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Estimates for Zero Loci of Bernstein–Sato Ideals

by

Nero Budur, Robin van der Veer and Alexander Van Werde

Abstract

We give estimates for the zero loci of Bernstein–Sato ideals. An upper bound is proved as a
multivariate generalisation of the upper bound by Lichtin for the roots of Bernstein–Sato
polynomials. The lower bounds generalise the fact that log-canonical thresholds, small
jumping numbers of multiplier ideals, and their real versions provide roots of Bernstein–
Sato polynomials.
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§1. Introduction

Let F = (f1, . . . , fr) with fj ∈ C[x1, . . . , xn] be a tuple of polynomials, and r > 0.

Introduce new variables s = (s1, . . . , sr) and fix a tuple of natural numbers a =

(a1, . . . , ar) ∈ Nr such that the product fa1
1 . . . far

r admits zeros on X = Cn. By

definition, the Bernstein–Sato ideal Ba
F consists of all polynomials b(s) ∈ C[s] such

that

b(s)F s ∈ DX [s]F s+a,

where F s = fs11 · · · fsrr , DX = C[x]⟨∂⟩ is the ring of algebraic differential oper-

ators on X, with x = x1, . . . , xn, ∂ = ∂1, . . . , ∂n, and ∂i = ∂/∂xi for i =

1, . . . , n. Here, DX [s]F s+a is the DX [s]-submodule of the free C[x, f−1, s]-module
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C[x, f−1, s]F s+a obtained by formally applying the operators in DX [s] to the sym-

bol F s+a by using the usual derivation rules, where f = f1 · · · fr. The zero locus

of the ideal Ba
F is denoted

Z(Ba
F ) ⊆ Cr.

This construction extends easily to the case when F : X → Cr is a morphism from

a smooth affine complex algebraic variety, and also, by using analytic differential

operators, to the case when F : (X,x) → (Cr, 0) is the germ of a holomorphic map

of complex manifolds. The latter are the so-called local Bernstein–Sato ideals Ba
F,x,

and the former, Ba
F , equal the intersection of all local Ba

F,x for x in the zero locus

of f . In the classical case r = 1 = a, the ring C[s] is a principal ideal domain and

the unique monic generator bf (s) of B1
F is called the Bernstein–Sato polynomial

of F = f . The Bernstein–Sato ideal measures in some sense the singularities of

the mapping F , since, for example, B 1
F,x = ⟨(s1 + 1) · · · (sr + 1)⟩ if and only if

F : (X,x) → (Cr, 0) is smooth by [BrMay99, Prop. 1.2], where 1 = (1, . . . , 1). One

has the following theorem:

Theorem 1.1 ([BVWZ21b, Thm. 1.1.1]). Let F = (f1, . . . , fr) : X → Cr be a

morphism of smooth complex affine irreducible algebraic varieties, or the germ at

x ∈ X of a holomorphic map on a complex manifold. Let a ∈ Nr be such that∏r
j=1 f

aj

j is not invertible as a holomorphic function on X. Then,

(1) every irreducible component of Z(Ba
F ) of codimension 1 is a hyperplane of type

l1s1 + · · ·+ lrsr + b = 0 with lj ∈ Q≥0, b ∈ Q>0, and for each such hyperplane

there exists j with aj ̸= 0 such that lj > 0;

(2) every irreducible component of Z(Ba
F ) of codimension > 1 can be translated

by an element of Zr inside a component of codimension 1.

For r = 1, statement (2) is vacuous and (1) is equivalent to the classical result

that the roots of the Bernstein–Sato polynomial bf are negative rational numbers,

due to Kashiwara [Kas76]. The first part without the strict positivity of lj is due

to Sabbah [Sab87I] and Gyoja [Gyo93]. The second part for the case a = 1 is due

to Maisonobe [Mai16b], a completely different proof of which was given recently

by van der Veer [vdV21].

The first purpose of this paper is to further refine part (1) of the above theorem

in terms of numerical data from log resolutions. Let µ : Y → X be a strong log

resolution of f . This means that µ is a projective morphism that is an isomorphism

over the complement of D, the divisor defined by f , such that Y is smooth and

µ∗D is a simple normal crossings divisor. The numerical data we refer to are the

orders of vanishing ordE(fj) ∈ N of fj along irreducible components E of µ∗D,

and the orders of vanishing kE = ordE(det Jac(µ)) ∈ N of the determinant of the
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Jacobian of µ, also equal to the coefficients of the relative canonical divisor Kµ of

µ. We show the following theorem:

Theorem 1.2. Every irreducible component of Z(Ba
F ) of codimension 1 is a

hyperplane of the form

ordE(f1)s1 + · · ·+ ordE(fr)sr + kE + c = 0

with c ∈ Z>0.

Without the term kE , the statement was proven for r = 1 by Kashiwara

[Kas76] and for r ≥ 1 by [BVWZ21b, Lem. 4.4.6]. The case r = 1 of Theorem

1.2 is due to Lichtin [Lic89], a new proof of which was given by Dirks–Mustaţă

[DM20].

If r = 1, the upper bound c < (n + a − 1)NE − kE for c as in Theorem 1.2

can be deduced from [Sai94, Thm. 0.4]. For r > 1 the problem of finding an upper

bound for c is open. In some cases this is known, e.g. [Mai16, Thm. 1], [Ba22,

Thm. 1.9].

The second part of this paper contains a number of lower bounds for the

Bernstein–Sato zero locus. Firstly, one has an easy multivariate generalisation for

the fact that the Bernstein–Sato polynomial bf (s), which corresponds to the case

r = 1 = a, always has −1 as a root.

Proposition 1.3. Let C be an irreducible component of D such that m :=∑r
j=1 ordC(fj)aj ̸= 0. Then (

∑r
j=1 ordC(fj)sj) + c = 0 determines an irreducible

component of Z(Ba
F ) for c = 1, . . . ,m.

Further, we generalise the fact that the jumping numbers of f in (0,

lct(f) + 1) are roots of bf (s) [ELSV04], [BMS06, Thm. 2]. Recall that the log-

canonical threshold lct(f) is the smallest jumping number of f .

