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sl2 Triples Whose Nilpositive Elements Are in a
Space Which Is Spanned by the Real Root
Vectors in Rank 2 Symmetric Hyperbolic

Kac–Moody Lie Algebras

by

Hisanori Tsurusaki

Abstract

In analogy with the theory of nilpotent orbits in finite-dimensional semisimple Lie alge-
bras, it is known that the principal sl2 subalgebras can be constructed in hyperbolic
Kac–Moody Lie algebras. We obtained a series of sl2 subalgebras in rank 2 symmet-
ric hyperbolic Kac–Moody Lie algebras by extending the aforementioned construction.
We present this result and also discuss sl2 modules obtained by the action of the sl2
subalgebras on the original Lie algebras.
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§1. Introduction

Kac–Moody Lie algebras are generalizations of finite-dimensional simple Lie alge-

bras, and can be divided into three types: finite, affine, and indefinite [Kac90].

Finite-type Kac–Moody Lie algebras are finite-dimensional simple Lie algebras.

In [Dyn57], nilpotent orbits in finite-type Kac–Moody Lie algebras were clas-

sified. Nilpotent orbits in a finite-type Kac–Moody Lie algebra g are those formed

by inner automorphisms acting on nilpotent elements. These orbits are completely

classified by weighted Dynkin diagrams.

Moreover, from the Jacobson–Morosov theorem, for a nilpotent element x, we

can construct an sl2-triple whose nilpositive element is x [CM93, Thm. 3.3.1]. A

nilpositive element is an element that is nilpotent and is in the positive root space.
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Classifying nilpotent orbits is equivalent to classifying sl2-triples in g up to inner

automorphisms.

Among the nilpotent orbits in a finite-type Lie algebra, a nilpotent orbit with

the largest dimension (as an algebraic variety) is called a principal nilpotent orbit.

Let {ei, fi, hi} be the Chevalley generators of a finite-type Lie algebra. For each i,

take the appropriate ai’s in C and put

X =
∑
i

ei,

Y =
∑
i

aifi,

H =
∑
i

aihi.

This {X,Y,H} is called an sl2-triple corresponding to the principal nilpotent orbit

[CM93, Thm. 4.1.6].

For a principal nilpotent orbit of a finite-type Lie algebra, we can create a

principal SO(3) subalgebra compatible with the compact involution [Kos59]. We

provide further detail: Denote the Cartan matrix of g by A = (Aij) and the

Chevalley generators by {ei, fi, hi}. Put

pi =
∑
j

A−1
ij (> 0),

ni =
√
pi.

Finally, put

J3 =
∑
j

pjhj ,

J+ =
∑
j

njej ,

J− =
∑
j

njfj .

This {J3, J+, J−} spans a principal SO(3) subalgebra. This means that

[J3, J
±] = ±J±,

[J+, J−] = J3.

In [NO01], principal SO(1, 2) subalgebras of hyperbolic Kac–Moody Lie algebras

are constructed and described in terms of the eigenvalues of their Casimir elements.

The principal SO(1, 2) subalgebras are constructed for certain indefinite-type Lie

algebras which are not hyperbolic [GOW02].
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In this paper, we will construct SO(1, 2) subalgebras which are not principal in

rank-2 symmetric Kac–Moody Lie algebras. However, we will actually construct sl2
triples, which correspond to SO(1, 2) subalgebras. The discussion using sl2 makes

it easy to compare with Dynkin–Kostant’s theory of nilpotent orbits. The principal

SO(1, 2) subalgebra is compatible with the compact involution ω0. This means that

when we decompose g as an sl2-module into a direct sum of irreducible components,

these irreducible components are unitary with respect to the Hermitian form in

[Kac90, §2.7] except for the SO(1, 2) subalgebra itself. We will search for SO(1, 2)

subalgebras that are compatible with ω0.

In fact, we will search for sl2-triples corresponding to SO(1, 2) subalgebras.

Since it is difficult to grasp the behavior of the imaginary root vectors, we construct

and classify the sl2-triples under the condition that the nilpositive elements lie in

the space spanned by the real roots. This condition makes it possible to explicitly

calculate them. Although the meaning of this condition is unclear, we remark that

this condition is automatically satisfied for principal SO(1, 2) subalgebras.

We will construct most of the sl2-triples that satisfy these conditions. In par-

ticular, we classified them in all cases where the neutral element H is dominant.

For these cases, we will calculate the weighted Dynkin diagrams and the range of

the eigenvalues on h in the adjoint actions of the Casimir elements. We will also

calculate some of the components that appear when g is decomposed by the action

of each sl2-triple.

