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C∗-Simplicity of Relative Profinite Completions of
Generalized Baumslag–Solitar Groups

by

Miho Mukohara

Abstract

Suzuki recently gave constructions of non-discrete examples of locally compact C*-simple
groups and Raum showed C∗-simplicity of the relative profinite completions of the
Baumslag–Solitar groups by using Suzuki’s results. We extend this result to some fun-
damental groups of graphs of groups called generalized Baumslag–Solitar groups. In this
article, we focus on some sufficient condition to show that these locally compact groups
are C∗-simple and that KMS-weights of these reduced group C∗-algebras are unique. This
condition is an analogue of the Powers averaging property of discrete groups and holds
for several currently known constructions of non-discrete C∗-simple groups.
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§1. Introduction

The reduced group C∗-algebra is a C∗-algebra generated by the left regular repre-

sentation λ of a locally compact group. A locally compact group G is called C∗-

simple if its reduced group C∗-algebra C∗
r (G) is a simple C∗-algebra. C∗-simplicity

of discrete groups has been studied since Powers proved that the non-commutative

free group F2 is C∗-simple [Po], and as of today, satisfactory characterizations

related to boundary actions and the unique trace property of reduced group C∗-

algebras have been found for discrete groups [K-K, Haa, BKKO].

On the other hand, C∗-simplicity of non-discrete locally compact groups is

not well understood compared to that of discrete groups. The existence of a non-

discrete example of a C∗-simple group was questioned by de la Harpe [Har], and

Suzuki constructed the first example of it [Su1]. As of today, some examples have

been found in [Su1, Su2, R2]. By using the construction in [Su1], Raum [R2]
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showed the relative profinite completion of the Baumslag–Solitar group BS(n,m)

is C∗-simple if |n|, |m| ≥ 2. Our main result is a generalization of that. The

Baumslag–Solitar group BS(n,m) is generated by two elements a, t with a rela-

tion tamt−1 = an, and it has a natural action on a tree whose vertex stabilizers

and edge stabilizers are isomorphic to Z. Generally, groups with such actions on

trees are called generalized Baumslag–Solitar groups. In this article, we show C∗-

simplicity of the closures of generalized Baumslag–Solitar groups in the topology

of the automorphism groups on trees. Because every locally compact C∗-simple

group is totally disconnected [R1], it is natural to consider C∗-simplicity for closed

subgroups of automorphism groups on trees.

For discrete groups, Haagerup [Haa] and Kennedy [Ke] proved that a group

Γ is C∗-simple if and only if it has the Powers averaging property, that is, for any

element a in the reduced group C∗-algebra C∗
r (Γ) with the canonical trace τ , τ(a) is

approximated by elements in the convex hull of the set {λsaλs∗ ∈ C∗
r (Γ) | s ∈ Γ}.

In the proof of our main theorem, we focus on the canonical conditional expectation

EK from the reduced group C∗-algebra C∗
r (G) of a totally disconnected group G

onto the C∗-subalgebra C∗
r (K) and the averaging projection pK corresponding to

a compact open subgroup K of G. The following condition can be confirmed in a

direct way.

Lemma (Lemma 3.1). Let (Kν)ν∈N be a decreasing net of compact open sub-

groups of G and (Aν)ν∈N be an increasing net of C∗-subalgebras of C∗
r (G) with⋂

ν Kν = {e} and
⋃
ν Aν = C∗

r (G). If every conditional expectation Eν := EKν
and averaging projection pν := pKν satisfy the following conditions, then G is

C∗-simple:

(1) pν ∈ Aν .

(2) For any ε > 0 and self-adjoint element x ∈ Aν , there are g1, g2, . . . , gn ∈ G

such that∥∥∥∥ 1n
n∑
i=1

λgi(x− Eν(x))λ
∗
gi

∥∥∥∥ < ε,

∥∥∥∥pν − 1

n

n∑
i=1

λgipνλ
∗
gi

∥∥∥∥ < ε.

Moreover, if Ccc(G) ⊂
⋃
ν Aν , and each g1, g2, . . . , gn can be taken in the kernel of

the modular function on G, then the Plancherel weight is a unique σφ-KMS-weight

on C∗
r (G) up to a scalar multiple.

The assumption of the above lemma is an analogue of the Powers averaging

property with respect to conditional expectations, and not only groups in our

main theorem, but also two kinds of non-discrete C∗-simple groups constructed by

Suzuki [Su1, Su2] satisfy it.
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§2. Preliminaries

§2.1. Weights on C∗-algebras

Let A be a C∗-algebra and A+ be the set of positive elements in A. A map ψ : A+ →
[0,∞] is called a weight on A, if for any x, y ∈ A+ and r > 0, we have

ψ(x+ y) = ψ(x) + ψ(y), ψ(rx) = rψ(x).

For a weight ψ on A, we set

m+
ψ :=

{
x ∈ A+ | ψ(x) <∞

}
,

nψ :=
{
y ∈ A | y∗y ∈ m+

ψ

}
,

mψ := n∗ψnψ = spanCm
+
ψ ,

as in [R1, Def. 2.17]. This nψ is a left ideal of A and this mψ is a subalgebra of

A. There is a linear functional from mψ to C, which is an extension of ψ|m+
ψ
. We

say that ψ is densely defined if mψ is dense in A. In this article, we suppose that

every weight ψ is non-zero, lower semi-continuous, and densely defined.

2.1.1. KMS-weights. For a continuous one-parameter group (σt)t∈R of ∗-auto-
morphisms of A, the set of analytic elements is dense in A. (See [Ku, Sect. 1].) A

weight ψ is called a σ-KMS-weight if

ψ ◦ σt = ψ, ψ(x∗x) = ψ(σ i
2
(x)σ i

2
(x)∗)

for all t ∈ R and analytic elements x ∈ A. (See [R1, Sect. 2.6.3].)

The following proposition holds.

Proposition 2.1 ([R1, Prop. 2.24]). Let (σt)t∈R be a one-parameter group of ∗-
automorphisms on a C∗-algebra A, and ψ be a σ-KMS-weight. Any analytic ele-

ments x, y ∈ nψ ∩ n∗ψ satisfy ψ(xy) = ψ(yσ−i(x)).

§2.2. Reduced group C∗-algebras

In this article, let G be a locally compact group with a left Haar measure µ and

λ be a left regular representation on a Hilbert space L2(G) := L2(G,µ). The

representation λ extends to a ∗-representation of Cc(G) on B(L2(G)) as follows.

For every ξ ∈ L2(G), f ∈ Cc(G), and g ∈ G, we have

λ(f)ξ(g) :=

∫
G

f(h)ξ(h−1g) dµ(h).

The reduced group C∗-algebra C∗
r (G) of G is the norm closure of λ(Cc(G)).
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2.2.1. Averaging projections. If K is a compact open subgroup of G, a pro-

jection

pK := λ
( 1

µ(K)
χK

)
induced by an indicator function χK ∈ Cc(G) of K is called the averaging projec-

tion. (See [R1, Sect. 2.6.2] and [Su2, Sect. 2].) These averaging projections satisfy

pK ≥ pL for any compact open subgroups K, L with K ⊂ L, since pK is the

orthogonal projection onto the subspace of λ(K)-fixed points in L2(G). When G

is totally disconnected, a family Ω of compact open subgroups of G generate a

neighborhood basis of e ∈ G, and {pK}K∈Ω give approximate units of C∗
r (G).

