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Frobenius Morphisms and Stability Conditions

by

Wen Chang and Yu Qiu

Abstract

We generalize Deng–Du’s folding argument, for the bounded derived category D(Q) of
an acyclic quiver Q, to the finite-dimensional derived category D(ΓQ) of the Ginzburg
algebra ΓQ associated to Q. We show that the F -stable category of D(ΓQ) is equivalent
to the finite-dimensional derived category D(ΓS) of the Ginzburg algebra ΓS associated
to the species S, which is folded from Q. If (Q, S) is of Dynkin type, we prove that
the space StabD(S) of the stability conditions on D(S) is canonically isomorphic to
the space FStabD(Q) of F -stable stability conditions on D(Q). For the case of Ginzburg
algebras, we also prove a similar isomorphism between principal components Stab◦ D(ΓS)
and FStab◦ D(ΓQ). There are two applications. One is for the space NStabD(ΓQ) of
numerical stability conditions in Stab◦ D(ΓQ). We show that NStabD(ΓQ) consists of
BrQ/Br S many connected components, each of which is isomorphic to Stab◦ D(ΓS), for
(Q, S) is of type (A3, B2) or (D4, G2). The other is that we relate the F -stable stability
conditions to Gepner-type stability conditions.
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§0. Introduction

Bridgeland [1] introduced the notion of a stability condition on a triangulated cat-

egory, aiming to understand D-branes in string theory from a mathematical point

of view. We study the spaces of stability conditions arising from representation

theory, i.e. the categories associated to quivers and species.
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One of our main techniques is folding, which is well known in studying non-

simply-laced Dynkin diagrams. In particular, folding the bounded derived category

D(Q) of a quiver Q was studied by Deng–Du [2, 3]. The key observation is that

an automorphism on the quiver Q will induce a Frobenius morphism on the path

algebra kQ and a Frobenius functor (which is an auto-equivalence) on the category

D(Q). Then the F -stable category of D(Q) is derived equivalent to the bounded

derived category of a species S, which is obtained by folding the quiver Q. Our first

aim is to generalize this result to the finite-dimensional derived category D(ΓQ)

of the Ginzburg algebra ΓQ associated to Q; see Proposition 2.1. Namely, the F -

stable category of D(ΓQ) is derived equivalent to the finite-dimensional derived

category D(ΓS) of the Ginzburg algebra ΓS associated to S.
Then applying the Frobenius functor on the stability conditions, we show in

Theorem 3.5 that, if (Q,S) is of Dynkin type, the space StabD(S) of the sta-

bility conditions on D(S) is canonically isomorphic to the space FStabD(Q) of

F -stable stability conditions on D(Q), which is induced in Definition 3.1. For the

case of derived categories of Ginzburg algebras, we have a similar isomorphism

Stab◦ D(ΓS) ∼= FStab◦ D(ΓQ) which is stated in Theorem 4.3.

As an application of the above results, we show in Theorem 5.1 that, if (Q,S)
is of type (A3, B2) or (D4, G2), the space NStabD(ΓQ) of numerical stability

conditions in the space Stab◦ D(ΓQ) consists of Br ΓQ/BrΓS many connected

components, each of which is isomorphic to Stab◦ D(ΓS). As another application,

we see that the F -stable stability condition of D(Q) coincides with the stability

condition of Gepner type (F, 0). When S is of Dynkin type, we explicitly compute

the Gepner-type stability condition of D(S) with respect to the Auslander–Reiten

translation, and show that the minimal value of the global dimension on StabD(S)
is 1− 2

h , where h is the Coxeter number of S.
The original version of this paper was motivated by a chat with Tom Suther-

land and Alastair King. Sutherland studies a list of quivers (known as Painlevé

quivers) in his PhD work [19], whose corresponding spaces of numerical stability

conditions are related to an elliptic surface. Note that all those quivers are foldable

except one. Moreover, the space of the numerical stability conditions for a quiver

Q is related to the cluster algebra, whose type is the corresponding species S folded

from Q (cf. [15]). The updated version is motivated by [16], where we observe the

interaction between folding and Gepner equations (for stability conditions).

We should also mention that the idea that inducing stability conditions by

some well-behaved functor has appeared in [14, 13], where the authors focused on

categories in certain geometric contexts. In the paper we focus on the categories

arising from quiver representation theory and heavily use the folding technique on

quivers and these categories.
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§0.1. Notation and conventions

Throughout, let q be a prime power, let Fq be a finite field with q elements, and let

k = Fq be the algebraic closure of Fq. Let ς = ςq (k 7→ kq) be a field automorphism

of k which is a power of a Frobenius automorphism. We will use k′ to denote the

field k or Fq. We also assume that the categories we consider are all k′-Hom-finite

and Krull–Schmidt.

Here is some notation appearing in the paper:

� Q = (Q0, Q1): quiver;

� S = (S0,S1): species;
� HQ: module category of kQ;

� HS: module category of FqS;
� ΓQ: Ginzburg algebra of Q;

� ΓS: Ginzburg algebra of S;
� GQ: standard heart of D(ΓQ);

� GS: standard heart of D(ΓS);
� SimA: the set of simple modules in an abelian category A;

� Br(ΓQ) : the spherical twist group of D(ΓQ);

� Br(ΓS) : the spherical twist group of D(ΓS);
� EGD : the total exchange graph of a triangulated category D;

� EG(D,H0) : the connected component of EGD containing heart H0;

� EG3(D,H0) : the interval connected component of EGD containing heart H0;

� StabD : the space of stability conditions of a triangulated category D;

� NStabD : the space of numerical stability conditions;

� FStabD : the space of F -stable stability conditions.

§1. Preliminaries

§1.1. Folding from quivers to species

Recall that a quiver Q = (Q0, Q1) is an oriented diagram, with (finite) vertex

set Q0 and (finite) arrow set Q1. Denote by h (resp. t) the map from Q1 to Q0

which maps an arrow to its head (resp. tail). An automorphism ι of a quiver is a

permutation of Q0 such that for any arrow a, there is a unique arrow ι(a) with

h(ι(a)) = ι(h(a)) and t(ι(a)) = ι(t(a)). So ι is an identity if and only if it is an

identity on the vertex set Q0. We also assume that ι is admissible, i.e. there are

no arrows connecting vertices in the same orbit of ι in Q0.
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Recall that an Fq-species S = (S, Li, Xa) consists of the following data:

� a quiver S = (S0,S1);
� an Fq-division ring Li for each vertex i ∈ S0;
� an Li–Lj-bimodule Xa for each arrow a : i → j in S1.

Let L =
⊕

i∈S0 Li and X =
⊕

a∈S1 Xa. Then X is a natural L–L-bimodule. The

L-algebra

FqS :=
⊕
n≥0

X⊗n, where X⊗0 = L, X⊗n = X ⊗L · · · ⊗L X︸ ︷︷ ︸
n

is called the path (or tensor) algebra of S. Thus, a tensor xn ⊗ · · · ⊗ x1 (write

xn · · ·x1 for simplicity) with xi ∈ Xai is non-zero implies that an · · ·a1 is a path

in S.
Let Q be an acyclic quiver, i.e. there are no cyclic paths consisting of arrows

on it. For an automorphism ι of Q, one may fold it as a species. We recall this from

[2, Sects. 3, 6]. Let kQ be the path algebra associated to Q (note that a quiver is

a special species). There is a Frobenius morphism F = Fσ
Q(q) on it given by

(1.1) F

(∑
s

ksps

)
=

∑
s

ς(ks)ι(ps),

where
∑

s ksps is a k-linear combination of paths in kQ, and ι(ps) = ι(an) · · · ι(a1)
if ps = an · · · a1 in Q1. Then one can use F to define Fq-species S = Qι with Li and

Xa consisting of F -stable (see [2] for the precise meaning) objects. More precisely,

we set the following:

� The quiver S is the ι-orbit of Q, i.e. S0 = Q0/ι and S1 = Q1/ι.

� For i ∈ S0, denote by |i| the number of vertices in the orbit and fix i0 ∈ i. Let

(1.2) Li = (kQ)Fi =
{∑|i|−1

s=0 ςs(k)ιs(i0)
∣∣ k ∈ k, ς |i|(k) = k

}
,

where ιs(i0) is the idempotent element corresponding to vertex ιs(i0) in Q0

(we abuse notation here).

� For a ∈ S1, similarly define |a| and fix a0 ∈ a. Let

(1.3) Xa = (kQ)Fa =
{∑|a|−1

s=0 ςs(k)ιs(a0)
∣∣ k ∈ k, ς |a|(k) = k

}
.