§2. General theory of Kac–Moody Lie algebras

In the following, we consider Kac–Moody Lie algebras on C. Denote by g or g(A)

a Kac–Moody Lie algebra for the Cartan matrix A. Let A be an n×n matrix. Let

h be a Cartan subalgebra of g. The root space with respect to the root α is written

as gα. We denote the Chevalley generators of g by ei, fi, hi (i = 0, . . . , n− 1), and

the simple roots of g as αi (i = 0, . . . , n− 1). In this case, ⟨hi, αj⟩ = aij . We write

n+ for the subalgebra generated by the ei and n− for the subalgebra generated by

the fi. We also denote by ω the Chevalley involution on g. We denote by W the

Weyl group of g.

The Cartan matrix A is called symmetrizable when there exist an invertible

diagonal matrix D = diag(ε0, . . . , εn−1) and a symmetric matrix B such that

A = DB. A Kac–Moody Lie algebra whose Cartan matrix is symmetrizable is

called a symmetrizable Lie algebra. From [Kac90, Thm. 2.2], a symmetrizable Lie

algebra has a C-valued nondegenerate symmetric bilinear form (· | ·) called the

standard form.
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We fix a real form hR of h and define the antilinear automorphism ω0 in g by

ω0(ei) = −fi,

ω0(fi) = −ei (i = 0, . . . , n− 1),

ω0(h) = −h (h ∈ hR).

The automorphism ω0 is called the compact involution of g. From [Kac90, §2.7],

when g is symmetrizable, we can define the nondegenerate Hermitian form (· | ·)0
on g by

(x | y)0 = −(ω0(x) | y).

§3. SO(1, 2) subalgebras in hyperbolic Kac–Moody Lie algebras

In this section, we will briefly recall the theory of SO(1, 2) subalgebras in the

hyperbolic Kac–Moody Lie algebras from [NO01]. An SO(1, 2) subalgebra of g is

the 3-dimensional subalgebra spanned by the three nonzero elements J+ ∈ n+,

J− ∈ n−, J3 ∈ h, satisfying

[J3, J
±] = ±J±,

[J+, J−] = −J3.

A representation of an SO(1, 2) subalgebra is called unitary if the representation

space V has a Hermitian scalar product (·, ·) and satisfies the following two con-

ditions:

(i) The actions of J+ and J− are adjoint, and the action of J3 is self-adjoint.

That is, for any x, y ∈ V ,

([J+, x], y) = (x, [J−, y]),

([J3, x], y) = (x, [J3, y]).

(ii) The Hermitian scalar product (·, ·) is positive definite.

A hyperbolic Kac–Moody Lie algebra is a Kac–Moody Lie algebra such that

the Cartan matrix A is of indefinite type and symmetrizable, the Dynkin diagram

is connected, and any proper connected subdiagram is finite or affine.

Put

pi = −
∑
j

A−1
ij .

Since pi ≥ 0 for any i, we put

ni =
√
pi.
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We may construct a principal SO(1, 2) subalgebra of the hyperbolic Kac–Moody

Lie algebra g as follows:

J3 = −
∑
j

pjhj ,

J+ =
∑
j

njej ,

J− =
∑
j

njfj .

When g is decomposed into the direct sum of irreducible modules by the adjoint

action of the principal SO(1, 2) subalgebra, these irreducible modules except for

SO(1, 2) itself are infinite-dimensional and unitary [NO01].

In the case of the indefinite-type Kac–Moody Lie algebras which are not

hyperbolic, the principal SO(1, 2) subalgebras can be constructed in the same way

if pi ≥ 0 for any i [GOW02].

On the other hand, an sl2-triple in g is a subalgebra of g with three nonzero

elements X ∈ n+, Y ∈ n−, H ∈ h such that

[H,X] = 2X,

[H,Y ] = −2Y,

[X,Y ] = H.

The subalgebra spanned by X, Y , H in g is called an sl2 subalgebra. An sl2-triple

can be constructed from the generators of an SO(1, 2) subalgebra by setting

J+ =
1√
2
X,

J− = − 1√
2
Y,

J3 =
1

2
H.

In the principal SO(1, 2) subalgebra, we have J− = −ω0(J
+).

Lemma 3.1 (Cf. [Kac90, §2.7 and Thm. 2.2]). Suppose that g is symmetrizable.

For any u ∈ g, adu and −adω0(u) are adjoint to each other with respect to (· | ·)0.
That is, for any x, y ∈ g,

([u, x] | y)0 = −(x | [ω0(u), y])0.
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Proof. By the definition of the Hermitian form (· | ·)0, let (· | ·) be the standard

form and we have

([u, x] | y)0 = −(ω0([u, x]) | y)
= −([ω0(u), ω0(x)] | y)
= ([ω0(x), ω0(u)] | y),

−(x | [ω0(u), y])0 = (ω0(x) | [ω0(u), y]).