2.2.2. Conditional expectations. For an open subgroup H of G, we may iden-

tify C∗
r (H) with the C∗-subalgebra of C∗

r (G) generated by λ(Cc(H)). It is well

known that the restriction map EK : Cc(G) → Cc(H) extends to a faithful condi-

tional expectation from C∗
r (G) onto C∗

r (H). (See [B-O, Sect. 2.5].) This conditional

expectation is also denoted by EK in this article.

2.2.3. The Plancherel weight. Let ∆ be the modular function of G. The mod-

ular flow (σφt )t∈R on C∗
r (G) is defined as

σφt (f)(g) := ∆(g)itf(g),

for any f ∈ Cc(G) and g ∈ G. The map φ : Cc(G) ∋ f 7→ f(e) ∈ C extends to a σφ-

KMS-weight on C∗
r (G). (See [R1, Sect. 2.6.2].) This is a restriction of the Plancherel

weight on the group von Neumann algebra L(G) (see [Ta] for a definition), which

is also called the Plancherel weight. When G is totally disconnected, for a set Ω

of all compact open subgroups in G, we set a subalgebra

Ccc(G) :=
⋃
K∈Ω

pKCc(G)pK

of C∗
r (G) as in [Su2, Sect. 4]. The following propositions about general σφ-KMS-

weights are known. We assume that G is a totally disconnected group and (σφt )t∈R
is a modular flow on C∗

r (G) in the following propositions.

Proposition 2.2 ([Su2, Sect. 44]). If ψ is a σφt -KMS-weight on C∗
r (G), then

Ccc(G) ⊂ mψ.

Proposition 2.3 ([R1, Lem. 42.23], [Su2, proof of Thm. 44.1]). If a σφt -KMS

weight ψ on C∗
r (G) satisfies ψ(λgpK) = 0 for all g ∈ G \ K and compact sub-

groups K, then 1
ψ(pK)µ(K)ψ is the Plancherel weight on C∗

r (G) for any compact

open subgroup K.
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§2.3. Constructions of non-discrete C∗-simple groups

In this subsection we explain two ways to construct non-discrete examples of C∗-

simple groups, which were found by Suzuki [Su1, Su2].

The first examples are constructed by the following proposition.

Proposition 2.4 ([Su1, Prop. ]). Let G be a locally compact group. Assume we

have a decreasing sequence (Kn)
∞
n=1 of compact open subgroups of G and an

increasing sequence (Ln)
∞
n=1 of clopen subgroups of G with the following properties:

� Each Ln contains Kn and normalizes it.

� The quotient groups Ln/Kn are C∗-simple.

� The intersection
⋂∞
n=1Kn is the trivial subgroup {e}.

� The union
⋃∞
n=1 Ln is equal to G.

Then G is C∗-simple and has the unique trace property.

The proposition above shows C∗-simplicity of locally compact groups like

(
⊕∞

n=1 Γn) ⋊
∏∞
n=1 Fn. (See [Su1, Thm.].) Here, Fn are isomorphic to Z2 and

discrete groups Γn with Z2 actions are induced by the splitting short exact sequence

0 // Γn // Z ∗ Z2
// Z2

//oo 0.

The second construction is established in [Su2, Sect. 3]. For a totally discon-

nected group G and the set Ω of all compact open subgroups of G, let Υn, n ∈ N,
be pairwise distinct copies of the group⊕

K∈Ω

⊕
G/K

Z2,

equipped with a G action induced by the left translation action on G/K. Similarly,

let Ξn, n ∈ N, be pairwise distinct copies of Z with the trivial G-action. Set

Γ1 := Υ1, Λ1 := Γ1 ∗ Ξ1,

Γn+1 := Λn ×Υn+1, Λn+1 := Γn+1 ∗ Ξn+1,

for all n ∈ N. Define Λ to be the inductive limit of the sequence,

Γ1 < Λ1 < Γ2 < Λ2 < · · ·

of discrete groups with canonical G actions, and set

G := Λ⋊G.

The following theorems hold.
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Theorem 2.5 ([Su2, Thm. 43.1]). The locally compact group G is C∗-simple.

Theorem 2.6 ([Su2, Thm. 44.1]). Up to scalar multiple, the Plancherel weight φ

is the only σφ-KMS weight on C∗
r (G). When G is non-unimodular, there is no

tracial weight on C∗
r (G).

§2.4. Graphs of groups

In this subsection we introduce the basic notation for graphs of groups and their

fundamental groups. We use the same notation and definitions as in [Se, H-P].

Let X be a connected graph with a vertex set V (X) and an edge set E(X) ⊂
V (X)× V (X). For an edge x ∈ E(X), vertices o(x) and t(x) denote the origin

and the terminus of x. We write y = x̄ when edges x and y satisfy o(x) = t(y) and

o(y) = t(x). In this article, every edge x ∈ E(X) has x̄ ∈ E(X) for every graph X.

An orientation A of X is a subset of E(X) containing exactly one of x, x̄. When

X is a graph with orientation A, we define the function e : E(X) → {0, 1} as

e(x) :=

{
0, x ∈ A,

1, x̄ ∈ A.

Definition 2.7 ([H-P, Sect. 44]). A graph of groups (G, Y ) consists of the follow-

ing:

� a non-empty connected graph Y ;

� two families of groups (GP )P∈V (Y ) and (Gy)y∈E(Y ) with Gy = Gȳ for all

y ∈ E(Y );

� a family of monomorphisms {ιy : Gy → Gt(y)}y∈E(Y ).

2.4.1. The group F (G, Y ). We define the group F (G, Y ) for a graph of groups

(G, Y ) as follows. (See [Se, Sect. 5.1].) Let Γ be the free product of the vertex

groups (GP )P∈V (Y ) and the free group with basis E(Y ). The group F (G, Y ) is the

quotient of Γ by the normal subgroup generated by

yȳ and yιy(a)y
−1(ιȳ(a))

−1

for all y ∈ E(Y ) and a ∈ Gy.

2.4.2. Words of type c. Let c = {y1, y2, . . . , yn} be a path of Y , where y1, y2,

. . . , yn are edges of Y with t(yi) = o(yi+1). For a sequence µ = (r0, r1, . . . , rn) of

elements r0 ∈ Go(y1) and ri ∈ Gt(yi), the element

r0y1r1y2 · · · ynrn

of F (G, Y ) is said to be associated with the word (c, µ) and denoted by |c, µ|. (See
[Se, Def. 9].)
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A pair (c, µ) is called reduced if either of the following holds:

� The length n of c is not equal to 0 and ri−1 /∈ ιȳi(Gyi) for every index i with

yi = ȳi−1.

� The length n = 0 and r0 ̸= 0.

When (c, µ) is reduced, we have |c, µ| ≠ e. (See [Se, Thm. 11].)

2.4.3. The fundamental groups π1(G, Y ). Let P0 be an element of V (Y ).

The group π1(G, Y, P0) is a subgroup of F (G, Y ) generated by the set of elements

|c, µ| of closed paths c from P0 to P0. This is called the fundamental group of

(G, Y ) at P0. (See [Se, Sect. 5.1].)

Let T be a maximal subtree of Y . The fundamental group π1(G, Y, T ) of

(G, Y ) at T is the quotient of F (G, Y ) by the normal subgroup generated by the

set of edges of T . In π1(G, Y, T ), the element induced by y ∈ E(Y ) is denoted by

gy. (See [Se, Sect. 5.1].)

The following proposition holds.

Proposition 2.8 ([Se, Prop. 420]). For any maximal subtree T of Y and P0 ∈
V (Y ), the canonical inclusion iP0

: π1(G, Y, P0) → F (G, Y ) and the canonical quo-

tient map qT : F (G, Y ) → π1(G, Y, T ) induce an isomorphism of π1(G, Y, P0) onto

π1(G, Y, T ).

