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Abstract

In this paper, we introduce the notion of ν-stable silting-discrete algebras, which unify
silting-discrete algebras and tilting-discrete self-injective algebras, where ν is a triangle
auto-equivalence of the bounded homotopy category of finitely generated projective mod-
ules. Moreover, we give an example of tilting-discrete self-injective algebras which are not
silting-discrete.
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§1. Introduction

The study of derived categories is considered an important subject in various

areas of mathematics, for example, ring theory, representation theory, algebraic

geometry and mathematical physics. In the representation theory of algebras, since

the equivalences of derived categories preserve many homological properties, it is

a natural problem to determine the derived equivalence class of a given algebra. It

is a well-known result (see [Ri]) that derived equivalences are controlled by tilting

objects. Hence, the problem above is reduced to finding all tilting objects for an

algebra.
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Recently, mutation theory has been intensely studied in the representation

theory of algebras. Mutation is an operation to construct a new object from an

original one by exchanging direct summands. As a typical example, for a symmetric

algebra, mutations of tilting objects are also tilting, known as Okuyama–Rickard

complexes. Unfortunately, for any algebra, the class of tilting objects is not neces-

sarily closed under mutations. Aihara–Iyama [AI] show that mutations of silting

objects are always silting objects, and hence mutations make infinitely many silting

objects from a given silting object. Silting objects were introduced by Keller–

Vossieck [KV] as a generalization of tilting objects in order to study bounded

t-structures on derived categories.

We may expect silting connectedness, that is, any two silting objects are

obtained from each other by iterated mutation. However, Aihara–Grant–Iyama

and recently Dugas [Du] give examples of algebras which do not satisfy silting

connectedness. Aihara [Ai] introduces the notion of silting-discrete algebras, which

gives a reasonable class of finite-dimensional algebras satisfying silting connected-

ness. A finite-dimensional algebra is called a silting-discrete algebra if for each

positive integer d, the set of isomorphism classes of basic d-term silting objects of

the bounded homotopy category of finitely generated projective modules is finite.

As nice properties of silting-discrete algebras, bounded t-structures correspond

bijectively with silting objects [KY, AMY] and hence the stability space (in the

sense of Bridgeland) of the bounded derived category is contractible [PSZ, AMY].

As mentioned above, for any algebra, mutations of tilting objects are not

necessarily tilting. However, for a self-injective algebra, Chan–Koenig–Liu [CKL]

introduce the notion of ν-stable mutation and shows that ν-stable mutations of

tilting objects are also tilting, where ν is a Nakayama functor. It is shown [AM]

that tilting-discrete self-injective algebras, which are a tilting analog of silting-

discrete algebras, satisfy a property that any two tilting objects are obtained from

each other by iterated ν-stable mutation.

In this paper, we discuss unification of silting-discrete algebras and tilting-

discrete self-injective algebras. Moreover, we give an example of tilting-discrete

self-injective algebras that are not silting-discrete. Let A be a finite-dimensional

algebra and T := Kb(projA) the bounded homotopy category of finitely generated

projective A-modules. For a triangle auto-equivalence ν on T , we introduce the

notion of ν-stable silting-discrete algebras, that is, algebras with finitely many

d-term ν-stable silting objects of T for each d > 0. Remark that ν-stable silting

objects of T are a generalization of tilting objects for self-injective algebras (see

Proposition 2.6). The following theorem is one of our main results, and is an analog

of [AM, Thm. 1.2].
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Theorem 1.1. Let A be a finite-dimensional algebra and let T := Kb(projA).

Assume that T admits a triangle auto-equivalence ν. Then the following statements

are equivalent:

(1) A is ν-stable silting-discrete.

(2) For each object M obtained by a finite sequence of minimal ν-stable muta-

tions from A, the set of isomorphism classes of basic ν-stable silting objects

N of T satisfying M ≥ N ≥ M [1] is a finite set, where X ≥ Y means

HomT (X,Y [i]) = 0 for all i > 0.

Remark that Theorem 1.1 is extended to the case of triangulated categories

(see Theorem 2.21).

For a symmetric algebra, all silting objects are tilting objects. Hence, tilting-

discrete symmetric algebras are silting-discrete. This result is generalized to weakly

symmetric algebras as follows.

Theorem 1.2 (Theorem 2.25). Let A be a weakly symmetric algebra and T :=

Kb(projA). Let ν be a Nakayama functor. Then the following statements are equiv-

alent:

(1) A is silting-discrete.

(2) A is ν-stable silting-discrete.

(3) A is tilting-discrete.

In this case, all silting objects are tilting.

Independently of the present work, the same result is obtained by August–

Dugas [AD].

In [AM], it is shown that preprojective algebras of Dynkin type are tilting-

discrete self-injective algebras. As an application of Theorem 1.2, we show that,

if A is the preprojective algebra of one of the Dynkin diagrams D2n (n ≥ 2),

E7 and E8, then it is silting-discrete. However, we do not know whether each

tilting-discrete self-injective algebra is silting-discrete. Now we propose a natural

question.

Question 1.3. Is a tilting-discrete self-injective algebra always silting-discrete?

One of our aims in this paper is to give two counterexamples for the question

above. The first counterexample is as follows.

Theorem 1.4 (Theorem 3.2). Let A be a basic connected non-local self-injective

algebra over an algebraically closed field and let ν be its Nakayama functor. Assume
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that A is ν-cyclic and socP ⊂ rad2A for each indecomposable projective module

P . Then there exists a self-injective algebra Ã such that

� it is not silting-discrete,

� {Ã[i] | i ∈ Z} coincides with the set of isomorphism classes of all basic tilting

objects for Ã. In particular, Ã is tilting-discrete.

The second counterexample is as follows. Let n, m be positive integers and

let K be an algebraically closed field. We denote by An,m the stable Auslander

algebra of a self-injective Nakayama K-algebra with m simple modules (up to

isomorphism) and Loewy length n + 1. It is known that An,m is always a self-

injective algebra.

Theorem 1.5 (Theorem 4.1). Let n,m ≥ 5 be integers with gcd(n − 1,m) = 1.

Assume that n is odd and m is not divisible by the characteristic of K. Then An,m
is a tilting-discrete algebra but not silting-discrete.

Notation

Let K be a field and D := HomK(−,K). Throughout this paper, T is a K-linear

Hom-finite Krull–Schmidt triangulated category with shift functor [1]. For an

objectM of T , we denote by add(M) the smallest full subcategory of T which con-

tains M and which is closed under taking finite direct sums and direct summands,

and by thickM the smallest triangulated full subcategory of T which contains M

and which is closed under taking direct summands. For full subcategories X , Y of

T , we define X ∗Y as the full subcategory of T consisting of T ∈ T which admits

a triangle X → T → Y → X[1] with X ∈ X and Y ∈ Y.

§2. ν-stable silting theory

In this section we introduce ν-stable silting mutation theory, which unifies silting

mutation theory [AI] and tilting mutation theory of self-injective algebras [CKL,

AM], where ν is a triangle auto-equivalence. Assume that T has a triangle auto-

equivalence ν : T → T .

§2.1. ν-stable objects

In this subsection we recall the notion of ν-stable objects, which plays an important

role in this paper.

Definition 2.1. An object M of T is said to be ν-stable if νM ∼=M holds.

Let M be a basic ν-stable object of T . We decompose M as M =
⊕

i∈IMi,

where Mi is indecomposable. Then for each i ∈ I, there uniquely exists j ∈ I
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such that νMi
∼=Mj because ν preserves indecomposability. Define a permutation

vM : I → I as νMi
∼=MvM (i). Now we introduce two classes of ν-stable objects.

Definition 2.2. Let M be a basic ν-stable object of T .

(1) We call M a weakly symmetric ν-stable object if vM is an identity map.

(2) We call M a symmetric ν-stable object if the restriction ν|addM is functorial

isomorphic to the identity functor.

For simplicity, we omit the word “ν-stable” in (weakly) symmetric ν-stable

objects. Note that all symmetric objects are weakly symmetric. Moreover, if M is

a symmetric object, then each object of thickM is ν-stable.

Under the condition that ν is a Serre functor (i.e., there exists a bifunctorial

isomorphism

(2.1) HomT (X,Y ) ∼= DHomT (Y, νX)

for each X,Y ∈ T ), we obtain the following result.

Proposition 2.3. Assume that ν is a Serre functor. If M is a basic ν-stable

(respectively, weakly symmetric, symmetric) object, then EndT (M) is a self-

injective (respectively, weakly symmetric, symmetric) algebra.

Proof. LetM be a ν-stable object of T . By (2.1), we have EndT (M) ∼= DEndT (M)

as a left EndT (M)-module. Hence EndT (M) is self-injective. Next we assume that

M is weakly symmetric. Let Mi be an indecomposable direct summand of M .

Then we obtain HomT (Mi,M) ∼= DHomT (M,νMi) ∼= DHomT (M,MvM (i)) ∼=
DHomT (M,Mi) as a left EndT (M)-module. Therefore EndT (M) is weakly sym-

metric. Finally, we assume thatM is symmetric. Since ν|addM is functorial isomor-

phic to the identity functor, we have EndT (M) ∼= DEndT (M) as an EndT (M)-

EndT (M)-bimodule. Consequently, EndT (M) is symmetric.

§2.2. ν-stable silting objects

We start this subsection by recalling the definition of silting objects.

Definition 2.4. An object M of T is called a silting (respectively, tilting) object

of T if T = thickM and HomT (M,M [i]) = 0 for all i > 0 (respectively, i ̸= 0).

We denote by silt T (respectively, tilt T , siltν T ) the set of isomorphism classes of

basic silting (respectively, tilting, ν-stable silting) objects of T .

Recall the partial order on silt T . For objects M,N of T , we write M ≥ N if

HomT (M,N [i]) = 0 for all i > 0. Then (silt T ,≥) is a partially ordered set by [AI,

Thm. 2.11]. Moreover, by the restriction,≥ gives a partial order on siltν T . For each
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M ∈ silt T and d ∈ Z≥0, let (d+ 1)M -silt T := {N ∈ silt T | M ≥ N ≥ M [d]}.
Note that, forM,N ∈ silt T ,M ≥ N ≥M [d] if and only if N ∈ addM ∗addM [1]∗
· · · ∗ addM [d] (for example, see [AMY, Lem. 3.6]).

In [ANR] and also [Ai, Thm. A.4], it is shown that, for a finite-dimensional

self-injective algebra A over an algebraically closed field, all ν-stable silting objects

of the bounded homotopy category Kb(projA) are tilting objects, where ν :=

DHomA(−, A) is a Serre functor. Moreover, the converse also holds. We discuss

an analog of their result.

Proposition 2.5. Assume that ν is a Serre functor. Then all ν-stable silting

objects of T are tilting.

Proof. Let M be a ν-stable silting object of T . It is enough to show that

HomT (M,M [i]) = 0 for all i < 0. For each integer i, we have the isomorphisms

HomT (M,M [i]) ∼= DHomT (M [i], νM) ∼= DHomT (M [i],M)

∼= DHomT (M,M [−i]).

Since M is silting, we obtain HomT (M,M [i]) = 0 for each negative integer i.

Note that the converse in Proposition 2.5 does not necessarily hold. Indeed, we

give a characterization of algebras of which all tilting objects are ν-stable silting.

