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Movable Singularity of Some Hamiltonian
Systems Associated with Blowup Phenomena

by

Masafumi Yoshino

Abstract

The motivation for this paper comes from a blowup problem for a semi-linear wave
equation and a heat equation. Following an idea of J. Leray, we study a radially symmetric
self-similar solution which has singularities on the characteristic cone. This naturally
leads to the study of a Hamiltonian system called a profile equation. The novelty of
this paper is that we focus on the movable singularity of the Hamiltonian system and
we use Borel summability in constructing a singular solution. By “movable singularity”
we mean that the singularity does not appear in the coefficients of the equation and
depends on the respective solution. In the proof of our theorem we reduce the Hamiltonian
system to a simpler form by a method similar to the so-called Birkhoff reduction. We
obtain the parametrization of a singular solution by an elementary function. We also give
applications to a semi-linear wave equation and a heat equation.
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§1. Introduction

In this paper we are interested in the blowup of a semi-linear wave equation and a

semi-linear heat equation. (cf. Section 6). We study it using the movable singularity

of the deduced Hamiltonian system, called a profile equation. As for the blowup

of solutions of equations in mathematical physics, there are many works from the

viewpoint of real analysis. (See [4] and the references therein.) In this paper we

consider a radially symmetric self-similar solution following an idea of J. Leray.

Such a solution gives a singular solution with singularity on some characteristic

cone. By simple calculations, the solution satisfies a certain Hamiltonian system.

(cf. Section 6). Our main idea in constructing a singular solution is to use a solution

with a movable singular point of the reduced Hamiltonian system. In fact, in the
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preceding paper [6] we considered a semi-linear wave equation. Then a semi-linear

Heun equation appeared as the reduced Hamiltonian system. We constructed a

self-similar singular solution by virtue of a solution with a movable singular point

of the semi-linear Heun equation.

In this paper we give a new method to treat the Hamiltonian system, which is

based on Borel summability. This also gives an alternate proof of [6] in the case of a

semi-linear wave equation. We also apply our method to the study of a semi-linear

heat equation. We remark that a close relation between the movable singularity

and the elliptic function has already been observed in the classical work [1] for the

Painlevé equation. Among the many related works, we cite the recent work [3],

where an exact asymptotic theory and the elliptic function play an important role.

(See also [2].) We consider the Hamiltonian system H which is the perturbation of

some Hamiltonian system H0. We assume that H0 has a solution with a movable

pole or a movable algebraic branch point. Our main result is the construction of

the solution of H with a movable pole or a movable algebraic branch point. We

apply our result to the construction of a radially symmetric self-similar solution

of a semi-linear wave equation with singularity on a certain characteristic cone.

The position of the characteristic cone is given by the movable singular point of

the solution of the profile equation. The proof of the main theorem is achieved by

expressing the solution of H as the pull-back of that of H0 by some diffeomorphism

on the phase space. The existence of the diffeomorphism is shown by the Borel

summability method. The method has the advantage that we also get information

on the location of the movable singular point and the property of the singular

point.

This paper is organized as follows. In Section 2 we consider the movable

singularity of some Hamiltonian system. In Section 3 we show the solvability of

a homology equation. In Section 4 we prove the Borel summability of a formal

solution of a homology equation in a domain of phase space. Using the preparations

in Sections 3 and 4 we prove Theorem 2.1 in Section 5. In Section 6 we give

examples of the blowup problem. In the appendix we give the proof of Borel

summability.

§2. Statement of results

Let q = (q1, . . . , qn) and p = (p1, . . . , pn) be the variables in (q, p) ∈ Cn × Cn. Let

H ≡ H(q, p) be an entire function of q and p. Consider the Hamiltonian system

(2.1)
dqj
dz

=
∂H

∂pj
,

dpj
dz

= −∂H

∂qj
, j = 1, 2, . . . , n.
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For a function F , define the Hamiltonian vector field χF as

(2.2) χF :=

n∑
j=1

( ∂F

∂pj

∂

∂qj
− ∂F

∂qj

∂

∂pj

)
.

Define the Poisson bracket of F and G as {F,G} := χFG. If χHF = 0, then we say

that F is the first integral of χH . We say that the Hamiltonian system is integrable

if there exist n first integrals ϕj in involution, {ϕi, ϕj} = 0 such that the ϕj are

almost everywhere functionally independent.

In what follows we consider Hamiltonian systems with n = 2. Let λ ̸= 0 be a

constant. For integers i > j ≥ 1, set ν = i− j. Define

(2.3) H0 := λq2p2 + qi2p
j
2.

Let H1 be a polynomial of q2 and p2 with coefficients analytic in q1 in the domain

Ω1 ⊂ C containing the origin. Assume that the constant term of H1 with respect

to q2 and p2 vanishes. Set H := H0(q2, p2) +H1(q1, q2, p2). Consider

(2.4)
dq2
dq1

=
∂H

∂p2
,

dp2
dq1

= −∂H

∂q2
.

Let K0 > 0, ε0 > 0 and r0 > 0 be constants. Define Σ0 as

Σ0 :=
{
(q2, p2)

∣∣ q−1
2 = αr, p2 = βr, |α| < ε0, |β| < ε0,

0 < r < r0, |q−1
2 | ≤ K0, |p2| ≤ K0

}
.(2.5)

Suppose

(2.6)
∂2H

∂p22
(t, q2, p2) ̸= 0, for all t ∈ Ω1, for all (q2, p2) ∈ Σ0.

Consider the equation of (u3, u4):

(2.7)
∂H

∂q2
(z, u3, u4) = 0,

∂H

∂p2
(z, u3, u4) = 0, z ∈ Ω1.

Assume that

(AS1) Equations (2.7) have a solution (u3, u4) = (w0(z), w̃0(z)), which is holo-

morphic in z ∈ Ω1 and which does not vanish identically, such that w0(0) =

0, w̃0(0) = 0.

Then we have the following theorem:

Theorem 2.1. Suppose that (AS1) and (2.6) are satisfied. Assume j = 1. Then

(2.4) has a solution (q2, p2) having a movable pole or a movable branch point in Ω1.
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Remark 2.2. (a) We note that H is independent of p1. The nonautonomous

system (2.4) is equivalent to the autonomous one with Hamiltonian p1 +H.

Assumption (AS1) is used to transform (2.4) into the Hamiltonian system for

H0. In fact, we construct the formal power series of a certain parameter by

(AS1). The Borel sum of the series gives the transformation.

(b) Our method also works for H0 with resonance. Define

(2.8) H0(q2, p2) = λq2p2 + cq22p
2
2 + ε2(q

4
2 + p42),

where λ ̸= 0, c and ε2 > 0, ε2 ̸= 1 are constants. Then we have the following

theorem:

Theorem 2.3. Let H0 be given by (2.8). Assume that (AS1) and (2.6) are

satisfied. Then (2.4) has a solution (q2, p2) having a movable pole or a movable

branch point in Ω1.