For any λ ∈ Rr
≥0 the mixed multiplier ideal sheaf of Fλ is given by

J (Fλ) = µ∗OY

(
Kµ −

⌊ r∑
j=1

λjµ
∗Dj

⌋)
,

where Di denotes the divisor determined by fi and ⌊−⌋ is the round-down of an R-
divisor. Associated to λ is the subset, which together with the induced Euclidean

topology we call region,

RF (λ) :=
{
λ′ ∈ Rr

≥0 : J (Fλ) ⊆ J (Fλ′
)
}
.

We note that RF (λ) ⊆ RF (λ
′) if λi ≤ λ′i for all i. The jumping walls of F are

given by the intersection of Rr
>0 with the boundary of RF (λ) for some λ. In the

case r = 1, these are the jumping numbers of f .



610 N. Budur, R. van der Veer and A. Van Werde

By the definition of mixed multiplier ideals, each facet of a jumping wall, that

is, a codimension-one face, is cut out by a hyperplane of the form
∑r

j=1 ordE(fj)sj
= kE + c with c ∈ Z>0 and E an irreducible component of µ∗D. Thus facets

of jumping walls can potentially determine irreducible components of Z(Ba
F ) by

replacing sj with −sj , by Theorem 1.2.

The log-canonical threshold, or rather the interval [0, lct(f)], is generalised by

the LCT-polytope

LCT(F ) :=
⋂
E

{
λ ∈ Rr

≥0 :
∑r

j=1 ordE(fj)λj ≤ kE + 1
}
.

The facets of LCT(F ) intersecting Rr
>0 non-trivially are always jumping walls of F .

Define the LCTa-region

LCTa(F ) :=
⋂
E

{
λ ∈ Rr

≥0 :
∑r

j=1 ordE(fj)(λj − aj) < kE + 1
}
.

If r = 1 then LCTa(f) = [0, lct(f) + a).

We rephrase LCT(F ) and LCTa(F ) in terms of log-canonical and Kawamata

log-terminal singularities in Section 4.2. This shows that LCT(F ) and LCTa(F )

are independent of the chosen resolution.

Theorem 1.4. If a facet of a jumping wall of F intersects LCTa(F ), then the

facet determines an irreducible component of Z(Ba
F ).

This theorem was shown by [CNL11] for Z(B1
F ) when f1, . . . , fr are germs of

plane curves. We employ the same method, which is essentially the one used in

[Kol97], [ELSV04, Thm. B].

From Theorem 1.4 we deduce a generalisation for the fact that the largest

root of the Bernstein–Sato polynomial bf (s) is equal to − lct(f) when r = 1.

Corollary 1.5. Let
∑r

j=1 ordE(fj)sj = kE +1 define the affine span of a facet of

LCT(F ). Then
∑r

j=1 ordE(fj)sj + kE +1 = 0 defines an irreducible component of

Z(Ba
F ) if there exists at least one j with aj ̸= 0 and ordE(fj) ̸= 0.

This, together with Theorem 1.2, implies the analogue of the maximality

statement from the case r = 1 = a: the irreducible components of codimension

one of Z(Ba
F ) originating from the LCT-polytope are the closest to the origin with

that slope.

In the hyperplane arrangement case, by using the canonical log resolution for

hyperplane arrangements, and picking the component E of the exceptional divisor

corresponding to the origin so that kE+1 is the rank of the arrangement, Corollary

1.5 recovers [Wu20, Thm. 5.6]: {s1 + · · ·+ sr + n = 0} ⊆ Z(B1
F ).
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Saito [Sai07] also introduced a version of log-canonical thresholds and jumping

numbers for real algebraic functions, called the real log-canonical threshold and real

jumping numbers. “Real” here refers to working over R. Real jumping numbers,

like the usual jumping numbers defined when the base field is C, are positive

rational numbers. It is shown in [Sai07] that the negatives of small real jumping

numbers are roots of Bernstein–Sato polynomials. What is interesting about these

real jumping numbers is that they do not have to agree with the usual jumping

numbers. These results are of further interest due to applications to statistics

[Wat13].

Mixed multiplier ideals and their jumping walls will be defined on real alge-

braic manifolds in Section 4.3. There are also the associated notions of an RLCTa-

region, an RLCT-polytope, and a real Bernstein–Sato ideal. In Theorem 4.2 and

Corollary 4.3 we give the real analogues of Theorem 1.4 and Corollary 1.5, gener-

alising Saito’s results.

For the proof of Theorem 1.2 we follow the strategy of Kashiwara [Kas76] and

Lichtin [Lic89]. The main problem for the case r > 1 is that the DX -modules com-

puting the Bernstein–Sato ideals are not holonomic anymore, and thus a new idea

is needed. This is essentially the problem which has been surmounted using rela-

tive holonomic D-modules first in [Mai16b], and then in [BVWZ21a, BVWZ21b,

vdV21] in order to provide a topological interpretation of Z(Ba
F ). The results of

these papers are thus crucial for us. Relative holonomic D-modules appeared as

early as [Sab87II] and have also recently been studied in [MFS19, FMFS21]. Our

main technical result is Lemma 3.4. The proofs of the other results mentioned

above are straightforward and need no essential new ideas.

In Section 2 we gather the main results that we need on relative D-modules.

In Section 3 we use these results to prove Theorem 1.2. In Section 4 we prove the

other results. In Section 5 we give an example.

§2. DX [s]-modules

This section provides preliminaries on the theory of DX [s]-modules such as direct

images and homological properties, where s = (s1, . . . , sr).

§2.1. Relative holonomic D-modules

Let X be a smooth complex variety and let R be a regular commutative finitely

generated C-algebra integral domain. The sheaf of relative differential operators

on X is defined by

DR
X := DX ⊗C R.
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The order filtration FjDX on DX extends to a filtration FjDR
X := FjDX ⊗C R

on DR
X . The graded objects for this filtration are denoted by grrel. Denote by

πT∗X : T ∗X → X and πSpecR : SpecR → {pt} the projection maps onto X and

a point, respectively. Since grDX
∼= (πT∗X)∗OT∗X [HT07, Chap. 2] it holds that

grrelDR
X

∼= (πT∗X × πSpecR)∗OT∗X×SpecR.