By the characterization, non-semisimple hereditary algebras have a tilting object

which is not ν-stable. Recall that, by [Ch, Cor. 3.9], a finite-dimensional algebra A

is an Iwanaga–Gorenstein algebra if and only if the bounded homotopy category

Kb(projA) has a Serre functor ν.

Proposition 2.6. Let A be a finite-dimensional Iwanaga–Gorenstein algebra over

an algebraically closed field and ν the Serre functor. Then the following statements

are equivalent:

(1) A is self-injective.

(2) All tilting objects of Kb(projA) are ν-stable.

(3) A is a ν-stable object of Kb(projA).

(4) Kb(projA) has a ν-stable silting object.

Proof. (1)⇒ (2) follows from [Ai, Thm. A.4]. (2)⇒ (3)⇒ (4) is clear. We show (4)

⇒ (1). Let T be a ν-stable silting object of Kb(projA). Then B := EndKb(projA)(T )

is a self-injective algebra by Proposition 2.3. Since T is a tilting object of Kb(projA)

by Proposition 2.5, B is derived equivalent to A. Hence the assertion follows from

[ANR, Thm. 2.1].

As an application of Proposition 2.5, we have the following corollary:
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Corollary 2.7. Assume that ν is a Serre functor. Let M be a symmetric object

of T . Then all silting objects of thickM are tilting objects of thickM .

Proof. Since M is symmetric, all objects in thickM are ν-stable. Hence the asser-

tion follows from Proposition 2.5.

§2.3. ν-stable mutations

Let us start this subsection by recalling the notion of ν-stable mutations. For basic

results on mutations of silting objects, we refer to [AI]. In this subsection we do

not necessarily assume that ν is a Serre functor.

Recall the definition of minimal left approximations. Let f : X → Z be a

morphism. We say that f is left minimal if each h ∈ EndT (Z) with hf = f is an

isomorphism. Let N be an object of T . We call f a left addN -approximation of X

if Z ∈ addN and HomT (f,N) is surjective. A left addN -approximation f is said

to be minimal if it is left minimal. Dually, we define a right minimal morphism, a

right addN -approximation and a minimal right addN -approximation. We collect

some results for approximations. The following lemma is a basic result in mutation

theory.

Lemma 2.8. Let N be an object of T with HomT (N,N [1]) = 0. Let

X
f−−→ Y

g−−→ Z −−→ X[1]

be a non-split triangle. Then the following statements are equivalent:

(1) X is indecomposable, f is a minimal left addN -approximation and HomT (N,

X[1]) = 0.

(2) Z is indecomposable, g is a minimal right addN -approximation and HomT (Z,

N [1]) = 0.

We have an easy observation for left minimal approximations.

Lemma 2.9. Let N be an object of T . Let X
f−−→ Y → Z → X[1] and X ′ f ′

−−→
Y ′ → Z ′ → X ′[1] be triangles with f , f ′ minimal left addN -approximations. For

an isomorphism φ : X → X ′, there exist isomorphisms φ′ : Y → Y ′ and φ′′ : Z →
Z ′ such that the following diagram commutes:

X
f
//

φ ∼=
��

Y //

φ′ ∼=
��

Z //

φ′′ ∼=
��

X[1]

∼=
��

X ′ f ′
// Y ′ // Z ′ // X ′[1].

Moreover, if N and X are ν-stable, then so are Y and Z.
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Proof. The first assertion follows from basic properties of triangulated categories

and minimal left approximations. We show the second assertion. We assume that

X and N are ν-stable. Since ν is a triangle auto-equivalence, the morphism νf is

also a minimal left addN -approximation. Hence the second assertion follows from

the first assertion.

Let M be a basic object of T with M = X ⊕N . Take a minimal left addN -

approximation f : X → Y and a triangle

X
f−−→ Y −−→ Z −−→ X[1].

Then µX(M) := Z⊕N is called a (left) mutation ofM with respect toX. Moreover,

the mutation µX(M) is said to be irreducible if X is indecomposable. Mutations

of silting objects have the following nice property.

Proposition 2.10 ([AI, Thm. 2.31 and Prop. 2.33]). Let M = X ⊕N be a basic

silting object. Then µX(M) is also basic silting. Moreover, if X ̸= 0, then M >

µX(M).

In the following, we introduce the notion of ν-stable mutations, which is an

analog of mutations of tilting objects for self-injective algebras (see [CKL, §5]). We

call µX(M) a ν-stable mutation ifM and X are ν-stable. Note that ifM = X⊕N
is ν-stable, then we obtain that X is ν-stable if and only if N is ν-stable. By

Lemma 2.9 and Proposition 2.10, we have the following result.

Proposition 2.11. Let M = X ⊕ N be a basic ν-stable silting object with X a

ν-stable object. Then µX(M) is also a basic ν-stable silting object.

Proof. Since X and N are ν-stable, so is µX(M) by Lemma 2.9. Thus the assertion

follows from Proposition 2.10.

Now we define irreducible ν-stable mutations.

Definition 2.12. Let M be a ν-stable object.

(1) A non-zero ν-stable direct summand X of M is said to be minimal if there

exists no non-zero proper ν-stable direct summand X ′ of X.

(2) Assume that M is basic. If X is a minimal ν-stable direct summand of M ,

then we call µX(M) an irreducible ν-stable mutation of M with respect to X.

Let M = X ⊕ N be a weakly symmetric object. Since each indecomposable

direct summand of M is ν-stable, we obtain that X is minimal ν-stable if and

only if it is indecomposable. Thus irreducible mutations coincide with irreducible

ν-stable mutations.
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Proposition 2.13. Each ν-stable mutation of a weakly symmetric silting object

is also weakly symmetric silting.

Proof. Let M = X ⊕N be a weakly symmetric silting object and take a triangle

X
f−−→ Y → Z → X[1] with f a minimal left addN -approximation. By Proposition

2.10, µX(M) := Z ⊕N is a silting object. Thus it is enough to show that µX(M)

is weakly symmetric. We decompose X as X =
⊕

i∈I Xi, where Xi is indecompos-

able. For each i ∈ I, take a minimal left addN -approximation fi : Xi → Yi and a

triangle Xi
fi−−→ Yi → Zi → Xi[1]. By Lemmas 2.8 and 2.9, Zi is indecomposable

and ν-stable respectively. Hence
⊕

i∈I Zi is weakly symmetric. On the other hand,

since
⊕

i∈I fi is a minimal left addN -approximation, it follows from Lemma 2.9

that Z ∼=
⊕

i∈I Zi and hence µX(M) is weakly symmetric.

In the rest of this subsection, we study combinatorial properties for ν-stable

mutations. The following lemma plays an important role in this section.

Lemma 2.14 ([AI, Props. 2.24 and 2.36]). Fix an integer d ≥ 1. LetM be a basic

silting object and N ∈ addM ∗ addM [1] ∗ · · · ∗ addM [d]. Then the following state-

ments hold:

(1) For each l ∈ [1, d], there exists a triangle

M ′
l

f−−→ N
g−−→M ′′

l
h−−→M ′

l [1]

such that f is a minimal right (addM ∗ · · · ∗ addM [l− 1])-approximation, g is

a minimal left (addM [l] ∗ · · · ∗ addM [d])-approximation and h is a radical of

T .

(2) If N ∈ (d+ 1)M -silt T \ dM -silt T , then M ′′
d ̸= 0. Moreover, we have M >

µX(M) ≥ N for each basic non-zero direct summand X of M ′′
d [−d].

The lemma above induces the following properties of ν-stable mutations:

Proposition 2.15. Let M , N be basic silting objects with M > N . Assume that

one of the following two conditions is satisfied:

(a) M and N are ν-stable.

(b) M is weakly symmetric.

Then the following statements hold:

(1) There is a minimal ν-stable direct summand X of M such that M > µX(M)

≥ N .
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(2) If the set

siltν [N,M ] :=
{
L ∈ siltν T

∣∣ N ≤ L ≤M
}

is finite, then N can be obtained from M by iterated irreducible ν-stable muta-

tion. In particular, if (b) is satisfied, then all objects in siltν [N,M ] are weakly

symmetric.

Proof. (1) Let M > N be basic silting objects satisfying (a) or (b). By [AI,

Prop. 2.23], we have N ∈ (d+ 1)M -silt T \ dM -silt T for some d ≥ 1. Then it

follows from Lemma 2.14 that there exists a minimal left addM [d]-approximation

g : N → M ′′
d with M ′′

d ̸= 0. We show that M ′′
d is ν-stable. If (a) is satisfied, then

the assertion follows from Lemma 2.9. On the other hand, if (b) is satisfied, then

the assertion follows from the fact that each indecomposable direct summand of

M is ν-stable. Hence, for both cases, M ′′
d is ν-stable. Taking a minimal ν-stable

direct summand X of M ′′
d [−d], we have M > µX(M) ≥ N by Lemma 2.14(2).

(2) If (a) (respectively, (b)) is satisfied, then µX(M) in (1) is also ν-stable

(respectively, weakly symmetric) by Proposition 2.11 (respectively, Proposition

2.13). By repeated use of (1), we have a sequence of irreducible ν-stable mutations

M > L1 > L2 > · · · (≥ N)

in siltν [N,M ]. Since the set siltν [N,M ] is finite, there exists an integer n > 0 such

that Ln = N . Hence we have the assertion.

As an analog of [AI, Thm. 2.35], we compare the Hasse quiver of (siltν T ,≥)

and the mutation quiver Q(siltν T ) = (Q0, Q1) defined as

Q0 := siltν T ,
Q1 :=

{
M → N

∣∣ µX(M) = N for some minimal ν-stable X
}
.

Proposition 2.16. Let M , N be basic ν-stable silting objects of T . Then the

following statements are equivalent:

(1) N is an irreducible ν-stable mutation of M .

(2) M > N and there exists no L ∈ siltν T satisfying M > L > N .

In particular, Q(siltν T ) is quiver isomorphic to the Hasse quiver of (siltν T ,≥).

Proof. The proof is the same as in [AI, Thm. 2.35] and [CKL, Thm. 5.11].

§2.4. ν-stable silting-discrete triangulated category

In this subsection we introduce the notion of ν-stable silting-discrete triangulated

categories, which gives unification of silting-discrete triangulated categories and



Tilting-Discrete Self-Injective Algebras 383

tilting-discrete bounded homotopy categories of finitely generated projective mod-

ules for self-injective algebras. Recall the definition of silting-discrete triangulated

categories, which is introduced in [Ai]. A triangulated category T with a silting

object is said to be silting-discrete if for each M ∈ silt T and d ∈ Z≥0, the set

(d+ 1)M -silt T :=
{
N ∈ silt T

∣∣M ≥ N ≥M [d]
}

is finite. Moreover, a finite-dimensional algebra is called a silting-discrete algebra if

the bounded homotopy category Kb(projA) is silting-discrete. Similarly, we define

tilting-discrete triangulated categories and tilting-discrete algebras.

Now we introduce the notion of ν-stable silting-discrete triangulated cate-

gories.

Definition 2.17. We have the following definitions:

(1) Assume that T has a ν-stable silting object. A triangulated category T is said

to be ν-stable silting-discrete if for each M ∈ siltν T and d ∈ Z≥0, the set

(d+ 1)M -siltν T :=
{
N ∈ siltν T

∣∣M ≥ N ≥M [d]
}

is finite. Note that 1M -siltν T = {M}/ ∼=.