From [Kac90, Thm. 2.2(a)], the standard form is invariant and we have

([ω0(x), ω0(u)] | y) = (ω0(x) | [ω0(u), y]).

Therefore

([u, x] | y)0 = −(x | [ω0(u), y])0.

From Lemma 3.1, even in the case of nonprincipal SO(1, 2) subalgebras, if

J− = −ω0(J
+) holds, then the unitarity condition (i) is satisfied with respect to

the Hermitian form (· | ·)0 when g is considered as a representation space with

adjoint actions. We will show that the converse is also true.

Lemma 3.2. Suppose that the adjoint action of the SO(1, 2) subalgebra on g satis-

fies the unitary condition (i) for the Hermitian form (· | ·)0. Then J− = −ω0(J
+).

Proof. Since J+ and −ω0(J
+) are adjoint to each other and so are J+ and J−,

for any x ∈ g, h ∈ h, we have

([J+, x], h)0 = (x, [−ω0(J
+), h])0

= (x, [J−, h])0.

Since (· | ·)0 is nondegenerate, we have

[−ω0(J
+), h] = [J−, h],

which implies that

[h, J− + ω0(J
+)] = 0.

Since this holds for any h ∈ h, we have J−+ω0(J
+) ∈ h. However, from [J3, J

±] =

±J±, we have J+, J− ∈ n+ ⊕ n−, and hence J− + ω0(J
+) ∈ n+ ⊕ n−. From the

above, we have J− + ω0(J
+) = 0. This proves the lemma.

Motivated by this, we consider only SO(1, 2) subalgebras that satisfy the

condition J− = −ω0(J
+), which is rephrased as Y = ω0(X) in terms of sl2-triples.
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§4. The real roots of a rank 2 symmetric hyperbolic Kac–Moody Lie

algebra

Let a be an integer such that a ≥ 3. Let g be a Kac–Moody Lie algebra whose

Cartan matrix is (
2 −a

−a 2

)
.

It is of hyperbolic type. Any real root can be expressed as w(α0) or w(α1) for

some w ∈ W [Kac90]. Let r0 and r1 be the fundamental reflections for α0 and α1.

Since W is generated as a group by r0 and r1 [Kac90], any element of W can be

written in the form
(r0r1)

i, r1(r0r1)
i,

(r1r0)
i, r0(r1r0)

i
(i ∈ Z).

Lemma 4.1 ([KM95, Prop. 4.4]). Let {Fn} be a sequence determined by

F0 = 0, F1 = 1, Fk+2 = aFk+1 − Fk.

The real positive roots of g are of the form

α = Fk+1α0 + Fkα1

or

β = Fkα0 + Fk+1α1.

We will distinguish between these roots and call them α-type roots and β-type

roots, and define types α and β for the root vectors as well.

§5. sl2-triples of rank 2 hyperbolic Lie algebras which are compatible

with compact involution

Let g be a rank 2 hyperbolic Kac–Moody algebra. We want to find X ∈ g in the

space spanned by the real root vectors such that X, Y = ω0(X), and H = [X,Y ]

form an sl2-triple. For X ∈ g in the space spanned by the real root vectors, X can

be written as

X =
∑
i

ciEi (i ∈ {0, . . . , nX − 1}, ci ∈ C, ci ̸= 0, Ei ∈ gβi
, Ei ̸= 0),

where βi (i ∈ {0, . . . , nX − 1}) are distinct real roots and nX is a positive integer.

We call nX the length of X. First we show the following lemma.

Lemma 5.1. If the length of X is greater than or equal to 3, a required sl2-triple

does not exist.
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Proof. We plot the roots on the xy-plane with the α0 component as x-coordinate

and the α1 component as y-coordinate. If X, Y = ω0(X), and H = [X,Y ] form

an sl2-triple, [H,Ei] = 2Ei holds for each i. Put βi = pα0 + qα1, where p, q ∈ R.
Since [H,Ei] = (pα0(H) + qα1(H))Ei, we have

pα0(H) + qα1(H) = 2.

Since we can write H = rh0 + sh1 where r, s ∈ C, h0, h1 are the part of Chevalley

generator, we have (
r s
)( 2 −a

−a 2

)(
p

q

)
= 2.

This represents a line on the xy-plane. In other words, the βi are collinear on the

xy-plane.

On the other hand, from [KM95, Cor. 4.3], the set of real roots ∆re is repre-

sented as the set of grid points on the hyperbola

∆re =
{
(x, y) ∈ Z× Z

∣∣ x2 − axy + y2 = 1
}
.