Note that, induced by the algebraic structure of kQ, Li is an Fq-division ring

of dimension |i| with
∑|i|−1

s=0 ιs(i0) as identity, for any i in S0. More precisely, by

viewing Fq|i| = Fq(Y ) ⊆ k as a field extension over Fq, Li has a basis

(1.4)
{∑|i|−1

s=0 ςs(Y j)ιs(i0), 0 ≤ j ≤ |i| − 1
}
.
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Similarly, Xa is an Li–Lj-bimodule of Fq-dimension |a|, for any a : i → j in S1,
with a basis

(1.5)
{∑|a|−1

s=0 ςs(Y j)ιs(a0), 0 ≤ j ≤ |a| − 1
}
.

Then S is an acyclic quiver and FqS is a finite-dimensional Fq-hereditary algebra

which is isomorphic to the F -stable Fq-subalgebra (kQ)F of kQ ([2, Sect. 6]).

Example 1.1. When Q is of Dynkin type, all possible admissible automorphisms

ι and the corresponding species S are listed as follows (we omit the orientations

but they should be compatible with ι):

(1) Q is of type A2n−1 and S is of type Cn, while ι exchanges bullets in the same

column:

A2n−1 DD

ι

��

• • · · · •
◦,

• • · · · •

Cn
• • · · · • ◦.
2 2 2 1

(2) Q is of type Dn+1 and S is of type Bn, while ι exchanges the bullets:

Dn+1 • [[

ι,
��

◦ ◦ · · · ◦
•

Bn
◦ ◦ · · · ◦ •.
1 1 1 2

(3) Q is of type E6 and S is of type F4, while ι exchanges bullets in the same

column:

E6 • • [[

ι,
��

◦ ◦
• •

F4
◦ ◦ • •.
1 1 2 2

(4) Q is of type D4 and S is of type G2, while ι cyclically permutes the three

bullets:

D4 • [[

ι,
��

◦ •
•

G2
◦ •.
1 3

The label on vertex i in S is |i|.

§1.2. Ginzburg algebras

For a quiver Q, the Ginzburg (dg) algebra (of degree 3) ΓQ is constructed as follows

([8, Sect. 7.2]):

� Let Q be the graded quiver whose vertex set is Q0 and whose arrows are the

arrows in Q with degree 0; an arrow a∗ : j → i with degree −1 for each arrow

a : i→ j in Q; and a loop i∗ : i→ i with degree −2 for each vertex i in Q.
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� The underlying graded algebra of ΓQ is the completion of the graded path

algebra kQ in the category of graded vector spaces with respect to the ideal

generated by the arrows of Q.

� The differential of ΓQ is the unique continuous linear endomorphism homo-

geneous of degree 1 which satisfies the Leibniz rule and takes the following

values on the arrows of Q:

(1.6) d a = 0, d(a∗) = 0, d(i∗) = i

( ∑
a∈Q1

[a, a∗]

)
i.

For an Fq-species S = (S, Li, Xa) obtained by folding a quiver Q in Section 1.1,

we have the Ginzburg algebra ΓS constructed as follows:

� Let S be the graded species whose vertex set is S0 (associated with the same

division rings) and whose arrows are the arrows in S1 and the same bimodules

with degree 0; an arrow a∗ : j → i and an Lj–Li-bimodule X∗
a (dual over Fq)

with degree −1, for each arrow a : i → j in S1; and a loop i∗ : i → i with an

Li–Li-bimodule L∗
i (dual over Fq) with degree −2 for each vertex i in S.

� The underlying graded algebra of ΓS is the completion of the graded path

algebra kS in the category of graded vector spaces with respect to the ideal

generated by the arrows of S.
� The differential of ΓS is the unique continuous linear endomorphism homoge-

neous of degree 1 which satisfies the Leibniz rule and takes the values

(1.7) d(Li) = 0, d(Xa) = 0, d(X∗
a) = 0, d(L∗

i ) = i

( ∑
a∈S1

[Xa, X
∗
a ]

)
i,

where the value of the differential on a space being zero means that the value

is zero on each element in the space. The last equality needs some explanation:

let i ∈ S0 be a vertex with a representative i0, then the differential on a basis

element of L∗
i (see (1.4) for the basis of Li) is defined as

d

(( |i|−1∑
s=0

ςs(Y j)ιs(i0)

)∗)

=

( |i|−1∑
s=0

ιs(i0)

)( ∑
a∈S1

[ |a|−1∑
s=0

ςs(Y j)ιs(a0),

( |a|−1∑
s=0

ςs(Y j)ιs(a0)

)∗])

×
( |i|−1∑

s=0

ιs(i0)

)
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=
∑
a∈S1

t(a0)=i0

( |a|−1∑
s=0

ςs(Y j)ιs(a0)

)
⊗
( |a|−1∑

s=0

ςs(Y j)ιs(a0)

)∗

−
∑
a∈S1

h(a0)=i0

( |a|−1∑
s=0

ςs(Y j)ιs(a0)

)∗

⊗
( |a|−1∑

s=0

ςs(Y j)ιs(a0)

)
,(1.8)

where a0 is a representative in a and
∑|i|−1

s=0 ιs(i0) is the identity in Li.

Remark 1.2. Let ῑ be an automorphism of Q induced from ι as

ῑ(a) = ι(a), ῑ(a∗) = (ι(a))∗, ῑ(i∗) = (ι(i))∗.

Then ῑ is an admissible automorphism of ΓQ. As in [2, Sect. 6], we have a (homo-

geneous) Frobenius morphism F on ΓQ induced by ῑ such that the restriction to

kQ (i.e. the degree-zero part of ΓQ) is exactly (1.1). Similarly, one may consider

the Fq-algebra (ΓQ)F consisting of the F -stable elements in ΓQ, and an isomor-

phism ΓS ∼= (ΓQ)F of dg algebras. In particular, under such an isomorphism the

differential (1.8) on ΓS coincides with the differential on (ΓQ)F :

d

( |i|−1∑
s=0

ςs(Y j)(ιs(i0))
∗
)

=

( |i|−1∑
s=0

ιs(i0)

)( ∑
a∈S1

[ |a|−1∑
s=0

ςs(Y j)ιs(a0),

|a|−1∑
s=0

ςs(Y j)(ιs(a0))
∗
])

×
( |i|−1∑

s=0

ιs(i0)

)

=
∑
a∈S1

t(a0)=i0

( |a|−1∑
s=0

ςs(Y j)ιs(a0)

)
⊗
( |a|−1∑

s=0

ςs(Y j)(ιs(a0))
∗
)

−
∑
a∈S1

h(a0)=i0

( |a|−1∑
s=0

ςs(Y j)(ιs(a0))
∗
)
⊗
( |a|−1∑

s=0

ςs(Y j)ιs(a0)

)
.(1.9)

Note that in [7], Keller considered the n-Calabi–Yau completion of any homolog-

ically smooth algebra, and showed that the Ginzburg algebra can be viewed as

a (deformed) 3-Calabi–Yau completion of the path algebra. Such a completion is

compatible with the Frobenius map F and the following diagram is commutative,
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where the vertical arrows are the 3-Calabi–Yau completion:

(1.10)

FqS
∼= //

��

(kQ)F �
�

//

��

kQ

��

ΓS
∼= // (ΓQ)F �

�
// ΓQ.

§1.3. Derived categories

From now on, for a species S, we always assume it is obtained from folding a

quiver Q. Write D(ΓQ) for Dfd(modΓQ), the finite-dimensional derived category

of ΓQ (cf. [8, Sect. 7.3]). Similarly, write D(ΓS) for Dfd(modΓS), the derived

category of finite-dimensional dg modules for ΓS. Then [7, Thm. 4.8] says that

they are both Calabi–Yau-3 in the following sense.

Let k′ be a field (k or Fq for the case of quiver or species respectively). Recall

that a k′-linear triangulated category D is called Calabi–Yau-3, if for any objects

L, M in D we have non-degenerate bifunctorial pairings

(1.11) Homi(M,L)×Hom3−i(L,M) → k′.

Let D(Q) (resp. D(S)) be the bounded derived category of module category

HQ = modkQ (resp. HS = modFqS). Then there is an exact and faithful functor

(called an L-immersion; cf. [7], [11, Sect. 7.3])

(1.12) LQ : D(Q) → D(ΓQ)

such that, for any pair of objects (M,L) in D(Q), there is a short exact sequence

(1.13) 0 → Hom•(M,L)
LQ−−→ Hom•(LQ(M),LQ(L))

L†
Q−−→ Hom•(M,L)∨[−3] → 0.