(2) Let A be a finite-dimensional algebra and ν : Kb(projA) → Kb(projA) a trian-

gle auto-equivalence. We call A a ν-stable silting-discrete algebra if Kb(projA)

is ν-stable silting-discrete.

Example 2.18. The following examples show that ν-stable silting-discrete trian-

gulated categories unify silting-discrete triangulated categories and tilting-discrete

self-injective algebras.

(1) Assume that ν is functorial isomorphic to the identity functor. Then ν-stable

silting objects are exactly silting objects. Moreover, ν-stable silting-discrete

triangulated categories coincide with silting-discrete triangulated categories.

(2) Let A be a self-injective algebra. Then Kb(projA) has a Serre functor ν. By

Proposition 2.6, all tilting objects are ν-stable silting objects. Hence A is ν-

stable silting-discrete if and only if it is tilting-discrete.

As a generalization of [AH, Prop. 2.14] and [AI, Cor. 2.43], we provide an

example of ν-stable silting-discrete triangulated categories which plays an impor-

tant role in the next section. Let M =
⊕

i∈IMi be a basic ν-stable object

of T , where each Mi is indecomposable. Define a permutation vM : I → I as

νMi
∼=MvM (i). We call M a ν-cyclic object if vM acts transitively on I.
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Proposition 2.19. Let A be a ν-cyclic silting object of T . Then we have

siltν(T ) =
{
A[i]

∣∣ i ∈ Z
}
.

In particular, T is ν-stable silting-discrete.

Proof. Let M ∈ siltν T . By [AI, Prop. 2.23], there exist integers m1 ≤ m2 ∈ Z
such that M ∈ addA[m1] ∗ addA[m1 + 1] ∗ · · · ∗ addA[m2], M /∈ addA[m1 + 1] ∗
· · · ∗ addA[m2] and M /∈ addA[m1] ∗ · · · ∗ addA[m2 − 1]. Let L := M [−m1] and

l := m2 −m1. Suppose l ̸= 0. By Lemma 2.14, there exist two triangles

A′ f−−→ L −−→ L′′ −−→ A′[1],

L′ −−→ L
g−−→ A′′[l] −−→ L′[1],

such that A′, A′′ ∈ addA are non-zero, f is a minimal right addA-approximation

and g is a minimal left addA[l]-approximation. Then it follows from [AI, Lem. 2.25]

that addA′ ∩ addA′′ = {0}. On the other hand, by Lemma 2.9, we have νA′ ∼=
A′ and νA′′ ∼= A′′. Since A is ν-cyclic, we obtain addA′ = addA = addA′′, a

contradiction. This implies l = 0 and hence M = A[m1].

The following proposition is one of the nice properties of ν-stable silting-

discrete triangulated categories.

Proposition 2.20. Assume that T is ν-stable silting-discrete. If M,N ∈ siltν T
with M > N , then N can be obtained from M by iterated irreducible ν-stable

mutation.

Proof. By [AI, Prop. 2.23], there exists an integer d such thatM > N ≥M [d+1].

Since T is ν-stable silting-discrete, the set dM -siltν T is finite. Hence the assertion

follows from Proposition 2.15(2).

Next, following [Ai, Thm. 3.8] and [AM, Thm. 2.4], we give a characterization

of triangulated categories to be ν-stable silting-discrete.

Theorem 2.21. Let T be a triangulated category with a ν-stable silting object.

Then the following statements are equivalent.

(1) T is ν-stable silting-discrete.

(2) T admits a ν-stable silting object A such that, for each integer d ≥ 0, the set

(d+ 1)A-silt
ν T is finite.

(3) Fix any basic ν-stable silting object A. For each object M obtained by a finite

sequence of irreducible ν-stable mutations from A, the set 2M -siltν T is finite.
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For the convenience of readers, we give a proof of Theorem 2.21. We need the

following lemma.

Lemma 2.22. Fix a basic ν-stable silting object A of T and an integer d ≥ 1. Let

M ∈ (d+ 1)A-silt
ν T . Then the following statements hold:

(1) Let A′ ∈ 2A-silt
ν T with A′ ̸= A[1] and A′ ≥ M ≥ A[d]. If M is not in

dA′ -siltν T , then there exists an irreducible ν-stable mutation A′′ of A′ such

that A′ > A′′ ≥ {M,A[1]}.
(2) If 2A-silt

ν T is a finite set, then there exists N ∈ 2A-silt
ν T such that M ∈

dN -siltν T .

Proof. (1) By our assumption, M ∈ (d+ 1)A′ -siltν T \ dA′ -siltν T . Then it follows

from Lemma 2.14 that there exists a triangle

M ′ −−→M
f−−→ P ′[d]

f ′

−−→M ′[1]

such that M ′ ∈ addA′ ∗ · · · ∗ addA′[d − 1], 0 ̸= P ′ ∈ addA′, f is a minimal left

addA′[d]-approximation of M and f ′ belongs to the radical of T . By Lemma 2.9,

P ′ is ν-stable. Moreover, by a similar argument, A[1] ∈ 2A′ -siltν T \ 1A′ -siltν T
induces a triangle

Q′ g′−−→ R′ g′′−−→ A[1]
g−−→ Q′[1]

such that R′, Q′ ∈ addA′ are ν-stable, g is a minimal left addA′[1]-approximation

of A[1] and g′ is in the radical of T . Since A and A′ are silting, so is Q′ ⊕R′. This

implies addA′ = add(Q′ ⊕R′). On the other hand, it follows from [AI, Lem. 2.25]

that addP ′ ∩ addR′ = {0}. Hence we obtain P ′ ∈ addQ′. Take a minimal ν-stable

direct summand X of P ′. By Lemma 2.14(2), A′ > µX(A′) ≥ {M,A[1]}. Hence,

putting A′′ := µX(A′), we have the assertion.

(2) If M ∈ dA-silt
ν T , then there is nothing to prove. In the following, we

assume M /∈ dA-silt
ν T . By (1), there exists an irreducible ν-stable mutation A′ of

A such that A > A′ ≥ {M,A[1]}. Hence A′ ∈ 2A-silt
ν T andM ∈ (d+ 1)A′ -siltν T .

If M ∈ dA′ -siltν T , then we obtain the desired result. We assume M /∈ dA′ -siltν T .

If A′ = A[1], then M ∈ (d+ 1)A-silt
ν T implies Hom(M,A[d]) = 0 and hence

M ∈ dA′ -siltν T , a contradiction. Therefore we assume A′ ̸= A[1]. By (1), there

exists an irreducible ν-stable mutation A′′ of A′ such that A′ > A′′ ≥ {M,A[1]}.
Thus we obtain A′′ ∈ 2A-silt

ν T andM ∈ (d+ 1)A′′ -siltν T . By repeated use of this

argument, we have a sequence of irreducible ν-stable mutations in 2A-silt
ν T . Since

2A-silt
ν T is finite, this procedure stops after a finite number of steps. Therefore,

there exists N ∈ 2A-silt
ν T such that M ∈ dN -siltν T . This finishes the proof.

Now we are ready to prove Theorem 2.21.
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Proof of Theorem 2.21. (1) ⇒ (2) and (1) ⇒ (3) clearly hold.

(2) ⇒ (1) : The proof is the same as in [Ai, Prop. 3.8].

(3) ⇒ (2): We show that (d+ 1)A-silt
ν T is finite for all d ≥ 0. If d ≤ 1, then

this is clear. Let d ≥ 2 andM ∈ (d+ 1)A-silt
ν T . By assumption, the set 2A-silt

ν T
is finite. Thus it follows from Lemma 2.22(2) that there exists A1 ∈ 2A-silt

ν T such

that M ∈ dA1
-siltν T . Since siltν [A1, A] is a finite set, it follows from Proposition

2.15(2) that A1 is obtained by a finite sequence of irreducible ν-stable mutations

from A. Hence 2A1
-siltν T is also a finite set. By repeated use of this argument,

we have

(d+ 1)A0 -silt
ν T ⊆

⋃
A1∈2A0

-siltν T

⋃
A2∈2A1

-siltν T

· · ·
⋃

Ad−1∈2Ad−2
-siltν T

2Ad−1
-siltν T ,

where A0 := A. Due to the construction, the set 2Ai-silt
ν T is finite for each i ≥ 0.

This implies that the set (d+ 1)A-silt
ν T is finite.

We can recover [AM, Thm. 1.2].

Corollary 2.23. Let A be a finite-dimensional algebra (respectively, a finite-

dimensional self-injective algebra) and ν an identity functor (respectively, a Serre

functor). Then the following conditions are equivalent:

(1) Kb(projA) is silting-discrete (respectively, tilting-discrete).

(2) For each basic silting (respectively, tilting) object M obtained by a finite se-

quence of irreducible ν-stable mutations from A, the set 2M -siltν Kb(projA) is

finite.

As an application, we give an example of ν-stable silting-discrete triangulated

categories.

Example 2.24. Let A be a representation-finite self-injective algebra over an

algebraically closed field and ν a Serre functor. Then 2A-silt
ν Kb(projA) is a finite

set. Since the class of representation-finite self-injective algebras is derived invari-

ant, Kb(projA) is ν-stable silting-discrete, and hence tilting-discrete.

The following theorem is one of our main results in this paper.

Theorem 2.25. Assume that T admits a weakly symmetric silting object.

(1) The following statements are equivalent:

(a) T is silting-discrete.

(b) T is ν-stable silting-discrete.

In this case, all silting objects are weakly symmetric.
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(2) Moreover, if ν is a Serre functor, then the following statement is also equivalent

to (a) and (b):

(c) T is tilting-discrete.

In this case, all silting objects are tilting.

Proof. (1)(a) ⇒ (b) is clear.

We prove (b) ⇒ (a). We show silt T = siltν T . Let M ∈ silt T . Take a basic

weakly symmetric silting object A of T . Due to [AI, Prop. 2.23], there exists

an integer n > 0 such that A[−n] ≥ M ≥ A[n]. Then A′ := A[−n] is clearly

a weakly symmetric silting object and (2n)A′ -siltν T is finite by (b). Therefore

it follows from Proposition 2.15(2) that M is weakly symmetric. In particular,

M ∈ siltν T . Hence we obtain silt T = siltν T . This implies that, for each d ≥ 0, the

set (d+ 1)A-silt T = (d+ 1)A-silt
ν T is a finite set by (b). By applying Theorem

2.21 to the case where ν = id, T is silting-discrete.

(2) Assume that ν is a Serre functor. By Proposition 2.5, (a) ⇒ (c) ⇒ (b)

holds. Hence the assertion follows from (1).

As an application of Theorem 2.25, we have the following result:

Corollary 2.26. Let A be a weakly symmetric algebra. Then A is silting-discrete

if and only if it is tilting-discrete.

Proof. Clearly, A is a weakly symmetric silting object of Kb(projA). On the

other hand, since a weakly symmetric algebra is an Iwanaga–Gorenstein algebra,

Kb(projA) admits a Serre functor ν. Therefore the assertion follows from Theorem

2.25(2).

We give concrete examples for Corollary 2.26.

Example 2.27. Let A be the preprojective algebra of one of the Dynkin diagrams

D2n, E7 and E8. Then A is weakly symmetric (see [BBK]) and tilting-discrete by

[AM, Thm. 1.3]. By Corollary 2.26, A is silting-discrete.