§3. Homology equation

Let x = (q̃1, p̃1, q̃2, p̃2) and y = (q1, p1, q2, p2) be the variables. We write x =

(x1, . . . , x4) and y = (y1, . . . , y4), for simplicity. Let H be given in (2.4). Consider

the map x = u(y), u = (u1, . . . , u4) which transforms χp1+H to χp1+H0
. Define

(3.1) X0 := χp1+λq2p2
.

The component vector of X0 with respect to the basis ∂/∂q1, ∂/∂p1, ∂/∂q2, ∂/∂p2
is given by (1, 0, λq2,−λp2) =: Λ(y). Set

(3.2) f(x) := H(q̃1, q̃2, p̃2)− λq̃2p̃2

(f is independent of x2 = p̃1) and define

(3.3) R := χf , S := χqi2p
j
2
.

Let r(x) and s(y) be the component vectors of R and S, respectively. The first

and the second components of s(y) vanish. The term Λ(u(y)) is independent of x2.

Then we have the following lemma:

Lemma 3.1. Let u = u(y) satisfy

(3.4) Λ(y)∇u+ s(y)∇u = r(u) + Λ(u)

such that (∇u)−1 exists. Then x = u(y) transforms (Λ(y) + s(y)) ∂
∂y to (Λ(x) +

r(x)) ∂
∂x . Here, ∇u is the nabla of u with respect to (y1, . . . , y4) and Λ(u) =

(1, 0, λu3,−λu4).
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Remark 3.2. Equation (3.4) is called a homology equation.

Proof of Lemma 3.1.

(Λ(x) + r(x))
∂

∂x
= (Λ(u) + r(u))(∇u)−1 ∂

∂y
= (Λ(y) + s(y))

∂

∂y
.

Deduction of the homology equation. Consider the third row of (3.4). Set

w = u3, u = (u1, . . . , u4). By Λ(y) = (1, 0, λq2,−λp2) we have

(3.5)
∂w

∂q1
+ δw − iqi−1

2 pj2
∂w

∂p2
+ jqi2p

j−1
2

∂w

∂q2
− λw −R3(u) = 0,

where δ = λ(q2
∂

∂q2
− p2

∂
∂p2

) and R3(u) = (∂f/∂p̃2)(u).

Consider the first-order terms of the left-hand side of (3.5) except for the first

term. They are given by the Hamiltonian vector field of H0. By taking t as the

time variable we write it as the system of ordinary differential equations

(3.6) q̇2 = λq2 + jqi2p
j−1
2 , ṗ2 = −λp2 − ipj2q

i−1
2 .

Set ν = i− j. By the change of unknown functions

(3.7) q2 = 1/r, p2 = rv,

we have

(3.8) v̇ = −νr−νvj , ṙ = −λr − jvj−1r1−ν .

Because λq2p2 + qi2p
j
2 is the first integral of (3.6), there exists a constant c1 such

that λq2p2+ qi2p
j
2 = c1. Hence, by (3.7) we have λv+vj/rν = c1. By (3.8) we have

v̇ − λνv + c1ν = 0, from which we have

(3.9) v = c1λ
−1 + c2e

λνt,

where c2 is a constant.

By (3.8) and v̇ − λνv + c1ν = 0, (3.5) can be written as

(3.10)
∂w

∂q1
+ ν(λv − c1)

∂w

∂v
− (λr + jvj−1r1−ν)

∂w

∂r
− λw −R3(u) = 0.

In order to solve (3.10) we introduce a new equation with parameters η and h:

h
(
rν−1η

(∂u3

∂q1
+ ν(λv − c1)

∂u3

∂v

)
+ (1− ληrν)

∂u3

∂r

)
− rν−1(λu3 +R3(u)) = 0.(3.11)
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We also consider the equation for u4 similar to (3.11). For the moment we assume

that u1 is given. Assume j = 1. If we have the solution of the system of equation

(3.11) and u4, then we have the solution of (3.10) if we set η = h−1 with

(3.12) h = −1,

and multiply (3.10) by rν−1. Therefore, we consider the solvability of (3.11).

We introduce the renormalization variable q̃1. Consider the curve (q1, v(q1))

in (q1, v)-space, where v(q1) is given by (3.9) with q1 = t. Then the vector field
∂

∂q1
+ ν(λv − c1)

∂
∂v is written as ∂/∂q̃1, where q̃1 is the characteristic variable.

Then we can write (3.11) in the form

(3.13) h
(
rν−1η

∂u3

∂q̃1
+ (1− ληrν)

∂u3

∂r

)
− rν−1(λu3 +R3(u)) = 0,

where u = (u1, 0, u3, u4). Similarly, u4 satisfies

(3.14) h
(
rν−1η

∂u4

∂q̃1
+ (1− ληrν)

∂u4

∂r

)
+ rν−1(λu4 +R4(u)) = 0,

where R4(u) = (∂f/∂q̃2)(u).

Consider the solvability of the reduced homology equation (3.13)–(3.14). First

we show the following:

Lemma 3.3. The variable u1 is given by

(3.15) u1 = −q1
2

− 1

2λν
log(νλv − c1ν)−

2

λν
log(1− ληrν).

Proof. Because the first component of r(u) vanishes, we replace λu3 + R3(u) in

(3.11) with 1. Then the first column of (3.4) gives the equation for w := u1:

rν−1η
∂w

∂q̃1
+ (1− ληrν)

∂w

∂r
− rν−1η = 0,

from which the assertion follows.

We replace v in (3.15) with v + v0, where νλv0 − c1ν = 1. Then we are

reduced to the case −c1ν = 1. In the following we assume −c1ν = 1 for the sake of

simplicity. Insert u1 into R3(u) and R4(u) in (3.13) and (3.14), respectively. Then

we have the following theorem:

Theorem 3.4. Suppose (AS1). Then, for every K0 > 0, there exist neighborhoods

U0 of q1 = 0 in Ω1, U2 of v = 0 and Ω0 of r = 0, respectively, h0 > 0 and a sector

S0 with opening equal to or greater than π such that, if h ∈ S0, |h| < h0 and

|ηr| < K0, then (3.13)–(3.14) has an analytic solution (u3, u4) for (q1, v, r) ∈
U0 × U2 × Ω0.
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Theorem 3.4 follows from Theorem 4.1 which follows below.

Remark 3.5. We can take h0 in Theorem 3.4 arbitrarily large. (cf. Remark A.6).

Next we consider the solvability of (3.4). We use the variables q1, p1, v and

r. Note that, if u1, u3 and u4 are given, then u2 is given by the integration of the

second equation of (3.4). By Theorem 3.4 we have the following theorem:

Theorem 3.6. Suppose (AS1) and j = 1. Then, for every K0 > 0, there exist

neighborhoods U0 of q1 = 0 in Ω1, U1 of p1 = p
(0)
1 , U2 of v = 0 and Ω0 of r = 0,

h0 > 0 and a sector S0 with opening equal to or greater than π such that, if

h ∈ S0, |h| < h0 and |r| < K0|h| for h = −1, then (3.4) has an analytic solution

u = (u1, . . . , u4) for (q1, p1, v, r) ∈ U0 × U1 × U2 × Ω0.