Here, the dual of a graded vector space V =
⊕

i∈Z Vi[i] is

V ∨ =
⊕
i∈Z

V ∗
i [−i],

where Vi is an ungraded vector space and V ∗
i is its usual dual.

Similarly, we have an L-immersion

(1.14) LS : D(S) → D(ΓS)

satisfying the corresponding (1.13).

§1.4. Tilting

For a full subcategory P in a triangulated category D, define

P⊥ =
{
L ∈ D : HomD(M,L) = 0 for all M ∈ P

}
.
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We call P a t-structure on D if P[1] ⊂ P and for every object N ∈ D there is a

triangle M → N → L in D with M ∈ P and L ∈ P⊥. Its heart is defined to be

H = P ∩ P⊥[1],

which is an abelian category. We always assume that a t-structure is bounded, i.e.

D =
⋃

i,j∈Z
P⊥[i] ∩ P[j].

Then a bounded t-structure is determined by its heart. Then the inclusion relation

P1 ⊃ P2 equips the set of hearts with a partial order by H1 ≤ H2, where H1 =

P1 ∩ P⊥
1 [1] and H2 = P2 ∩ P⊥

2 [1].

For an abelian category H, we call a pair ⟨F , T ⟩ of full subcategories a torsion

pair if F = T ⊥ and for every object N ∈ H there is a short exact sequence

M → N → L in H with M ∈ T and L ∈ F . We call T (resp. F) the torsion part

(resp. torsion-free part) of the torsion pair and write H = ⟨F , T ⟩.
By [4], for any heart H in a triangulated category D with torsion pair ⟨F , T ⟩,

there exist the following two hearts in D with torsion pairs:

H♯ = ⟨T ,F [1]⟩, H♭ = ⟨T [−1],F⟩.

We call H♯ the forward tilt of H with respect to the torsion pair ⟨F , T ⟩, and
H♭ the backward tilt of H. If F = ⟨S⟩ is generated by a simple object in an

abelian category H, then H = ⟨F ,⊥F⟩ is a torsion pair, where ⊥F = {L ∈
H : HomD(L,M) = 0 for all M ∈ F}. In this case, we say that the forward tilt is

simple and denote it by H♯
S . Similarly we have a simple backward tilt H♭

S .

§1.5. Exchange graphs

The notion of simple tilting leads to exchange graphs. Define the total exchange

graph EGD of a triangulated category D to be the oriented graph whose vertices

are all hearts in D and whose edges correspond to simple forward tilts between

them. For any H0 ∈ EGD, we consider the full subgraph of EGD induced by the

interval {H | H0 ≤ H ≤ H0[1]} and let EG3(D,H0) be its principal component,

i.e. the connected component consisting of hearts that can be iterated simple

tilted from H0. Denote by EG(D,H0) the principal component of EGD, i.e. the

connected component of EGD which contains H0.

In this section we collect some results about the exchange graphs of the derived

categories D(Q), D(ΓQ), D(S), and D(ΓS). Recall from [6, Sect. 9.3] that D(ΓQ)

admits a standard heart GQ, generated by the simple ΓQ-modules, which is equiv-

alent to the category HQ. We denote by SimHQ = {Si}i∈Q0 the set of simple

modules in HQ and by SimGQ = {Ti}i∈Q0
the set of simple objects in GQ. Then
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[11, Thm. 8.1] says that the L-immersion L (1.12) mapsHQ to GQ with L(Si) = Ti.

Moreover, there is an isomorphism (as graph) induced by L:

(1.15) LQ∗ : EG3(D(Q),HQ) ∼= EG3(D(ΓQ),GQ).

Similarly, D(ΓS) admits a standard heart GS, generated by the simple ΓS-
modules SimGS = {Ti}i∈S0 , which is equivalent to the category HS of finite-

dimensional (Fq) modules over FqS with simple modules SimΓS = {Si}i∈S0 . Then

the L-immersion (1.14) maps HS to GS with L(Si) = Ti and induces an isomor-

phism (as graph)

(1.16) LS∗ : EG3(D(S),HS) ∼= EG3(D(ΓS),GS).

§1.6. Spherical twist groups

Now we recall the spherical twist group, which can be used to compare the

exchange graphs. Recall that, from [18], an object T in a k′-linear triangulated

category is a 3-sphere-like k′-object if

Hom•(T, T ) = k′ ⊕ k′[−3].

For example, any Ti ∈ SimGQ is a 3-sphere-like k-object in D(ΓQ) by [9] (cf. [18]).

A 3-sphere-like k′-object T in a Calabi–Yau-3 triangulated categoryD is called

a 3-spherical k′-object, which induces the twist functor [18]

ϕT (X) = Cone(X → Hom•(X,T )∨ ⊗ T )[−1]

with inverse

ϕ−1
T (X) = Cone(Hom•(T,X)⊗ T → X)

in the auto-equivalence group AutD of D.

Denote by BrΓQ the spherical twist group of D(ΓQ), i.e. the subgroup of

AutD(ΓQ) generated by {ϕT }T∈SimGQ
. Let EG(D(ΓQ),GQ) be the principal com-

ponent of the exchange graph EG(D(ΓQ)) containing the standard heart GQ.

Then, by [11, Thm. 8.6], the action of Br ΓQ on D(ΓQ) induces an action on

EG(D(ΓQ),GQ) which gives an isomorphism (as vertex set)

(1.17) EG3(D(ΓQ),GQ) ∼= EG(D(ΓQ),GQ)/Br(ΓQ).

Similarly, for ΓS of a species S, the spherical twist group BrΓS is defined and

we have an isomorphism (as vertex set)

(1.18) EG3(D(ΓS),GS) ∼= EG(D(ΓS),GS)/BrΓS.
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§1.7. A useful lemma

In this section we recall the following proposition, which is proved in [11, Prop. 5.4]

(see also in [12, Sect. 7.2]) when k′ = k is an algebraically closed field. This can

be straightforwardly generalized to the case k′ = Fq, where the difference is that

the tensor needs to be carefully dealt with. Then we prove a lemma. They will be

used in Section 3.

Proposition 1.3. In a k′-linear triangulated category D, let S be a rigid simple

object in a finite heart H, i.e. a heart generated by a finite set SimH by means of

extensions. Then, after a forward or backward simple tilt, the new simples are

SimH♯
S =

{
ψ♯
S(X)

∣∣ X ∈ SimH, X ̸= S
}
∪
{
S[1]

}
,(1.19)

SimH♭
S =

{
ψ♭
S(X)

∣∣ X ∈ SimH, X ̸= S
}
∪
{
S[−1]

}
,(1.20)

where

ψ♯
S(X) = Cone(X → Ext1(X,S)∗ ⊗E S[1])[−1],(1.21)

ψ♭
S(X) = Cone(Ext1(S,X)⊗E S[−1] → X),(1.22)

and E = End(S). Thus H♯
S and H♭

S are also finite.

Remark 1.4. Note that since S is simple, E is a division ring over k′, so E = k

when k′ = k, and the above proposition is just [11, Prop. 5.2].

Lemma 1.5. Let H be a heart in a triangulated category D with rigid simples

R1, . . . , Rm such that Hom•(Ri, Rj) = 0 for any 1 ≤ i ̸= j ≤ m. Then there is a

torsion pair ⟨F , T ⟩ with respect to which the forward tilt of H equals Hm, where

H0 = H, Hi = (Hi−1)
♯
Rρ(i)

,

and ρ is any (fixed) permutation of m elements. Denote the tilt Hm of H by

H♯
R1,...,Rm

.

Proof. Fix a permutation ρ. By repeatedly using Proposition 1.3, we inductively

deduce that any simple in Hi, for 0 ≤ i ≤ m, admits a filtration of triangles with

factors in SimH ∪ SimH[1]. Thus, its homology with respect to H lives only in

degrees 0 and 1. By [11, Lem. 5.6], this means H ≤ Hi ≤ H[1]. By [15, Lem. 2.8],

we know that Hi is the forward tilt of H with respect to some torsion pair. Then,

using the formulae in Proposition 1.3, a direct calculation shows that the tilt Hm

is independent of the choice of permutation, as required.
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§1.8. Stability conditions

In this section we recall some basic notions and facts on stability conditions that

we will use in this paper. For precise definitions, we refer the reader to [1].

A stability function on an abelian category C is a group homomorphism

Z : K(C) → C such that for any object 0 ̸=M ∈ C, we have Z(M) = m(M)·eiπϕ(M)

for some m(M) ∈ R>0 and ϕ(M) ∈ (0, 1], i.e. Z(M) lies in the upper half-plane

(1.23) H =
{
r exp(iπθ)

∣∣ r ∈ R>0, 0 < θ ≤ 1
}
⊂ C.

