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Some More Fano Threefolds with a Multiplicative
Chow–Künneth Decomposition

by

Robert Laterveer

Abstract

We exhibit several families of Fano threefolds with a multiplicative Chow–Künneth
decomposition, in the sense of Shen–Vial. As a consequence, a certain tautological subring
of the Chow ring of powers of these threefolds injects into cohomology. As a by-product of
the argument, we observe that double covers of projective spaces admit a multiplicative
Chow–Künneth decomposition.
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§1. Introduction

Given a smooth projective variety Y over C, let Ai(Y ) := CHi(Y )Q denote the

Chow groups of Y (i.e. the groups of codimension i algebraic cycles on Y with

Q-coefficients, modulo rational equivalence). The intersection product defines a

ring structure on A∗(Y ) =
⊕

i A
i(Y ), the Chow ring of Y [14].

In the special case of K3 surfaces, this ring structure has remarkable proper-

ties:

Theorem 1.1 (Beauville–Voisin [3]). Let S be a projective K3 surface. The Q-

subalgebra

⟨A1(S), cj(S)⟩ ⊂ A∗(S)

injects into cohomology under the cycle class map.
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Theorem 1.2 (Voisin [47], Yin [49]). Let S be a projective K3 surface, and m ∈
N. The Q-subalgebra

R∗(Sm) := ⟨A1(S),∆S⟩ ⊂ A∗(Sm)

(generated by pullbacks of divisors and pullbacks of the diagonal ∆S ⊂ S × S)

injects into cohomology under the cycle class map for all m ≤ 2 dimH2
tr(S,Q) +

1 (where H2
tr(S,Q) denotes the transcendental part of cohomology). Moreover,

R∗(Sm) injects into cohomology for all m ∈ N if and only if S is Kimura finite-

dimensional.

The Chow ring of abelian varieties also has an interesting property: there is

a multiplicative splitting, defined by the Fourier transform [1].

Motivated by the particular behavior of K3 surfaces and abelian varieties,

Beauville [2] has conjectured that for certain special varieties, the Chow ring should

admit a multiplicative splitting. In the wake of Beauville’s “splitting property

conjecture”, Shen–Vial [41] have introduced the concept of multiplicative Chow–

Künneth decomposition (we will abbreviate this to “MCK decomposition”). With

the concept of MCK decomposition, it is possible to make concrete sense of this

elusive “splitting property conjecture” of Beauville.

It is hard to understand precisely which varieties admit an MCK decom-

position. To give an idea of what is known, hyperelliptic curves have an MCK

decomposition [41, Exm. 8.16], but the very general curve of genus ≥ 3 does not

have an MCK decomposition [12, Exm. 2.3]; K3 surfaces have an MCK decompo-

sition, but certain high-degree surfaces in P3 do not have an MCK decomposition

(cf. the examples given in [37], cf. also Section 2 below).

In this note we will focus on Fano threefolds and ask the following question:

Question 1.3. Let X be a Fano threefold with Picard number 1. Does X admit

an MCK decomposition?

The restriction on the Picard number is necessary to rule out a counterexample

of Beauville [2, Exms. 9.1.5]. The answer to Question 1.3 is affirmative for cubic

threefolds [8, 12], for intersections of 2 quadrics [26], for intersections of a quadric

and a cubic [27], and for prime Fano threefolds of genus 8 [25] and of genus 10

[31].

The main result of this paper answers Question 1.3 for several more families

of Fano threefolds:

Theorem (= Theorem 4.1). The following smooth Fano threefolds have a multi-

plicative Chow–Künneth decomposition:
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� hypersurfaces of weighted degree 6 in weighted projective space P(13, 2, 3);
� quartic double solids;

� sextic double solids;

� double covers of a quadric in P4 branched along the intersection with a quartic;

� special Gushel–Mukai threefolds.

In Table 1 (at the end of this paper), we have listed all Fano threefolds of

Picard number 1 and what is known about MCK for them.

To prove Theorem 4.1, we provide a general criterion (Proposition 3.3) that

may be useful in other situations. For example, using this criterion we also prove

the following:

Proposition (= Proposition 3.6). Let X be a smooth projective variety such that

X → Pn is a double cover ramified along a smooth divisor D ⊂ Pn of degree d > n.