Therefore, the βi are on the intersection of this hyperbola and the line. However,

since there are at most two intersections of a hyperbola and a line, it is not possible

to create the desired sl2-triple when nX ≥ 3.

From Lemma 5.1, we only need to consider the case when the length of X is

1 or 2. The multiplicity of a real root is always 1 (cf. [Kac90, Prop. 5.1(a)]), and

the real root can be obtained by acting on the simple roots with an element of

the Weyl group. Therefore, the real root vectors can be written in the form cw(e0)

or cw(e1), using c ∈ C, w ∈ W. Note that the actions of the Weyl group on the

element of g, which is now written as w(e0)s, are the elements of Aut g, which are

determined by defining

ri(x) = (exp(ad fi))(exp(ad−ei))(exp(ad fi))

for the fundamental reflections ri (i ∈ {0, 1}) (cf. [Kac90, Lem. 3.8]), and w(x) ∈
gw(α) holds for x ∈ gα. We now show the following lemma.

Lemma 5.2. For w ∈ W, wω0 = ω0w.

Proof. It is sufficient to show that when w = ri, we get r
−1
i ω0riω

−1
0 = id. We have

r−1
i = (exp(ad−fi))(exp(ad ei))(exp(ad−fi)),

ω0riω
−1
0 =

(
exp(adω0(fi))

)(
exp(adω0(−ei))

)(
exp(adω0(fi))

)
= (exp(ad−ei))(exp(ad fi))(exp(ad−ei)).
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If we consider this in terms of the SL(2,C) representation of Aut g, we get(
1 1

0 1

)
7→ exp ad ei,(

1 −1

0 1

)
7→ exp ad−ei,(

1 0

1 1

)
7→ exp ad fi,(

1 0

−1 1

)
7→ exp ad−fi.

Therefore we have(
1 0

−1 1

)(
1 1

0 1

)(
1 0

−1 1

)(
1 −1

0 1

)(
1 0

1 1

)(
1 −1

0 1

)
7→ r−1

i ω0riω
−1
0 .

Calculating the left-hand side, we get(
1 0

−1 1

)(
1 1

0 1

)(
1 0

−1 1

)(
1 −1

0 1

)(
1 0

1 1

)(
1 −1

0 1

)
=

(
1 0

0 1

)
.

Therefore, we have r−1
i ω0riω

−1
0 = id.

Lemma 5.3. When the length of X is 1, a required sl2 triple does not exist.

Proof. In the following, we denote the complex conjugate of a complex number

z by z̄ and the absolute value by |z|. When the length of X is 1, we can write

X = cw(e0) or X = cw(e1) for some c ∈ C and w ∈ W. When X = cw(e0) holds,

from Lemma 5.2, Y = −c̄w(f0) and H = −|c|2w(h0). To satisfy the condition that

X, Y , H form an sl2-triple, [H,X] = 2X should hold. Now we have

[H,X] = [−|c|2w(h0), cw(e0)]

= −|c|22cw(e0).

Therefore we have |c|2 = −1. Since there is no such complex number, the sl2-triple

cannot be constructed in this case. Since the same is true for X = cw(e1), the

sl2-triple cannot be constructed when nX = 1.

Next we consider the case where the length of X is 2. First, consider the case

when X = c0w(e0) + c1w
′(e1) for some c0, c1 ∈ C and w,w′ ∈ W. Let k, l, m, and
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n be integers such that w(e0) ∈ gkα0+lα1
, w′(e1) ∈ gmα0+nα1

. Using Lemma 5.2,

we have

Y = −c0w(f0)− c1w
′(f1)

and

H =− |c0|2(kh0 + lh1)− |c1|2(mh0 + nh1)

− c0c1[w(e0), w
′(f1)]− c0c1[w

′(e1), w(f0)].

For the root space to which w′(e1) and w(f0) belong, the sum of their roots is

not 0. The same is true for w(e0) and w′(f1). Therefore, for H ∈ h to hold, it

should hold that

[w(e0), w
′(f1)] = 0, [w′(e1), w(f0)] = 0.

This condition holds when w = (r0r1)
x, w′ = (r1r0)

y, or w = r1(r0r1)
x, w′ =

r0(r1r0)
y. When this condition holds, we have

H = (−k|c0|2 −m|c1|2)h0 + (−l|c0|2 − n|c1|2)h1.