Remark 3.7. Let u = (u1, . . . , u4) be a solution of (3.4). Then (u3, u4) is the pull-

back of a certain symplectic transformation if (2.6) holds. In particular, (∇u)−1

exists. For the sake of completeness we give the proof in the appendix.

§4. Borel summability

§4.1. Definition

Let U0, U2 and Ω0 be the domain in C. Consider the formal power series of h,

(4.1) v(q1, s, r, h) =

∞∑
n=1

vn(q1, s, r)h
n,

where the vn(q1, s, r) are holomorphic in the domain (q1, s, r) ∈ U0 × U2 × Ω0.

Define the formal Borel transform B as

(4.2) B(v)(q1, s, r, y) :=
∞∑

n=1

vn(q1, s, r)

(n− 1)!
yn−1,

where y is a dual variable of h. Denote the set of nonnegative real numbers by R+.

Let dist(z,R+e
iξ) be the distance from z to R+e

iξ. For τ > 0 and the direction ξ,

define

(4.3) E(ξ, τ) :=
{
z ∈ C

∣∣ dist(z,R+e
iξ) < τ/2

}
.

Define the sector with direction ξ ∈ R and opening τ > 0 as {z ∈ C\0 | | arg z−ξ| <
τ/2}.

We say that v(q1, s, r, h) is (fine) Borel summable in the direction ξ if there

exists θ > 0 such that B(v)(q1, s, r, y) converges when (q1, s, r) ∈ U0×U2×Ω0 and

y is in some neighborhood of y = 0, and B(v)(q1, s, r, y) is analytically continued
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to U0 × U2 × Ω0 × E(ξ, θ) with exponential type of order 1 in y ∈ E(ξ, θ) for

(q1, s, r) ∈ U0 × U2 × Ω0. Namely, there exist K0 > 0 and K2 > 0 such that

|B(v)(q1, s, r, y)| ≤ K0e
K2|y|, y ∈ E(ξ, θ), (q1, s, r) ∈ U0 × U2 × Ω0.

For simplicity, we denote the analytic continuation with the same notation. Define

the Borel sum of v(q1, s, r, h), V (q1, s, r, h) as the Laplace transform

(4.4) V (q1, s, r, h) :=

∫ ∞eiξ

0

e−yh−1

B(v)(q1, s, r, y) dy.

§4.2. Construction of a formal solution

Let q1 be in some neighborhood of the origin. For K0 > 0 let r satisfy |ηr| ≤ K0.

Substitute u1 in (3.15) into (3.13) and (3.14). Construct the formal solution of

(3.13)–(3.14), (u3, u4) given by

(4.5) u3 =

∞∑
n=0

wn(q1, v, r)h
n, u4 =

∞∑
n=0

w̃n(q1, v, r)h
n.

Here, w0 and w̃0 are determined, respectively, by

(4.6) λw0 +R3(u1, w0, w̃0) = 0, λw̃0 +R4(u1, w0, w̃0) = 0,

where w0 (resp. w̃0) is a holomorphic function of u1 in Ω1 by (AS1). Then we

determine wn and w̃n (n = 1, 2, . . .) inductively.

We prove that wn and w̃n (n ≥ 1) are holomorphic functions of rν at the

origin. Since the proof is the same, we prove the assertion for wn. Consider w1.

Multiply (3.13) by r. We calculate w1 by dividing the next quantity by rν ,

(4.7)
(
rνη

∂w0

∂q̃1
+ (1− ληrν)r

∂w0

∂r

)
,

and by inverting the bounded quantity appearing from λ+∇R3 (resp. λ+∇R4).

We note that (4.7) is equal to rν times some holomorphic function. Indeed, since

w0 is analytic in u1, (3.15) implies that r ∂w0

∂r is divisible by rν . It follows that w1

is analytic in rν .

Next we consider w2. Similarly, we investigate r ∂w1

∂r . Since r ∂
∂r (1−ληrν)−1 is

divisible by rν , r ∂w1

∂r has the same property. Hence w2 is analytic in rν . Inductively,

we see that the wn are analytic in rν .

By the same argument as that of [5, Prop. 2] we have the Gevrey estimate of

wn. Namely, there exist constants K1 > 0 and ρ > 0 independent of n such that

|wn| ≤ K1ρ
nn!.
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§4.3. Summability

Let Ω0 be a neighborhood of r = 0. Then we have the following theorem:

Theorem 4.1. Suppose (AS1). Then, for every K0 > 0, there exist neighborhoods

U0 of q1 = 0 in Ω1, U2 of v = 0 and r0 > 0 such that (3.13)–(3.14) is Borel

summable in the direction 0 if (q1, v, r) ∈ U0×U2×(Ω0∩{r | |r| < r0, |ηr| < K0}).

The proof of Theorem 4.1 is similar to the argument in [7]. For the sake of

completeness we give the proof in the appendix.

§5. Proof of Theorem 2.1

§5.1. Lemma

Let H0 be given by (2.3). Consider the Hamiltonian system for p1 + H0. Set

ν = i − j. By the change of variables (3.7) we have (3.8). Then we have the

following lemma:

Lemma 5.1. The solution of (3.6) is given by (3.7), (3.9) and r = (−νvj/v̇)1/ν .

The solution (q2, p2) of (3.6) has infinitely many movable poles (resp. branch

points) at the point given by v = c1λ
−1 + c2e

λνt = 0 if ν = 1 (resp. ν ≥ 2).

As t tends to the singular point from some sector, q2 tends to infinity while p2
tends to zero.

§5.2. Proof of Theorem 2.1

Proof. The proof consists of three steps.

Step 1. Let j = 1. We consider χp1+H0
. By Lemma 5.1 the Hamiltonian

equation for H0 has a singular solution q2, p2,

(5.1) q2 = 1/r, p2 = rv, v = v(t) = c1/λ+ c2e
λνt, r = (−νv/v̇)1/ν ,

where v̇ = dv/dt and t = q1. Since the singular point t0 of q2 satisfies v(t0) = 0 by

Lemma 5.1, we have

(5.2) eλνt0 = −c1/(λc2), t0 = (λν)−1 log(−c1/(c2λ)), v̇(t0) = −νc1.

We choose c1 and c2 such that −c1/c2λν is in a small neighborhood of 1. Then we

see that t0 is in a neighborhood of the origin. The orbit for H0 is contained in Σ0

since v and r vanish at t0 and t is in some neighborhood of t0.
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Step 2. Suppose that the conditions of Theorem 3.4 are satisfied. By Lemma

3.1, (2.6) and Remark 3.7, χp1+H is the pull-back of χp1+H0
. Hence we have a

solution of the Hamiltonian system for H. We note that the origin corresponds to

infinity in the new coordinate. By (AS1), the diffeomorphism preserves the origin

at the points q1 = 0. Since the flow of χp1+H0
goes to the origin when approaching

a singular point t0, the Hamiltonian equation for p1 +H has a singular point z1
in some neighborhood of q1 = 0. Hence, it is sufficient to verify the conditions

|ηr| < K0, |r| < r0, |h| < h0 and h ∈ S0 in Theorem 3.4.