This proposition shows that the isomorphism classes of π1(G, Y, P0) and

π1(G, Y, T ) are independent of the choice of P0 and T . Thus we write π1(G, Y )

instead of π1(G, Y, P0) or π1(G, Y, T ) if no confusion arises. When c is a closed

path of Y , we have qT (|c, µ|) ̸= e for a reduced form (c, µ). (See [Se, Cor. 3].)

Example 2.9 (Amalgamated free products). If a connected graph Y consists of

two vertices {P,Q} and two edges {y, ȳ}, then the fundamental group π1(G, Y )

is isomorphic to the amalgamated free product GP ∗Gy GQ with respect to the

inclusions ιy and ιȳ. (See [Se, Sect. 1.2] for the definition.) In this case, every

element g ∈ GP ∗Gy GQ \ {e} has a form

g = a1a2 · · · anc with ai ∈ (GP \ ιy(Gy)) ∪ (GQ \ ιȳ(Gy)), c ∈ Gy.

In addition, the sequence (a1, a2, . . . , an, c) can be chosen as follows:

� When n = 0, this c is not equal to e.

� We have ai+1 ∈ GP \ ιy(Gy) if and only if ai ∈ GQ \ ιȳ(Gy) for any i.

Generally, a sequence (a1, a2, . . . , an, c) of words of an amalgamated free product

is said to be reduced if the above conditions hold. Since every sequence of reduced
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words of GP ∗Gy GQ corresponds to a reduced form (c, µ) of (Y,G), an element

g ∈ GP ∗Gy GQ induced by reduced words is not equal to e.

Example 2.10 (HNN extensions). If a graph Y consists of one vertex P and two

edges of loops {y, ȳ}, then the fundamental group π1(G, Y ) is isomorphic to the

HNN extension GP ∗θ with respect to the canonical isomorphism θ from ιy(Gy) to

ιȳ(Gy). (See [Se, Sect. 1.4] for the definition.) Every element g ∈ GP ∗θ \{e} has

the form

g = a0t
ε1a1t

ε2a2 · · · tεnan
with ai ∈ GP , εi ∈ {1,−1}, and the stable letter t of the HNN extension. We can

take these ai and εi as follows:

� If n = 0, then a0 ̸= e.

� If an index i satisfies (εi−1, εi) = (1,−1), then ai−1 /∈ ιy(Gy).

� If an index i satisfies (εi−1, εi) = (−1, 1), then ai−1 /∈ ιȳ(Gy).

Generally, a sequence (a0, t
ε1 , a1, t

ε2 , a2, . . . , t
εn , an) of an HNN-extension is called

reduced words if the above conditions hold. For the same reasons as for amalga-

mated free products, if g ∈ GP ∗θ is induced by reduced words, then g ̸= e.

2.4.4. The universal covering. Fix a maximal subtree T of Y and an orien-

tation A ⊂ E(Y ) of Y . For every P ∈ V (Y ), GP is a subgroup of π1(G, Y, T )

in a natural way. The universal covering X̃ := X̃(G, Y, T ) of (G, Y, T ) is a graph

with a vertex set V (X̃) :=
⊔
p∈V (Y ) π1(G, Y, T )/GP and an edge set E(X̃) :=⊔

y∈E(Y ) π1(G, Y, T )/ιy(Gy), where

o(gιy(Gy)) = gge(y)y Go(y), t(gιy(Gy)) = gg1−e(y)y Gt(y)

for any g ∈ π1(G, Y, T ) and y ∈ E(Y ). This X̃ has an action of π1(G, Y, T ) induced

by the left multiplication. It is known that the universal covering X̃ is a tree. (See

[Se, Thm. 12].)

§3. C∗-simplicity and the Powers averaging property for

conditional expectations

In this section we suppose that G is a totally disconnected locally compact group

and σφ is the modular flow. First, we give a sufficient condition for C∗-simplicity

of G.

Lemma 3.1. Let (Kν)ν∈N be a decreasing net of compact open subgroups of G

and (Aν)ν∈N be an increasing net of C∗-subalgebras of C∗
r (G) with

⋂
ν Kν = {e}
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and
⋃
ν Aν = C∗

r (G). If every conditional expectation Eν := EKν and averaging

projection pν := pKν satisfy the following conditions, then G is C∗-simple:

(1) The averaging projection pν is in Aν .

(2) For any ε > 0 and self-adjoint element x ∈ Aν , there are g1, g2, . . . , gn ∈ G

such that∥∥∥∥ 1n
n∑
i=1

λgi(x− Eν(x))λ
∗
gi

∥∥∥∥ < ε,

∥∥∥∥pν − 1

n

n∑
i=1

λgipνλ
∗
gi

∥∥∥∥ < ε.

Moreover, if Ccc(G) ⊂
⋃
ν Aν , and each g1, g2, . . . , gn can be taken in the kernel of

the modular function on G, then the Plancherel weight is a unique σφ-KMS-weight

on C∗
r (G) up to a scalar multiple.

Proof. Let I be a non-zero norm closed two-sided ideal of C∗
r (G). To prove C∗-

simplicity of G, it suffices to show that the averaging projection pν is in I for

sufficiently large ν, since the net (pν)ν gives approximate units of C∗
r (G).

Since
⋃
ν Aν ∩ I ̸= 0, we can take a positive element x ∈

⋃
ν Aν ∩ I. There is

ν0 ∈ N such that pνxpν ̸= 0 and x ∈ Aν ∩ I for any ν ≥ ν0. Fix ν ≥ ν0 and we

show pν ∈ I. Let φ be the Plancherel weight with respect to the left Haar measure

µ. We may assume φ(x) = 1
µ(Kν)

and x = pνxpν by replacing a positive element

x ∈ Aν ∩ I. Since Eν(y) = µ(Kν)φ(y)pν holds for any y ∈ pν C
∗
r (G)pν , we have

Eν(x) = pν .

By using assumption (2) of the lemma, for ε > 0 we choose g1, g2, . . . , gn ∈ G

satisfying ∥∥∥∥ 1n
n∑
i=1

λgi(x− Eν(x))λ
∗
gi

∥∥∥∥ < ε,

∥∥∥∥pK − 1

n

n∑
i=1

λgipνλ
∗
gi

∥∥∥∥ < ε.

Thus ∥∥∥∥pν − 1

n

n∑
i=1

λgixλ
∗
gi

∥∥∥∥ < 2ε.

Since I is a norm closed ideal, we get pν ∈ I.

Next we show the uniqueness of a σφ-KMS-weight. Let ψ be a σφ-KMS-

weight, L be a compact open subgroup of G, and s ∈ G \ L. By Proposition 2.3,

it suffices to show that ψ(λspL) = 0. We prove this equation in the same way as

in [Su2, proof of Thm. 4.1]. Set x1 := pLλspL + pLλs−1pL. We can take ν ∈ N

with Kν ⊂ L and x1 ∈ Aν . For ε > 0, we have g1, g2, . . . , gn in the kernel of the

modular function with∥∥∥∥ 1n
n∑
j=1

λgjx1λ
∗
gj

∥∥∥∥ < ε,

∥∥∥∥pν − 1

n

n∑
j=1

λgjpνλ
∗
gj

∥∥∥∥ < ε,

since Eν(x1) = 0.
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Set

y :=
1

n

n∑
j=1

pνλ
∗
gjpνλgjpν ∈ pνCc(G)pν ;

then

|ψ(pν − y)| =
∣∣∣∣ψ(pν − 1

n

n∑
j=1

pνλgjpνλ
∗
gjpν

)∣∣∣∣ < ψ(pν)ε.