If [H,X] = 2X, then X, Y , H form an sl2 triple. From the fact that

[H,X] = (−k|c0|2 −m|c1|2)(2k − al)c0w(e0)

+ (−l|c0|2 − n|c1|2)(−ak + 2l)c0w(e0)

+ (−k|c0|2 −m|c1|2)(2m− an)c1w
′(e1)

+ (−l|c0|2 − n|c1|2)(−am+ 2n)c1w
′(e1),

it should be satisfied that

(akl − 2k2 + akl − 2l2)|c0|2 + (alm− 2km+ akn− 2ln)|c1|2 = 2

and

(akn− 2km+ alm− 2ln)|c0|2 + (amn− 2m2 + amn− 2n2)|c1|2 = 2.

Let

A = 2akl − 2k2 − 2l2,

B = alm− 2km+ akn− 2ln,

C = 2amn− 2m2 − 2n2.

Then

A|c0|2 +B|c1|2 = 2,

B|c0|2 + C|c1|2 = 2.
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If B2 −AC ̸= 0,

|c0|2 =
2(B − C)

B2 −AC
, |c1|2 =

2(B −A)

B2 −AC
.

In addition, a straightforward calculation yields the following lemma.

Lemma 5.4. B2 −AC = (a2 − 4)(kn− lm)2.

From Lemma 5.4 and a > 3, if kn− lm ̸= 0, then B2−AC > 0. Since we have

|c0|2 ≥ 0, |c1|2 ≥ 0, we want to find the condition. If w = (r0r1)
x, w′ = (r1r0)

y,

then k = F2x+1, l = F2x, m = F2y, n = F2y+1. If w = r1(r0r1)
x, w′ = r0(r1r0)

y,

then k = F2x+1, l = F2x+2, m = F2y+2, n = F2y+1. We will show the following

lemma first.

Lemma 5.5. For any i, j ∈ Z≥0, if k = Fi+1, l = Fi, m = Fj, n = Fj+1, then

A = C = −2.

Proof. If we set f(i) = 2aFi+1Fi − 2F 2
i+1 − 2F 2

i , we get f(i + 1) = f(i) by a

simple calculation. Therefore, f(i) = f(0) = −2. From this we know that A =

C = −2.

From Lemma 5.5, we have

|c0|2 = |c1|2 =
2(B + 2)

B2 − 4

=
2

B − 2
.

Lemma 5.6. For any i, j ∈ Z≥0, if k = Fi+1, l = Fi, m = Fj, n = Fj+1, then

B > 2.

Proof. Since B depends on i and j, we will write it subscripted as Bij . Similarly,

we will write k, l, m, n as ki, li, mj , nj . We can calculate B00 = a > 2. It is

sufficient to show that Bij is monotonically increasing with respect to i and j. By

symmetry, it is sufficient to show it only for i. Since

ki+1 = aki − li, li+1 = ki,

we can calculate

B(i+1)j −Bij = (a− 2)kimj + 2limj + (a2 − 2)kinj − alinj

> (a− 2)kimj + 2limj + (2a− 2)kinj − alinj (a ≥ 3)

= (a− 2)kimj + 2limj + (a− 2)kinj + a(ki − li)nj

> 0 (a ≥ 3, ki > li).

This shows monotonicity.
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If we set i = 2x and j = 2y in Lemma 5.6, we have B > 2 when w = (r0r1)
x,

w′ = (r1r0)
y. Similarly, if we swap k and m, l and n in Lemma 5.6 and set

i = 2x+1 and j = 2y+1, we can see that B > 2 is also true when w = r1(r0r1)
x,

w′ = r0(r1r0)
y.

Proposition 5.7. Let E0, E1 be real positive roots of different types (in the sense

of α and β types). If we take the appropriate c0, c1 ∈ C, then X = c0E0 + c1E1,

Y = ω0(X), H = [X,Y ] form an sl2-triple.

Proof. We can assume that E0 is of type α and E1 is of type β. The E0’s can be

written in the form cw(e0) or cw(e1) using the constants c and w ∈ W. Considering

c0 and c1, we only need to consider the root vector of the form w(e0) or w(e1).

The types of (r0r1)
i(e0) and r0(r1r0)

i(e1) are α, while the types of (r1r0)
i(e1) and

r1(r0r1)
i(e0) are β.

When E0 = (r0r1)
i(e0), E1 = (r1r0)

i(e1) or when E0 = r0(r1r0)
i(e1), E1 =

r1(r0r1)
i(e0), we have B > 2. Therefore we can take c0 = c1 =

√
2/(B − 2) and

we obtain the conclusion. When E0 = (r0r1)
i(e0), E1 = r1(r0r1)

i(e0) or when

E0 = r0(r1r0)
i(e1), E1 = (r1r0)

i(e1), we can repeat the discussion of this section

in the same way.

The contents of this section can be summarized as follows.

Theorem 5.8. Let X be an element of a space spanned by a real positive root

vector.

