M , so that we only need to take

the action of M1 and M2 into account. Note that M1, respectively M2, acts as

a+ b− k, respectively b+ k on VM
σk

. Since

M∗
1 =

m

2(m+ 2)
M1 −

1

m+ 2
M2 and M∗

1 =
m

2(m+ 2)
M2 −

1

m+ 2
M1,

this gives

Rµ(Ωm)|V M
σk

=
1

2(m+ 2)
(m(a+ b− k)2 − 4(a+ b− k)(b+ k) +m(b+ k)2),

for k ∈ {0, . . . , a}.
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