Then X admits an MCK decomposition.

As a consequence of Theorem 4.1, we obtain an injectivity result similar to

Theorem 1.2:

Corollary (cf. Theorem 5.1). Let Y be a Fano threefold as in Theorem 4.1, and

m ∈ N. Let

R∗(Y m) := ⟨h,∆Y ⟩ ⊂ A∗(Y m)

be the Q-subalgebra generated by pullbacks of the polarization h ∈ A1(Y ) and

pullbacks of the diagonal ∆Y ∈ A3(Y ×Y ). The cycle class map induces injections

R∗(Y m) ↪→ H∗(Y m,Q) for all m ∈ N.

Conventions. In this paper, the word variety will refer to a reduced irreducible

scheme of finite type over C. A subvariety is a (possibly reducible) reduced sub-

scheme which is equidimensional.

All Chow groups will be with rational coefficients: we will denote by Aj(Y )

the Chow group of j-dimensional cycles on Y with Q-coefficients; for Y smooth

of dimension n the notation Aj(Y ) and An−j(Y ) is used interchangeably. The

notation Aj
hom(Y ) will be used to indicate the subgroup of homologically trivial

cycles. For a morphism f : X → Y , we will write Γf ∈ A∗(X × Y ) for the graph

of f .

The contravariant category of Chow motives (i.e. pure motives with respect

to rational equivalence as in [40, 35]) will be denoted Mrat.
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§2. MCK decomposition

Definition 2.1 (Murre [33, 34]). Let X be a smooth projective variety of dimen-

sion n. We say that X has a CK decomposition if there exists a decomposition of

the diagonal

∆X = π0
X + π1

X + · · ·+ π2n
X in An(X ×X),

such that the πi
X are mutually orthogonal idempotents and (πi

X)∗H
∗(X,Q) =

Hi(X,Q).

(NB. “CK decomposition” is shorthand for “Chow–Künneth decomposition”.)

Remark 2.2. Murre has conjectured that any smooth projective variety should

have a CK decomposition [33, 34, 17].

Definition 2.3 (Shen–Vial [41]). Let X be a smooth projective variety of dimen-

sion n, and let ∆sm
X ∈ A2n(X ×X ×X) denote the class of the small diagonal

∆sm
X :=

{
(x, x, x)

∣∣ x ∈ X
}
⊂ X ×X ×X.

An MCK decomposition is defined as a CK decomposition {πi
X} of X that is

multiplicative, i.e. it satisfies

πk
X ◦∆sm

X ◦ (πi
X × πj

X) = 0 in A2n(X ×X ×X) for all i+ j ̸= k.

(NB. “MCK decomposition” is shorthand for “multiplicative Chow–Künneth

decomposition”.)

Remark 2.4. The small diagonal (when considered as a correspondence from

X ×X to X) induces the multiplication morphism

∆sm
X : h(X)⊗ h(X) → h(X) in Mrat.

Let us assume X has a CK decomposition

h(X) =

2n⊕
i=0

hi(X) in Mrat.

By definition, this decomposition is multiplicative if for any i, j the composition

hi(X)⊗ hj(X) → h(X)⊗ h(X)
∆sm

X−−−→ h(X) in Mrat

factors through hi+j(X).

If X has an MCK decomposition, then setting

Ai
(j)(X) := (π2i−j

X )∗A
i(X),
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one obtains a bigraded ring structure on the Chow ring: i.e. the intersection product

sends Ai
(j)(X)⊗Ai′

(j′)(X) to Ai+i′

(j+j′)(X).

It is conjectured that for any X with an MCK decomposition, one has

Ai
(j)(X)

??
= 0 for j < 0, Ai

(0)(X) ∩Ai
hom(X)

??
= 0;

this is related to Murre’s conjectures B and D, that have been formulated for any

CK decomposition [33, 34].

For more background on the concept of MCK, and for examples of varieties

with an MCK decomposition, we refer to [41, Sect. 8], as well as [46, 42, 13, 21,

32, 22, 23, 24, 12, 29, 27, 30, 36].