(1) If the length of X is not 2, then X, Y = ω0(X), H = [X,Y ] do not form an

sl2-triple.

(2) Suppose the length of X is 2 and E0, E1 are real positive roots of different

types (in the sense of types α and β). If we take appropriate c0, c1 ∈ C, then
X = c0E0 + c1E1, Y = ω0(X), H = [X,Y ] form an sl2-triple.

Proof. We can see this from Lemmas 5.1 and 5.3 and Proposition 5.7.

§6. Weighted Dynkin diagrams

The Dynkin diagram of the Kac–Moody Lie algebra we are dealing with is

◦ ◦.a

In fact, the two vertices are connected by a line segments, which are abbre-

viated as shown in the figure above. In this section we compute the weighted

Dynkin diagram corresponding to the sl2-triple constructed in the previous section.
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A weighted Dynkin diagram is a Dynkin diagram where each vertex is labeled, and

the label of vertex i is defined as αi(H). Since the rank of the Kac–Moody Lie

algebra we are considering is 2, i = 0, 1.

In the following, let k = Fi+1, l = Fi, m = Fj , n = Fj+1. Rewrite X =

c0E0 + c1E1 and let E0 ∈ gkα0+lα1
, E1 ∈ gmα0+nα1

. Then E0 is a root vector of

type α and E1 is a root vector of type β. Now, if E ∈ gxα0+yα1 , then [H,E] =

(xα0(H) + yα1(H))E. Recall that [H,X] = 2X. Since X = c0E0 + c1E1, we have

[H,E0] = 2E0,

[H,E1] = 2E1.

From these equations, we have

α0(H) =
2(n− l)

kn− lm
,

α1(H) =
2(k −m)

kn− lm
.

Therefore, the weighted Dynkin diagram is

2(Fj+1 − Fi)

Fi+1Fj+1 − FiFj

2(Fi+1 − Fj)

Fi+1Fj+1 − FiFj

◦ ◦.a

In the general Kac–Moody Lie algebra, we say h ∈ h is dominant if h satisfies

αi(h) ≥ 0 for any i. In the finite-type case, for any sl2 triple, we can transform it

by the action of an appropriate element of the Weyl group so that H is dominant.

In the case of a rank 2 hyperbolic Kac–Moody Lie algebra, if H is dominant, then

when we decompose g into the direct sum of eigenspaces with respect to the adjoint

action of H, the dimension of the eigenspaces corresponding to each eigenvalue will

be finite.

With this motivation, we aim to classify cases where H is dominant. When H

is dominant, each weight in the weighted Dynkin diagram is greater than or equal

to 0. We do not consider whether an sl2-triple can be constructed when X can be

written as the sum of two root vectors of the same type (in the sense of types α

and β), but even if it can, we can show that H is not dominant.

Lemma 6.1. Suppose X = c0E0 + c1E1 and that E0 and E1 are real root vectors

of the same type (in the sense of types α and β) and the roots to which E0 and E1

belong are different. If X, Y = ω0(X), H = [X,Y ] form an sl2-triple, then H is

not dominant.
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Proof. Suppose that E0 and E1 are both of type α. Let k = Fi+1, l = Fi, m =

Fj+1, n = Fj , and write E0 ∈ gkα0+lα1
, E1 ∈ gmα0+nα1

. The roots to which E0

and E1 belong are different. Therefore i ̸= j. Repeating the above calculation

when E0 is of type α and E1 is of type β, we get

α0(H) =
2(n− l)

kn− lm
,

α1(H) =
2(k −m)

kn− lm
.

However, n − l = Fj − Fi and k − m = Fi+1 − Fj+1 are both not equal to zero

and have different signs. Therefore, either α0(H) or α1(H) will be negative, and

H will not be dominant.

Lemma 6.2. Of the sl2-triples created by Proposition 5.7, H is dominant if and

only if i = j − 1, j, j + 1.

Proof. In order for α0(H) ≥ 0 to be true, n − l = Fj+1 − Fi ≥ 0 should be true.

Thus we have i ≤ j + 1.

Also, in order for α1(H) ≥ 0 to be true, k − m = Fi+1 − Fj ≥ 0 should be

true. Thus we have i+ 1 ≥ j.

Putting these together, we get j− 1 ≤ i ≤ j+1. The converse is obvious.

Proposition 6.3. The sl2-triple constructed in Proposition 5.7 can be trans-

formed under the appropriate action of an element of a Weyl group so that H

is dominant.

Proof. If H is originally dominant, there is no need to transform it. Otherwise, it

becomes |i− j| ≥ 2.