Step 3. By (5.1) we have r = O(q
1/ν
1 ) as q1 → 0. We have |r| < r0 if q1

is sufficiently small. Choose the bisecting direction of S0 such that h ∈ S0. The

condition |h| < h0 follows from Remark 3.5 since h0 can be taken sufficiently large.

We show |ηr| < K0. By definition it is equivalent to |r| < K0|h|. By (5.1), v tends

to zero with order c1νq1 as q1 → 0. Consider h given by (3.12). By definition,

h is O(qj−1
1 ) = O(1) as q1 → 0 since j = 1. Then we have |r| < K0|h| if q1 is

sufficiently small.

We summarize the result that we have proved in this section:

Theorem 5.2. Suppose that (AS1) and (2.6) are satisfied. Assume j = 1. Then

the Hamiltonian system of H0 has the solution with a movable pole at t = t0 if

ν = 1, while the solution has a movable algebraic branch point if ν > 1, where t0
is given by (5.2). For every t1 ∈ C, the Hamiltonian system of H0 has a solution

with a movable pole or a movable algebraic branch point at t = t1. There exist a

neighborhood Ω1 of (q1, p1, r, v) = (0, p
(0)
1 , 0, 0) and the diffeomorphism ϕ0 defined

on Ω1 and a singular solution y0 of the Hamiltonian system H0 + p1 such that y0
has a movable pole or an algebraic branch point at t0 in a neighborhood of q1 = 0

and ϕ0(y0) is the solution of the Hamiltonian system of H + p1 having a movable

pole or a movable algebraic branch point at t2 for some t2 in a neighborhood of

q1 = 0.

§6. Example

Consider the semi-linear wave equation

(6.1) Utt −∆U − U ℓ = 0, U = U(x, t), x ∈ Rn,

where Utt = ∂2U/∂t2, ∆U = (∂2/∂x2
1 + · · · + ∂2/∂x2

n)U and ℓ ≥ 2 is an integer.

Consider the self-similar radially symmetric solution

(6.2) U := t−αu(rt−1), α = 2/(ℓ− 1),
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where r2 = x2
1 + · · ·+ x2

n and u = u(ρ), ρ = rt−1. By (6.1), u = u(ρ) satisfies the

semi-linear Heun equation

(6.3) (1− ρ2)u′′ + ((n− 1)ρ−1 + aρ)u′ + bu+ uℓ = 0,

for some constants a and b, where u′ = du/dρ and so on.

By simple calculations (cf. [6]) we reduce (6.3) to the Hamiltonian system

with Hamiltonian

(6.4) H(q1, q2, p2) :=
1

2
(p22 +A(q1)q

2
2) +B(q1)q

ℓ+1
2 ,

for some rational functions A(q1) and B(q1), where B(q1) ̸= 0 and A is given by

A(y) =
1

2

(
−Ã′ − Ã2

2
− ℓ+ 1

(ℓ− 1)2
2

1− y2

)
,(6.5)

Ã(y) =
1

1− y2

(n− 1

y
− 2(ℓ+ 1)y

ℓ− 1

)
.(6.6)

We have the following theorem:

Theorem 6.1. Suppose ℓ = 2. There exist z1 ∈ Ω1 and a solution U of (6.1)

such that U is singular on the cone z1t = r, r2 = x2
1 + · · ·+ x2

n.

Proof. We apply Theorem 2.1 with j = 1, i = 2, ℓ = 2 to (6.4). We show H =

H0+H1 for some H0 and H1 given in Theorem 2.1. Let t0 be such that A(t0) ̸= 0.

We have

H = 2−1(p22 +A(t0)q
2
2) +B(t0)q

3
2 + 2−1(A(q1)−A(t0))q

2
2

+ (B(q1)−B(t0))q
3
2 ,(6.7)

where B(t0) ̸= 0 by the assumption B(q1) ̸= 0. By the linear symplectic transfor-

mation, we transform (p22 +A(t0)q
2
2)/2 to λq2p2 for some constant λ ̸= 0. Then q2

and p2 in (6.7) are replaced by c1q2+ c2p2 and c̃1q2+ c̃2p2, respectively, where the

nonzero constants c1, c2, c̃1 and c̃2 satisfy c̃1c2 − c1c̃2 ̸= 0. On the other hand, the

term B(t0)c
2
1c2q

2
2p2 appears from B(t0)(c1q2 + c2p2)

3. For simplicity we assume

B(t0)c
2
1c2 = 1. Hence, by (6.7), we can write H = H0 +H1, where H0 is given by

(2.3). We note

(6.8) H = 2−1(c̃1q2 + c̃2p2)
2 + 2−1A(q1)(c1q2 + c2p2)

2 +B(q1)(c1q2 + c2p2)
3.

We construct the solution u(z) of the Hamiltonian system of (6.8) which is

singular at z = z1, where z is the time variable. Then, by (6.2), U(x, t) gives

the singular solution in the theorem. In fact, by Theorem 5.2, u(z) has a pole at
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z = z1. In order to apply Theorem 2.1 with j = 1, i = 2, ℓ = 2 to (6.4) we first

verify (AS1). Consider (2.7). Set q2 = u3 and p2 = u4 in (6.8). Then (2.7) reads

c̃1(c̃1u3 + c̃2u4) + c1A(q1)(c1u3 + c2u4) + 3c1B(q1)(c1u3 + c2u4)
2 = 0,(6.9)

c̃2(c̃1u3 + c̃2u4) + c2A(q1)(c1u3 + c2u4) + 3c2B(q1)(c1u3 + c2u4)
2 = 0.(6.10)

By the assumption c̃1c2 − c1c̃2 ̸= 0 we have

(6.11) c̃1u3 + c̃2u4 = 0.

Since u1 and u2 do not vanish identically, it follows that c1u3 + c2u4 does not

vanish identically. Hence we obtain

(6.12) A(q1) + 3B(q1)(c1u3 + c2u4) = 0.

Since B(q1) does not vanish, we can determine u3 and u4 from (6.11) and (6.12) as

the holomorphic functions of q1 at q1 = z0. Choose z0 and Ω1 such that A(z0) = 0

and z0 ∈ Ω1. This is possible by (6.5). Hence we have (AS1).

Next we show (2.6). Because q2 and p2 are sufficiently small, we may consider

terms of degree 2 with respect to q2 and p2 in (6.5). Hence ∂2H/∂p22 is close to the

quantity 2(c̃22 +A(q1)c
2
2). The last quantity does not vanish since A(q1) is close to

A(z0) = 0 and c̃2 ̸= 0.