Definition 1.6. A stability condition σ on a triangulated category D consists of

a heart H and a stability function Z on H with the Harder–Narashimhan property,

which will be denoted by σ = (H, Z).

The data in a stability condition σ = (H, Z) is equivalent to the pair (Z,P),

where P is a slicing P = {P(ϕ) | ϕ ∈ R}, whose canonical heart is H and is com-

patible with Z. More precisely, the slicing is a collection of additive subcategories

of a triangulated category D satisfying

� P(ϕ+ 1) = P(ϕ)[1] ∀ϕ ∈ R;
� Hom(P(ϕ1),P(ϕ2)) = 0 for ϕ1 > ϕ2;

� any object M in D admits a Harder–Narashimhan filtration, i.e.

0 =M0
// M1

��

// M2

��

// . . . // Mn−1
// Mn =M,

||

A1

``

A2

]]

An

__

with Ai ∈ P(ϕi) satisfying ϕ1 > ϕ2 > · · · > ϕn. We denote ϕ+(M) = ϕ1 and

ϕ−(M) = ϕn.

The compatibility condition between P and Z mentioned above means

Z(M) = m(M) · eiπϕ(M)

for any M ∈ P(ϕ). We will also write σ = (Z,P).

Denote by StabD the space of all stability conditions on D. Then the function

d(σ1, σ2) = sup
0̸=M∈D

{
|ϕ−σ2

(M)− ϕ−σ1
(M)|, |ϕ+σ2

(M)− ϕ+σ1
(M)|,∣∣∣log mσ2

(M)

mσ1(M)

∣∣∣}(1.24)

defines a (generalized) metric on Stab(D). Recall a crucial result due to Bridgeland:
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Theorem 1.7 ([1, Thm. 1.2]). Each connected component of StabD is locally

homeomorphic to a linear sub-manifold of HomZ(K(D),C), sending a stability con-

dition (H, Z) to its central change Z. In particular, StabD is a complex manifold.

Note that every finite heart H corresponds to a (complex, half-closed and

half-open) n-cell

U(H) ≃ Hn

inside StabD, where H is defined as in (1.23).

§1.9. Frobenius functors

We mention that, by [2], there is an algebra isomorphism (kQ)F ∼= FqS. Further,
by [3] there is a Frobenius functor in AutD(Q) induced by F , which we also

denote by F . For any object M in D(Q), denote by p(M) the F -period of M , i.e.

the minimal positive integer m such that Fm(M) = M . Then p(M) is finite for

any M and let

(1.25) M̃ =

p(M)⊕
j=1

F j(M).

We say that M is an F -stable object if p(M) = 1, i.e. F (M) =M . We say that a

subcategory C of D(Q) is F -stable if F (C) = C.
Let D(Q)F be the F -stable category of D(Q) whose objects are F -stable

objects of D(Q) and whose morphisms are those which commute with F (see [3,

Rem. 5.5] for details). We point out that D(Q)F is not a full subcategory of D(Q).

Then D(Q)F is a triangulated category and there is a derived equivalence

(1.26) Φ: D(S) ∼= D(Q)F

such that

Φ(HS) = HF
Q and Φ(Si) =

⊕
i∈i

Si,

where we view HQ as a full subcategory of D(Q), and HF
Q is the F -stable sub-

category of HQ which is generated by the F -stable objects in it. By (1.25), the

second equation is equivalent to Φ(Si) = S̃i for any i ∈ i, and we refer to S̃i. Fur-

ther, for any X ∈ IndD(Q)F , the set of indecomposables in D(Q)F , there exists

M ∈ IndD(Q), the set of indecomposables in D(Q), such that X = M̃ .

The Frobenius morphism F (cf. Remark 1.2) on ΓQ also induces a Frobenius

functor, still denoted by F , on D(ΓQ), which is an auto-equivalence. Denote the

F -stable category of D(ΓQ) as D(Q)F by D(ΓQ)F . Then we have the following
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diagram, where the dashed arrow will be defined in the next section in such a way

that the diagram commutes:

(1.27)

D(S) Φ
∼=

//

LS

��

D(Q)F �
�

//

LQ

��

D(Q)

LQ

��

D(ΓS) ? // D(ΓQ)F �
�

// D(ΓQ).

§2. Folding Calabi–Yau category

In this section, we aim to complete (1.27).

Proposition 2.1. There is a faithful functor Θ: D(ΓS) → D(ΓQ), sending Ti to

T̃i =
⊕

i∈i Ti and inducing a derived equivalence

(2.1) Θ: D(ΓS) ∼= D(ΓQ)F .

Proof. By the equivalence GQ
∼= HQ, T̃i as in (1.25) is well defined for i ∈ Q0 and

Θ(Ti) := T̃i ∈ D(ΓQ)F

for any i ∈ i.

Moreover, we show that {Θ(Ti)}i∈S0 generates D(ΓQ)F . In fact, on the one

hand, {Θ(Ti)}i∈S0 generates GF
Q since GQ

∼= HQ and {S̃i}i∈S0 generates HF
Q. On

the other hand, any M ∈ D(ΓQ)F admits a canonical filtration

(2.2)

0 =M0
// M1

��

// · · · // Mm−1
// Mm =M,

{{

H1[k1]

``

Hm[km]

``

where Hi ∈ GQ and k1 > · · · > km are integers. Since M is F -stable and the

filtration is unique, we deduce that each homology Hi of M , with respect to GQ,

is F -stable. Hence, any of these homologies is generated by {T̃i}i∈S0 , and so is M ,

as required.

Then we extend the definition Θ to any object in D(ΓS) by using extensions

and shifts of the heart GS, which is generated by the simples Ti, and then by using

the HN-filtration of the object. Due to above discussion, Θ is a dense map from

the set of objects in D(ΓS) to the set of objects in D(ΓQ)F .

Lastly, we define Θ on the morphisms in D(ΓS) through L-immersions (1.14)

and the equivalence Φ: D(S) ∼= D(Q)F (1.26). Then Θ is an equivalence by the

property (1.13) of L-immersions and the fact that Φ is an equivalence, noticing

indeed that (1.13) has a natural splitting (see [7, Lem. 4.4(b)]).
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Thus diagram (1.27) can be completed to the following diagram, where the

commutativity of the left square directly follows the definition of Θ:

(2.3)

D(S) Φ
∼=

//

LS

��

D(Q)F �
�

//

LQ

��

D(Q)

LQ

��

D(ΓS) Θ
∼=

// D(ΓQ)F �
�

// D(ΓQ).

§3. F -stability for bounded derived categories

In this section we introduce the F -stable stability condition and prove that when

(Q,S) is of Dynkin type, we have a isomorphism FStabD(Q) ∼= StabD(S), where
FStabD(Q) is the space of F -stable stability condition on D(Q).

Note that the action of auto-equivalence F on D(Q) induces an automorphism

on K(D(Q)). Denote by KF (D(Q)) the subgroup in K(D(Q)) consisting of F -stable

elements. Then we have a canonical homomorphism from K(D(Q)F ) to KF (D(Q)),

which is an isomorphism by [3, Thm. 7.2]; see also [3, Thm. 8.5]. Further, F also

induces an action on StabD(Q) and we introduce the following definition:

Definition 3.1. We call a stability condition (H, Z) in StabD(Q) F -stable if

� H is F -stable, i.e. F (H) = H;

� Z is F -stable, i.e. Z(F (M)) = Z(M).

Denote by FStabD(Q) the subspace in StabD(Q) consisting of F -stable stability

conditions.

Note that the equality F (H) = H in the above definition is equivalent to an

inclusion F (H) ⊆ H, since both F (H) and H are hearts of bounded t-structures.

For an F -stable heart H, define its F-stabilization to be the full subcategory

HF in D(Q)F , consisting of objects {M̃ | M ∈ H}, where ?̃ is as in (1.25). Then

HF is an abelian category, with short exact sequences in HF being precisely the

sum of short exact sequences in the same orbit.

Lemma 3.2. If H is an F -stable heart in D(Q), then its F-stabilization HF is a

heart in D(Q)F .

Proof. Assume a > b are any integers. We use the criterion in [1, Lem. 3.2] for the

definition of hearts, namely, an abelian category A in a triangulated category D
is a heart if and only if it satisfies the following conditions:

� HomD(A[a], B[b]) = 0 for any A,B ∈ A.
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� There is a canonical filtration (2.2) for any M in D with Hi ∈ A and k1 >

· · · > km are integers.