Remark that Example 2.27 can be obtained by [AM, Thm. 1.1] because ∆ =

∆f holds for ∆ = D2n, E7 or E8.

§3. The first example: Trivial tilting-discrete case

Let A be a basic connected non-semisimple self-injective algebra over an alge-

braically closed field K and let ν = νA := DHomA(−, A) be a Nakayama functor.

Note that ν is a Serre functor in Kb(projA). Our aim of this section is to give a

construction of a self-injective algebra Ã satisfying the following two properties:
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� tiltKb(proj Ã) = {Ã[i] | i ∈ Z}. In particular, Ã is tilting-discrete.

� Ã is not silting-discrete.

Let Q = (Q0, Q1) be a finite quiver, where Q0 is the vertex set and Q1 is the

arrow set of Q. We denote by KQl the subspace of KQ generated by all paths

of length l. Define a new quiver Q̃ = (Q̃0, Q̃1) as Q̃0 := Q0 and Q̃1 := Q+
1

∐
Q−

1 ,

where Q+
1 := {a+ | a ∈ Q1} and Q−

1 := {a− | a ∈ Q1}. The correspondences

a 7→ a± induce K-linear isomorphisms (−)± : KQ1 → KQ±
1 and, moreover, they

are extended to K-linear isomorphisms (−)± :
⊕

l≥1KQl →
⊕

l≥1KQ
±
l .

Assume that A = KQ/I is self-injective, where I is an admissible ideal of

KQ. Let Id := ⟨a+b−, a−b+⟩KQ̃ and Ic :=
⊕

i∈Q0
K(p+i − p−i ), where pi /∈ I is

a path in KQ with maximal length starting from i ∈ Q0. Define a subspace Ĩ of

KQ̃ by Ĩ := I+ + I− + Id + Ic. Then we have the following lemma:

Lemma 3.1. The following statements hold:

(1) The subspace Ĩ is a two-sided ideal of KQ̃.

(2) If socP (i) ⊂ rad2A for each i ∈ Q0, then Ĩ is admissible.

Proof. (1) We can easily check that I++I−+Id is a two-sided ideal and Ĩ is a right

ideal. To complete the proof, we show a±(p+i − p−i ) ∈ Ĩ, that is, a+p+i , a
−p−i ∈ Ĩ

for all i ∈ Q0 and a ∈ Q1. Thus it is enough to claim api ∈ I. Indeed, if it is true,

then a±p±i = (api)
± ∈ I±. Suppose to the contrary that api /∈ I. If a is a loop, it

contradicts the maximality of the length of pi. On the other hand, if a : h → i is

not a loop, then api ∈ socP (h). This implies socP (i) ∼= socP (h), a contradiction

to self-injectivity.

(2) For each i ∈ Q0, the length of pi is at least 2 by our assumption. Since I

is an admissible ideal, we have the assertion.

The following theorem is one of our main results in this paper.

Theorem 3.2. Assume that Q has at least two vertices and socP (i) ⊂ rad2A for

each i ∈ Q0. Let Ã := KQ̃/Ĩ. Then the following statements hold:

(1) Ã is a basic self-injective algebra.

(2) Ã is not silting-discrete.

(3) A is a νA-cyclic object in Kb(projA) if and only if Ã is a νÃ-cyclic object in

Kb(proj Ã).

(4) If the equivalence condition in (3) is satisfied, then we have

tiltKb(proj Ã) =
{
Ã[i]

∣∣ i ∈ Z
}
.

In particular, Ã is a tilting-discrete algebra.
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By [AIR, Thm. 3.2], we can translate the results of two-term silting theory

into the results of τ -tilting theory, and vice versa. Remark that a finite-dimensional

algebra Λ is τ -tilting finite if and only if 2Λ-siltK
b(projΛ) is a finite set. Moreover,

it follows from [DIRRT, Cor. 1.9] that if Λ is τ -tilting finite, then all factor algebras

are also τ -tilting finite.

Proof of Theorem 3.2. In the rest of this section, statements (1) and (3) are shown

in a more general setting.

(2) Note that Q is a Dynkin quiver if and only if KQ is τ -tilting finite (for

example, see [Ad, Thm. 2.6]). Since Ã contains the path algebra of Kronecker

type as a factor algebra, the set 2Ã-siltK
b(proj Ã) is not finite. Hence Ã is not a

silting-discrete algebra.

(4) By the assumption, Ã is a νÃ-cyclic object in Kb(proj Ã). Thus the assertion

follows from Propositions 2.6 and 2.19.

Before proving Theorem 3.2(1) and (3), we give an example of Ã.

Example 3.3. Let A = KQ/I be a self-injective Nakayama algebra, where Q =

( 1
a // 2
b

oo ) and I = ⟨abab, baba⟩. Then Ã = KQ̃/Ĩ is given by

Q̃ = 1

a− //
a+ // 2
b+
oo

b−
oo

and

Ĩ = ⟨a+b+a+b+, b+a+b+a+, a−b−a−b−, b−a−b−a−,
a+b−, a−b+, b+a−, b−a+,

a+b+a+ − a−b−a−, b+a+b+ − b−a−b−⟩.

Thus we obtain

AA =

1

2

1

2

⊕

2

1

2

1

, ÃÃ =

1

2 2

1 1

2

⊕

2

1 1

2 2

1

.

Since Q̃ contains a multiple arrow, Ã is not silting-discrete. On the other hand,

we can easily check that Ã is a νÃ-cyclic object of K
b(proj Ã). Hence it is a tilting-

discrete algebra.
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From here we provide a proof of Theorem 3.2(1) and (3) in a more gen-

eral setting. We start by recalling some properties of basic self-injective algebras.

For detail, see [SY, Chap. IV]. A basic self-injective K-algebra Λ admits a non-

degenerate associativeK-bilinear form (−,−)Λ : Λ×Λ → K. This property induces

an algebra automorphism vΛ : Λ → Λ with (vΛ(a), b)Λ = (b, a)Λ for all a, b ∈ Λ.

We call vΛ a Nakayama automorphism. A subspace Γ of Λ is said to be vΛ-stable

if vΛ(Γ) = Γ.

Let J be a two-sided ideal of Λ and Γ a subalgebra with J ⊂ Γ. In our

convention, the identity of Γ coincides with that of Λ. Define vector spaces J ′, J ′′

by

J ′ :=
{
λ ∈ Λ

∣∣ (J, λ)Λ = 0
}
,

J ′′ :=
{
λ ∈ Λ

∣∣ (Γ, λ)Λ = 0
}
.

Since J is a two-sided ideal, we can easily check that J ′ is a two-sided ideal of Λ.

The following lemma plays an important role in this section.

Lemma 3.4. Let (−,−) := (−,−)Λ be a non-degenerate associative K-bilinear

form and v := vΛ the Nakayama automorphism associated with (−,−). Then the

restriction (−,−)Γ := (−,−)|Γ×Γ is a K-bilinear form. Moreover, if J ′ ⊆ J , then

the following statements hold:

(1) J ′′ is a vector subspace of Γ.

(2) If Γ is v-stable, then so is J ′′ and the following statements are equivalent for

γ ∈ Γ:

(a) (γ,−)Γ = 0.

(b) γ ∈ J ′′.

(c) (−, γ)Γ = 0.

In particular, the induced K-bilinear form (−,−)Γ/J′′ : Γ/J ′′ × Γ/J ′′ → K is

non-degenerate.

Proof. Since the former assertion clearly holds, we show the latter assertion. In

the following, we assume J ′ ⊆ J .

(1) By the assumption, we have J ′′ ⊆ J ′ ⊆ J ⊆ Γ as K-vector spaces.

(2) Assume that Γ is v-stable. First, we show that J ′′ is v-stable. Let j ∈ J ′′.

Then (Γ, j) = 0. Since Γ is v-stable, we have (Γ, v±(j)) = (v∓(Γ), j) = (Γ, j) = 0.

Hence v±(j) ∈ J ′′. This implies that J ′′ is v-stable. Next we prove that conditions

(a), (b) and (c) are equivalent to each other.

(a) ⇒ (b): By (a), we have (Γ, v−(γ)) = (γ,Γ) = 0. Thus v−(γ) ∈ J ′′. Since

J ′′ is v-stable, we obtain γ ∈ J ′′.
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(b) ⇒ (c): This follows from the definition of J ′′.

(c) ⇒ (a): Since Γ is v-stable, we obtain (γ,Γ)Γ = (γ,Γ) = (v(Γ), γ) = 0.

By the lemma above, we can construct a self-injective algebra as follows:

Proposition 3.5. Keep the notation in Lemma 3.4. Assume that Γ is v-stable

and J ′ ⊆ J . Then the following statements hold:

(1) J ′′ is a two-sided ideal of Γ.

(2) Γ/J ′′ is a Frobenius algebra, and hence a self-injective algebra.

Proof. (1) It is enough to show γjγ′ ∈ J ′′ for each j ∈ J ′′ and γ, γ′ ∈ Γ. By the

associativity, we obtain (−, γj) = ((−)γ, j) and

(−, jγ′) = ((−)j, γ′) = (v(γ′), (−)j) = (v(γ′)(−), j).

By j ∈ J ′′, we have (−, γj)Γ = 0 and (−, jγ′)Γ = 0, where the second equation

follows from the fact that Γ is v-stable. Hence γj, jγ′ ∈ J ′′.

(2) By Lemma 3.4(2), (−,−)Γ/J′′ is a non-degenerate associative K-bilinear

form. Hence Γ/J ′′ is a Frobenius algebra by [N1, N2] (see also [SY, Thm. IV.2.1]).

In the following, by using Proposition 3.5, we prove Theorem 3.2(1). For

a basic connected non-semisimple self-injective K-algebra A = KQ/I, let Λ :=

A × A and J := radΛ = radA × radA. Then Λ is also a self-injective algebra

with ((a1, b1), (a2, b2))Λ = (a1, b1)A + (a2, b2)A for all (a1, b1), (a2, b2) ∈ Λ and

vΛ = vA × vA (for example see [SY, Chap. IV]). Define a subset Γ by

Γ :=
{
(a, a′) ∈ Λ

∣∣ a− a′ ∈ radA
}
.

Then Γ is a subalgebra of Λ with 1Γ = 1Λ and J ⊂ Γ. Let J ′ := {(a, a′) ∈ Λ |
(J, (a, a′))Λ = 0} and J ′′ := {(a, a′) ∈ Λ | (Γ, (a, a′))Λ = 0}. The following lemma

induces that Γ and J ′ satisfy the assumption in Proposition 3.5.

Lemma 3.6. Under the notation above, the following statements hold:

(1) Γ is vΛ-stable.

(2) J ′ = socΛ = socA× socA and J ′′ = {(s,−s) | s ∈ socA}.
(3) Γ/J ′′ is a self-injective algebra.

(4) A is a νA-cyclic object in Kb(projA) if and only if Γ/J ′′ is a νΓ/J′′-cyclic

object in Kb(proj(Γ/J ′′)).
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Proof. (1) This follows from the fact that a − a′ ∈ radA if and only if vA(a) −
vA(a

′) ∈ radA.

(2) First we show J ′ = socΛ. Let λ ∈ Λ. By the associativity of (−,−)Λ, λ ∈ J ′

if and only if (−, rλ)Λ = 0 for all r ∈ radΛ. Since (−,−)Λ is non-degenerate, we

have the result that (−, rλ)Λ = 0 if and only if rλ = 0. By socΛΛ = socΛ Λ, λ ∈ J ′

if and only if λ ∈ socΛ.