Remark 6.2. Consider the semi-linear heat equation

(6.13) ut = ∆u+ u2,

where ∆ is an n-dimensional Laplacian. Consider the radially symmetric self-

similar solution

(6.14) u = (T − t)−1ϕ
( r√

T − t

)
,

where T > 0 and ϕ = ϕ(s) is a function of one variable. By simple computation,

ϕ satisfies

(6.15) ϕ′′(s) +
(s
2
+

n− 1

s

)
ϕ′(s) + ϕ+ ϕ2 = 0.

Define C(s) := s/2 + (n− 1)/s and

(6.16) A(s) = −C ′

2
− C2

4
+ 1, B(s) =

1

3
exp

(
−1

2

∫
C ds

)
.

Then (6.15) can be written in the Hamiltonian system with Hamiltonian (6.4) with

ℓ = 2. The remaining argument is similar.
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Appendix. Borel summability

Appendix A.1. Proof of Theorem 4.1

Convolution. For 0 < θ < π, set Ω := E(π, θ). Let H(Ω) be the set of holomorphic

functions in Ω. For c > 0, define Hc(Ω) as the set of h ∈ H(Ω) such that there

exists K ≥ 0 for which

(A.1) |h(z)| ≤ Kec|Re z|(1 + |z|)−2 for all z ∈ Ω.

Here, Hc(Ω) is the Banach space with norm

(A.2) ∥h∥Ω,c := sup
z∈Ω

|h(z)|(1 + |z|)2e−c|Re z|.

If there is no fear of confusion we write ∥h∥c instead of ∥h∥Ω,c. Define the convo-

lution f ∗ g of f, g ∈ Hc(Ω) as

(A.3) (f ∗ g)(z) :=
∫ z

0

f(z − t)g(t) dt =

∫ z

0

f(t)g(z − t) dt.

If the formal Borel transforms of f and g converge, then we have B(fg) = B(f) ∗
B(g). There exists a constant K0 > 0 such that, for every f, g ∈ Hc(Ω), we have

f ∗ g ∈ Hc(Ω) with the estimate ∥f ∗ g∥Ω,c ≤ K0∥f∥Ω,c∥g∥Ω,c.

Let D be a domain in (q1, v, r) ∈ C3 and let θ > 0. Set Ω := E(0, θ). Let

H(D,Ω) be the set of all holomorphic functions in (q1, v, r) ∈ D, y ∈ Ω. For c > 0

let Hc(D,Ω) denote the set of f ≡ f(q1, v, r, y) ∈ H(D,Ω) such that there exists

K ≥ 0 satisfying

(A.4) sup
(q1,v,r)∈D

|f(q1, v, r, y)| ≤ Kec|Re y|(1 + |y|)−2 for all y ∈ Ω.

Define u3 =: w0 + v3, u4 =: w̃0 + v4, where v3 = O(h) and v4 = O(h). Set

v3 = v (resp. v4 = ṽ) and w = w0 + v (resp. w̃ = w̃0 + ṽ). Let v̂ := B(v)(q1, s, r, y)
be the formal Borel transform of v, where y is the dual variable of h. Substitute

u3 = w0 + v3 and u4 = w̃0 + v4 into (3.13) and cancel the constant term, h0 = 1.

Divide the equation by h and apply the formal Borel transform to both sides of

the equation. Define

R̃3 = R3(u1, u3, u4)−R3(u1, w0, w̃0)− h
(
η
∂w0

∂q̃1
+ r1−ν(1− ληrν)

∂w0

∂r

)
.

Because the Borel transform maps the multiplication h−1 to ∂/∂y, we have

(A.5)
(
rν−1η

∂v̂

∂q̃1
+ (1− ληrν)

∂v̂

∂r

)
− rν−1 ∂

∂y
(λv̂ + R̃∗

3(u1, û3, û4)) = 0.
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Here, R̃∗
3 is given by replacing the product in R̃3 with the convolution product.

Similarly, if w̃ = u4, then we have the equation of ˆ̃v, for some R̃∗
4,

(A.6)
(
rν−1η

∂ ˆ̃v

∂q̃1
+ (1− ληrν)

∂ ˆ̃v

∂r

)
+ rν−1 ∂

∂y
(λˆ̃v + R̃∗

4(u1, û3, û4)) = 0.

There exists a neighborhood y = 0,W such that B(v) and B(ṽ) are analytic

in (q1, v, r, y) ∈ U0 × U2 × Ω0 ×W and the unique analytic solution of (A.5) and

(A.6). Theorem 4.1 follows from the next theorem:

Theorem A.1. Let c > 0. For every K0 > 0 there exist an E(0, τ) =: Ω, neigh-

borhoods U0 of q1 = 0 and U2 of v = 0 and ρ0 > 0 such that (A.5)–(A.6) has a

solution (û3, û4) in Hc(D,Ω)×Hc(D,Ω), where D = U0×U2× (Ω0∩{r | |r| < ρ0,

|ηr| < K0}).

Appendix A.2. Preparation of lemmas

Define R := (R3,R4). Let ∇R be the Jacobi matrix with respect to (u3, u4).

Denote by diag(λ,−λ) the diagonal matrix with diagonal components given,

respectively, by λ, −λ. Let λ(u1) and λ̃(u1) be the first and second elements of

the diagonal part of diag(λ,−λ) +∇R(u1, w0(0), w̃0(0)), respectively. Consider

(A.7) J ŵ ≡ rν−1η
∂ŵ

∂q̃1
+ (1− ληrν)

∂ŵ

∂r
− rν−1λ(u1)

∂ŵ

∂y
= rν−1ĝ,

where ĝ ∈ Hc(D,Ω). Similarly, define J̃ by replacing λ(u1) with λ̃(u1) in (A.7).

In order to solve (A.7) we use the method of characteristics. In the following

we consider the case q̃1 = q1. The general case where v exists can be treated

by modifying the argument slightly. We remark that the existence time span of

a characteristic curve can be taken locally uniformly with respect to the initial

value. Indeed, the fact follows from the concrete form of the characteristic curve

and the definition of the renormalized variable q̃1. Consider

(A.8)
dq1

rν−1η
=

dr

1− ληrν
=

dy

−rν−1λ(u1)
.

By integrating (A.8) we have

(A.9) q1 = q
(0)
1 − 1

λν
log(1− ληrν),

where q
(0)
1 is a constant. Substitute (A.9) into (A.8) and solve (A.8) with respect

to y. We have

(A.10) y = y0 − Φ(r), Φ(r) :=
1

η

∫ σ

0

λ(s− q
(0)
1 ) ds, σ = − 1

λν
log(1− ληrν),
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where y0 = y(0) ∈ Ω is an initial value of y = y(r) at r = 0, and y satisfies (A.8).

Indeed, we have

dy

dr
= −dσ

dr

d

dσ
Φ = − ληνrν−1

λν(1− ληrν)

λ(σ − q
(0)
1 )

η
.