For any X and Y in HF , there exist M and L in H such that X = M̃ and

Y = L̃ as in (1.25). Since HomD(Q)(A[a], B[b]) = 0 for any A,B ∈ H, we have

HomD(Q)F (X[a], Y [b]) = 0.

Further, there is a canonical filtration (2.2) of M with Hi ∈ H and k1 >

· · · > km are integers. Since H is F -stable, F j(Hi) is also in H, which implies the

canonical filtration of F j(M) has factors F j(H1)[k1], . . . , F
j(Hm)[km]. By direct

summing of the triangles in the filtrations of F j(M) for j = 1, . . . , p(M), we obtain

a filtration of M̃ in D(Q), with factors

p(M)⊕
j=1

F j(H1)[k1], . . . ,

p(M)⊕
j=1

F j(Hm)[km].

To see that this induces the canonical filtration of X = M̃ in D(Q)F (under

Φ), we only need to show that
⊕p(M)

j=1 F j(Hi)[ki] is F -stable, or equivalently,

F p(M)(Hi) = Hi. This follows by comparing the canonical filtrations of F p(M)(M)

and M , noticing that the canonical filtration is unique. Therefore, HF is a heart

in D(Q)F .

We think that the converse of Lemma 3.2 is also true, but we only (need and)

prove a partial result, and we will prove the inverse in Corollary 3.6 for the case

of Dynkin type. An immediate corollary for stability conditions is as follows.

Corollary 3.3. There is a canonical inclusion

(3.1) τQ : FStabD(Q) → StabD(Q)F

sending a stability condition from (H, Z) to (HF , ZF ), where ZF (M̃) = Z(M) for

any M ∈ D(Q). Moreover, we have the commutative diagram

(3.2)

FStabD(Q)

��

τQ
// StabD(Q)F

��

Hom
(
KF (D(Q)),C

) ∼=
Hom

(
K(D(Q)F ),C

)
,

where the vertical maps send a stability condition to its central charge.

Proof. By Definition 3.1, an F -stable stability condition (H,Z) satisfies Z(F (M))=

Z(M), so ZF is well defined. Thus we have the inclusion τQ and the canonical com-

mutative diagram (3.2).
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Recall that EG(D(Q),HQ) and EG(D(S),HS) are the principal components

of EGD(Q) and EGD(S) respectively. Note that the derived equivalence (1.26)

induces an isomorphism Φ: EGD(S) → EGD(Q)F (we abuse the notation Φ

here).

Proposition 3.4. Any heart in Φ(EG(D(S),HS)) is the F-stabilization of some

heart in EG(D(Q),HQ). Moreover, if Φ(H) = H̃F for hearts H ∈ EG(D(S),HS)

and H̃ ∈ EG(D(Q),HQ), we have the following:

(1) SimH and Sim H̃ can be written as {Ri}i∈S0 and {Ri}i∈Q0
, respectively, such

that Φ(Ri) =
⊕

i∈iRi.

(2) For any i ∈ S0 and i1, i2 ∈ i, Hom•(Ri1 , Ri2) = 0.

(3) For any i ∈ S0, we have

(3.3) Φ(H♯) = (H̃♯)F and Φ(H♭) = (H̃♭)F ,

where the tilts of H are with respect to Ri and the tilts of H̃ are with respect

to the set of simples {Ri}i∈i in the sense of Lemma 1.5.

Proof. We use induction starting from the standard hearts Φ(HS) = HF
Q satisfying

(1) and (2). We only need to show that if (H, H̃) satisfy Φ(H) = H̃F , (1), and (2),

then they also satisfy (3) and hearts in (3.3) satisfy (1) and (2).

Let (H, H̃) satisfy Φ(H) = H̃F , (1), and (2). Consider a fixed i ∈ S0. Suppose
that the orbit i contains vertices 1, . . . , |i| in Q0. We claim that

(3.4) (H̃F )
♯

R̃i
= (H̃♯

R1,...,R|i|
)F ,

where R̃i = R̃i =
⊕

i∈iRi. Because of (2), the right-hand side of (3.4) is well

defined in the sense of Lemma 1.5. Since the simples determine a heart, (3.4)

is equivalent to equality between their sets of simples. Let j ∈ S0 and contain

vertices 1′, . . . , |j|′ in Q0 with corresponding simples Rj′ ∈ SimH. Let R̃j = R̃j′ =⊕
j′∈jRj′ . By the formulae in Proposition 1.3, we only need to show

(3.5) ψ♯

R̃i
(R̃j) =

|j|⊕
j=1

Ψ(Rj′),

where Ψ = ψ♯
R1

◦ · · · ◦ ψ♯
R|i|

and ψ♯ is defined as in (1.21).

Let d = gcd(|i|, |j|) and |i| = sd, |j| = td for some integers s, t. Without loss of

generality, suppose that F (Rk) = Rk+1 and F (Rk′) = R(k+1)′ , where Rk+sd = Rk

and R(k+td)′ = Rk′ . Further, suppose that

Ext1D(Q)(Rk′ , R1) = khk
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for k = 1, . . . , d. Then, by applying the Frobenius functor, we have

Ext1D(Q)(Rj′ , Ri) = kh(j−i+1) ,

where h(x+d) = hx for any x ∈ Z. Using formula (1.21), a direct calculation shows

that Ψ(Rj′) admits a filtration of triangles in D(Q), with factors

R
hj

1 , . . . , R
h(j−sd+1)

sd , Rj′ ,

for any 1 ≤ j ≤ td, where Rh means a direct sum of h copies of R. Noticing that

Hom•(Ri1 , Ri2) = 0 for different i1, i2, we actually have triangles

Rj′ [−1] →
sd⊕
i=1

R
h(j−i+1)

i → Ψ(Rj′) → Rj′ .

By direct summing these triangles we get a triangle

(3.6) R̃j[−1]
α−→ R̃t·h

i →
|j|⊕
j=1

Ψ(Rj′) → R̃j,

in D(Q), where h =
∑d

k=1 hk. By the definition of ψ♯
Ri
, α in (3.6) contains all

maps in HomD(Q)(R̃j[−1], R̃t·h
i ).

On the other hand, recall that morphisms in D(Q)F are those in D(Q) which

commute with F , and we have

Ext1D(Q)F (R̃j, R̃i) = Fqt·s·d·h , EndD(Q)F (R̃i, R̃i) = Fqs·d .

Then (1.21) gives a triangle

(3.7) R̃j[−1]
α′

−→ R̃t·h
i → ψ♯

R̃i
(R̃j) → R̃j

in D(Q)F , where α′ is the universal map. Therefore (3.7) in D(Q)F is induced

from (3.6) in D(Q), which implies (3.5). The case of backward tilting is similar.

Via Φ in (1.26), we see that (H̃,H) satisfy (3) and the hearts in (3.3) satisfy

(1) and (2) as required.

We have the following main result of this subsection.

Theorem 3.5. If (Q,S) is one of the Dynkin type in Example 1.1, then τQ in

(3.1) is an isomorphism. In particular, we have a biholomorphism FStabD(Q) ∼=
StabD(S) , with FStabD(Q) as a sub-manifold of StabD(Q).

Proof. It is proved in [15, App. A] (also cf. [10]) that EGD(Q) is connected if Q

is of Dynkin type. By using the same argument, EGD(S) is also connected if S is

of Dynkin type, i.e. we have EGD(S) = EG(D(S),HS).
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For the first claim, we only need to show that τQ is surjective, or equivalently,

that any heart in D(Q)F is the F-stabilization of some heart H in D(Q). This fol-

lows from Proposition 3.4, noticing that we have the isomorphism Φ: EGD(S) →
EGD(Q)F and the connectedness of graphs EGD(Q) and EGD(S).

Then by the derived equivalence (1.26) and the first claim, we have an iso-

morphism τQ : FStabD(Q) ∼= StabD(S). Further, this is a biholomorphism, since

the charge maps are local homeomorphisms which are compatible with τQ; see

diagram (3.2). So FStabD(Q) is a sub-manifold of StabD(Q).

We have the following immediate corollary, which is a partial converse of

Lemma 3.2.

Corollary 3.6. If (Q,S) is of Dynkin type, then any heart in D(Q)F is the F -

stabilization of some F -stable heart of D(Q).

§4. F -stability for a finite-dimensional category

We proceed to discuss F -stable hearts and stability conditions in D(ΓQ). Notice

that formulae (1.21) and (1.22) coincide with twist functor formulae (cf. [11,

Rem. 7.1]). Hence, similarly to the proof of (3.5), we have the following lemma.