The equation above follows from the KMS-condition of ψ, since σφ−i(pνλgjpν) =

pνλgjpν . Similarly,

|ψ(yx1)| =
∣∣∣∣ψ( 1

n

n∑
j=1

pνλgjx1λ
∗
gjpν

)∣∣∣∣ < ψ(pν)ε.

Therefore, we get

|ψ(x1)| ≤ |ψ((pν − y)x1)|+ |ψ(yx1)|

≤
√
ψ(pν − y)

√
ψ(x∗1(pν − y)x1) + |ψ(yx1)|

< 2ψ(pν)
√
ε+ ψ(pν)ε,

since pν−y ≥ 0 and ψ is a positive functional on pν C
∗
r (G)pν . The above inequality

holds for every ε > 0, then ψ(x1) = ψ(pLλspL+pLλs−1pL) = 0. Similarly, we have

ψ(ipLλspL − ipLλs−1pL) = 0, then ψ(λspL) = ψ(pLλspL) = 0.

Example 3.2. When G is a C∗-simple group in Proposition 2.4, the averaging

projection pKn is a central projection of C∗
r (Ln) with C∗

r (Ln)pKn
∼= C∗

r (Ln/Kn).

By this isomorphism, the canonical trace of C∗
r (Ln/Kn) corresponds to the restric-

tion of EKn on C∗
r (Ln)pKn . Since Ln/Kn is a discrete C∗-simple group, for any

x ∈ C∗
r (Ln)pKn and ε > 0 there are g1, g2, . . . , gm ∈ Ln such that the inequality∥∥∥∥ 1

m

m∑
j=1

λgj (x− EKn(x))λ
∗
gj

∥∥∥∥ =

∥∥∥∥ 1

m

m∑
j=1

λgjxλ
∗
gj − EKn(x)

∥∥∥∥ < ε

holds by [Haa, Thm. 4.5].

The increasing union
⋃
nC

∗
r (Ln)pKn is a dense ∗-subalgebra of C∗

r (G) contain-

ing Ccc(G) and G is unimodular. Thus G satisfies the assumptions of Lemma 3.1.

Example 3.3. Suppose that the discrete group Λ and the C∗-simple group G :=

Λ ⋊ G for a totally disconnected group G are defined as in Theorem 2.5. Let K

be a compact open subgroup of G, and g1, g2, . . . , gl be elements in G \K. Since

G =
⋃
n Λn ⋊ G, we may assume g1, g2, . . . , gl ∈ ΛN−1 ⋊ G for some N . Each gi

has the form gi = sihi, where si is in ΛN−1, hi is in G. Let (δgK)gK∈G/K be the
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canonical generators of
⊕

G/K Z2 ≤ ΥN =
⊕

K∈Ω

⊕
G/K Z2. For every i, we have

δKgiδ
−1
K = siδKδ

−1
hiK

hi and s′i := siδKδ
−1
hiK

̸= e, because every i satisfies either

si ̸= e or hi /∈ K. Since Λ has the subgroup ΓN ∗ΞN ∗ΞN+1 and s′i ∈ ΓN , for any

ε > 0 there are t1, t2, . . . , tm ∈ ΞN ∗ ΞN+1 such that∥∥∥∥ 1

m

m∑
j=1

λΛ
tjs′it

−1
j

∥∥∥∥ < ε

l

for all i (see [P-S, proof of Lem. 1.2]), where λΛ is the left regular representation

of Λ. The Hilbert space L2(G) is isomorphic to l2(Λ)⊗ L2(G) and the restriction

of λG on Λ is unitary equivalent to λΛ ⊗ 1. Since (tj)j and δK commute with K,

they are in the kernel of the modular function. Moreover, we get∥∥∥∥ 1

m

m∑
j

λGtjδK

( l∑
i

pKλ
G
gipK

)
(λGtjδK )

∗
∥∥∥∥ =

∥∥∥∥ l∑
i

pK

(
1

m

m∑
j=1

λG
tjs′it

−1
j

)
λGhipK

∥∥∥∥ < ε

and

pK =
1

m

m∑
j

λGtjδKpKλ
G∗
tjδK

.

Therefore, G satisfies the assumption of Lemma 3.1 for the net (Kν)ν of all compact

open subgroups of G and the net (pKν C
∗
r (G)pKν )ν of C∗-subalgebras of C∗

r (G).

§4. Generalized Baumslag–Solitar groups and their completions

In this section let (G, Y ) be a graph of groups with a connected graph Y , vertex

groups {GP }P∈V (Y ), edge groups {Gy}y∈E(Y ), and monomorphisms {ιy : Gy →
Gt(y)}y∈E(Y ). We suppose that θy is a canonical isomorphism from ιy(Gy) to

ιȳ(Gy) for any y ∈ E(Y ). Let y be an edge of Y and W be a subgraph of Y ,

with E(W ) := E(Y ) \ {y, ȳ} and V (W ) := V (Y ). Since Y is connected, W is

either connected or decomposed into a disjoint union of two non-empty connected

graphs W1 and W2.

Lemma 4.1. The following statements hold:

(a) If W is connected, then π1(G, Y ) is isomorphic to the HNN extension

π1(G|W ,W )∗θy , where (G|W ,W ) is a graph of groups with edge groups

{Gw}w∈E(W )(=E(Y )\{y,ȳ}) and vertex groups {GP }P∈V (W )(=V (Y )).

(b) If W is disconnected, then π1(G, Y ) is isomorphic to the amalgamated free

product π1(G|W1 ,W1)∗Gy π1(G|W2 ,W2), where (G|Wi ,Wi) is a graph of groups

with edge groups {Gw}w∈E(Wi)(⊂E(Y )) and vertex groups {GP }P∈V (Wi)(⊂V (Y )).
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Proof. First we suppose W is connected. By definition of HNN extensions, there

is the natural isomorphism f : F (G, Y ) → F (G|W ,W )∗θy , where F (G, Y ) and

F (G|W ,W ) are groups defined in Section 2.4.1. Put P0 := o(y) and take a maximal

subtree T of Y with y /∈ E(T ); then the commutative diagram

π1(G, Y, P0)
� � iY //

f |
��

F (G, Y )
qY // //

f

��

π1(G, Y, T )

f̄

��

π1(G|W ,W, P0)∗θy �
� (iW )∗θy

// F (G|W ,W )∗θy
(qW )∗θy

// // π1(G|W ,W, T )∗θy

holds, where iY , iW are the canonical injections and qY , qW are the canonical

quotient maps as in Proposition 2.8. By Proposition 2.8, q1 ◦ i1 and q2 ◦ i2 are

isomorphisms. Since f is an isomorphism, the induced maps f | and f̄ are isomor-

phisms.

Next, let W be disconnected. We define a graph of groups (H,W ′) as follows.

The graphW ′ consists of two edges {y, ȳ} and two vertices {P1 := o(y), P2 := t(y)}.
The edge group and the vertex groups of (H,W ′) are defined as

Hy := Gy, HP1
:= F (G|W1

,W1), HP2
:= F (G|W2

,W2).