Next we show J ′′ = {(s,−s) | s ∈ socA}. Let (s, s′) ∈ J ′. Then (s, s′) ∈ J ′′

if and only if ((a, a′), (s, s′))Λ = 0 for each (a, a′) ∈ Γ. By a − a′ ∈ radA, there

exists r ∈ radA such that a′ = a+ r. Thus we obtain

0 = ((a, a′), (s, s′))Λ = (a, s)A + (a′, s′)A

= (a, s+ s′)A + (r, s′)A = (a, s+ s′)A + (1A, rs
′)A.

By socAA = socAA, we have rs′ = 0 and hence (a, s+ s′)A = 0. Thus (s, s′) ∈ J ′′

if and only if (a, s + s′)A = 0 for each a ∈ A. Since (−,−)A is non-degenerate,

(−, s+ s′)A = 0 if and only if s+ s′ = 0. Hence J ′′ = {(s,−s) | s ∈ socA}.
(3) By (1), Γ is vΛ-stable. Since A is a connected non-semisimple self-injective

algebra, we have socA ⊂ radA. Hence J ′ ⊂ J by (2). Thus the assertion follows

from Proposition 3.5(2).

(4) Since K is an algebraically closed field, we obtain a result that, for prim-

itive idempotents e, f ∈ A, eA ∼= fA if and only if e− f ∈ radA.

Let ei be the primitive idempotent of A corresponding to a vertex i ∈ Q0.

Then we have νA(eiA) ∼= evA(i)A, where vA : Q0 → Q0 is a Nakayama permutation

of A. On the other hand, we obtain νA(eiA) ∼= vA(ei)A (see [SY, Cor. IV.3.14]).

Hence vA(ei)A ∼= evA(i)A. Thus there exists r ∈ radA such that vA(ei) = evA(i)+r.

Since

vΓ/J′′((ei, ei) + J ′′) = (vA(ei), vA(ei)) + J ′′ = (evA(i) + r, evA(i) + r) + J ′′

= ((evA(i), evA(i)) + J ′′) + ((r, r) + J ′′),

we have vΓ/J′′((ei, ei) + J ′′)− ((evA(i), evA(i)) + J ′′) ∈ rad(Γ/J ′′). This implies A

is νA-cyclic if and only if Γ/J ′′ is νΓ/J′′-cyclic.

Comparing Ã and Γ/J ′′, we complete the proof of Theorem 3.2.

Proposition 3.7. We have an algebra isomorphism φ : Ã→ Γ/J ′′.

Proof. First, we construct an algebra homomorphism ψ : KQ̃ → Γ which is sur-

jective. Decompose the identity 1A in A as 1A =
∑
i∈Q0

ei, where ei ∈ A is the

primitive idempotent corresponding to a vertex i ∈ Q0. Let ψ0 : Q̃0 → Γ be the
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map defined by ψ0(i) := (ei, ei) for i ∈ Q̃0, and ψ1 : Q̃1 → Γ the map defined by

ψ1(α
+) := (α, 0) and ψ1(α

−) := (0, α) for α ∈ Q1. Then we can easily check that

(i) 1Γ =
∑
i∈Q̃0

ψ0(i) and ψ0(i)ψ0(j) =

{
ψ0(i) (i = j),

0 (i ̸= j),

(ii) for each α : i→ j in Q1, ψ1(α
±) = ψ0(i)ψ1(α

±)ψ0(j).

By [ASS, Thm. II.1.8], there exists an algebra homomorphism ψ : KQ̃ → Γ that

extends ψ0 and ψ1. Note that ψ is surjective. Composing ψ with the natural

surjection Γ → Γ/J ′′, we obtain a surjective map φ : KQ̃→ Γ/J ′′.

Next we show φ(Ĩ) = 0. Since ψ(I±) = 0 and ψ(Id) = 0, it is enough to claim

that ψ(p+i − p−i ) ∈ J ′′ or equivalently φ(p+i − p−i ) = 0, where pi /∈ I is a path in

KQ with maximal length starting from i ∈ Q0. Note that pi ∈ socA. By Lemma

3.6(2), we have

ψ(p+i − p−i ) = ψ(p+i )− ψ(p−i ) = (pi,−pi) ∈ J ′′.

This implies φ(p+i −p−i ) = 0 and hence φ(Ĩ) = 0. Thus we obtain a surjective map

φ : Ã→ Γ/J ′′.

Finally, we check dimK Ã = dimK(Γ/J ′′). Since φ : Ã → Γ/J ′′ is surjective,

we have only to show dimK Ã ≤ dimK(Γ/J ′′). Define a K-linear map φ′ : Γ → KQ̃

by φ′(ei, ei) = ei for ei ∈ A and φ′(r, 0) = r+ and φ′(0, r) = r− for r ∈ radA.

Since φ′(s,−s) = s+ − s− ∈ Ic for each s ∈ socA, we have φ′(J ′′) ⊂ Ĩ. Thus

we obtain a K-linear map φ′ : Γ/J ′′ → Ã which is surjective. This finishes the

proof.

Now we are ready to prove Theorem 3.2(1) and (3).

Proof of Theorem 3.2. By Proposition 3.7, Ã is isomorphic to Γ/J ′′. Hence state-

ments (1) and (3) follow from Lemma 3.6.

§4. The second example: Non-trivial tilting-discrete case

In this section we give other examples of tilting-discrete algebras which are not

silting-discrete. For integers i ≤ j, let [i, j] := {i, i + 1, . . . , j − 1, j}. Let n, m be

positive integers. Define a quiver Tn,m := (T0,T1), where T0 is the vertex set and

T1 is the arrow set, as follows:

� T0 := {(i, r) | i ∈ [1, n], r ∈ Z/mZ},
� T1 := {ai,r : (i, r) → (i + 1, r) | i ∈ [1, n − 1], r ∈ Z/mZ}

∐
{bi,r : (i, r) →

(i− 1, r + 1) | i ∈ [2, n], r ∈ Z/mZ}.
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For example, T5,5 is given by the following quiver:

(5, 3)
b5,3

""

(5, 4)
b5,4

""

(5, 0)
b5,0

""

(5, 1)
b5,1

""

(5, 2)
b5,2

""

(5, 3)

(4, 4)

a4,4 <<

b4,4

""

(4, 0)

a4,0 <<

b4,0

""

(4, 1)

a4,1 <<

b4,1

""

(4, 2)

a4,2 <<

b4,2

""

(4, 3)

a4,3 <<

b4,3

""

(3, 4)

a3,4 <<

b3,4

""

(3, 0)

a3,0 <<

b3,0

""

(3, 1)

a3,1 <<

b3,1

""

(3, 2)

a3,2 <<

b3,2

""

(3, 3)

a3,3 <<

b3,3

""

(3, 4)

(2, 0)

a2,0 <<

b2,0

""

(2, 1)

a2,1 <<

b2,1

""

(2, 2)

a2,2 <<

b2,2

""

(2, 3)

a2,3 <<

b2,3

""

(2, 4)

a2,4 <<

b2,4

""

(1, 0)

a1,0 <<

(1, 1)

a1,1 <<

(1, 2)

a1,2 <<

(1, 3)

a1,3 <<

(1, 4)

a1,4 <<

(1, 0).

We define a self-injective algebra An,m, which plays a crucial role in this

section. Let K be an algebraically closed field. Formally, put a0,r = an,r = b1,r =

bn+1,r = 0 for all r ∈ Z/mZ. Then An,m is a bound quiver algebraKTn,m/I, where
I is the two-sided ideal generated by ai,rbi+1,r−bi,rai−1,r+1 for all i ∈ [1, n] and r ∈
Z/mZ. By definition, An,1 is isomorphic to the preprojective algebra of the Dynkin

diagram An, and in general, An,m is isomorphic to the stable Auslander algebra

of a self-injective Nakayama algebra with m simple modules (up to isomorphism)

and Loewy length n+ 1. Hence An,m is a self-injective algebra (see [AR, Bu]).

Under certain conditions, the algebra An,m has the desired property. Namely,

the following theorem is our main result.

Theorem 4.1. Let n,m ≥ 5 be integers with gcd(n − 1,m) = 1. Assume that n

is odd and m is not divisible by the characteristic of K. Then An,m is a tilting-

discrete algebra but not silting-discrete.

Note that A1,1 and A2,1 are silting-discrete by direct calculation.

The Nakayama functor ν := DHomAn,m(−, An,m) is a Serre functor in

Kb(projAn,m) since An,m is a self-injective algebra. By Proposition 2.6, all tilt-

ing objects are exactly ν-stable silting objects. In the following, let 2-siltAn,m :=

2An,m
-siltKb(projAn,m) and 2-tiltAn,m := 2An,m

-siltν Kb(projAn,m). To show The-

orem 4.1, we need the following two propositions.

Proposition 4.2. Let n, m be positive integers. Then the following statements

hold:

(1) Assume n,m ≥ 5. Then 2-siltAn,m is not finite. In particular, An,m is not

silting-discrete.

(2) Assume that gcd(n− 1,m) = 1 and m is not divisible by the characteristic of

K. Then 2-tiltAn,m is finite.
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Proposition 4.3. Assume that gcd(n− 1,m) = 1 and n is an odd number. If T

is a tilting object given by iterated irreducible ν-stable mutation from An,m, then

the endomorphism algebra EndKb(projAn,m)(T ) is isomorphic to An,m.

Before proving the propositions above, we give a proof of Theorem 4.1 by

using them.

Proof of Theorem 4.1. By Proposition 4.2(1), An,m is not silting-discrete. We have

only to show that An,m is tilting-discrete. Let T be a tilting object given by iterated

irreducible ν-stable mutation from An,m and put AT := EndKb(projAn,m)(T ). Since

AT is isomorphic to An,m by Proposition 4.3, we have 2-tiltAT ∼= 2-tiltAn,m.

Hence by Proposition 4.2(2), 2-tiltAT is finite. This implies that An,m is tilting-

discrete by Corollary 2.23. The proof is complete.

As an application, we have the following result, which is an analog of [AM,

Cor. 1.4].

Corollary 4.4. Let n, m be positive integers with gcd(n − 1,m) = 1. Assume

that n is odd and m is not divisible by the characteristic of K. For each tilting

object T ∈ Kb(projAn,m), the endomorphism algebra EndKb(projAn,m)(T ) is Morita

equivalent to An,m. In particular, the derived equivalence class coincides with the

Morita equivalence class.

Proof. By Theorem 4.1, An,m is tilting-discrete. Due to Proposition 2.15, each

basic tilting object (up to shift) is given by iterated irreducible ν-stable mutation

from An,m. The assertion follows from Proposition 4.3.

In the rest of this section, we prove Propositions 4.2 and 4.3. Let n, m be

positive integers. For a vertex x ∈ T0, let P (x) := exAn,m, I(x) := D(An,mex),
and S(x) = P (x)/ radP (x) ∼= soc I(x). Formally, put P (0, r) = P (n+1, r) = 0 for

all r ∈ Z/mZ. We identify an element of HomAn,m
(P (i, r), P (j, s)) as an element

of e(j,s)An,me(i,r). For two-term objects U = (U1
dU−−→ U0) and V = (V1

dV−−→ V0) in

Kb(projAn,m), we denote by (φ1, φ0) a morphism in HomKb(projAn,m)(U, V ), that

is, it satisfies the following commutative diagram:

U1
dU //

φ1

��

U0

φ0

��

V1
dV // V0.
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§4.1. Combinatorial properties of An,m

In this subsection, we collect combinatorial properties of An,m. Fix (i, r) ∈ T0

and let w be a path starting from (i, r). For the sake of simplicity, we frequently

write down a path without indices, e.g., ai,rai+1,rbi+2,rai+1,r+1 =: aaba =: a2ba.