Now we know

e0 ∈ gF1α0+F0α1
(type α),

r1(e0) ∈ gF1α0+F2α1 (type β),

r0r1(e0) ∈ gF3α0+F2α1
(type α)

...

and

e1 ∈ gF0α0+F1α1
(type β),

r0(e1) ∈ gF2α0+F1α1
(type α),

r1r0(e1) ∈ gF2α0+F3α1 (type β).

...
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Since E0 is of type α and E1 is of type β, we can write

E0 = r0r1r0 · · · rp(r1−p) ∈ gFi+1α0+Fiα1
,

E1 = r1r0r1 · · · rq(r1−q) ∈ gFjα0+Fj+1α1

(p, q = 0 or 1).

If r0 acts on these elements,

r0(E0) = r1r0 · · · rp(r1−p) ∈ gFi−1α0+Fiα1 ,

r0(E1) = r0r1r0r1 · · · rq(r1−q) ∈ gFj+2α0+Fj+1α1
.

Keeping in mind that r0(E0) is of type β and r0(E1) is of type α, comparing these

with the above, we can see that the number corresponding to i is j+1. Also, if r1
acts on E0 and E1,

r1(E0) = r1r0r1r0 · · · rp(r1−p) ∈ gFi+1α0+Fi+2α1
,

r1(E1) = r0r1 · · · rq(r1−q) ∈ gFjα0+Fj−1α1
.

In this case, the number corresponding to i is j−1 and the number corresponding

to j is i+1. From this, i− j becomes j− i+2 under the action of r0, and j− i− 2

under the action of r1. If i − j ≥ 2, |i − j| decreases by 2 when r0 is applied. If

j − i ≥ 2, |i− j| decreases by 2 when r1 is applied. By repeating this process, we

can change |i− j| to 0 or 1.

Put Lemmas 6.1 and 6.2 together to get the following.

Theorem 6.4. The sl2-triple {X,Y,H} of g, where X is in the space spanned by

real root vectors, Y = ω0(X), and H is dominant, are all those listed in Lemma 6.2.

When i = j, the weighted Dynkin diagram is

2

Fi+1 + Fi

2

Fi+1 + Fi

◦ ◦.a

When i = j + 1, it is

0
2

Fi

◦ ◦.a

When i = j − 1, it is

2

Fi+1
0

◦ ◦.a
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§7. Eigenvalues of the action of the Casimir element on h

The Casimir element c of a finite-dimensional semisimple Lie algebra g0 is the

element

c =
∑
i

xiyi ∈ U(g0),

where (·, ·) is the Killing form, {xi} is the basis of g0, and {yi} is the dual basis

with respect to this basis and the Killing form. The term U(g0) represents the

universal enveloping algebra of g0. When considering the action of g0 on a g0-

module L, the action of the Casimir element is commutative with any action of an

element of g0. When L is an irreducible module, from Schur’s lemma, the action

of the Casimir element is a scalar multiplication.

When decomposing g by the action of the sl2 subalgebra created in the previ-

ous section, from dim h = 2, there are two irreducible modules that pass through h.

In particular, one is the sl2 subalgebra itself. In this section we will find the eigen-

values of the Casimir element when it acts on h with adjoint action, and we will

determine how many times the action of the Casimir element makes the two irre-

ducible modules. Let cL be the Casimir element in the sl2 subalgebra constructed

above,

cL =
1

8
H2 +

1

4
XY +

1

4
Y X

=
1

8
H2 +

1

4
H +

1

2
Y X.

For the sl2-triple constructed in Proposition 5.7, we will calculate the eigenvalue of

the Casimir element. Let X = c0E0+c1E1, where E0 is of type α and E1 is of type

β. Using p, q ∈ {0, 1}, we can write E0 = w(ep), E1 = w′(eq). Let E0 ∈ gkα0+lα1 ,

E1 ∈ gmα0+nα1
. We can write k = Fi+1, l = Fi, m = Fj , n = Fj+1. We have

cL(h0) =
1

2
[Y, [X,h0]]

=
1

2
[(al − 2k)c0w(ep) + (an− 2m)c1w

′(eq), c0w(fp) + c1w
′(fq)].

Now since both [w(ep), w
′(fq)] and [w′(eq), w(fp)] are 0, we have

cL(h0) =
1

2
((al − 2k)|c0|2w(hp) + (an− 2m)|c1|2w′(hq))

=
1

2
((al − 2k)k + (an− 2m)m)|c0|2h0

+
1

2
((al − 2k)l + (an− 2m)n)|c0|2h1.
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Similarly,

cL(h1) =
1

2
[Y, [X,h1]]

=
1

2
((ak − 2l)k + (am− 2n)m)|c0|2h0

+ ((ak − 2l)l + (am− 2n)n)|c0|2h1.