By using [Se, Lem. 6] repeatedly, we get the natural isomorphism g : F (G, Y ) →
F (H,W ′). Fix a maximal subtree T of Y ; then T1 := T ∩ Y1 and T2 := T ∩ Y2
are the maximal subtrees of Y1 and Y2. Since π1(H,W

′,W ′) is isomorphic to

F (G|W1 ,W1) ∗Gy F (G|W2 ,W2), there is a commutative diagram

F (G, Y )
qY // //

g

��

π1(G, Y, T )

ḡ

++
F (H,W ′)

qW ′
// // F (G|W1

,W1)∗GyF (G|W2
,W2)

q
// // π1(G|W1

,W1,T1)∗Gyπ1(G|W2
,W2,T2),

with q := qW1
∗Gy qW2

. Define a subgroup F ′ of F (H,W ′) as

F ′ :=
{
|c, µ|∈F (H,W ′)

∣∣ (c, µ) is a word of (H,W ′),

c is a closed path of W ′ beginning with P1,

µ is a sequence of π1(G|W1
,W1, P1)∪π1(G|W2

,W2, P2)
}
.

This F ′ satisfies g(π1(G, Y, P1)) ⊂ F ′ and the restriction of q ◦ qW ′ on F ′ is an

isomorphism. That is because F ′ is isomorphic to the fundamental group of the

graph of groups (H ′,W ′) whose vertex groups and edge groups are

H ′
y := Gy, H ′

P1
:= π1(G|W1

,W1, P1), H ′
P2

:= π1(G|W2
,W2, 22).
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Since the commutative diagram

π1(G, Y, P0)
� � iY //

g|
��

F (G, Y )
qY // //

g

��

π1(G, Y, T )

ḡ

��

F ′ � � // F (H,W ′)
q◦qW ′

// // π1(G|W1
,W1, T1) ∗Gy π1(G|W2

,W2, T2)

holds, ḡ is an isomorphism.

Definition 4.2. The fundamental group π1(G, Y ) is called a generalized Baums-

lag–Solitargroup if the edge groups{Gy}y∈E(Y ) and the vertex groups{GP }P∈V (Y )

are isomorphic to Z.

Suppose that (G, Y ) is a graph of groups whose edge groups and vertex groups

are isomorphic to Z and Y consists of one vertex P and two edges y, ȳ. If [GP :

ιȳ(Gy)] = n and [Go(y) : ιy(Gy)] = m, then the generalized Baumslag–Solitar

group π1(G, Y ) is isomorphic to the Baumslag–Solitar group BS(n,m).

Let (G, Y ) be a general graph of groups whose edge groups and vertex groups

are isomorphic to Z. Suppose T is a maximal subtree of Y . For a geodesic path c ⊂
T from P toQ, we define the integer kc as follows. Suppose that c := (y1, y2, . . . , yl),

[Go(yi) : ιȳi(Gyi)] = ni, and [Gt(yi) : ιyi(Gyi)] = mi. Set k1 := m1 and ki :=
ki−1mi
(ki−1,ni)

for any 1 ≤ i ≤ l, where (ki−1, ni) is the greatest common divisor of ki−1

and ni. We put kc := kl for a geodesic path c with length l ̸= 0 and kc := 1 for a

path c with length 0. By a direct computation, we get [Gt(yl) : Gt(yl)∩Go(y1)] = kc
and [Go(y1) : Gt(yl) ∩Go(y1)] = kc̄ in π1(G, Y, T ), where c̄ := (ȳl, ȳl−1, . . . , ȳ1).

In addition, if y is an edge of Y with [Go(y) : ιȳ(Gy)] = n and [Gt(y) :

ιy(Gy)] = m, then there is the geodesic path c ⊂ T from o(y) to t(y). The relative

order [Go(y) : ιȳ(Gy)∩ιy(Gy)] in π1(G, Y, T ) can be computed as the least common

multiple k′ȳ of n and kc̄m
(m,kc)

. We define κȳ :=
k′ȳ
n ; then we have [ιȳ(Gy) : ιȳ(Gy) ∩

ιy(Gy)] = κȳ in π1(G, Y, T ).

By using above notation, we state our main theorem as follows.

Theorem 4.3. Let T be a maximal subtree of Y and π1(G, Y, T ) be the closure

of π1(G, Y, T ) in the automorphism group of the universal covering X̃(G, Y, T ).

If (G, Y, T ) satisfies the following conditions, then π1(G, Y, T ) is a non-discrete

locally compact C∗-simple group:

� The graph Y is not a tree.

� Every edge group and vertex group of (G, Y ) is isomorphic to Z.
� There is an edge y ∈ E(Y ) \ E(T ) such that κȳ ̸= κy.

� For any edge z of Y , ιz(Gz) is a proper subgroup of Gt(z).
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Moreover, the reduced group C∗-algebra C∗
r (π1(G, Y, T )) has a unique KMS-weight

with respect to the modular flow.

In the case of Baumslag–Solitar groups, the following are known (see [R2]):

� BS(n,m) is discrete if and only if |n| = |m|.
� BS(n,m) is C∗-simple if and only if |n|, |m| ≠ 1.

In Theorem 4.3, the third condition corresponds to |n| ̸= |m| and the fourth

condition corresponds to |n|, |m| ≠ 1.

From now on, we fix the graph of groups (G, Y ), the maximal subtree T of

Y , and y ∈ E(Y ) \ E(T ) which satisfy the assumptions in Theorem 4.3. In order

to prove Theorem 4.3, we prepare some lemmas as follows.

Lemma 4.4. The action of π1 := π1(G, Y, T ) on the universal covering X̃ :=

X̃(G, Y, T ) is faithful.

Proof. Suppose that g ∈ π1 acts trivially on X̃. It suffices to show g = e. Since left

multiplication of g preserves all elements of V (X̃) = ⊔π1/GP , we have gny gg
−n
y ∈

Go(y) ∩Gt(y) for all n ∈ Z≥0. Let W be a connected subgraph of Y with V (W ) :=

V (Y ), E(W ) := E(Y ) \ {y, ȳ}. By Lemma 4.1, π1 has the structure of an HNN

extension and gy corresponds to the stable letter. Therefore, we get

g ∈ Gt(y) and gny gg
−n
y ∈ ιy(Gy) ∩ ιȳ(Gy)

for every n ∈ Z≥0. Since all edge groups of Y are isomorphic to Z, we can take

the free generators a of ιy(Gy) and b of ιȳ(Gy) with gyag
−1
y = b. Take the integers

N,M ∈ Z>0 with ιy(Gy) ∩ ιȳ(Gy) = ⟨aN ⟩ = ⟨bM ⟩; then N ̸= M holds because of

the assumption κy ̸= κȳ. By replacing y by ȳ, we may assume | M
(N,M) | ̸= 1. We

show

⟨a⟩ ∩ g−ny (ιy(Gy) ∩ ιȳ(Gy))gny =
〈
a(N,M)| M

(N,M)
|n〉

for any n. The inclusion ⟨a⟩∩g−ny (ιy(Gy)∩ιȳ(Gy))gny ⊃ ⟨a(N,M)| M
(N,M)

|n⟩ follows by
a straightforward computation. We prove the converse inclusion by using induction.

When n = 1, it is trivial. We assume that the above equation holds for n0 ≥ 1

and take h′ ∈ ⟨a⟩ ∩ g−n0−1
y (ιy(Gy) ∩ ιȳ(Gy))gn0+1

y . Set h := gn0+1
y h′g−n0−1

y ; then

we have h ∈ ιy(Gy)∩ ιȳ(Gy) and g−n0−1
y hgn0+1

y ∈ ⟨a⟩. Since gy is the stable letter,

g−n0
y hgn0

y is in ιy(Gy) ∩ ιȳ(Gy) = ⟨aN ⟩. By the induction hypothesis, we get

g−n0
y hgn0

y ∈
〈
a(N,M)| M

(N,M)
|n0 〉 ∩ ⟨aN ⟩ =

〈
a(N,M)| M

(N,M)
|n0 | N

(N,M)
|〉

=
〈
b(N,M)| M

(N,M)
|n0+1〉

.
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Then h′ = g−n0−1
y hgn0+1

y ∈ ⟨a(N,M)| M
(N,M)

|n0+1

⟩. Thus ⟨a⟩∩g−ny (ιy(Gy)∩ιȳ(Gy))gny
= ⟨a(N,M)| M

(N,M)
|n⟩ holds for any n. Since gny gg

−n
y ∈ ιy(Gy) ∩ ιȳ(Gy) for every

n ∈ Z≥0, we have g = e.