Then we can regard a path w as a word w with “a” and “b”. We denote by a(w)

(respectively, b(w)) the number of a’s (respectively, b’s) in the word w. Note that

a(w) = b(w) = 0 if and only if w = ei,r. Then, by the definition of the two-sided

ideal I, we obtain the following properties:

Lemma 4.5. Under the notation above, the following statements hold:

(1) w = w′ ̸= 0 in An,m if and only if (a(w), b(w)) = (a(w′), b(w′)) ∈ [0, n− i] ×
[0, i− 1].

(2) {asbt | (s, t) ∈ [0, n − i] × [0, i − 1]} gives a K-basis of P (i, r). In particular,

we have dimK P (i, r) = i(n− i+ 1) and dimK An,m = mdimK An,1.

(3) P (i, r) ∼= I(n− i+1, r+ i−1). In particular, νP (i, r) ∼= P (n− i+1, r+ i−n).

§4.2. Proof of Proposition 4.2(1)

In this subsection we give a proof of Proposition 4.2(1).

Proof of Proposition 4.2(1). Assume n,m ≥ 5. Let e := e4,r−1 + e2,r + e3,r +

e4,r + e2,r+1 for r ∈ Z/mZ. Then eAn,me is isomorphic to the path algebra of a

Euclidean quiver of type D̃4. Hence the set of isomorphism classes of two-term

silting objects in Kb(proj eAn,me) is not finite (for example see [Ad, Thm. 2.6]).

By [Ad, Prop. 2.4] and [DIJ, Cor. 2.9], this implies that 2-siltAn,m is not finite.

This finishes the proof.

§4.3. ν-stability and ψ-stability

Define an algebra automorphism ψ : An,m → An,m as

ei,r 7→ ei,r+1,

ai,r 7→ ai,r+1,

bi,r 7→ bi,r+1.

Then ψ induces an auto-equivalence ψ : modAn,m → modAn,m defined by

ψ(M)a := Mψ(a) for each M ∈ modAn,m and a ∈ An,m. By definition, we

have ψ(S(i, r)) ∼= S(i, r − 1) and ψ(P (i, r)) ∼= P (i, r − 1).

Lemma 4.6. Assume gcd(n − 1,m) = 1. Then each ν-stable silting object is ψ-

stable. In particular, 2-tiltAn,m is a subset of 2-siltψ An,m.
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Proof. For each (i, r) ∈ T0, we obtain ν2P (i, r) ∼= νP (n − i + 1, r + i − n) ∼=
P (i, r − (n − 1)). By gcd(n − 1,m) = 1, there exists an integer s > 0 such that

νsP (i, r) ∼= P (i, r − 1) ∼= ψ(P (i, r)). This induces that for any M ∈ 2-siltAn,m,

the g-vector of νsM coincides with that of ψ(M). By [AIR, Thm. 5.5], we obtain

νsM ∼= ψ(M). Therefore, all ν-stable silting objects are ψ-stable.

§4.4. The algebra An,m as a skew group algebra

Recall the definition of skew group algebras. For detail, see [RR]. Let A be a finite-

dimensional K-algebra and Aut(A) the group of K-algebra automorphisms of A.

Let G be a finite subgroup of Aut(A) such that the characteristic of K does not

divide the order of G (i.e., the group algebra KG is semisimple). The skew group

algebra A ∗ G is defined as follows: as a K-vector space, A ∗ G = A ⊗K KG and

the multiplication is given by (a⊗ g) · (a′ ⊗ g′) = ag(a′)⊗ gg′, where a, a′ ∈ A and

g, g′ ∈ G. We write a∗ g instead of a⊗ g. Then A∗G becomes a finite-dimensional

K-algebra with dimension |G|dimK A.

In this subsection we assume that m is not divisible by the characteristic of

K. Let An := An,1. For simplicity, put ei := ei,0, ai := ai,0 and bi := bi,0 in An.

Let Gm = ⟨g⟩ be a cyclic group of order m acting on An as

g(ei) := ei,

g(ai) := ai,

g(bi) := ζbi,

where ζ ∈ K is an mth primitive root of unity. First we show that there exists a

K-algebra isomorphism φ : An,m → An ∗Gm. Define a K-algebra homomorphism

ϕ : K⟨ei,r, aj,s, bk,t | 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1, 2 ≤ k ≤ n, r, s, t ∈ Z/mZ⟩
→ An ∗Gm

by setting

ei,r 7→
1

m

m−1∑
p=0

ζprei ∗ gp,

aj,s 7→
1

m

m−1∑
p=0

ζpsaj ∗ gp,

bk,t 7→
1

m

m−1∑
p=0

ζp(t+1)bk ∗ gp.

Put a0,r = an,r = b1,r = bn+1,r = 0. Then we obtain the following equations:
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� ϕ(
∑
ei,r) = 1,

� ϕ(ei,rei′,r′) = δi,i′δr,r′ϕ(ei,r),

� ϕ(ei,raj,s) = δi,jδr,sϕ(aj,s),

� ϕ(aj,sei,r) = δj+1,iδs,rϕ(aj,s),

� ϕ(ei,rbk,t) = δi,kδr,tϕ(bk,t),

� ϕ(bk,tei,r) = δk−1,iδt+1,rϕ(bk,y),

� ϕ(ai,rbi+1,r) = ϕ(bi,rai−1,r+1),

where δ is the Kronecker delta. Therefore, ϕ induces a K-algebra homomorphism

φ : An,m → An ∗Gm. Since
1 1 · · · 1

1 ζ · · · ζm−1

1 ζ2 · · · ζ2(m−1)

...
...

...

1 ζm−1 · · · ζ(m−1)(m−1)




ei ∗ 1 aj ∗ 1 bk ∗ 1
ei ∗ g aj ∗ g bk ∗ g
ei ∗ g2 aj ∗ g2 bk ∗ g2

...
...

...

ei ∗ gm−1 aj ∗ gm−1 bk ∗ gm−1



= m


φ(ei,0) φ(aj,0) φ(bk,m−1)

φ(ei,1) φ(aj,1) φ(bk,0)

φ(ei,2) φ(aj,2) φ(bk,1)
...

...
...

φ(ei,m−1) φ(aj,m−1) φ(bk,m−2)

 ,

we obtain that ϕ and φ are surjective. By dimK An,m = dimK(An ∗Gm), the map

φ is an isomorphism.

Next, following [ZH], we compare two-term silting objects of An with those

of An ∗Gm. Let X be the character group of Gm. Since Gm is a cyclic group, we

have Gm ∼= X = ⟨χ⟩, where χ(gs) = ζs for each s ∈ Z. Then X acts on An ∗Gm as

χ(a ∗ g) := χ(g)a ∗ g = ζa ∗ g

for each a ∈ An. It is easy to check that the following diagram commutes:

An,m
φ
//

ψ

��

An ∗Gm
χ

��

An,m
φ
// An ∗Gm.

Since χ induces an auto-equivalence χ on mod(An ∗ Gm), we have the following

lemma.
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Lemma 4.7. Assume that m is not divisible by the characteristic of K. Then

there exist isomorphisms

2-siltg An ∼= 2-siltχ(An ∗Gm) ∼= 2-siltψ An,m.

Proof. Since Gm is abelian, we have an isomorphism 2-siltg An → 2-siltχ(An∗Gm)

by [ZH, Cor. 4.7] (see also[KKKMM]). Moreover, the commutative diagram above

induces an isomorphism 2-siltχ(An ∗Gm) ∼= 2-siltψ An,m.

§4.5. Proof of Proposition 4.2(2)

Now we are ready to prove Proposition 4.2(2).

Proof of Proposition 4.2(2). We show that 2-tiltAn,m is a finite set. If gcd(n− 1,

m) = 1, 2-tiltAn,m is a subset of 2-siltψ An,m by Lemma 4.6. On the other

hand, we assume that m is not divisible by the characteristic of K. Then we

have 2-siltψ An,m ∼= 2-siltg An by Lemma 4.7. Since An is isomorphic to the pre-

projective algebra of the Dynkin diagram An, the set 2-siltAn is finite by [Mi,

Thm. 0.1]. Hence 2-siltg An is also a finite set. This finishes the proof.

§4.6. Proof of Proposition 4.3

In this subsection we prove Proposition 4.3. Assume that gcd(n − 1,m) = 1 and

n is an odd number. Let A := An,m and T := Kb(projA). For each (ℓ, s) ∈ T0, we

denote by O(ℓ, s) the ν-orbit of P (ℓ, s). Since gcd(n− 1,m) = 1, we obtain

Oℓ := O(ℓ, s) =
{
(ℓ, r)

∣∣ r ∈ Z/mZ
}
∪
{
(n− ℓ+ 1, r)

∣∣ r ∈ Z/mZ
}
.

Without loss of generality, we may assume ℓ∈ [1, n+1
2 ]. ThenXℓ :=

⊕
(i,r)∈Oℓ

P (i, r)

is a minimal ν-stable object of A. Thus we have an irreducible ν-stable mutation

µXℓ
(A) =

⊕
(i,r)∈T0

T (i, r), where T (i, r) is a two-term object defined as

T (i, r) =


−1st

P (i, r + 1)

[ ai−1,r+1

−bi+1,r

]
−−−−−−−→ P (i− 1, r + 1)

0th

⊕ P (i+ 1, r), (i, r) ∈ Oℓ,

0th

P (i, r), (i, r) /∈ Oℓ.

Since the morphism
[ ai−1,r+1

−bi+1,r

]
: P (i, r−1) → P (i−1, r+1)⊕P (i+1, r) induces a

minimal left add(A/P (i, r − 1))-approximation in T , we obtain that the mapping

cone T (i, r) is indecomposable by Lemma 2.8.

For each (i, r) ∈ T0, we define two morphisms xi,r : T (i+ 1, r) → T (i, r) and

yi,r : T (i− 1, r + 1) → T (i, r) as follows:
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� If (i, r) ∈ Oℓ, then xi,r and yi,r are given by the following diagrams respec-

tively:

0 //

��

P (i+ 1, r)

[ 0id ]
��

P (i, r + 1)
[ a−b ]

//

P (i− 1, r + 1)

⊕
P (i+ 1, r),

0 //

��

P (i− 1, r + 1)

[ id0 ]
��

P (i, r + 1)
[ a−b ]

//

P (i− 1, r + 1)

⊕
P (i+ 1, r).

� If (i+ 1, r) ∈ Oℓ, then xi,r is given by the following diagram:

P (i+ 1, r + 1)
[ a−b ]

//

��

P (i, r + 1)

⊕
P (i+ 2, r)

[ ai,rbi+1,r ai,rai+1,r ]

��

0 // P (i, r).

� If (i− 1, r + 1) ∈ Oℓ, then yi,r is given by the following diagram:

P (i− 1, r + 2)
[ a−b ]

//

��

P (i− 2, r + 2)

⊕
P (i, r + 1)

[ bi,rbi−1,r+1 bi,rai−1,r+1 ]

��

0 // P (i, r).