Lemma 4.1. Let the orbit i ∈ S0 consist of vertices 1, . . . , |i| in Q0. Then the

auto-equivalence

ϕi = ϕT1
◦ · · · ◦ ϕT|i|

preserves F -stable objects in D(ΓQ) and hence induces an auto-equivalence ϕi on

D(ΓQ)F . Moreover, under the derived equivalence (2.1), ϕTi
corresponds to ϕi.

Denote by BrΓQF the subgroup of Br ΓQ generating by {ϕi}i∈S0 . Hence, by

abuse of notation Θ in diagram (2.3), we have

Θ(BrΓS) = BrΓQF .

Recall that the derived equivalence (2.1) induces an isomorphism Θ: EGD(ΓS) →
EGD(ΓQ)F . Now we prove a similar result to Proposition 3.4 for D(ΓQ).

Proposition 4.2. Any heart in Θ(EG(D(ΓS),GS)) is an F-stabilization of some

heart in EG(D(ΓQ),GQ).

Proof. First, by (1.16), for any heart Ĥ in EG3(D(ΓS),GS), there exists H in

EG3(D(S),HS) such that Ĥ = LS∗(H). Then by Proposition 3.4, Φ(H) = H̃F , for

some H̃ ∈ EGD(Q). Moreover, by looking at the homology of H̃ with respect to

HQ (cf. [11, Lem. 5.6]), H̃ is actually in EG3(D(Q),HQ). Further, the quotient
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map ΓQ → kQ, which induces the immersion LQ, commutes with the Frobenius

morphisms on kQ and ΓQ. Therefore we have LQ∗(H̃
F ) = (LQ∗(H̃))F . Together

we have

Θ(Ĥ) = LQ∗(Φ(H)) = LQ∗(H̃
F ) = (LQ∗(H̃))F ,

i.e. Θ(Ĥ) is the F-stabilization of some heart in EG3(ΓQ,HQ).

By Lemma 4.1, we know that Br ΓQF preserves F-stability. By (1.18) we

know that EG3((D(ΓQ)F ),HF
Q) is a fundamental domain for EG((D(ΓQ)F ),HF

Q)/

BrΓQF . Thus each heart in EG(D(ΓS),GS) is the F-stabilization of some heart in

EG(D(ΓQ),GQ), as required.

Similar to [15, Cor. 5.3], there are principal components

Stab◦ D(ΓQ) =
⋃

H∈EG(D(ΓQ),GQ) U(H),

Stab◦ D(ΓS) =
⋃

H∈EG(D(ΓS),GS) U(H),

in StabD(ΓQ) and StabD(ΓS), respectively. Denote by FStab◦ D(ΓQ) the sub-

space in Stab◦ D(ΓQ) consisting of F -stable stability conditions. As in Theo-

rem 3.3, we have an immediate consequence of Proposition 4.2.

Theorem 4.3. If (Q,S) is one of the Dynkin types in Example 1.1, then there is

a canonical isomorphism

(4.1) ιΓQ : FStab◦ D(ΓQ) ∼= Stab◦ D(ΓQ)F .

Thus we have a biholomorphism FStab◦ D(ΓQ) ∼= Stab◦ D(ΓS).

Proof. The map ιΓQ is constructed via the canonical isomorphism between the

Grothendieck groups of KF (D(ΓQ)) and K(D(ΓQ)F ); cf. the commutative diagram

(4.2)

FStab◦ D(ΓQ)

��

ιΓQ
// Stab◦ D(ΓQ)F

��

Hom(KF (D(ΓQ)),C)
∼=

Hom(K(D(ΓQ)F ),C).

To prove ιΓQ is an isomorphism, we only need to show that it is surjective, or

equivalently, that any heart in EG(D(ΓQ)F ,GQ) is the F-stabilization of some

heart in EG(D(ΓQ),GQ). This follows from Proposition 4.2.

The isomorphism FStab◦ D(ΓQ) ∼= Stab◦ D(ΓS) follows immediately from the

derived equivalence (2.1) and the first claim. Similar to the proof of Theorem 3.5,

it is a biholomorphism.
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§5. Numerical stability conditions

In this section we study the space of numerical stability conditions of D(ΓQ) via

the stability conditions of D(ΓS), for two special Dynkin types, namely (Q,S) is of
type (A3, B2) or (D4, G2). We will show that for types A3 and D4, the numerical

stability conditions exactly coincide with the F -stable stability conditions.

Recall that the Euler form on the Grothendieck group K(D) of a triangulated

category D is defined by

(5.1) χ(M,L) =
∑
i

(−1)i dimHomi(M,L),

for any M,L ∈ D (here we abuse notation for elements in the category and in the

Grothendieck group). A numerical stability condition on D is a stability condition

(H, Z) such that the central change Z : K(D) → C factors through the numerical

Grothendieck group K(D)/Zχ(D), where

Zχ(D) =
{
X ∈ K(D)

∣∣ χ(X,Y ) = 0 ∀Y ∈ K(D)
}
.

Denote by NStabD the space of numerical stability conditions that are in StabD.

Let NStabD(ΓQ) be the space of numerical stability conditions of D(ΓQ).

Denote by NStab◦ D(ΓQ) its principal component, i.e. the connected component

containing the numerical stability condition with heart GQ. We have the following

main theorem.

Theorem 5.1. For (Q,S) of type (A3, B2) and (D4, G2) as in Example 1.1,

NStabD(ΓQ) consists of BrΓQ/BrΓS many (connected) components, each of

which is isomorphic to

NStab◦ D(ΓQ) = FStab◦ D(ΓQ) ∼= Stab◦ D(ΓS).

Proof. We only deal with the case (Q,S) of type (A3, B2), while the other case is

similar. Without loss of generality, suppose that the labeling and the orientations

of (Q,S) are

(5.2)

Q : 1 XX
ι,
��

2
))

55

3

S :
2 // 1.

1 2

Recall that SimGQ = {T1, T2, T3}. By a direct calculation, we know that

� F (T1) = T3, F (T2) = T2, F (T3) = T1, and hence F 2 = id. Thus a stability

condition (H, Z) is F -stable if and only if H is F -stable and Z(T1) = Z(T3).

� Zχ(ΓQ) is generated by [T1]− [T3]. Thus a stability condition (H, Z) is numer-

ical if and only if Z(T1) = Z(T3).
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{T1,X3[1],T2}

++��
{T1,T3[1],X3}

33

OO

&&

{T1[1]X1X3[1]}

&&

{T3[1],T1,T2[1]}
gg

��

{T1[1],X2,T3[1]}

&&

OO
{T2,X1[1],X3[1]}

''

{T1,T2[1],T3}

��

{T1,T2,T3}

&&

11

{X1,X2[1],X3}

OO

&&

{T1[1],T2[1],T3[1]}
gg

{T3,T1[1],X1}

++

{X1[1],X3,T3[1]}
OO

OO

{T2[1],T3,T1[1]}

{T2,X1[1],T3}

33

Figure 1. The exchange graph EG3(ΓQ,GQ) for Q of type A3

Clearly, an F -stable stability condition is numerical.

Next we investigate stability conditions in

(5.3) S :=
⋃

H∈EG3(D(ΓQ),GQ) U(H).

The Auslander–Reiten quiver of GQ is

T1
!!

X3

""

X2

<<

""

T2.

T3

==

X1

<<

The exchange graph EG3(D(ΓQ),GQ) is shown in Figure 1, where we denote each

heart by a complete set of simples. Note that the F -stable ones are underlined.

Let H be a non-F -stable heart in Figure 1. We claim that all the stability

conditions in U(H) are not numerical. To see this, take the top heart in Figure 1

for example. Then Z(T1) and Z(T3[1]) are in the same upper half-plane H as in

(1.23). Thus Z(T1) = Z(T3) never holds, which implies the claim. The other cases

are similar.

To sum up, for an F -stable heart H in Figure 1, a stability condition with

heart H is numerical if and only if it is F -stable, i.e.

(5.4) U(H) ∩NStabD(ΓQ) = U(H) ∩ FStab◦ D(ΓQ).
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Therefore, we have

S∗ := S ∩NStabD(ΓQ) = S ∩ FStab◦ D(ΓQ).

Notice that Br ΓQF preserves F -stable stability conditions and all auto-equivalence

AutD(ΓQ) preserve numerical stability conditions. Then by (1.17) we have

NStabD(ΓQ) = BrΓQ · S∗.