From now on, we put π1 := π1(G, Y, T ) and X̃ := X̃(G, Y, T ) as used in

Lemma 4.4. Let Aut(X̃) be the automorphism groups of X̃. We suppose that Γ

is the closure of Γ in Aut(X̃) for any subset Γ ⊂ π1. For g ∈ π1 and P ∈ V (Y ),

the subgroup of Aut(X̃) which stabilizes gGP ∈ V (X̃) is denoted by Stab(gGP ).

If w ∈ E(Y ), then there is a subgraph W of Y with V (W ) = V (Y ) and E(W ) =

E(Y ) \ y, ȳ. We use the letter Y \ {y} for this W .

Lemma 4.5. For any P ∈ Y , the family of finite intersections of {π̄1 ∩
Stab(gGP )}g∈π1

gives a neighborhood basis of e in π̄1.

Proof. By definition of π̄1, the family of finite intersections of the sets {π̄1 ∩
Stab(gGQ) | g ∈ π1, Q ∈ V (Y )} is a neighborhood basis of e. Thus it suf-

fices to show that for any g ∈ π1 and Q ∈ V (Y ), there are g1, g2, . . . , gn ∈ π1 with⋂n
i=1 π̄1 ∩ Stab(giGP ) ⊂ π̄1 ∩ Stab(gGQ).

First we assume there is an edge w such that o(w) = P and t(w) = Q. Fix

g ∈ π1. When the graph Y \ {w} is disconnected, there are subgraphs W1 and W2

with π1(G|W1 ,W1) ∗Gw π1(G|W2 ,W2) ∼= π1 as in Lemma 4.1. Suppose P = o(w) ∈
V (W1) and Q = t(w) ∈ V (W2). We can take b ∈ GQ\ιw(Gw) ⊂ π1(G|W2

,W2). For

any h ∈ π1, if g
−1hg ∈ GP and b−1g−1hgb ∈ GP hold, then g−1hg ∈ Gw ⊂ GQ.

Thus we have

π1 ∩ Stab(gGP ) ∩ Stab(gbGP ) ⊂ π1 ∩ Stab(gGQ).

By taking closures, we get π̄1∩Stab(gGP )∩Stab(gbGP ) ⊂ π̄1∩Stab(gGQ) since

stabilizers are clopen subgroups of Aut(X̃).

When the graph W = Y \ {w} is connected, we have π1(G|W ,W )∗θw ∼= π1.

Thus for any h ∈ π1, if g
−1hg ∈ GP and gwg

−1hgg−1
w ∈ GP hold, then g−1hg ∈

ιw(Gw). We get

π1 ∩ Stab(gGP ) ∩ Stab(gg−1
w GP ) ⊂ π1 ∩ Stab(gGQ).

This leads to π̄1 ∩ Stab(gGP ) ∩ Stab(gg−1
w GP ) ⊂ π̄1 ∩ Stab(gGQ).

For a general Q, there is a geodesic path from P to Q in Y . By using the

same argument repeatedly, we get g1, g2, . . . , gn ∈ π1 with
⋂n
i=1 π̄1∩Stab(giGP ) ⊂

π̄1 ∩ Stab(gGQ).

Lemma 4.6. For any P ∈ V (Y ), the closure GP is a non-discrete compact open

subgroup of π̄1.
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Proof. Since GP = π̄1 ∩ Stab(GP ), it is trivial that GP is open.

By Lemmas 4.4 and 4.5, we have
⋂
g∈π1

Stab(gGP ) ∩ π1 = {e} for any P ∈
V (Y ). Let Sπ1/GP be the topological group of all bijections from π1/GP to π1/GP .

There is the monomorphism f : π1 → Sπ1/GP given by left multiplication. This f

is continuous with respect to the relative topology of π1 induced by Aut(X̃) and

Sπ1/GP is complete. Thus f extends to a continuous homomorphism from π̄1.

By Lemma 4.5, the extension of f gives a homeomorphism from π̄1 onto f(π1).

Therefore, it suffices to show that f(GP ) ⊂ Sπ1/GP is compact.

Let a be a generator of GP and g ∈ π1. There is a word (c, µ) of (G, Y ) such

that c is a closed path from P to P and g = |c, µ|. Suppose that c = (y1, y2, . . . , yn)

and mi := [Gt(yi) : ιyi(Gyi)]. Since all vertex groups of (G, Y ) are isomorphic to

Z, we get ga(
∏n
i=1mi)g−1 ∈ GP \ {e}. Thus, for any g ∈ π1, the relative order

[GP : GP ∩ gGP g−1] is finite. By using the argument in [Tz, Sect. 4], the closure

f(GP ) ⊂ Sπ1/GP is compact.

In the proof of the compactness of GP , we have Stab(gGP ) ∩ GP =

gGP g
−1 ∩GP ̸= {e} for any g ∈ π1. Since GP is isomorphic to Z, the intersection⋂n

i=1 Stab(giGP )∩GP is not a trivial subgroup of GP for any g1, g2, . . . , gn ∈ π1.

Thus {e} is not an open subgroup of GP and GP is non-discrete.

This lemma shows that π̄1 is a non-discrete locally compact group. To prove

C∗-simplicity of π̄1, we use the following lemma, which is shown in a similar way

to [P-S, proof of Lem. 1.2].

Lemma 4.7. Let G be a totally disconnected group and K be a compact open sub-

group. If for every finite subset {g1, g2, . . . , gl} of G \K there are pairwise disjoint

subsets S1, S2, . . . , S9 of G and z1, z2, . . . , z9 ∈ G with the following conditions,

then property (2) in Lemma 3.1 holds for Aν = C∗
r (G) and Kν = K:

� Each Si satisfies KSi = Si.

� Each zi commutes with every element of K and satisfies zigjz
−1
i (G \ Si) ⊂ Si

for every gj.

Proof. Take a self-adjoint element f ∈ Cc(G \ K) ⊂ C∗
r (G). Then there are

g1, g2, . . . , gl ∈ G \K which have pairwise distinct K-double cosets and f is sup-

ported on
⋃l
j=1KgjK. We have subsets S1, S2, . . . , S9 of G and z1, z2, . . . , z9 ∈ G

which satisfy the assumptions of the lemma for g1, g2, . . . , gl. Since S1, S2, . . . , S9

are unions of K-cosets, they are clopen. We define qi as the orthogonal projection

onto L2(Si). Then we get (1 − qi)λzigjz−1
i

(1 − qi) = 0 for any i and j. Since qi
and λzi commute with {λk}k∈K , (1 − qi)λzigz−1

i
(1 − qi) = 0 holds for any i and

g ∈
⋃l
j=1KgjK. Thus the self-adjoint element f satisfies (1−qi)λzifλ∗zi(1−qi) = 0.
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Generally, if a self-adjoint operator T and a projection q on a Hilbert space H sat-

isfy (1 − q)T (1 − q) = 0, then |⟨Tξ, ξ⟩| ≤ 2∥T∥ ∥qξ∥ holds for any unit vectors

ξ ∈ H. Thus we have ∣∣∣∣〈(
1

9

9∑
i=1

λzifλ
∗
zi

)
ξ, ξ

〉∣∣∣∣ ≤ 2

3
∥f∥,

for any unit vector ξ (see [P-S, proof of Lem. 1.2]), then∥∥∥∥19
9∑
i=1

λzifλ
∗
zi

∥∥∥∥ ≤ 2

3
∥f∥.