Equations (A.9) and (A.10) imply σ − q
(0)
1 = −q1 − (2/λν) log(1− ληrν) = u1(r),

which proves the assertion. We have the following lemma:

Lemma A.2. Suppose that r0 satisfies 1−ληrν0 ̸= 0. Assume that λ(u1) is analytic

at u1 = −q
(0)
1 . Then there exists a curve γr0 on C passing through r0 such that

ImΦ is constant on γr0 , where Φ is given by (A.10).

Proof. Clearly, the integral Φ(r) in (A.10) is well defined if r is sufficiently small.

By continuity λ(σ−q
(0)
1 ) is close to λ(−q

(0)
1 ) if σ is sufficiently small. Assume that

λ(σ − q
(0)
1 ) is a constant function. Set

µ = −λ(−q
(0)
1 )

λνη
, ζ = 1− ληrν , ζ0 = 1− ληrν0 .

Then ImΦ is constant on γr0 if Im(µ log ζ) = Im(µ log ζ0) on γr0 . Consider the

change of variable ζ 7→ ζ̃, ζ̃ = µ log ζ. Set ζ̃ = x̃+ iỹ and ζ̃0 = x̃0 + iỹ0 := µ log ζ0.

Define the curve γ̃r0 as ỹ = ỹ(x̃) = ỹ0. Map the curve γ̃r0 in ζ̃-space to γr0 in

ζ-space by the transform ζ̃ = µ log ζ. Clearly, γr0 passes r0 and is the desired one.

Next suppose that λ(σ − q
(0)
1 ) is not a constant function. Because ImΦ(r) =

ImΦ(r0), we have

(A.11) Im

(
η−1

∫ σ

σ0

λ(s− q
(0)
1 ) ds

)
= 0, σ0 = −(λν)−1 log(1− ληrν0 ).

Since u1 = σ − q
(0)
1 , we have

(A.12) λ(s− q
(0)
1 ) = λ(σ0 − q

(0)
1 ) + (s− σ0)λ̃(s− σ0)

for some holomorphic function λ̃(z). By (A.12) and (A.11) we have

(A.13) Im(η−1λ(σ0 − q
(0)
1 )(σ − σ0)) + Im(η−1(σ − σ0)

2R̃(σ − σ0)) = 0,

where R̃(z) is holomorphic at z = 0. One sees that Im(η−1λ(−q
(0)
1 )(σ − σ0)) =

ỹ − ỹ0. Since σ − σ0 is a holomorphic function of ζ − ζ0 when ζ − ζ0 is sufficiently

small, the second term on the left-hand side of (A.13) is O((|x̃− x̃0|+ |ỹ − ỹ0|)2)
when x̃ → x̃0 and ỹ → ỹ0. By the implicit function theorem we determine ỹ ≡ ỹ(x̃)

locally at x̃0, from which we obtain γr0 .



448 M. Yoshino

Lemma A.3. Assume that λ(u1) is analytic at u1 = −q
(0)
1 . Suppose that r0 sat-

isfies 1 − ληrν0 ̸= 0. Let γr0 be given by Lemma A.2, and let r ∈ γr0 . For a given

y ∈ Ω we set y0 := y−ε1, where ε1 depends on r and is a bounded quantity. Define

(A.14) P ĝ :=

∫ r

r0

ĝ(u1(s), s, y0 − Φ(s))
sν−1

1− ληsν
ds, ĝ ∈ Hc(D,Ω),

where the integral is taken along γr0 . Then P ĝ satisfies (A.7). In particular, P ĝ

is analytic in r in some neighborhood of the origin r = 0.

Proof. We prove that (A.14) is well defined. By (A.10) we have y0 − Φ(s) =

y + Φ(r) − Φ(s). By Lemma A.2 we have Im(Φ(r) − Φ(s)) = 0 on γr0 . By the

definition of D, ĝ(u1(s), s, y0 −Φ(s)) in (A.14) is well defined. Since the integrand

is continuous for r − r0 sufficiently small, the integral (A.14) converges.

We show that ŵ := P ĝ satisfies (A.7). In terms of (A.9) and (A.8) we have

ĝ(u1(r), r, y0 − Φ(r))
rν−1

1− ληrν
=

dŵ

dr

=
∂q1
∂r

∂ŵ

∂q1
+

∂ŵ

∂r
+

∂y

∂r

∂ŵ

∂y

=
rν−1η

1− ληrν
∂ŵ

∂q1
+

∂ŵ

∂r
− rν−1λ(u1)

1− ληrν
∂ŵ

∂y
.(A.15)

Multiplying both sides by 1− ληrν , we obtain (A.7).

Lemma A.4. Assume that λ(u1) is analytic at u1 = −q
(0)
1 . Suppose that r0 sat-

isfies 1− ληrν0 ̸= 0. Let γr0 be given by Lemma A.2. Let r1 satisfy 1− ληrν1 = 0.

Assume that there exist a neighborhood Wr1 of r1 and M1 > 0 such that, if

γr0 ⊂ Wr1 , then M−1
1 ≤ |r1 − s| |r1 − t|−1 ≤ M1 for every s, t ∈ γr0 . Then

there exists a constant c1 ≥ 0 such that, for every ĝ ∈ H(D,Ω) we have

(A.16) ∥P ĝ∥c ≤ c1∥ĝ∥c,
∥∥∥ ∂

∂y
(P ĝ)

∥∥∥
c
≤ c1∥ĝ∥c.

Proof. We prove the lemma in two steps.

Step 1. We estimate y0 −Φ(s) = y+Φ(r)−Φ(s), where r, s ∈ γr0 . By (A.10) and

the continuity of λ(s− q
(0)
1 ), there exists C0 > 0 such that

(A.17) |Φ(r)− Φ(s)| ≤ C0(|λνη|)−1
∣∣∣log(1− ληsν

1− ληrν

)∣∣∣ =: C0(|λνη|)−1A(s, t).

If γr0 is outside some neighborhood of r1 with 1−ληrν1 = 0, then A(s, t) is bounded.

If γr0 is in a neighborhood of r1, 1− ληrν1 = 0, then 1− ληsν = λη(rν1 − sν) and

1 − ληtν = λη(rν1 − tν). Hence A(s, t) is estimated by log(|r1 − s| |r1 − t|−1). By

assumption, the last term is bounded.
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Therefore there exists a constant K1 > 0 independent of η, r and r0 such that

exp(c|Re(y0 − Φ(s))|) = exp(c|Re(y +Φ(r)− Φ(s))|)
≤ exp(c|Re y|+ c|Re(Φ(r)− Φ(s))|)
≤ K1 exp(c|Re y|).(A.18)

Similarly, there exists K2 > 0 such that

(1 + |y0 − Φ(s)|)−2 = (1 + |y +Φ(r)− Φ(s)|)−2

≤ K2(1 + |y|)−2 for all y ∈ Ω.(A.19)

It follows from (A.18) and (A.19) that

∥P ĝ∥c ≤ sup

(
(1 + |y|)2 exp(−c|Re y|)

∫
∥ĝ∥c

exp(c|Re(y0 − Φ(s))|)
(1 + |y0 − Φ(s)|)2

|ds|
)

≤ C2∥ĝ∥c
∫

|ds| ≤ C3∥ĝ∥c(A.20)

for some C2 > 0 and C3 > 0 since the length of the path of the integration
∫
|ds|

is finite.