Since DR
X is a sheaf of non-commutative rings, one should distinguish between

left and right DR
X -modules. We may also refer to a DR

X -module without specifying

left or right if no confusion is possible. In these cases it is intended that the result

holds in either case.

For any filtered DR
X -module M there is an associated sheaf of modules on

T ∗X×SpecR given by (πT∗X×πSpecR)−1(grrelM )⊗π−1grrelDR
X
OT∗X×SpecR. From

now on we write grrelDR
X and grrelM for the corresponding sheaves on T ∗X ×

SpecR.

A filtration compatible with F•DR
X on a DR

X -module M is said to be good

if grrelM is a coherent grrelDR
X -module. A quasi-coherent DR

X -module M locally

admits a good filtration if and only if it is coherent [HT07, Cor. D.1.2]; in fact, one

can take this filtration to be global [HT07, Proof of Thm. 2.1.3]. For a coherent

DR
X -module M the support ChrelM of grrelM in T ∗X × SpecR is independent

of the chosen filtration [HT07, Lem. D.3.1] and is called the relative characteristic

variety. Equivalently, the relative characteristic variety is locally determined by

the radical of the annihilator ideal of grrelM in grrelDR
X .

Lemma 2.1 ([BVWZ21a, Lem. 3.2.2]). For any short exact sequence of coherent

DR
X-modules

0 → M1 → M2 → M3 → 0,

it holds that ChrelM2 = ChrelM1 ∪ ChrelM3.

Definition 2.2. A coherent DR
X -module M is said to be relative holonomic if

its relative characteristic variety is a finite union ChrelM =
⋃

w Λw × Sw, where

Λw ⊆ T ∗X are irreducible conic Lagrangian subvarieties and Sw ⊆ SpecR are

irreducible subvarieties.

Lemma 2.3 ([BVWZ21a, Lem. 3.2.4]). Any subquotient of a relative holonomic

module is relative holonomic.

The functor which associates to a left DR
X -module M the right DR

X -module

M ⊗OX
ωX is an equivalence of categories, where ωX is the canonical invertible

sheaf. The pseudoinverse associates HomOX
(ωX ,M ) to a given right-module M .

Pick local coordinates x1, . . . , xn on X, that is, regular functions such that

dx1, . . . , dxn are a local basis for Ω1
X . There is an induced local section dx :=
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dx1 ∧ · · · ∧ dxn for ωX . For any left DR
X -module M one has a locally defined

OX ⊗ R-linear isomorphism M → M ⊗OX
ωX associating to any section m the

section m∗ = mdx. This can be made to commute with the DR
X -module structure.

That is, for any operator P of DR
X there is an adjoint operator P ∗ such that

(P ·m)∗ = m∗ · P ∗.

Indeed, for a vector field ξ =
∑
ξi∂i this is satisfied by setting ξ∗ = −

∑
∂iξi.

Iteration then extends to differential operators of arbitrary order, and (PQ)∗ =

Q∗P ∗ for P,Q ∈ DR
X .

§2.2. Direct image

Let µ : Y → X be a morphism of varieties. The direct image functor on right

DY -modules is defined by

µ+M := Rµ∗(M ⊗L
DY

DY→X),

where DY→X := OY ⊗µ−1OX
µ−1DX is the transfer (DY , µ

−1DX)-bimodule. There

is an induced DR
Y -module direct image functor. Indeed, consider a right DR

Y -module

M and observe that multiplication by r ∈ R is DY -linear. By the functoriality of

the DY -module direct image it follows that there is an associated endomorphism

on µ+M . This equips the direct image with a canonical structure of a complex

of DR
X -modules. For j ∈ Z, the cohomology sheaf Hjµ+M is called the jth direct

image.

Whenever µ is proper and M is coherent as a DR
Y -module, it holds that

Hjµ+M is coherent over DR
X for any j. The proof for this statement is identical to

the absolute case [HT07, Thm. 2.5.1]. The following proposition may be established

identically to the absolute case [Sab11, Thm. 4.4.1].

Proposition 2.4. Suppose that µ is proper and let M be a relative holonomic

right DR
Y -module. Then Hjµ+M is relative holonomic for any j ∈ Z.

§2.3. Homological notions

Let n = dimX and r = dimR. For some results in this section the distinction

between left and right modules is relevant. Such results have been stated in terms

of right DR
X -modules, which is the case we will need. It should be clear that these

results have obvious analogues for left DR
X -modules.

Definition 2.5. Let M be a non-zero coherent DR
X -module. The smallest integer

j ≥ 0 such that Extj
DR

X

(M ,DR
X) ̸= 0 is called the grade of M and is denoted j(M ).

If M = 0 then j(M ) is said to be infinite.
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Definition 2.6. The Bernstein–Sato ideal of a DR
X -module M is given by BM :=

AnnR M . We denote by Z(BM ) the zero locus of BM , that is, the reduced closed

subscheme defined by the radical ideal of BM in SpecR.

Lemma 2.7 ([BVWZ21a, Lem. 3.4.1]). Let M be a relative holonomic DR
X-mod-

ule. Then

dimChrelM + j(M ) = 2n+ r.

Lemma 2.8 ([BVWZ21a, Lem. 3.2.2]). Let M be a relative holonomic DR
X-mod-

ule. Then Z(BM ) is the projection of ChrelM on SpecR. Hence, j(M ) = n + k

if and only if Z(BM ) has codimension k in SpecR.

Definition 2.9. A non-zero coherent DR
X -module M is said to be j-pure if

j(N ) = j(M ) = j for every non-zero submodule N .

Lemma 2.10 ([BVWZ21a, Lem. 3.4.2]). Let M be a j-pure relative holonomic

DR
X-module and suppose that b ∈ R is not contained in any minimal prime ideal of

R containing BM . Then there exists a good filtration on M such that multiplication

by b induces injective endomorphisms on M and grrelM .

Corollary 2.11. Let M be a relative holonomic DR
X-module with R = C[s1, . . . ,

sr], r > 0:

(i) There exists a non-empty Zariski open subset W (M ) of the space R1 of poly-

nomials in R of degree one such that every ℓ ∈W (M ) acts injectively on M .

(ii) One can assume, by shrinking W (M ) if W (M ) = R1, that there exists a

Zariski closed proper subset V (M ) of Cr such that

W (M ) = {ℓ ∈ R1 | ℓ does not vanish on any irreducible component

of V (M )}.