Similarly, by (1.18) and (2.1) we have

EG3(D(ΓQ)F ,GF
Q) ∼= EGD(ΓQ)F /BrΓQF

and hence

FStab◦ D(ΓQ) = BrΓQF · S∗.

Thus NStabD(ΓQ) is the union of Br ΓQ/BrΓQF ∼= BrΓQ/BrΓS many copies

of FStab◦ D(ΓQ).

To finish, we assert that the closure of FStab◦ D(ΓQ), which is taken inside

Stab◦ D(ΓQ), is disjoint from

C0 := NStabD(ΓQ)− FStab◦ D(ΓQ)

and vice versa. This will imply that FStab◦ D(ΓQ) is a connected component of

NStab(ΓQ) and hence the theorem follows.

The rest of the proof is devoted to proving the assertion. Let EGF =

EG(D(ΓQ)F ,GF
Q) and UF (H) = U(H) ∩ FStab◦ D(ΓQ) for any H ∈ EGF . First

we have

FStab◦ D(ΓQ) =
⋃

H∈EGFUF (H)

by the local closeness property ([17, Thm. A and Lem. 3.26]) and thus we only

need to show that, for any H ∈ EGF ,

(5.5) UF (H) ∩ C0 = ∅.

Without loss of generality, take the F -stable heart H = GQ[1]. By formula [15,

(3.1)], we have

(5.6) UF (GQ[1]) ⊂ U(GQ[1]) ⊂
⋃

H∈EG3(D(ΓQ),GQ) U(H).

We also have

(5.7) C0 ⊂
⋃

H∈BrΓQ·EGF −EGF U(H).

But (1.17) implies that

Br ΓQ · EGF ∩EG(D(ΓQ),GQ) = EGF ∩EG(D(ΓQ),GQ) ⊂ EGF
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and hence

(5.8) (Br ΓQ · EGF −EGF ) ∩ EG(D(ΓQ),GQ) = ∅.

Combining (5.6), (5.7), and (5.8), we have (5.5) for H = GQ[1], as required. Sim-

ilarly, we can show that UF (H) ∩ C0 = ∅, noticing that C0 is the union of many

copies of UF (H) (but the argument is the same).

Remark 5.2. If (Q,S) is of type (A3, B2) as in (5.2), then BrΓS satisfies the

B2-braid relation, i.e.

(1 ◦ 2)2 = 1 ◦ 2 ◦ 1 ◦ 2 = 2 ◦ 1 ◦ 2 ◦ 1 = (2 ◦ 1)2,

where i represents the twist functor of Ti in Br ΓS. This follows by Lemma 4.1 and

a direct calculation:

(1 ◦ 3) ◦ 2 ◦ (1 ◦ 3) ◦ 2 = 1 ◦ 3 ◦ 2 ◦ 3 ◦ 1 ◦ 2
= 1 ◦ 2 ◦ 3 ◦ 2 ◦ 1 ◦ 2 = 1 ◦ 2 ◦ 3 ◦ 1 ◦ 2 ◦ 1
= 1 ◦ 2 ◦ 1 ◦ 3 ◦ 2 ◦ 1 = 2 ◦ 1 ◦ 2 ◦ 3 ◦ 2 ◦ 1
= 2 ◦ 1 ◦ 3 ◦ 2 ◦ 3 ◦ 1 = 2 ◦ (1 ◦ 3) ◦ 2 ◦ (1 ◦ 3),

where i represents the twist functor of Ti in Br ΓQ ∼= BrA3 , and we underline the

relations. Thus

BrB2
∼= BrΓS ⊂ BrΓQ ∼= BrA3 .

Similarly, if (Q,S) is of type (D4, G2), then BrΓS satisfies the G2-braid relation,

i.e.

(1 ◦ 2)3 = (2 ◦ 1)3,

and we have

BrG2
∼= BrΓS ⊂ BrΓQ ∼= BrD4

(note that we need the faithfulness [17, Thm. B] of Br ΓQ ∼= BrD4
in this case).

Remark 5.3. Note that for a general Dynkin quiver Q, the numerical Grothen-

dieck group Zχ(ΓQ) does not have to match the Grothendieck group of D(ΓS).
Thus the results in this section do not hold in general.

§6. Stability conditions of Gepner type

In this section we consider Gepner-type stability conditions on the bounded derived

category of a hereditary algebra of Dynkin type. First we recall some background

on Gepner-type stability conditions.
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There is a natural C action on a space Stab(D), namely,

s · (Z,P) = (Z · e−iπs,PRe(s)),

where Px(ϕ) = P(ϕ + x). There is also a natural action on Stab(D) induced by

Aut(D), namely,

Φ(Z,P) = (Z ◦ Φ−1,Φ ◦ P).

For a pair (Φ, s) ∈ AutD×C, a Gepner equation on StabD is an equation of the

form

Φ(σ) = s · σ.

In the usual setting, where one hasK(D) ∼= Zn, Gepner equations were studied

by Toda [20, 22, 21], who was interested in finding stability conditions with a

symmetry property. In this case, a solution to such an equation is called a Gepner

point, which is an orbifold point in Aut \ StabD /C. Toda’s motivation came from

the study of Donaldson–Thomas invariants, in particular for B-branes on Landau–

Ginzburg models associated to a superpotential.

Following [21], a stability condition σ is said to be of Gepner type (Φ, s) for

(Φ, s) ∈ AutD×C if it satisfies the Gepner equation. In particular, the (n-)shift

functor [n] is an auto-equivalence and any stability condition is of Gepner type

([n], n), for any integer n. We call it the stability condition of trivial Gepner type.

We also mention the global dimension function on stability conditions, which

is closely related to Gepner equations, and is introduced in [16]. For a stability

condition σ = (Z,P), define

(6.1) gldimσ = sup
{
ϕ2 − ϕ1

∣∣ Hom(P(ϕ1),P(ϕ2)) ̸= 0
}
.

In the following we assume (Q,S) is of Dynkin type. We list the Coxeter

number h of the Dynkin types in Table 1, which will be used later.

Dynkin type Coxeter number h

A2n−1 2n

Bn 2n

Cn 2n

Dn+1 2n

E6 12

F4 12

G2 6

Table 1. The Coxeter numbers
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Recall that one may associate to the module category HQ a quiver, the

Auslander–Reiten quiver ∆(HQ), whose vertices are labeled by the isomorphism

classes of indecomposable modules and arrows are labeled by irreducible mor-

phisms between the modules. For HS, since Fq is not algebraically closed, the

Auslander–Reiten quiver ∆(HS) is a species, which is folded from ∆(HQ) by

an (admissible) automorphism ῑ on ∆(HQ), where ῑ is induced by the Frobe-

nius morphism on HQ; see [2, Sect. 8] for details. Further, one may define the

Auslander–Reiten quivers ∆(D(Q)) and ∆(D(S)) of the bounded derived cate-

gories D(Q) and D(S) respectively, which are spliced from ∆(HQ) and ∆(HS)

respectively. Moreover, noticing that S is the folding of Q by the admissible auto-

morphism ι ∈ AutQ in Example 1.1, we have a canonical exact sequence

(6.2) 1 −→ AutQ −→ Aut∆(D(Q)) −→ Aut∆(D(S)) −→ 1

of automorphism groups of these quivers.

Note that a triangle-auto-equivalence of D(Q) (resp. D(S)) preserves the irre-
ducible morphisms and the Auslander–Reiten translation, thus it induces an auto-

morphism of ∆(D(Q)) (resp. ∆(D(S))). So there is a homomorphism AutD(Q) →
Aut∆(D(Q)) which is easily seen to be injective. In particular, the Auslander–

Reiten translation τ and the Frobenius functor F are both triangle-auto-equiva-

lences of D(Q), which induce two automorphisms on ∆(D(Q)), and in fact, any

automorphism of ∆(D(Q)) is generated by them, except for type D4. For type D4,

there are other auto-equivalences induced by the symmetries of the quiver, which

also induce isomorphisms of ∆(D(Q)). So AutD(Q) ∼= Aut∆(D(Q)), and thus

also AutD(S) ∼= Aut∆(D(S)). Further, by sequence (6.2), the following canonical

sequence is exact:

(6.3) 1 −→ AutQ −→ AutD(Q)AutD(S) −→ 1.

Note that τ and F commute, so for Q not of type D4, we have

(6.4) AutD(Q) = ⟨τ, F ⟩ ∼= Aut∆(D(Q)) ∼= Z× Z2.

When Q is of type D4, we have

(6.5) AutD(Q) ∼= Aut∆(D(Q)) ∼= Z× S3.