Step 2. We prove the second inequality in (A.16). Because ŵ = P ĝ satisfies (A.7)

and λ(u1) ̸= 0 we have

(A.21)
∂ŵ

∂y
= − ĝ

λ(u1)
+

η

λ(u1)

∂ŵ

∂q1
+

1− ληrν

rν−1λ(u1)

∂ŵ

∂r
.

The first term on the right-hand side of (A.21) is bounded by a constant times

∥ĝ∥c. Next consider the third term. By differentiating (A.14) with respect to r we

have

1− ληrν

rν−1λ(u1)

∂ŵ

∂r
=

1− ληrν

rν−1λ(u1)
ĝ(u1(r), r, y0 − Φ(r))

rν−1

1− ληrν

=
ĝ(u1(r), r, y0 − Φ(r))

λ(u1)
.(A.22)

The last term is estimated by ∥ĝ∥c by (A.18) and (A.19).

We estimate the second term in (A.21). Consider ∂ŵ/∂q1. Since ŵ is analytic

in q1 we consider the directional derivative with respect to q1 with direction given

by (A.8) where r moves in the direction of γr0 . One may assume q
(0)
1 is constant

since q
(0)
1 moves in the transversal direction to γr0 . By (A.8) we have

(A.23)
∂ŵ

∂q1
=

dr

dq1

∂ŵ

∂r
=

1− ληrν

rν−1η

∂ŵ

∂r
,

which is estimated by ∥ĝ∥c by (A.22).
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Appendix A.3. Construction of an approximate sequence

Let J be given by (A.7). We solve (A.5)–(A.6) or (3.13)–(3.14). Set V = (v, ṽ) =

(w − w0, w̃ − w̃0). Expand R3(u1, w, w̃) and R4(u1, w, w̃) in the power series at

(w, w̃) = (w0, w̃0):

R3(u1, w, w̃) = R3(u1, w0, w̃0) +∇R3(u1, w0, w̃0)
T(v, ṽ)

+
∑
|β|≥2

rβ(u1, w0, w̃0)V
β ,(A.24)

R4(u1, w, w̃) = R4(u1, w0, w̃0) +∇R4(u1, w0, w̃0)
T(v, ṽ)

+
∑
|β|≥2

r̃β(u1, w0, w̃0)V
β .(A.25)

Substitute (A.24), (A.25) and (4.6) into (3.13)–(3.14). Divide the equation by h

and apply the formal Borel transform to both sides. Because the product becomes

a convolution product in the Borel plane we have

∂

∂y
(R∗

3(u1, ŵ, ̂̃w)−R3(u1, w0, w̃0)) = ∇R3(u1, w0, w̃0)
∂

∂y
V̂

+
∑
|β|≥2

rβ(u1, w0, w̃0)
∂

∂y
V̂ ∗β ,(A.26)

where V̂ = (v̂, ˆ̃v). Similarly, we have

∂

∂y
(R∗

4(u1, ŵ, ̂̃w)−R4(u1, w0, w̃0)) = ∇R4(u1, w0, w̃0)
∂

∂y
V̂

+
∑
|β|≥2

r̃β(u1, w0, w̃0)
∂

∂y
V̂ ∗β .(A.27)

Therefore, by (4.6), (A.5) (resp. (A.6)) is written in the form

J v̂ + rν−1(λ(u1)− λ)
∂v̂

∂y
= rν−1∇R3(u1, w0, w̃0)

∂V̂

∂y

+
∑
|β|≥2

rν−1rβ(u1, w0, w̃0)
∂

∂y
V̂ ∗β ,(A.28)

J̃ ˆ̃v + rν−1(λ̃(u1) + λ)
∂ ˆ̃v

∂y
= −rν−1∇R4(u1, w0, w̃0)

∂V̂

∂y

−
∑
|β|≥2

rν−1r̃β(u1, w0, w̃0)
∂

∂y
V̂ ∗β .(A.29)

We define the approximate sequences v̂k and ˆ̃vk (k = 1, 2, . . .). Divide (3.13)

(resp. (3.14)) by h. Compare the terms of constant part h0 = 1, v̂1 of v (resp. ˆ̃v1):
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v̂1 satisfies J (v̂1 + w0) = 0 (resp. J̃ (ˆ̃v1 + w̃0) = 0). Define v̂k as

v̂1 = −PJw0,(A.30)

v̂k+1 = P
(
rν−1

(
∇R3(u1, w0, w̃0)− (λ(u1)− λ, 0)

)∂V̂k

∂y

)
+ P

( ∑
|β|≥2

rν−1rβ(u1, w0, w̃0)
∂

∂y
V̂ ∗β
k

)
, k = 1, 2, . . . .(A.31)

Next we define P̃ which corresponds to J̃ by a similar formula to P . Define
ˆ̃vk as

ˆ̃v1 = −P̃ J̃ w̃0,(A.32)

˜̂vk+1 = −P̃
(
rν−1

(
∇R4(u1, w0, w̃0) + (0, λ̃(u1) + λ)

)∂V̂k

∂y

)
− P̃

( ∑
|β|≥2

rν−1r̃β(u1, w0, w̃0)
∂

∂y
V̂ ∗β
k

)
, k = 1, 2, . . . .(A.33)

Note that Lemma A.4 holds for P̃ .

If the limits limk v̂k =: v̂ and limk
ˆ̃vk =: ˆ̃v exist, then (v + w0, ṽ + w̃0) is

a solution of (3.13)–(3.14). Indeed, recall that JP = Id and J̃ P̃ = Id. Letting

k → ∞ in (A.31) and (A.33) we verify that (v̂, ˆ̃v) satisfies (A.28)–(A.29). The

definition of the Borel transform implies (v+w0, ṽ+ w̃0) is the solution of (3.13)–

(3.14). In order to show the existence of the limits limk v̂k and limk
ˆ̃vk we first

show the a priori estimate:

Lemma A.5. There exist ε1 > 0 and K1 independent of k such that, for every

0 < ε < ε1, there exist a neighborhood U0 of q1 = q
(0)
1 and r0 > 0 such that

(A.34)
∥v̂k∥c ≤ εK1, ∥ˆ̃vk∥c ≤ εK1, ∥(v̂k)y∥c ≤ εK1, ∥(ˆ̃vk)y∥c ≤ εK1.

q1 ∈ U0, r ∈ Ω0 ∩
{
r
∣∣ |r| < r0, |ηr| < K0

}
, k = 1, 2, . . . .

Proof. We prove by induction. Because P and ∂yP are bounded by Lemma A.4,

∥v̂1∥c and ∥(v̂1)y∥c are estimated by K∥Jw0∥c for some K > 0. Estimate ∥Jw0∥c:
Because w0 is a function of u1 = −q1 − 2(λν)−1 log(1− ληrν), we have

Jw0 = rνη
∂w0

∂q1
+ (1− ληrν)r

∂w0

∂r
= rνη(−w′

0 + 2w′
0) = rνηw′

0.