Proof. Denote by Mi the largest submodule of M with j(Mi) ≥ i ≥ 0. The

modules Mi exist and form a decreasing sequence

M = M0 ⊃ M1 ⊃ · · ·

by [Bj93, IV.1.6(i) and IV.2.8]. By Lemma 2.3, Mi are also relative holonomic.

Thus by Lemma 2.8, j(Mi) ≥ n for all i with Mi ̸= 0, and Mi = 0 if i > n+ r.

The successive quotients Mi/Mi+1 are either 0 or pure of grade i, by [vdV21,

Prop. 4.11]. Let I denote the set of indices i such that Mi/Mi+1 ̸= 0. If i ∈ I, let

Vi ⊂ Cr be the zero locus of BMi/Mi+1
, and letWi be the set of ℓ ∈ R1 that do not

vanish on any irreducible component of Vi. Each Wi is non-empty Zariski open in

R1 and every ℓ ∈ Wi acts injectively on Mi/Mi+1 by Lemma 2.10. If i = n, then
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Vn = Cr and Wn = R1. If n < i ≤ n + r, then Vi ⊊ Cr and Wi might still be all

of R1. Set W (M ) :=
⋂

i∈I Wi. Then W (M ) is non-empty Zariski open in R1 and

every ℓ ∈W (M ) acts injectively on M . This gives (i).

If W (M ) ⊊ R1, define V (M ) :=
⋃

i Vi where the union runs over i ∈ I such

that Wi ̸= R1. It is clear that this satisfies (ii).

Corollary 2.12. Let µ : Y → X be a morphism of smooth varieties, and let M

be a relative holonomic DR
Y -module, with R = C[s1, . . . , sr], r > 0. There exist a

finite set J and a set of points {βi,j ∈ C | 1 ≤ i ≤ n, j ∈ J} such that for every

α in the non-empty Zariski open complement Cr \
⋃

i,j{zi − βi,j = 0}, the natural

morphism of DX-modules

(1) (H0µ+M )⊗R R/mα → H0µ+(M ⊗R R/mα)

is an isomorphism, where mα = (s1 − α1, . . . , sr − αr) is the maximal ideal in R

of α.

Proof. Let γ ∈ Cr. First, let ℓ ∈W (M ) ⊂ R1 be a polynomial of degree one, with

W (M ) as in Corollary 2.11. Then multiplication by ℓ on M followed by the direct

image induces a long exact sequence of DR
X -modules

0 → H0µ+M
ℓ·−→ H0µ+M → H0µ+(M ⊗R R/(ℓ)) → H1µ+M

ℓ·−→ H1µ+M .

Thus (H0µ+M )⊗RR/(ℓ) is a DX -submodule of H0µ+(M ⊗RR/(ℓ)). Their quo-

tient is isomorphic to the kernel of ℓ on H1µ+M . We can assume further that

ℓ ∈ W (M ) ∩W (H1µ+M ) since the intersection is Zariski open and dense. Then

this kernel is zero, and hence

(H0µ+M )⊗R R/(ℓ) ≃ H0µ+(M ⊗R R/(ℓ)).

By Corollary 2.11, we can assume W (M ) ∩ W (H1µ+M ) is the set of ℓ ∈ R1

that do not vanish on any irreducible component of a Zariski closed proper subset

V (M ) ∪ V (H1µ+M ) of Cr. Thus, there exist a finite set J and a set of points

{β1,j ∈ C | j ∈ J} such that ℓ = s1 − α1 ∈ W (M ) ∩ W (H1µ+M ) for α1 ∈
C \ {β1,j | j ∈ J}.

If r = 1, the above argument gives the claim. If r > 1, we proceed by induction

since R/(s1 − α1) ≃ C[s2, . . . , sr].

§3. Upper bounds

We consider first the algebraic case of Theorem 1.2. Since Ba
F is the intersection

of all local Ba
F,x, we may assume that X is affine and admits local coordinates



616 N. Budur, R. van der Veer and A. Van Werde

x1, . . . , xn. Let µ be a strong log resolution of f as in the introduction, G = F ◦µ,
and let gj = fj ◦ µ. As in the introduction, we use the notation DX [s] for DR

X if

R = C[s].

§3.1. Translation to right modules

By the translation between left and right modules in Section 2.1, the functional

equation PF s+a = b(s)F s may be restated as the equation F s+a dx · P ∗ =

b(s)F s dx in

N := DX [s]F s ⊗OX
ωX = F s dx · DX [s].

Define M to be the submodule of DY [s]G
s ⊗OY

ωY spanned by Gsµ∗(dx) over

DY [s],

M := Gsµ∗(dx) · DY [s].

Lemma 3.1. The right DY [s]-module M is relative holonomic.

Proof. The left DY [s]-module DY [s]G
s is relative holonomic by [Mai16b, Rés. 1].

Then the associated right module DY [s]G
s ⊗OY

ωY is also relative holonomic.

Hence, Lemma 2.3 implies that the submodule M is also relative holonomic.

§3.2. DX [s]⟨t⟩-modules

Let DX [s]⟨t⟩ denote the sheaf of rings obtained from DX [s] by adding a new

variable t which commutes with sections of DX and is subject to sjt = t(sj + aj)

for every j = 1, . . . , r. The DX [s]-module N may be equipped with the structure

of a right DX [s]⟨t⟩-module by the action

F s dx · P (x, ∂, s) · t = F s+a dx · P (x, ∂, s+ a).

In this formalismBa
F is the Bernstein–Sato ideal of N /N t. An analogous DY [s]⟨t⟩-

module structure can be given to M .

Lemma 3.2. The Bernstein–Sato ideal BM/M t contains a polynomial of the form

b(s) =
∏
E

N∏
j=1

(ordE(g1)s1 + · · ·+ ordE(gr)sr + kE + j),

where E ranges over the irreducible components of µ∗D, for some N ∈ Z≥0.