� If otherwise, then xi,r and yi,r are given by the following diagrams respectively:

0 //

��

P (i+ 1, r)

ai,r

��

0 // P (i, r),

0 //

��

P (i− 1, r + 1)

bi,r

��

0 // P (i, r).

Note that xi,r ∈ radT (T (i+ 1, r), T (i, r)) and yi,r ∈ radT (T (i− 1, r + 1), T (i, r)).

Moreover, if i ∈ [1, n − 1] (respectively, i ∈ [2, n]), then xi,r (respectively, yi,r) is

non-zero in T .

We collect properties of two consecutive morphisms.

Lemma 4.8. Fix a vertex (i, r) ∈ T0. Then the following equalities hold:
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(1) For i ∈ [1, n− 2], we have

xi,rxi+1,r=



(
0,

[
0 0

ai+1,rbi+2,r ai+1,rai+2,r

])
((i, r)∈Oℓ, (i+2, r)∈Oℓ),

(
0,

[
0

ai+1,r

])
((i, r)∈Oℓ, (i+2, r) /∈Oℓ),(

0,
[
ai,rai+1,rbi+2,r ai,rai+1,rai+2,r

])
((i, r) /∈Oℓ, (i+2, r)∈Oℓ),

(0, ai,rai+1,r) ((i, r) /∈Oℓ, (i+2, r) /∈Oℓ).

(2) For i ∈ [3, n], we have

yi,ryi−1,r+1 =



(
0,

[
bi−1,r+1bi−2,r+2 bi−1,r+1ai−2,r+2

0 0

])
((i, r)∈Oℓ, (i−2, r+2)∈Oℓ),(

0,

[
bi−1,r+1

0

])
((i, r)∈Oℓ, (i−2, r+2) /∈Oℓ),(

0,
[
bi,rbi−1,r+1bi−2,r+2 bi,rbi−1,r+1ai−2,r+2

])
((i, r) /∈Oℓ, (i−2, r+2)∈Oℓ),

(0, bi,rbi−1,r+1) ((i, r) /∈Oℓ, (i−2, r+2) /∈Oℓ).

(3) For each 1 ≤ i ≤ n− 1, we have

xi,ryi+1,r =


(0, ai,rbi+1,r) ((i, r) /∈ Oℓ),(
0,

[
0 0

bi+1,rbi,r+1 bi+1,rai,r+1

])
((i, r) ∈ Oℓ).

In particular, if i = 1, then xi,ryi+1,r = 0.

(4) For each 2 ≤ i ≤ n, we have

yi,rxi−1,r+1 =


(0, bi,rai−1,r+1) ((i, r) /∈ Oℓ),(
0,

[
ai−1,r+1bi,r+1 ai−1,r+1ai,r+1

0 0

])
((i, r) ∈ Oℓ).

In particular, if i = n, then yi,rxi−1,r+1 = 0.

Proof. This follows from direct calculations.
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Combining Lemma 4.8(3) and (4), we have the following result which will

induce commutative relations in EndT (µXℓ
(A)).

Lemma 4.9. For each (i, r) ∈ T0, we have xi,ryi+1,r − yi,rxi−1,r+1 = 0 in T ,

where x0,r = xn,r = y1,r = yn+1,r = 0 for all r ∈ Z/mZ.

Proof. By Lemma 4.8(3) and (4), we have

xi,ryi+1,r−yi,rxi−1,r+1 =


(0, ai,rbi+1,r − bi,rai−1,r+1) ((i, r) /∈ Oℓ),(
0,

[
−ai−1,r+1bi,r+1 −ai−1,r+1ai,r+1

bi+1,rbi,r+1 bi+1,rai,r+1

])
((i, r) ∈ Oℓ).

In the case where (i, r) /∈ Oℓ, we obtain xi,ryi−1,r+1 − yi,rxi−1,r+1 = 0 because

ai,rbi+1,r − bi,rai−1,r+1 = 0 in A. On the other hand, we assume (i, r) ∈ Oℓ. By

definition, we have[
−bi,r+1 −ai,r+1

] [ ai−1,r+2

−bi+1,r+1

]
= 0,[

ai−1,r+1

−bi+1,r

] [
−bi,r+1 −ai,r+1

]
=

[
−ai−1,r+1bi,r+1 −ai−1,r+1ai,r+1

bi+1,rbi,r+1 bi+1,rai,r+1

]
.

Hence xi,ryi+1,r − yi,rxi−1,r+1 = 0 in T .

From now on, we will often regard HomT (T (i, r), T (j, s)) as a subset of

EndT (µXℓ
(A)) in a natural way. Then we define subsets X,Y of EndT (µXℓ

(A)) as

X :=
{
xi,r

∣∣ i ∈ [1, n− 1], r ∈ Z/mZ
}
, Y :=

{
yi,r

∣∣ i ∈ [2, n], r ∈ Z/mZ
}
,

and let Z := X
∐

Y.

In order to determine the Gabriel quiver of EndT (µXℓ
(A)), we need the fol-

lowing lemma.

Lemma 4.10. The following statements hold:

(1) We have

radT (T (i, r), T (j, s)) = HomT (T (i− 1, r), T (j, s))xi−1,r

+HomT (T (i+ 1, r − 1), T (j, s))yi+1,r−1.

In particular, Z generates EndT (µXℓ
(A)) as a K-algebra.

(2) We have xi−1,r /∈ HomT (T (i+ 1, r − 1), T (i− 1, r))yi+1,r−1. Moreover,

xi−1,r ∈ radT (T (i, r), T (i− 1, r)) \ rad2T (T (i, r), T (i− 1, r)).
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(3) We have yi+1,r−1 /∈ HomT (T (i− 1, r), T (i+ 1, r − 1))xi−1,r. Moreover,

yi+1,r−1 ∈ radT (T (i, r), T (i+ 1, r − 1)) \ rad2T (T (i, r), T (i+ 1, r − 1)).

(4) We have

radT (T (i, r), T (j, s))

rad2T (T (i, r), T (j, s))
=


⟨xj,s⟩K if (j, s) = (i− 1, r),

⟨yj,s⟩K if (j, s) = (i+ 1, r − 1),

0 if otherwise.

Proof. (1) Since xi−1,r and yi+1,r−1 are in the radical of T , it is enough to show

that for each non-isomorphic morphism φ : T (i, r) → T (j, s), there exist morphisms

g′ : T (i− 1, r) → T (j, s) and g′′ : T (i+1, r− 1) → T (j, s) such that φ = g′xi−1,r +

g′′yi+1,r−1. Consider the following four cases:

(a) (i, r) ∈ Oℓ, (j, s) ̸∈ Oℓ.

(b) (i, r) ∈ Oℓ, (j, s) ∈ Oℓ.

(c) (i, r) ̸∈ Oℓ, (j, s) ∈ Oℓ.

(d) (i, r) ̸∈ Oℓ, (j, s) ̸∈ Oℓ.

Case (a). Assume φ = (0, [ f1 f2 ]) with f1 : P (i − 1, r + 1) → P (j, s) and

f2 : P (i+1, r) → P (j, s). By commutative relations of A, we can write f1 = g1bi,r+

a and f2 = g2ai,r + b, where g1, g2 ∈ HomA(P (i, r), P (j, s)), a ∈ ⟨ak | k ∈ Z⟩K
and b ∈ ⟨bk | k ∈ Z⟩K . Since

0 =
[
f1 f2

] [ai−1,r+1

−bi+1,r

]
= f1ai−1,r+1 − f2bi+1,r,

we have (g1 − g2)ai,rbi+1,r = 0, a = 0 and b = 0. Assume g1 − g2 ̸= 0 and

let g1 − g2 = hapbq, where h is an invertible element in ej,sAej,s. Then we have

hapbqai,rbi+1,r=0, and hence ap+1bq+1 = 0. By Lemma 4.5(1), we obtain p = n−j
or q = j − 1. If p = n − j, then f2 = g2ai,r = (g1 − hapbq)ai,r = g1ai,r −
hap+1bq = g1ai,r. Since we can take g1 as g1 = g′1bi+1,r−1 + g′′1ai−1,r for some

g′1 ∈ HomA(P (i+ 1, r − 1), P (j, s)) and g′′1 ∈ HomA(P (i− 1, r), P (j, s)), we have

[
f1 f2

]
=
[
g′1 g

′′
1

] [bi+1,r−1bi,r bi+1,r−1ai,r
ai−1,rbi,r ai−1,rai,r

]
.

Hence φ = (0, g′′1 )xi−1,r + (0, g′1)yi+1,r−1. For the remaining cases, we have the

assertion by a similar argument.
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Case (b). Assume φ = (φ1, φ0) with

φ0 =

[
f11 f12
f21 f22

]
,

where f11 : P (i − 1, r + 1) → P (j − 1, s + 1), f12 : P (i + 1, r) → P (j − 1, s + 1),

f21 : P (i− 1, r+ 1) → P (j + 1, s) and f22 : P (i+ 1, r) → P (j + 1, s). Then we can

write φ1 as φ1 = g′ai−1,r+1+g
′′bi+1,r for some g′ ∈ HomA(P (i−1, r+1), P (j, s+1))

and g′′ ∈ HomA(P (i+ 1, r), P (j, s+ 1)). Let

φ′
0 := φ0 −

[
aj−1,s+1

−bj+1,s

] [
g′ −g′′

]
.

Since φ′
0

[ ai−1,r+1

−bi+1,r

]
= 0 holds, we have a morphism (0, φ′

0) in T . By direct cal-

culation, (φ1, φ0) is homotopic to (0, φ′
0). Hence we may always assume φ1 = 0.

Therefore we have

φ = yj,s

(
0,
[
f11 f12

])
+ xj,s

(
0,
[
f21 f22

])
.

By (j + 1, s), (j − 1, s+ 1) /∈ Oℓ, the assertion follows from the case (a).

Case (c). Assume

φ =

(
0,

[
f1
f2

])
with f1 : P (i, r) → P (j − 1, s+ 1) and f2 : P (i, r) → P (j + 1, s). We may assume

f1 = apbq ̸= 0 and f2 = ap
′
bq

′ ̸= 0 for some p, q, p′, q′ ≥ 0.

If (i+ 1, r − 1), (i− 1, r) ∈ Oℓ, then we have(
0,

[
f1
0

])
= ψ1yi+1,r−1 and

(
0,

[
0

f2

])
= ψ2xi−1,r,

where ψ1 : T (i+ 1, r − 1) → T (j, s) and ψ2 : T (i− 1, r) → T (j, s) are given by the

following diagrams:

P (i+ 1, r)
[ a−b ]

//

apbq

��

P (i, r)

⊕
P (i+ 2, r − 1)

[
f1 0
0 apbq

]
��

P (j, s+ 1)
[ a−b ]

//

P (j − 1, s+ 1)

⊕
P (j + 1, s),

P (i− 1, r + 1)
[ a−b ]

//

ap
′
bq

′

��

P (i− 2, r + 1)

⊕
P (i, r)[

ap
′
bq

′
0

0 f2

]
��

P (j, s+ 1)
[ a−b ]

//

P (j − 1, s+ 1)

⊕
P (j + 1, s).
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If (i+ 1, r − 1) ∈ Oℓ and (i− 1, r) /∈ Oℓ, then we have(
0,

[
f1
0

])
= ψ1yi+1,r−1

and

(
0,

[
0

f2

])
=


(
0,

[
0

ap
′−1bq

′

])
xi−1,r (p′ > 0),

ψ3yi+1,r−1 (p′ = 0),

where ψ3 is given by the morphism

P (i+ 1, r)
[ a−b ]

//

−abq
′−1

��

P (i, r)

⊕
P (i+ 2, r − 1)[

0 a2bq
′−2

f2 0

]
��

P (j, s+ 1)
[ a−b ]

//

P (j − 1, s+ 1)

⊕
P (j + 1, s).