Since the continuous function 1
9

∑9
i=1 λzifλ

∗
zi is supported on

⋃
i,j Kzigjz

−1
i K

and the assumptions zigjz
−1
i (G \ Si) ⊂ Si hold for every i, j, the support of

1
9

∑9
i=1 λzifλ

∗
zi is on G \ K. By repeating the same process, for any ε > 0, we

can take w1, w2, . . . , wn ∈ G with ∥ 1
n

∑n
i=1 λwifλ

∗
wi∥ < ε and λwipKλ

∗
wi = pK .

Therefore condition (2) in Lemma 3.1 holds for Aν = C∗
r (G) and Kν = K.

In the following lemma, we focus on reduced forms of elements in groups of

HNN extension. Let G∗θ be an HNN extension with respect to a discrete group

G and an isomorphism θ between subgroups L1 and L2 of G. Suppose that the

stable letter of G∗θ is denoted by t. If g ∈ G∗θ has two reduced forms

c0t
ε1c1t

ε2c2 · · · tεlcl and d0t
ε′1d1t

ε′2d2 · · · tε
′
mdm,

then we have l = m and (ε1, ε2, . . . , εl) = (ε′1, ε
′
2, . . . , ε

′
m). (See [L-S, Lem. 2.3].)

We call this l = m the length of g.

Lemma 4.8. There is a compact open subgroup K of π̄1 which is contained in

Go(y) and satisfies the conditions of Lemma 4.7.

Proof. Let a, b be free generators of Gt(y) and Go(y). We suppose that ιy(Gy) =

⟨an⟩, ιȳ(Gy) = ⟨bm⟩, and gyang−1
y = bm for some n,m ∈ Z. We have |n|, |m| ≥ 2

by assumption. If γ is a geodesic path in T from o(y) to t(y) and H is a subgroup

Gt(y) ∩Go(y) = ⟨akγ ⟩ = ⟨bkγ̄ ⟩ of π1, then the subgroup ⟨a, b⟩ ⊂ π1 is isomorphic to

⟨a⟩ ∗H ⟨b⟩. Define

N :=
n2kγ̄

(n,
kγm

(m,kγ̄)
)(m, kγ̄)

and a subgroup K := ⟨aN ⟩ ⊂ π̄1. By Lemma 4.6, ⟨a⟩ is a compact open subgroup

of π̄1; then the finite index subgroup K = ⟨aN ⟩ of ⟨a⟩ is also a compact open

subgroup of π̄1. When we take a finite set {g′1, g′2, . . . , g′s} in π̄1 \ K, there is

gi ∈ π1 \ ⟨aN ⟩ with g′i ∈ giK for any i, since π̄1 \ K ⊂ (π1 \ ⟨aN ⟩)K. Let W
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be a subgraph Y \ {y} of Y . By the isomorphism π1(G|W ,W )∗θy ∼= π1, π1 has

the structure of an HNN extension and t := gy corresponds to the stable letter.

We have ⟨aN ⟩ = ⟨a⟩ ∩ t−2⟨b⟩t2 by definition of N . Let ly : π1 → Z≥0 be the

function such that ly(g) is the length of g as an element of the HNN extension

π1(G|W ,W )∗θy . Suppose that L := max{ly(gi) | 1 ≤ i ≤ s}.
Set r1 := at−1bt. For every g ∈ π1 with ly(g) ≤ L, we claim that if g /∈⋃

i∈Z r
i
1⟨an⟩, then rL1 gr−L1 has a reduced form which begins with at−1 and ends with

ta−1. Suppose g /∈
⋃
i∈Z r

i
1⟨an⟩ has the reduced form c0t

ε1c1t
ε2c2 · · · tεly(g)cly(g).

When (ε1, ε2, . . . , εly(g)) ̸= (−1, 1,−1, 1, . . . ,−1, 1), the claim is trivial. Thus we

may assume (ε1, ε2, . . . , εly(g))= (−1, 1,−1, 1, . . . ,−1, 1). First we assume ly(gr
−L
1 )

≥ ly(r
L
1 g), and let M be a non-negative integer satisfying ly(r

L
1 g) = 2L+ ly(g)−

2M . When M = 0, we have a reduced form of rL1 gr
−L
1 as

(at−1bt) · · · (at−1bt)c0t
−1c1tc2 · · · tcly(g)(t

−1b−1ta−1) · · · (t−1b−1ta−1).

When M ̸= 0, we get a reduced form of rL1 g asr
(L−M

2 )
1 c′M t

−1cM+1tcM+2t
−1 · · · tcl(g) if M is even,

r
(L−M+1

2 )
1 at−1c′M tcM+1t

−1cM+2t · · · tcl(g) if M is odd.

Here we have {
c′M ∈ ⟨an⟩acM and cM /∈ ⟨an⟩ if M is even,

c′M ∈ ⟨bm⟩bcM and cM /∈ ⟨bm⟩ if M is odd.

This condition holds even if M = l(g) because of the assumption g /∈
⋃
i∈Z r

i
1⟨an⟩.

Thus we get {
c′Ma

−1 /∈ ⟨an⟩ if M is even,

c′Mb
−1 /∈ ⟨bm⟩ if M is odd.

Therefore, we have a reduced form of rL1 gr
−L
1 whose length is longer than |ly(rL1 g)−

ly(r
−L
1 )|. Thus the claim is true when ly(gr

−L
1 ) ≥ ly(r

L
1 g). Similarly, we can prove

the claim when ly(gr
−L
1 ) ≤ ly(r

L
1 g).

For j ∈ Z>0, we define S′
j as the set of all g ∈ π1 with a reduced form

g = c0t
ε1c1t

ε2c2 · · · tεl(g)cl(g) such that

(ε2i−1, ε2i) = (−1, 1) for every i ≤ j, and (ε2j+1, ε2j+2) = (−1,−1).

Suppose r2 := at−2bt2 and zj := rj1r2r
L
1 . These {zj}j commute with aN and satisfy

the following: the inclusions

zjgz
−1
j (π1 \ S′

j) ⊂ S′
j

hold for every g ∈ π1 \ ⟨aN ⟩ with ly(g) ≤ L.
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This is because r2r
L
1 gr

−L
1 r−1

2 has a reduced form which begins with at−2

and ends with t2a−1, when g satisfies either l(g) ≤ L and g /∈
⋃
i∈Z r

i
1⟨an⟩ or

g ∈
⋃
i∈Z r

i
1⟨an⟩ \ ⟨aN ⟩. Thus, if f ∈ π1 \ S′

j , then zjgz
−1
j f has a reduced form

beginning with the words rj1at
−2.

Since S′
j = ⟨aN ⟩S′

j , the sets {Sj := S′
j}j are pairwise disjoint subsets of π̄1

satisfyingKSj = Sj . The subsets S1, S2, . . . , S9 of π̄1 and z1, z2, . . . , z9 ∈ π̄1 satisfy

the conditions of Lemma 4.7 for {g′1, g′2, . . . , g′s}.

In the proof of the above lemma, both r1 and r2 are in the kernel of the

modular function of π̄1, since a, b are elements in compact open subgroups of π̄1.