Proof. The proof is analogous to the one in [Lic89, Sect. 4]. We can reduce the

claim to the local analytic Bernstein–Sato ideal at a point y ∈ Y lying in the

support of µ∗D, since BM/M t is the intersection of the local analytic Bernstein–

Sato ideals. Let Ei with i ∈ I be the local analytic irreducible components of µ∗D
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at y. We can assume that there are local analytic coordinates z1, . . . , zn, where

every Ei with i ∈ I is determined by some zji . After relabelling, we may assume

that ji = i. In these local coordinates,

Gs =
∏
i∈I

z
∑r

j=1 ordEi
(gj)sj

i and µ∗(dx) = v
∏
i∈I

zki
i dz,

where v is a local unit. Let

P = v−1

(∏
i∈I

(−∂i)
∑r

j=1 aj ordEi
(gj)

)
v.

Then

Gs+aµ∗(dx) · P = q(s)Gsµ∗(dx),

where

q(s) =
∏
i∈I

( r∑
j=1

ordEi
(gj)sj +

r∑
j=1

aj ordEi
(gj) + ki

)

· · ·
( r∑

j=1

ordEi
(gj)sj + 1 + ki

)
.

The DX -linear endomorphism t induces an endomorphism on H0µ+M . The

relation sit = t(si+ai) also holds on H0µ+M due to the functoriality of the direct

image. Hence H0µ+M is equipped with the structure of a DX [s]⟨t⟩-module.

The surjection of right DY [s]-modules DY [s] → M defined by 1 7→ Gsµ∗(dx)

induces a morphism H0µ+(DY [s]) → H0µ+M . Observe that H0µ+(DY [s]) =

µ∗(DY→X ⊗C C[s]) contains a global section corresponding to 1 ⊗ 1. We write u

for the image of this section in H0µ+M , and U for the right DX [s]⟨t⟩-submodule

generated by u.

Lemma 3.3. There is a surjective morphism of right DX [s]⟨t⟩-modules U → N

sending u to F s dx.

Proof. This is analogous to the corresponding absolute result [Bj79, Chap. 5,

p. 246]. One must show that (F s dx)P = 0 whenever uP = 0 for some differential

operator P over an open V ⊆ X.

The resolution of singularities Y → X is an isomorphism over the complement

of the divisor D determined by f . This induces isomorphisms U ≃ H0µ+M ≃ N

outside of D. It follows that the support of the coherent sheaf of OV -modules

OV ((F
s dx)P ) lies in D. Thus fN ((F s dx)P ) = 0 for some sufficiently large N ≥ 0.

Note that f is a non-zero divisor of N (V ). Therefore, (F s dx)P = 0 on V as

desired.
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Lemma 3.4. The module (H0µ+M )/U is relative holonomic, and, moreover,

j((H0µ+M )/U ) > n.

Proof. Let L = (H0µ+M )/U . By looking at the presentations for L and U ,

since M is relative holonomic it follows that L is also relative holonomic. The fact

that j(L ) > n is equivalent to the fact that AnnC[s] L ̸= 0. By [vdV21, Thm. E]

for any α in the zero locus of AnnC[s] L ,

(2) L ⊗C[s]
C[s]
mα

̸= 0,

where mα is the maximal ideal corresponding to α. Let Cα = C[s]/mα. To prove

that AnnC[s] L ̸= 0 it thus suffices that L ⊗C[s] Cα = 0 for some α ∈ Cr.

We consider the exact sequence of DX -modules

(3) U ⊗ Cα → (H0µ+M )⊗ Cα → L ⊗C[s] Cα → 0.

By Lemma 2.12, (H0µ+M ) ⊗ Cα = H0µ+(M ⊗ Cα) for all α ∈ Cr outside a

finite union of hyperplanes of type {zi − βij = 0} with βij ∈ C. Among such α,

we now pick α ∈ Zr satisfying that each αi ≪ 0; for example, α = α′ − k with

k = (k, . . . , k) ∈ Zr for k ∈ N arbitrarily large with respect to a fixed α′ ∈ α+Zr.

We consider the diagram

U = X \D
j

$$

j′
// Y

µ

��

X,

where j and j′ are the natural open embeddings. Since αi ≪ 0 for each i, there is

an equality of regular holonomic right DY -modules

M ⊗C[s] Cα = (DX [s]Gs ⊗OY
ωY )⊗C[s] Cα

which can be checked locally. The last right DY -module corresponds to the regular

holonomic left DY -module DY [s]G
s ⊗C[s] Cα. Moreover, there is an isomorphism

of left DY -modules

DY [s]G
s ⊗C[s] Cα ≃ DYG

α = OY [g
−1] = j′+(DUg

−1)

with g =
∏r

j=1 gj , and their associated de Rham complexes are isomorphic to

the perverse sheaf Rj′∗CU [n]; see [BVWZ21a, Thm. 2.5.1]. Since j is an affine

morphism, the derived direct image Rµ∗(Rj
′
∗CU [n]) = Rj∗CU [n] is also perverse

and hence equal to the perverse 0-direct image pR0µ∗(Rj
′
∗CU [n]). Equivalently,
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using the Riemann–Hilbert correspondence between regular holonomic D-modules

and perverse sheaves, there is an isomorphism of left DX -modules,

(H0µ+)OY [g
−1] ≃ OX [f−1] ≃ DXF

s ⊗C[s] Cα.

In terms of right DX -modules this gives

H0µ+(M ⊗C[s] Cα) ≃ N ⊗C[s] Cα ≃ Fα dx · DX .

Thus the first map in (3) is the map U ⊗ Cα = DX [s]u⊗ Cα → Fα dx · DX that

sends u to Fα dx. Hence this map is surjective. This shows that L ⊗C[s] Cα = 0

as required.

§3.3. Proof of Theorem 1.2 – Algebraic case

Let L = (H0µ+M )/U . The Bernstein–Sato ideals BL tn form an increasing

sequence of ideals in the Noetherian ring C[s]. Hence there must exist some N ≥ 1

such that BL tn = BL tn+1 for all n ≥ N .

By Lemma 3.4, the DX [s]-module L has grade ≥ n+1, so Lemma 2.8 provides

some non-zero q(s1, . . . , sr) ∈ BL . Then also q ∈ BL tN . Observe that one has the

relation

q(s1, . . . , sr)t = tq(s1 + a1, . . . , sr + ar).