§3. A general criterion

We develop a general criterion for having an MCK. The criterion hinges on the

Franchetta property for families of varieties, which is defined as follows:

Definition 3.1. Let X → B be a smooth projective morphism, where X , B are

smooth quasi-projective varieties, and let us write Xb for the fiber over b ∈ B.

We say that X → B has the Franchetta property in codimension j if the following

holds: for every Γ ∈ Aj(X ) such that the restriction Γ|Xb
is homologically trivial

for the very general b ∈ B, the restriction Γ|b is zero in Aj(Xb) for all b ∈ B.

We say that X → B has the Franchetta property if X → B has the Franchetta

property in codimension j for all j.

This property is studied in [39, 5, 10, 11].

Definition 3.2. Given a family X → B as in Definition 3.1, we use the shorthand

GDAj
B(Xb) := Im(Aj(X ) → Aj(Xb)) ⊂ Aj(Xb)

(GDA∗() stands for the “generically defined cycles”.)

The Franchetta property for X → B means that the generically defined cycles

inject into cohomology.

Proposition 3.3. Let X → B be a family of smooth projective varieties of relative

dimension n, with fiber Xb. Assume the following:

(i) the family X ×B X → B has the Franchetta property;

(ii) there exists a projective quotient variety P (i.e. P = P ′/G where P ′ is smooth

projective and G ⊂ Aut(P ′) is a finite cyclic group) with trivial Chow groups

(i.e. A∗
hom(P ) = 0), such that Xb → P is a double cover with branch locus a

smooth ample divisor, for all b ∈ B.
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Then Xb admits an MCK decomposition, for all b ∈ B.

Proof. We have the following Lefschetz-type result in cohomology:

Lemma 3.4. Let Xb → P be as in the proposition. Then pullback

Hi(P,Q) → Hi(Xb,Q)

is an isomorphism for i < n, and injective for i = n.

Proof. In the case that P is smooth, this is a result of Cornalba [6]. The general

case is readily deduced from this: assume P = P ′/G where P ′ is smooth projective

and G ⊂ Aut(P ′) is a finite cyclic group, and consider the fiber square

X ′
b

��

// Xb

��

P ′ // P.

Cornalba’s result applies to the double cover of the left-hand vertical arrow, and

so the pullback

Hi(P ′,Q) → Hi(X ′
b,Q)

is an isomorphism for i < n, and injective for i = n. The G-action on P ′ lifts to

X ′
b, and taking G-invariants we find that

Hi(P,Q) = Hi(P ′,Q)G → Hi(X ′
b,Q)G = Hi(Xb,Q)

is an isomorphism for i < n, and injective for i = n.

Since H∗(P,Q) is algebraic (this is a general fact for any variety with trivial

Chow groups, cf. [19]), this implies that also Hi(Xb,Q) is algebraic, for all i ̸= n.

More precisely, for i ̸= n odd, one has Hi(Xb,Q) = 0 while for i < n even, one

has isomorphisms

Ai/2(P ) ∼= Hi(Xb,Q),

induced by pullback. This implies that for i < n the Künneth components πi
Xb

are algebraic, and generically defined. To define the Künneth components πi
Xb

explicitly, let p : Xb → P denote the projection morphism, and let πi
P denote the

(unique) CK decomposition of P . One can then define

πi
Xb

:= 1/2 tΓp ◦ πi
P ◦ Γp if i < n,

πi
Xb

:= π2n−i
Xb

if i > n,

πn,fix
Xb

:= 1/2 tΓp ◦ πn
P ◦ Γp,
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πn,var
Xb

:= ∆Xb
−

∑
j ̸=n

πj
Xb

− πn,fix
Xb

,

πn
Xb

:= πn,fix
Xb

+ πn,var
Xb

∈ An(Xb ×Xb).

(Note that πn
Xb

= 0 in case n is odd.) The notation is meant to remind the reader

that πn,fix
Xb

and πn,var
Xb

are projectors on the fixed part, resp. the variable part of

cohomology in degree n.

These projectors define a generically defined CK decomposition for each Xb,

i.e. all projectors are in GDAn
B(Xb×Xb). This CK decomposition has the property

that

(1)
hj(Xb) := (Xb, π

j
Xb

, 0) = ⊕1(∗) ∀j ̸= n,

hn,fix(Xb) := (Xb, π
n,fix
Xb

, 0) = ⊕1(∗) in Mrat.