Thus Aν := C∗
r (π̄1) and Eν := EK satisfy condition (2) of Lemma 3.1 and every

gi can be taken in the kernel of the modular function.

Proof of Theorem 4.3. Take g ∈ π1. We show that there is a compact open sub-

group K0 ⊂ Gt(y) ∩ Stab(gGt(y)) such that Aν := C∗
r (π̄1) and Eν := EK0

satisfy

condition (2) of Lemma 3.1. We assume that the following statements hold as in

the proof of Lemma 4.8:

� The elements a, b ∈ π1 are free generators of Gt(y) and Go(y).

� The integers n, m satisfy ιy(Gy) = ⟨an⟩, ιȳ(Gy) = ⟨bm⟩, and tant−1 = bm,

where t := gy.

� The function ly : π1 → Z≥0 gives lengths of elements of π1 with respect to the

identification π1(G|W ,W )∗θy ∼= π1 of π1.

Since a /∈ ⟨bm⟩, there are c, d ∈ {a, e} such that the equation ly(t
±1cgdt±1) =

ly(g) + 2 holds. Set r′j := gdt−jbtjdg−1ct−jbtjc for j ∈ Z and K1 := ⟨a⟩ ∩
Stab(r′2⟨a⟩). By assumptions for c, d, if h ∈ ⟨a⟩ ∩ Stab(r′2⟨a⟩), then we have

g−1hg ∈ ⟨a⟩, (t−2bt2)−1g−1hg(t−2bt2) ∈ ⟨a⟩,

and

(t−2bt2)−1h(t−2bt2) ∈ ⟨a⟩.

This is because (t−2bt2)−1h(t−2bt2) = h holds for any h ∈ ⟨a⟩ ∩ Stab(t−2bt2⟨a⟩).
We get

⟨a⟩ ∩ Stab(r′2⟨a⟩) = ⟨a⟩ ∩ Stab(g⟨a⟩) ∩ Stab(t−2bt2⟨a⟩) ∩ g Stab(t−2bt2⟨a⟩)g−1.

Thus we haveK1 ⊂ ⟨a⟩∩Stab(gGt(y)) and r′2
−1
hr′2 = h = r′1

−1
hr′1 for any h ∈ K1.

For any f ∈ π1 with ly(f) ≥ i, we define ε(f, i) as a sequence (ε1, ε2, . . . , εi) of

{0, 1}, when f has a reduced form c0t
ε1c1t

ε2c2 . . . t
εl(f)cl(f). By using this
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definition, we set

wi := r′1
−i
r′2

−2
,

U ′
i :=

{
f ∈ π1 | ly(f) ≥ ily(r

′
1) + 2 and ε(f, ily(r

′
1) + 2) = ε(wi, ily(r

′
1) + 2)

}
,

Ui := U ′
i = K1U

′
i .

This {Ui}∞i=1 is an infinite family of mutually disjoint clopen subsets of π̄1 and we

have wihw
−1
i (π̄1 \ Ui) ⊂ Ui for any h ∈ ⟨a⟩ \K1. In the same way as in the proof

of Lemma 4.7, we get∥∥∥∥ 1

N

N∑
i=1

λwi(x− EK1(x))λ
∗
wi

∥∥∥∥ ≤ 2√
N

∥x− EK1(x)∥

for every self-adjoint element x ∈ C∗
r (⟨a⟩) ⊂ C∗

r (π̄1). Let K ⊂ ⟨a⟩ be a compact

open subgroup of Lemma 4.8 andK0 := K∩K1; then EK0 = EK1◦EK . For any self-

adjoint element x ∈ C∗
r (π̄1) and δ > 0, there are N ∈ Z≥0 and g1, g2, . . . , gM ∈ π1

such that they satisfy∥∥∥∥ 1

M

M∑
i=1

λgi(x− EK(x))λ∗gi

∥∥∥∥ ≤ δ

2

and ∥∥∥∥ 1

N

N∑
i=1

λwi(EK(x)− EK1
◦ EK(x))λ∗wi

∥∥∥∥ ≤ δ

2
.

By the proof of Lemma 4.8, we may assume {gi}i are in the kernel of the modular

function and {λgi}i commute with all elements of C∗
r (K). Thus we have∥∥∥∥ 1

NM

∑
i,j

λwjgi(x− EK0
(x))λ∗wjgi

∥∥∥∥
≤

∥∥∥∥ 1

N

N∑
j=1

λwj (EK(x)− EK1
◦ EK(x))λ∗wj

∥∥∥∥
+

∥∥∥∥ 1

N

N∑
j=1

λwj

(
1

M

N∑
i=1

λgi(x− EK(x))λ∗gi

)
λ∗wj

∥∥∥∥
≤ δ.

Moreover, every wjgi is in the kernel of the modular function and they satisfy

1

NM

∑
i,j

λwjgipK0
λ∗wjgi = pK0

.

By using Lemmas 3.1 and 4.5, we get Theorem 4.3.
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Remark 4.9. For the group π̄1 in Theorem 4.3 and the modular function ∆ of π̄1,

ker∆ is an open subgroup of π̄1. When the graph Y is countable, ker∆ satisfies the

conditions in Proposition 2.4, and π̄1 is an elementary group in Wesolek’s sense

[W]. This is shown as follows. Since π1 is countable, we can take the following

decreasing sequence (Kn)
∞
n=1 of compact open subgroups in π̄1 by using the proof

of Theorem 4.3:

�

⋂∞
n=1Kn = {e}.

� For every n, there is a finite subset Fn of π1 with Kn =
⋂
h∈Fn Stab(hGt(y))∩

Gt(y).

� For every n, self-adjoint element x ∈ C∗
r (π̄1), and ε > 0, there are g1, g2, . . . ,

gm ∈ π1 ∩ ker∆ such that each gi commutes with all elements of Kn and∥∥∥∥ 1

m

m∑
i=1

λgi(x− EKn(x))λ
∗
gi

∥∥∥∥ < ε

holds.

Define the open subset Ln := ker∆∩{g ∈ π̄1 | g−1Kng ≤ Gt(y)} for every n. Then

we can show that Ln is the normalizer Nπ̄1
(Kn) of Kn as follows. Since Ln and

Nπ̄1
(Kn) are clopen subsets of π̄1, it suffices to show that Ln∩π1 ⊂ Nπ̄1

(Kn). Put

K ′
n := π1 ∩Kn, and take g ∈ Ln ∩ π1. Then we have g−1K ′

ng = Gt(y) ∩ g−1Kng.

Since g ∈ ker∆, we get

[Gt(y) : g
−1K ′

ng] = [Gt(y) : g
−1Kng] = [Gt(y) : Kn] = [Gt(y) : K

′
n].

Thus we get K ′
n = g−1K ′

ng ≤ Gt(y) ∼= Z and g ∈ Nπ̄1
(Kn). Since

⋂∞
n=1Kn = {e}

holds, every g ∈ ker∆∩π1 has n ∈ N with Kn ≤ Stab(gGt(y)). This gives ker∆ =⋃∞
n=1 Ln. By the third condition of (Kn)

∞
n=1, the C∗-algebra C∗

r (Ln/Kn) ∼=
C∗

r (Ln)pKn ⊂ C∗
r (π̄1) is simple for any n. Therefore, the increasing sequence

(Ln)
∞
n=1 and the decreasing sequence (Kn)

∞
n=1 satisfy the assumptions of Proposi-

tion 2.4. Since π̄1/ ker∆ ∼= ∆(π̄1) is a countable discrete group, the locally compact

group π̄1 is elementary in Wesolek’s sense [W].
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