In particular, it follows that q(s+ a) ∈ BL tN+1 . Due to the stabilisation BL tN =

BL tN+1 , it follows by iteration that q(s+ ja) ∈ BL tN for any integer j ≥ 0. Due

to the estimate for the slopes in Theorem 1.1 it follows that we can pick some

polynomial r(s) which annihilates L tN and such that r(s+ a) does not vanish on

any codimension-one irreducible component of Z(Ba
F,x).

We now follow [Kas76] and [Lic89] closely. Let b(s) be the Bernstein–Sato

polynomial for M /M t provided by Lemma 3.2. Notice that the action of t is

injective on M . This means that the morphism

ϕ : M → M : m1 7→ the unique m2 such that m1b(s) = m2t

is well defined and DY -linear, and that b(s) = t ◦ ϕ : M → M as a morphism

of DY -modules. By functoriality we thus conclude that b(s) = t ◦ H0µ+ϕ as a

morphism on H0µ+M . This implies that

(H0µ+M )b(s) ⊂ H0(µ+M )t.

Set B :=
∏N

j=0 b(s + ja). Then with a similar argument applied inductively we

have that (H0µ+M )B(s) ⊂ (H0µ+M )tN+1. Thus we have

(H0µ+M )B(s)r(s+ a) ⊂ (H0µ+M )tN+1r(s+ a) = (H0µ+M )tNr(s)t.
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Since L tN = (H0(µ+M )tN + U )/U and r annihilates L tN , we have

((H0µ+M )tN + U )r ⊂ U ,

and hence

(H0µ+M )tNr ⊂ ((H0µ+M )tN + U )r ⊂ U .

In particular, since U ⊂ H0µ+M we have that U B(s)r(s + a) ⊂ U t, that is,

B(s)r(s+ a) lies in the Bernstein–Sato ideal BU /U t.

By Lemma 3.3 we have a DX [s]⟨t⟩-linear surjection U → N . Thus U /U t

surjects onto N /N t, and so B(s)r(s + a) also annihilates N /N t. This implies

that Z(Ba
F ) ⊆ Z(B(s)r(s + a)). Since we know that none of the irreducible com-

ponents of Z(r(s+ a)) are irreducible components of codimension one of Z(Ba
F ),

this gives the desired result. □

§3.4. The analytic case

The proof of Theorem 1.2 proceeds similarly in the local analytic case, that is,

when the smooth affine variety X is replaced with the germ of a complex manifold

(X,x), or equivalently, with a very small open ball Ωx centred at x in X. By

[BVWZ21a, 3.6], all the results we have used for relative holonomic DX -modules

hold in the local analytic case. The log resolution µ : Y → X = Ωx has the property

that Y admits a finite cover {Yk} of open subsets such that g = f ◦ µ is locally

a monomial. Relative holonomicity can be defined for any analytic DY [s]-module

admitting a good filtration on each Yi, and by [MFS19, Thm. 1.17] the analytic

direct image functor µ+ for such modules preserves relative holonomicity. Thus,

all the results from this section extend to the analytic version.

Remark 3.5. One lacks a bound on c in Theorem 1.2 since N in the above proof

is difficult to control.

§4. Lower bounds

§4.1. Proof of Proposition 1.3

Let x be a smooth point of C. We can assume that x1 is a local equation for C at

x. Then locally at x, fj = x
Nj

1 uj with Nj = ordC(fj) and uj a locally invertible

function. We assume m =
∑r

j=1Njaj is non-zero. One easily computes now that

Ba
F,x is the principal ideal generated by

b(s) =

m∏
c=1

(( r∑
j=1

Njsj

)
+ c

)
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corresponding to the relation

b(s)

r∏
j=1

f
sj
j = ∂m1

( r∏
j=1

u
aj

j

)−1 ∏
j=1

f
sj
j .

§4.2. Jumping walls

In this subsection we establish Theorem 1.4 on the relation between the jumping

walls and Z(Ba
F ). By [Kol97, Cor. 3.12] one can rephrase the LCT-polytope and

LCTa-region as

LCT(F ) =
{
λ ∈ Rr

≥0 : (X,Fλ) is log-canonical
}
,

LCTa(F ) =
{
λ ∈ Rr

≥0 : (X,Fλ−a) is Kawamata log-terminal
}
.

For our purposes, the analytical reformulation of Kawamata log-terminality from

[Kol97, Prop. 3.20] is the most convenient,

LCTa(F ) =
{
λ ∈ Rr

≥0 :
∏r

j=1 |fj |−2(λj−aj) is integrable near any x ∈ X
}
.

Similarly, the stalk of the mixed multiplier ideal sheaf J (Fλ) for λ ∈ Rr
≥0 at any

x ∈ X is

J (Fλ)x =
{
ϕ ∈ OX,x : |ϕ|2

∏r
j=1 |fj |−2λj is integrable near x

}
.

Let µ be a strong log resolution of f as in the introduction, G = F ◦ µ, and let

gj = fj ◦ µ.

Proof of Theorem 1.4. Let E be an irreducible component of µ∗D. Suppose that

the hyperplane {
∑r

j=1 ordE(gj)sj = kE + c} for some c ∈ Z>0 is the affine span

of a facet σ of a jumping wall of F which intersects LCTa(F ). We show that∑r
j=1 ordE(gj)sj + kE + c = 0 determines an irreducible component of Z(Ba

F ).

Note that the facet σ must be included in LCTa(F ). Let λ be a point of σ.

Then there must exist some x ∈ D and ϕ ∈ OX,x \ J (Fλ)x such that∫
|ϕ|2

r∏
j=1

|fj |−2(λj−εj)ψ dx dx̄ <∞,

∫ r∏
j=1

|fj |−2(λj−aj)ψ dx dx̄ <∞,

for any ε ∈ Rr
>0 and positive bump function ψ supported on a sufficiently small

neighbourhood of x, where dx = dx1 · · · dxn for local coordinates x1, . . . , xn on X.

Pick some b(s) ∈ Ba
F and take the support of ψ to be sufficiently small such

that there exists some local differential operator P with b(s)F s = PF s+a. By

conjugation it follows that b̄(s)F s = PF s+a. Holomorphic and antiholomorphic
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differential operators commute so

|b(s)|2
r∏

j=1

|fj |2sj = PP |fj |2(sj+aj).