Choose the neighborhood of r = 0 sufficiently small. Then rνηw′
0 is bounded by

K3ε for some K3 > 0. The terms ∥ˆ̃v1∥c and ∥(ˆ̃v1)y∥c are estimated similarly.

Suppose that (A.34) is valid up to some k and consider ∥v̂k+1∥c and

∥(v̂k+1)y∥c. Consider ∥v̂k+1∥c. We estimate the right-hand side of (A.31). We show
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that

A0 := rν−1
(
∇R3(u1, w0, w̃0)− (λ(u1)− λ, 0)

)
is sufficiently small. Indeed, if we replace r with ε0r for sufficiently small ε0 in

(A.5) or (A.6), then we see that εν0 appears in front of the nonlinear term. There

is no change in the argument.

By the inductive assumption and the boundedness of P we estimate the first

term. As for the second term, by the smallness of rν−1rβ(u1, w0, w̃0) and the

estimate of the convolution, together with the assumption, it is bounded by a

constant times ε, since |β| ≥ 2.

Next we study ∥(v̂k+1)y∥c. Consider the second term on the right-hand side

of (A.31). Because ∂yP is a bounded continuous operator by Lemma A.4, it is

estimated by a constant times ∂
∂y V̂

∗β
k . By the property of convolution and |β| ≥ 2

we estimate ∂
∂y V̂

∗β
k . Next, consider the first term in (A.31). By Lemma A.4, the

y-derivative of the first term is estimated by ∂
∂y V̂k, which is estimated by the

inductive assumption. The estimates of ∥ˆ̃vk+1∥c and ∥(ˆ̃vk+1)y∥c are similarly done,

using (A.33) instead of (A.31).

Once we have the a priori estimate, the proof of the convergence of the

sequence is almost identical to the proof of [5, Lem. 5.7]. Indeed, the smallness of

ε implies that the approximate sequence is a Cauchy sequence.

Remark A.6. The proof of Theorem A.1 and the definition of the Laplace trans-

form yield h0 = 1/c with c > 0 given by Theorem A.1. We show we can take c > 0

small. Indeed, consider V1 defined by (A.30) and (A.32). Since the components

of V1 are given by rν−1ηw′
0 and rν−1ηw̃′

0, we can make V1 arbitrarily small if we

take a sufficiently small neighborhood of r = 0 and ν ≥ 2. Next, define V2 by

(A.31) and (A.33). One easily sees that V2 has an estimate like ec|y| for a given

small c > 0. By induction we see that Vk has the same estimate and the limit has

growth order like ec|y|.

Proof of Remark 3.7. We prove the case q̃1 = q1. The general case is proved by

a slight modification, taking into account the variable v. Divide (3.13) by rν−1.

Consider the characteristic equation corresponding to the resultant equation

(A.35)
dq1
1

=
ηrν−1 dr

1− ληrν
.

Let t be the independent variable of the solution of (A.35). Then we have

(A.36)
du3

dt
=

dq1
dt

∂u3

∂q1
+

dr

dt

∂u3

∂r
=

∂u3

∂q1
+

1− ληrν

ηrν−1

∂u3

∂r
.



Movable Singularity and Blowup 453

Multiply (3.13) by r1−ν and substitute (A.36). Make the same calculation as for

u4 with (3.13) replaced by (3.14). The reduced system of equations is the Hamil-

tonian system with Hamiltonian λq̃2p̃2 + f . Let (u3, u4) be the solution with the

initial value (u3, u4) = (ξ, ζ) at t = 0. By the Hamilton–Jacobi theory, the map

(ξ, ζ) 7→ (u3, u4) is symplectic if the nondegeneracy condition (∂u3/∂ζ)(t, ξ, ζ) ̸= 0

holds. Changing the coordinate from (t, ξ, ζ) to (q1, q2, p2), u3 and u4 give the

transformation in Lemma 3.1.

By (2.6) we take u1 ∈ Ω̃1, ξ ∈ Ω̃2 and ζ ∈ Ω̃3 such that (∂R3/∂u4)(u1, ξ, ζ) ̸=
0. Indeed, we have ∂R3/∂u4 = ∂2H/∂p22. Then we verify (∂u3/∂ζ)(t, ξ, ζ) ̸= 0.

Since (u3, u4) is the solution of a Hamiltonian system, it holds that u3 = ξ + ũ3,

ũ3 = O(t) and u4 = ζ + ũ4, ũ4 = O(t) as t → 0. Here ξ (resp. ζ) is the initial

value of u3 (resp. u4). On the other hand, since they are equal to the Borel sum

(cf. Theorems 3.4 and 4.1) we have

(A.37) u3 = u
(0)
3 + v3, v3 = O(h), u4 = u

(0)
4 + v4, v4 = O(h),

for h, (3.12). Then u
(0)
3 and u

(0)
4 are analytic solutions of the equation (cf. (4.6))

(A.38) λu
(0)
3 +R3(u1, u

(0)
3 , u

(0)
4 ) = 0.

Differentiating (A.38) with respect to ζ we have

λ
∂u

(0)
3

∂ζ
+

∂R3

∂u3
(u1, u

(0)
3 , u

(0)
4 )

∂u
(0)
3

∂ζ
+

∂R3

∂u4
(u1, u

(0)
3 , u

(0)
4 )

∂u
(0)
4

∂ζ

+
∂R3

∂u1
(u1, u

(0)
3 , u

(0)
4 )

∂u1

∂ζ
= 0.(A.39)

We have that |u(0)
3 − ξ| and |u(0)

4 − ζ| are arbitrarily small if h and t are sufficiently

small. Then we have (∂R3/∂u4)(u1, u
(0)
3 , u

(0)
4 ) ̸= 0 by assumption. In the last term

on the left-hand side of (A.39) there appears

(A.40) − 2

λν

−λrν(η)ζ
1− ληrν

.

Consider (η)ζ = (1/h)ζ = −h−2hζ . We have

1

h

∂h

∂ζ
=

1

vj−1

∂

∂ζ
vj−1 =

j − 1

v

∂v

∂ζ
.

The right-hand side is a bounded term since the small term q1 in the denomi-

nator and the numerator cancels. Since rνη is small by the assumption, the term

(A.40) is small. Since (∂R3/∂u3)(u1, u
(0)
3 , u

(0)
4 ) is small, it follows from (A.39) that

∂u
(0)
3 /∂ζ ̸= 0.



454 M. Yoshino

To show the assertion by (A.37) we prove that (∂v3/∂ζ) is sufficiently small.

Indeed, the smallness follows if |h| and |(∂h/∂ζ)| are sufficiently small. If j = 1,

then we have the assertion by definition. If j > 1, then by (3.12) we consider the

derivative of v. The derivative of v with respect to η is small by the smallness of

c2 in (3.9).
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