By (6.3), (6.4), and (6.5), we have

(6.6) AutD(S) = ⟨τ⟩ ∼= Z.

By definition of the Gepner-type stability condition, it is not hard to see that

a stability condition on D(Q) (of any quiver Q, not necessarily of Dynkin type)
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is F -stable if and only if it is of Gepner type (F, 0). Thus we have the following

proposition:

Proposition 6.1. A stability condition in FStabD(Q) is of Gepner type (F, 0).

Conversely, any Gepner-type stability condition of D(Q) with auto-equivalence F

belongs to FStabD(Q).

It is proved in [5] that there is a stability condition σ on D(Q) of Gepner type

(τ,−2/h) (which is conjectured by [20, Conj. 1.2] for general settings) such that

(6.7) τ(σ) = − 2

h
· σ.

It is also the unique Gepner-type stability condition on D(Q) up to C-action with

τ as the auto-equivalence. In [5], σ is defined on the homotopy category of graded

matrix factorizations, which is equivalent to D(Q). Here we compute it directly in

D(Q) and then fold it as a Gepner-type stability condition in D(S).

Proposition 6.2. The following maps on the simples of HQ induce a function

Z from K(D(Q)) to C, which gives a stability condition (HQ, Z) on D(Q). This

is the unique one of Gepner type (τ,−2/h) up to C-action. The orientations and

vertex labels of Q are depicted in Figure 2:

� Type A2n−1:



Z(T2m) = −1, 1 ≤ m ≤ n− 1,

Z(T2m−1) =
eiπ/h

cos(π/h)
, 2 ≤ m ≤ n− 1,

Z(T1) = Z(T2n−1) =
eiπ/h

2 cos(π/h)
.

� Type D2n:



Z(T2m) = −1, 1 ≤ m ≤ n− 1,

Z(T2m−1) =
eiπ/h

cos(π/h)
, 2 ≤ m ≤ n− 1,

Z(T1) = Z(T2n−1) = Z(T2n) =
eiπ/h

2 cos(π/h)
.

� Type D2n+1:



Z(T2n+1) = −1,

Z(T2m) = −1, 1 ≤ m ≤ n− 1,

Z(T2m−1) =
3eiπ/h

2 cos(π/h)
, 2 ≤ m ≤ n,

Z(T1) =
eiπ/h

2 cos(π/h)
.
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A2n−1 1 oo 2 // 3 oo · · · oo 2n− 2 // 2n− 1

2n− 1

D2n 1 oo 2 // · · · oo 2n− 2
**

44

2n

2n

D2n+1 1 oo 2 // · · · oo 2n− 1
**

44

2n+ 1

E6 1 oo 2 // 3 oo 5 // 6

4

OO

Figure 2. The orientations of the quivers

� Type E6:



Z(T2) = Z(T4) = Z(T5) = −1,

Z(T1) = Z(T6) =
eiπ/h

2 cos(π/h)
,

Z(T3) =
3eiπ/h

2 cos(π/h)
.

Proof. Note that Z induces a well-defined function on K(HQ). Since HQ is a finite

heart, (HQ, Z) is a stability condition on D(Q). By considering the Auslander–

Reiten quiver of D(Q), one may directly check that (HQ, Z) is of Gepner type

(τ,−2/h), noticing that the value of Z on a simple injective is −1. The uniqueness

follows from [15, Thm. 4.7].

Proposition 6.3. The stability condition (HQ, Z) in Proposition 6.2 is F -stable,

and it induces a stability condition (HS, Z) on D(S), which is of Gepner type

(τ,−2/h), where τ is the Auslander–Reiten translation of D(S) and h is the Cox-

eter number of S. It is also the unique Gepner-type stability condition on D(S) up
to C-action with τ as the auto-equivalence:

� Type Cn:


Z(Sm) = −1 if m is even,

Z(Sm) =
eiπ/h

cos(π/h)
if m is odd.
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� Type B2n−1:



Z(S2m) = −1, 1 ≤ m ≤ n− 1,

Z(S2m−1) =
eiπ/h

cos(π/h)
, 2 ≤ m ≤ n− 1,

Z(S1) = Z(S2n−1) =
eiπ/h

2 cos(π/h)
.

� Type B2n:



Z(S2m) = −1, 1 ≤ m ≤ n,

Z(S2m−1) =
3eiπ/h

2 cos(π/h)
, 2 ≤ m ≤ n,

Z(S1) =
eiπ/h

2 cos(π/h)
.

� Type F4:



Z(S2) = Z(S4) = −1,

Z(S1) =
eiπ/h

2 cos(π/h)
,

Z(S3) =
3eiπ/h

2 cos(π/h)
.

� Type G2:


Z(S2) = −1,

Z(S1) =
eiπ/h

2 cos(π/h)
.

Proof. Note that HQ and Z are both F -stable, so (HQ, Z) is F -stable. Then, by

Theorem 3.5, it induces a stability condition (HS, Z) on HS. As shown in Table 1,

the Coxeter numbers of Q and S coincide. On the other hand, the Auslander–

Reiten translations of HQ and HS also coincide under the equivalence HF
Q
∼= HS.

Then a direct calculation gives the list of (HS, Z) above, where the index of simple

modules inHS is induced from the index of simple modules inHQ. Further, (HS, Z)

is naturally a stability condition of Gepner type (τ,− 2
h ), and the uniqueness of

(HQ, Z) guarantees the uniqueness of (HS, Z).

To find all the non-trivial Gepner-type stability conditions on D(Q) of simply

laced Dynkin type (except type D4) up to C-action, by equalities (6.4) and τh =

[−2], we should consider the auto-equivalences τm, 0 < m < h, and τmF , 0 ≤
m < h. For the non-simply-laced case, we only consider the auto-equivalence τm,

0 < m < h by (6.6). Assume σ is a stability condition on D(Q) of Gepner type

(τm, s); since τh = [−2], s must be − 2m
h . When m and h are coprime, it is not

hard to see that σ is also of Gepner type (τ,− 2
h ). Otherwise, there are other (and
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in fact infinitely many) stability conditions of Gepner type (τm, s) up to C-action;
see the example of type A5 as follows.

Example 6.4. We consider D(Q) of type A5 with, Q as in Figure 2. The

Auslander–Reiten quiver of HQ is

T5
$$

U5
$$

V5
%%

U4

::

$$

V4

::

$$

T4

T3

::

$$

U3
$$

::

V3
%%

::

U2

::

$$

V2

::

$$

T2.

T1

::

U1

::

V1

::

Figure 3 shows the central charge Z of stability condition σ of Gepner type

(τ,− 2
h ), which is given in Proposition 6.2. Note that σ is also of Gepner type

(τ2,− 4
h ). Thanks to the mesh relations and the Gepner-type relation Z(τ(E)) =

e2iπ/h ·Z(E), Z is determined by the image of one indecomposable object in D(Q).

However, for the case of Gepner type (τ2,− 4
h ), we need at least two images. So

to construct another stability condition of Gepner type (τ2,− 4
h ), for example,

let Z ′(T1) = 6
5Z(T1) and Z ′(T2) = Z(T2). Then Z ′ depicted in Figure 4 gives a

stability condition σ′ of Gepner type (τ2,− 4
h ) with heart HQ

♭
T4
.

0
x

Z(U5),Z(U1)

Z(T1),Z(T5)Z(V5),Z(V1)

1

Z(T2),Z(T4)

Z(V4),Z(V2) Z(U4),Z(U2)

Z(V3) Z(T3)

Z(U3)

π
6

2π
6

3π
6

4π
6

5π
6

√
3
6

Figure 3. A central charge of Gepner type (τ,− 2
h )
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0
x

Z′(T1)

Z′(T4[−1])

Z′(V1)

Z′(U3)

Z′(T5)

Z′(U4)

Z′(U1)

Z′(V2)

Z′(V3)

Z′(U5)

1

Z′(T2)

Z′(V4)

Z′(V5)

Z′(U2)

Z′(T3)

π
6

2π
6

3π
6

4π
6

5π
6

√
3
5

Figure 4. A central charge of Gepner type (τ2,− 4
h )

Our final remark is that Proposition 6.3 gives the minimal value of gldim for

species of Dynkin type.

Corollary 6.5. Let S be a species of Dynkin type. The range of the global dimen-

sion gldim on StabD(S) is [1− 2
h ,+∞). Moreover, σG is the unique minimal point,

with value 1− 2
h , of gldim.

Proof. The proof is similar to the proof of [16, Thm. 4.6], noticing that StabD(S)
is connected and we have Proposition 6.3.
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