Now assume that the real part of all 2(sj + aj) is strictly greater than the order

of P . Then |fj |2(sj+aj) has enough continuous derivatives to apply integration by

parts. This yields that

|b(s)|2
∫ r∏

j=1

|fj |2sj |ϕ|2ψ dx dx̄ =

∫ r∏
j=1

|fj |2(sj+aj)P ∗P ∗|ϕ|2ψ dx dx̄.

View this as an equality of meromorphic functions of s to conclude that the equality

holds for arbitrary s ∈ Rr provided both integrals are finite.

Now take s = −λ+ ε and let ε tend to zero from above. Then, by dominated

convergence, the integral on the right-hand side converges to a finite number. On

the other hand, since ϕ is not in J (F s)x, the integral on the left-hand side tends

to infinity by the monotone convergence theorem. This means that the equality is

only possible if b(s) vanishes on (−λ1, . . . ,−λr). Since the point λ is arbitrary on

σ, and b(s) ∈ Ba
F is also arbitrary, we conclude that

∑
j ordE(gj)sj + kE + c = 0

determines an irreducible component of Z(Ba
F ).

Proof of Corollary 1.5. A facet of LCT(F ) is by definition a facet of a jumping

wall of F . By Theorem 1.4 it is enough to show that
∑r

j=1 ordE(gj)sj = kE + 1

intersects LCTa(F ). Let λ be an interior point of this facet of LCT(F ). It is enough

to show Fλ−a is Kawamata log-terminal. Let E′ be an irreducible component of

µ∗D. Then
∑

j ordE′(fj)λj ≤ kE′ + 1. Equality holds if and only if E′ determines

the same facet of LCT(F ) as E, that is,{∑r
j=1 ordE′(gj)sj = kE′ + 1

}
=

{∑r
j=1 ordE(gj)sj = kE + 1

}
.

Let IE be the set of such E′. By assumption, there exists at least one j with

ordE(fj)·aj ̸= 0. This implies that for the same j, the same holds for E′ ∈ IE . Thus

for E′ ∈ IE we have
∑

j ordE′(fj)aj > 0 since a ∈ Nr. Hence for all irreducible

components E′ of µ∗D one has∑
j

ordE′(fj)(λj − aj) < kE′ + 1

as claimed.

§4.3. Real jumping walls

Finally, we establish the real analogues for the results in Section 4.2. As mentioned

in the introduction, one of the motivations is that this sometimes gives a different
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way of producing irreducible components of the zero loci of Bernstein–Sato ideals,

another motivation being the potential applications to statistics.

Let XR be a real affine algebraic manifold. Let F = (f1, . . . , fr) be a tuple

of real algebraic functions on XR. Fix a ∈ Zr
≥0 and assume that

∏r
j=1 f

aj

j is not

invertible.

The Bernstein–Sato idealBa
F ⊂ R[s], with s = s1, . . . , sr, consists by definition

of all polynomials b(s) ∈ R[s] such that

b(s)F s ∈ DXR [s]F
s+a,

where DXR denotes the ring of real algebraic differential operators on XR. If FC is

the complexification on XC = XR⊗RC of F , it is easy to see that Ba
F consists of all

polynomials obtained by replacing the coefficients of q(s) with their real parts for

all q(s) ∈ Ba
FC
. It is conjectured in [Bud15] that Ba

FC
is generated by polynomials

with coefficients in Q, in which case the same polynomials would generate Ba
F .

Since this conjecture is open, for now we can only conclude from Theorem 1.1 the

following:

Lemma 4.1. Let XR be a real affine algebraic manifold. Let F = (f1, . . . , fr) be

a tuple of real algebraic functions on XR. Let FC be the F considered as having

complex coefficients. Fix a ∈ Zr
≥0 and assume that

∏r
j=1 f

aj

j is not invertible. Then

the codimension-one part of Z(Ba
FC
) in Cr consists of the complexification of the

real codimension-one part of the zero locus Z(Ba
F ) in Rr.

A similar comparison holds between the local Bernstein–Sato ideals Ba
F,x and

Ba
FC,x

for x ∈ XR, where B
a
F,x consists of all polynomials b(s) ∈ R[s] such that

b(s)F s ∈ DXR,x[s]F
s+a,

where DXR,x[s] denotes the ring of germs at x of real analytic differential operators

on XR. Moreover, as in the complex affine case, Ba
F is the intersection of Ba

F,x for

x ∈ XR.

Denote by OXR the sheaf of real analytic functions on XR. After Saito [Sai07],

we define the real mixed multiplier ideals sheaves JR(F
λ) ⊂ OXR for λ ∈ Rr

≥0 by

setting

JR(F
λ)(U) :=

{
ϕ ∈ OXR(U) : |ϕ|

∏r
j=1 |fj |−λj is locally integrable on U

}
.

Let µ : YR → XR be a real log resolution of singularities for f :=
∏r

j=1 fj ,

that is, µ∗f and µ∗ dx1 · · · dxn are locally monomial up to multiplication by an

invertible function, where x1, . . . , xn are local algebraic coordinates on XR. Since

XR is assumed to be the underlying real analytic manifold of a smooth scheme X
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defined over R, YR is the underlying real analytic manifold of a smooth scheme

Y obtained by blowing up X successively along smooth centres defined over R.
Then the components of the divisor determined by µ∗f in YR are the non-empty

real loci of the components of the divisor defined by f in Y ; see [Sai07, 1.2]. As

before, we denote kE := ordE(det Jac(µ)) ∈ N for the order of vanishing of the

determinant of the Jacobian of µ along an irreducible component E of the simple

normal crossings divisor determined by µ∗f in YR.

Fix some x ∈ XR with f(x) = 0. Associated to λ ∈ Rr
≥0 is the region

RR,F,x(λ) :=
{
λ′ ∈ Rr

≥0 : JR(F
λ)x ⊆ JR(F

λ′
)x
}
.

The real jumping wall at x associated to λ is the intersection of the boundary

of RR,F,x(λ) with Rr
>0. The RLCT-polytope at x is the closure RLCTx(F ) of

RR,F,x(0). The stalk JR(F
λ)x admits a characterisation similar to the complex

case; see [Sai07, Prop. 1]. It follows that the facets of the jumping wall are cut

out by hyperplanes of the form
∑r

j=1 ordE(gj)sj = kE + c with c ∈ Z>0 and the

RLCT-polytope is cut out by hyperplanes of the form
∑r

j=1 ordE(gj)sj = kE +1.