The eigenvalues of the action of cL are eigenvalues of

1

2
|c0|2

(
(al − 2k)k + (an− 2m)m (ak − 2l)k + (am− 2n)m

(al − 2k)l + (an− 2m)n (ak2l)l + (am− 2n)n

)
.

For simplicity, let

P = (al − 2k)k + (an− 2m)m,

Q = (ak − 2l)k + (am− 2n)m,

R = (al − 2k)l + (an− 2m)n,

S = (ak − 2l)l + (am− 2n)n.

Solving for ∣∣∣∣∣X − P −Q

−R X − S

∣∣∣∣∣ = 0,

we get

X =
(P + S)±

√
(P + S)2 − 4PS + 4QR

2

and the eigenvalues are

(P + S)±
√
(P + S)2 − 4PS + 4QR

4
|c0|2.

We will write this as E±.

Lemma 7.1. We have P + S = −4 and QR− PS = B2 − 4.

Proof. This lemma is shown from

P + S = akl − 2k2 + amn− 2m2 + akl − 2l2 + amn− 2n2

= A+ C

= −4
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and

QR− PS = (ak − 2l)(an− 2m)(kn− lm) + (al − 2k)(am− 2n)(lm− kn)

= B2 −AC (from Lemma 5.4)

= B2 − 4.

From Lemma 7.1, we have

E± =
(P + S)±

√
(P + S)2 + 4(QR− PS)

4
|c0|2

=
−4± 2|B|

4
|c0|2

=
−2±B

2
· 2

B − 2
(from Lemma 5.6, B > 2)

= −B + 2

B − 2
, 1.

The eigenvalue 1 corresponds to the sl2 subalgebra itself, and the other eigenvalue

corresponds to the other irreducible component. Let

E+ = −B + 2

B − 2

and we will consider the range of values of E+. Since B > 2 from Lemma 5.6,

E+ is strictly increasing with respect to B. Also, from Lemma 5.6, B is strictly

increasing with respect to i and j respectively. When i = j = 0, we have B = a

and

E+ = −a+ 2

a− 2
.

When B > 2, we have E+ < −1 and

−a+ 2

a− 2
≤ E+ < −1.

We will do some more calculations on the value of B.

Lemma 7.2. For any i,

lim
j→∞

B = ∞,

and for any j,

lim
i→∞

B = ∞.
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Proof. From symmetry, only the first half needs to be shown. We can calculate

that

B = Fi+1(an− 2m) + aFim− 2Fin

≥ Fi+1(3n− 2m) + aFim− 2Fin

= Fi+1(n− 2m) + aFim+ 2n(Fi+1 − Fi).

If i ≥ 1, then Fi+1 = aFi − Fi−1 and Fi > Fi−1, and if i = 0, then Fi+1 = aFi.

From this, we have

Fi+1 > (a− 1)Fi

and therefore

2n(Fi+1 − Fi) > 2(a− 2)nFi.

From n > 2m and a ≥ 3, we have

lim
j→∞

Fi+1(n− 2m) = ∞,

lim
j→∞

aFim = ∞,

lim
j→∞

2(a− 2)nFi = ∞.

Consequently, we have

lim
j→∞

B = ∞.

From Lemma 7.2, we have

lim
i→∞

E+ = −1, lim
j→∞

E+ = −1.

The above can be summarized as follows.

Proposition 7.3. We have that E+ is strictly increasing for i, j, and

−a+ 2

a− 2
≤ E+ < −1

and

lim
i→∞

E+ = −1, lim
j→∞

E+ = −1.

From [HT92, §II, Thm. 1.1.3], E+ < −1 means that the module with this

eigenvalue is an infinite-dimensional module that is neither a highest module nor a

lowest module. We can also see that this module is a principal series representations

of sl2.

Example 7.4. Let a = 3. Then F0 = 0, F1 = 1, F2 = 3, F3 = 8, . . . . The E+’s

for the sl2 triples created in Theorem 5.8 are given in Table 1.
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(k, l)\(m,n) (0, 1) (1, 3) (3, 8) (8, 21) (21, 55) · · ·

(1, 0) −5 −1.8 −1.25 −1.088889 −1.033058

(3, 1) −1.8 −1.25 −1.088889 −1.033058 −1.012500

(8, 3) −1.25 −1.088889 −1.033058 −1.012500 −1.004756 · · ·
(21, 8) −1.088889 −1.033058 −1.012500 −1.004756 −1.001814

(55, 21) −1.033058 −1.012500 −1.004756 −1.001814 −1.000693
...

...
. . .

Table 1. The E+ for the sl2 triples created in Theorem 5.8, a = 3
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