Note that if p′ = 0, then q′ ≥ 2 by (j, s+1), (i+1, r−1) ∈ Oℓ. For (i+1, r−1) /∈ Oℓ

and (i− 1, r) ∈ Oℓ, we obtain the assertion by a similar argument.

If (i+ 1, r − 1), (i− 1, r) /∈ Oℓ, then we have

(
0,

[
f1
0

])
=



(
0,

[
ap−1

0

])
xi−1,r (q = 0),

(
0,

[
apbq−1

0

])
yi+1,r−1 (q ̸= 0),

and

(
0,

[
0

f2

])
=



(
0,

[
0

ap
′−1

])
xi−1,r (q′ = 0),

(
0,

[
0

ap
′
bq

′−1

])
yi+1,r−1 (q′ ̸= 0).
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Case (d). Assume φ = (0, f) with non-zero f : P (i, r) → P (j, s). We may

assume f = apbq for some p, q ≥ 0. If q ̸= 0, then we have

φ =


(0, apbq−1)yi+1,r−1 ((i+ 1, r − 1) /∈ Oℓ),(
0,
[
f ap+1bq−1

])
yi+1,r−1 ((i+ 1, r − 1) ∈ Oℓ).

On the other hand, if q = 0, then we have

φ =


(0, ap−1)xi−1,r ((i− 1, r) /∈ Oℓ),(
0,
[
ap−1b f

])
xi−1,r ((i− 1, r) ∈ Oℓ).

Therefore we have the assertion.

(2) First we show xi−1,r /∈ HomT (T (i+1, r− 1), T (i− 1, r))yi+1,r−1. Suppose

to the contrary that xi−1,r ∈ HomT (T (i + 1, r − 1), T (i − 1, r))yi+1,r−1. Then

there exists a non-isomorphic morphism f : T (i + 1, r − 1) → T (i − 1, r) such

that xi−1,r = fyi+1,r−1. By repeated use of (1) and Lemma 4.9, we can write

f = gxi,r−1 +y with g ∈ HomT (T (i, r− 1), T (i− 1, r)) and y ∈ ⟨Y⟩K . Comparing

the domain and codomain of f , we have y = 0. By Lemma 4.9,

xi−1,r = fyi+1,r−1 = gxi,r−1yi+1,r−1 = gyi,r−1xi−1,r.

This implies (id − gyi,r−1)xi−1,r = 0. Since id − gyi,r−1 ∈ EndT (T (i − 1, r)) is

invertible, we have xi−1,r = 0, a contradiction.

Next we show

xi−1,r ∈ radT (T (i, r), T (i− 1, r)) \ rad2T (T (i, r), T (i− 1, r)).

Suppose to the contrary that xi−1,r ∈ rad2T (T (i, r), T (i − 1, r)). We can write

xi−1,r =
∑
k fkgk with fk, gk radical morphisms. By (1), we obtain gk =

g′kxi−1,r + g′′kyi+1,r−1 for some morphisms g′k, g
′′
k . Thus (id −

∑
k fkg

′
k)xi−1,r =∑

k fkg
′′
kyi+1,r−1. Since fkg

′
k is a radical morphism, we have xi−1,r ∈ HomT (T (i+

1, r − 1), T (i− 1, r))yi+1,r−1, a contradiction.

(3) By an argument similar to (2), we have the assertion.

(4) Let f ∈ radT (T (i, r), T (j, s)). By (1), we have f = f ′xi−1,r+f
′′yi+1,r−1 for

some f ′ ∈ HomT (T (i−1, r), T (j, s)) and f ′′ ∈ HomT (T (i+1, r−1), T (j, s)). Note

that xi−1,r and yi+1,r−1 belong to the radical of T . If (j, s) is neither (i− 1, r) nor

(i+1, r−1), then f ′ and f ′′ are in the radical of T . Hence f ∈ rad2T (T (i, r), T (j, s)).

Assume (j, s) = (i − 1, r). Then f ′′ ∈ radT (T (i + 1, r − 1), T (j, s)). Hence the

assertion follows from (2). For (j, s) = (i+ 1, r − 1), the proof is similar.
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By Lemma 4.10(4), the Gabriel quiver of EndT (µXℓ
(A)) is isomorphic to

Tn,m. Hence there exists a surjective map Φ: KTn,m → EndT (µXℓ
(A)) given by

(i, r) 7→ the identity of T (i, r),

ai,r 7→ xi,r,

bi,r 7→ yi,r.

Moreover, by Lemma 4.9, we have I ⊂ kerΦ, where I is the two-sided ideal gen-

erated by ai,rbi+1,r − bi,rai−1,r+1 for all i ∈ [1, n] and r ∈ Z/mZ.
To complete the proof of Proposition 4.3, we compare the dimension of

EndT (µXℓ
(A)) with that of A. Let f = z1z2 · · · zk be a morphism in T with

z1, z2, . . . , zk ∈ Z. For the sake of simplicity, we often write down a morphism with-

out indices, e.g., xi,rxi+1,ryi+2,ryi+1,r+1 =: xxyx =: x2yx. Then we can regard the

morphism f as a word f with “x” and “y”. We denote by x(f) (respectively, y(f))

the number of x’s (respectively, y’s) in the word f . Note that x(f) = y(f) = 0 if

and only if f = id.

Lemma 4.11. Keep the notation above. Fix (i, r) ∈ T0 and the codomain of f is

T (i, r). Then the following statements hold:

(1) f ̸= 0 if and only if (x(f), y(f)) ∈ [0, n− i]× [0, i− 1].

(2) B := {xpyq | (p, q) ∈ [0, n−i]×[0, i−1]} forms a basis of HomT (µXℓ
(A), T (i, r)).

(3) dimK HomT (µXℓ
(A), T (i, r)) = dimK P (i, r).

Proof. Fix a vertex (i, r) ∈ T0.

(1) Let f = z1z2 · · · zk be a morphism in T with z1, z2, . . . , zk ∈ Z and

codomain T (i, r). First we claim that if x(f) > n−i, then f = 0. For y(f) = 0, this

is clear. In the following, we assume y(f) ∈ [1, i − 1]. By repeated use of Lemma

4.9, we may assume the first n − i + 2 terms of f to be f = xn−iyx · · · . Since it

follows from Lemma 4.8(4) that

xn−iyx = xi,r · · ·xn−1,ryn,rxn−1,r+1 = 0,

we have f = 0. Similarly, we obtain that if y(f) > i − 1, then f = 0. Hence the

“if” part follows.

Next we prove the “only if” part. Let p := x(f) ∈ [0, n − i] and q := y(f) ∈
[0, i− 1]. By repeatedly using Lemma 4.9, we can write f = xpyq. It is enough to

show xn−iyi−1 ̸= 0. Indeed, we assume that it is true. If xpyq = 0 holds for some

p ∈ [0, n − i] and q ∈ [0, i − 1], then we have xn−iyi−1 = 0, a contradiction. We

show xn−iyi−1 ̸= 0. By the symmetry of the quiver, we may assume i ∈ [1, n+1
2 ].

If i ̸= ℓ (or equivalently (i, r) /∈ Oℓ and (n − i + 1, r + i − 1) /∈ Oℓ), then we
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have xn−iyi−1 = (0, an−ibi−1). By Lemma 4.5(1), we obtain an−ibi−1 ̸= 0, and

hence xn−iyi−1 ̸= 0. On the other hand, if i = ℓ (or equivalently (i, r) ∈ Oℓ and

(n− i+ 1, r + i− 1) ∈ Oℓ), then we have a commutative diagram

P (n− i+ 1, r + i)
[ a−b ]

//

0

��

P (n− i, r + i)

⊕
P (n− i+ 2, r + i− 1)

[ 0 0
α 0 ]
��

P (i, r + 1)
[ a−b ]

//

P (i− 1, r + 1)

⊕
P (i+ 1, r),

where α := ai+1,r · · · an−1,rbn,r · · · bn−i+1,r+i−1. Suppose to the contrary that

xn−iyi−1 = 0, that is, there exists a morphism [ h1 h2 ] : P (n− i, r+ i)⊕P (n− i+2,

r + i− 1) → P (i, r + 1) such that

h1an−i,r+i − h2bn−i+2,r+i−1 = 0,(4.1) [
ai−1,r+1

−bi+1,r

] [
h1 h2

]
=

[
0 0

α 0

]
.(4.2)

By Lemma 4.5, we can write

h1 = k1ai,r+1 · · · an−2,r+1bn−1,r+1 · · · bn−i+2,r+i−2bn−i+1,r+i−1,

h2 = k2ai,r+1 · · · an−2,r+1bn−1,r+1 · · · bn−i+2,r+i−2an−i+1,r+i−1,

with k1, k2 ∈ K. By (4.1), we have

(k1 − k2)ai,r+1 · · · an−1,r+1bn,r+1 · · · bn−i+2,r+i−1 = 0.

Thus k1 = k2 holds. On the other hand, by (4.2), we obtain

k2ai−1,r+1 · · · an−1,r+1bn,r+1 · · · bn−i+3,r+i−2 = ai−1,r+1h2 = 0.

Hence k1 = k2 = 0. This implies 0 = −bi+1,rh1 = α ̸= 0, a contradiction.

(2) We show that B gives a basis of K-vector space

HomT (µXℓ
(A), T (i, r)) =

⊕
(j,s)∈T0

HomT (T (j, s), T (i, r)).

By Lemma 4.9 and (1), B generates HomT (µXℓ
(A), T (i, r)). In the following, we

show that B is linear independent. Suppose to the contrary that B is not linear
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independent. Then there are ∅ ≠ V ⊂ [0, n − i] × [0, i − 1] and αv ∈ K \ {0} (for

all v ∈ V ) such that ∑
(p,q)∈V

α(p,q) · xpyq = 0.

We may assume that xpyq : T (j, s) → T (i, r) for each (p, q) ∈ V . Then we can

choose (p0, q0) ∈ V such that p0 < p and q0 < q hold for each (p, q) ∈ V \{(p0, q0)}.
Hence, by Lemma 4.9, we can write∑

(p,q)∈V

α(p,q) · xpyq = α(p0,q0)x
p0yq0(1 + z) (z ∈ radT (T (i, r), T (i, r))).

This means xp0yq0 = 0. In particular, we have

xn−iyi−1 = xn−i−p0yi−1−q0xp0yq0 = 0.

(3) This follows from (2) and Lemma 4.5(2).

Now we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. By Lemmas 4.10(4) and 4.11, there exists a sur-

jective map Φ: KTn,m → EndT (µXℓ
(A)), which induces a surjective map

A → EndT (µXℓ
(A)). Moreover, it follows from Lemma 4.11 that dimK A =

dimK EndT (µXℓ
(A)). Hence we obtain A ∼= EndT (µXℓ

(A)).
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