Here, E runs over all irreducible components of the divisor determined by µ∗f

with x ∈ µ(E). The RLCTa-region is defined by

RLCTa,x(F ) :=
{
λ ∈ Rr

≥0 :
∏r

j=1 |fj |−(λj−aj) is integrable near x
}
.

The following theorem now follows similarly to Theorem 1.4.

Theorem 4.2. With the assumptions as in Lemma 4.1, and with x ∈ f−1(0) ⊂
XR, if a facet of a real jumping wall of F at x intersects RLCTa,x(F ), then it

determines an irreducible component of Z(Ba
F,x).

Proof. Let σ be a facet of a real jumping wall of F at x that intersects RLCTa,x(F ).

The affine span of σ must be a hyperplane of the form
∑r

j=1 ordE(gj)sj = kE + c

with c ∈ Z>0, where E is an irreducible component of the divisor determined by

µ∗f with x ∈ µ(E). We show that
∑r

j=1 ordE(gj)sj + kE + c = 0 determines an

irreducible component of Z(Ba
F,x).

Let λ be a point on σ. Then there must exist ϕ ∈ OXR,x \ JR(F
s)x such that∫

|ϕ|
r∏

j=1

|fj |−(λj−εj)ψ dx <∞,

∫ r∏
j=1

|fj |−(λj−aj)ψ dx <∞,

for any ε ∈ Rr
>0 and positive bump function ψ supported on a sufficiently small

neighbourhood of x, where dx = dx1 · · · dxn and x1, . . . , xn are local coordinates

on XR at x.
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Pick some b(s) ∈ Ba
F,x and take the support of ψ to be sufficiently small such

that there exists some local differential operator P ∈ DXR,x[s] with b(s)F s =

PF s+a. Assume that the specialisation of sj + aj to a complex number has

real part strictly greater than the order of P for all j. Then b(s)
∏r

j=1 |fj |sj =

P
∏r

j=1 |fj |sj+aj and |fj |sj+aj has enough continuous partial derivatives to apply

integration by parts. This yields that

b(s)

∫ r∏
j=1

|fj |sj |ϕ|ψ dx =

∫ r∏
j=1

|fj |sj+ajP ∗|ϕ|ψ dx.

View this as an equality of meromorphic functions in s to deduce that the equality

holds for arbitrary s ∈ Rr provided both integrals are finite.

Now take s = −λ+ ε and let ε tend to zero from above. Then, by dominated

convergence, the integral on the right-hand side stays finite as ε tends to zero.

On the other hand, by monotone convergence, the integral on the left-hand side

tends to infinity since ϕ is not in JR(F
s)x. This means that b(s) vanishes on

(−λ1, . . . ,−λr). Since the point λ on the facet σ and b(s) ∈ Ba
F,x were arbitrary,

we conclude that
∑

j ordE(gj)sj+kE+c = 0 determines an irreducible component

of Z(Ba
F,x).

Precisely as with Corollary 1.5 one obtains the following corollary:

Corollary 4.3. With the same assumptions as in Theorem 4.2, suppose that the

equation
∑r

j=1 ordE(gj)sj = kE+1 defines the affine span of a facet of RLCTx(F ).

If aj ̸= 0 and ordE(gj) ̸= 0 for some j, then
∑

j ordE(gj)sj + kE + 1 = 0 defines

an irreducible component of Z(Ba
F,x).

§5. Example

Let f1 = y2 − x2 + x3 and f2 = y define the coordinate functions of the morphism

F : C2 → C2. We compare the Bernstein–Sato zero locus Z(Ba
F ) for a = (1, 2)

with the estimates we obtained in this article. Using the library dmodideal.lib

[LLM21] in SINGULAR [DGPS21] yields the principal ideal

Ba
F =

(
(s1 + 1)(s2 + 1)(s2 + 2)

5∏
l=2

(2s1 + s2 + l)

)
.

A strong log resolution µ : Y → X may be found by use of one blowup. Let Ej be

the strict transform of fj = 0 for j = 1, 2, and let E0 be the exceptional divisor.
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Figure 1. Left: Z(Ba
F ). Right: The jumping walls of F with LCTa(F ) lightly

shaded, and LCT(F ) in a darker shade.

Then Theorem 1.2 yields

Z(Ba
F ) ⊆

∞⋃
l=1

Z(s1 + l) ∪ Z(s2 + l) ∪ Z(2s1 + s2 + l + 1).

The trivial estimate Proposition 1.3 yields that

Z(s1 + 1) ∪ Z(s2 + 1) ∪ Z(s2 + 2) ⊆ Z(Ba
F ).

We have

LCTa(F ) =
{
λ ∈ Rr

≥0 : λ1 < 2, λ2 < 3, and 2λ1 + λ2 < 6
}
,

LCT(F ) =
{
λ ∈ Rr

≥0 : λ1 ≤ 1, λ2 ≤ 1, and 2λ1 + λ2 ≤ 2
}
;

see Figure 1. Further, a polynomial h ∈ C[x, y] belongs to the ideal J (Fλ) if and

only if

ordE1
(h) ≥ λ1, ordE2

(h) ≥ λ2, and ordE0
(h) ≥ 2λ1 + λ2 − 1.

Then

J (Fλ) = C[x, y] for λ ∈ LCTo(F ) := LCT(F ) \ ({λ2 = 1} ∪ {2λ1 + λ2 = 2}),
J (Fλ) = (x, y) for λ ∈ [0, 1)2 \ LCTo.

By translating these two regions by integral vectors (m1,m2) ∈ N2, one obtains the

other regions of constancy of mixed multiplier ideals, the latter equal to (fm1
1 fm2

2 )

and, respectively, (x, y)fm1
1 fm2

2 . The jumping walls are depicted in Figure 1.
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All irreducible components of Z(Ba
F ) arise from the facets of the jumping

walls in this example. Hence the lower bound for Z(Ba
F ) following from Theorem

1.4 is tight. In this case, the estimates coming from the real jumping walls at the

origin are identical to the foregoing estimates.
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