Let us now proceed to verify that this CK decomposition is MCK. What we

need to check is the vanishing

πk
Xb

◦∆sm
Xb

◦ (πi
Xb

× πj
Xb

) = 0 in A2n(Xb ×Xb ×Xb) for all i+ j ̸= k.

First, let us assume that at least one of the three integers (i, j, k) is different

from n, and i+ j ̸= k. In this case, we have

πk
Xb

◦∆sm
Xb

◦ (πi
Xb

× πj
Xb

) = (tπi
Xb

× tπj
Xb

× πk
Xb

)∗∆
sm
Xb

= (π2n−i
Xb

× π2n−j
Xb

× πk
Xb

)∗∆
sm
Xb

↪→
⊕

A∗(Xb ×Xb).

Here, the first equality is an application of Lieberman’s lemma [35, Lem. 2.1.3],

and the inclusion follows from property (1). The resulting cycle in
⊕

A∗(Xb×Xb)

is generically defined (since the π∗
Xb

and ∆sm
Xb

are) and homologically trivial (since

i+ j ̸= k). By assumption (i), the resulting cycle in
⊕

A∗(Xb ×Xb) is rationally

trivial, and so

πk
Xb

◦∆sm
Xb

◦ (πi
Xb

× πj
Xb

) = 0 in A2n(Xb ×Xb ×Xb),

as desired.

It remains to treat the case i = j = k = n. The decomposition πn
Xb

:=

πn,fix
Xb

+ πn,var
Xb

induces a decomposition

πn
Xb

◦∆sm
Xb

◦ (πn
Xb

× πn
Xb

)

= πn,fix
Xb

◦∆sm
Xb

◦ (πn,fix
Xb

× πn,fix
Xb

)

+ πn,fix
Xb

◦∆sm
Xb

◦ (πn,fix
Xb

× πn,var
Xb

)

+ · · ·
+ πn,var

Xb
◦∆sm

Xb
◦ (πn,var

Xb
× πn,var

Xb
) in A2n(Xb ×Xb ×Xb).
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Using property (1) and the Franchetta property for Xb ×Xb, all summands con-

taining πn,fix
Xb

vanish. One is left with the last term. To deal with the last term, we

observe that the covering involution ι ∈ Aut(Xb) of the double cover p : Xb → P

induces a splitting of the motive

h(Xb) = h(Xb)
+ ⊕ h(Xb)

−

:= (Xb, 1/2(∆Xb
+ Γι), 0)⊕ (Xb, 1/2(∆Xb

− Γι), 0) in Mrat,

where Γι denotes the graph of the involution ι. Moreover, there is the equality

hn,var(Xb) = h(Xb)
− in Mrat.

But the intersection product map

h(Xb)
− ⊗ h(Xb)

− ∆sm
Xb−−−→ h(Xb)

factors over h(Xb)
+, as is readily seen (cf. Lemma 3.5 below), which is saying

exactly that

πn,var
Xb

◦∆sm
Xb

◦ (πn,var
Xb

× πn,var
Xb

) = 0 in A2n(Xb ×Xb ×Xb).

This closes the proof, modulo the following lemma (which is probably well

known, but we include a proof for completeness):

Lemma 3.5. Let X → P be a double cover, where X and P are quotient varieties,

and let ι ∈ Aut(X) be the covering involution. Let

h(X)+ := (X, 1/2(∆X + Γι), 0), h(X)− := (X, 1/2(∆X − Γι), 0) in Mrat.

The map of motives

h(X)− ⊗ h(X)−
∆sm

X−−−→ h(X)

factors over h(X)+.

To prove the lemma, let ι ∈ Aut(X) denote the covering involution. The

motive h(X)− is defined by the projector

∆−
X := 1/2(∆X − Γι) ∈ An(X ×X).

Plugging this in and developing, it follows that

∆−
X ◦∆sm

X ◦ (∆−
X ×∆−

X)

= 1/8(∆X − Γι) ◦∆sm
X ◦ (∆X×X −∆X × Γι − Γι ×∆X + Γι × Γι)

= 1/8(∆X ◦∆sm
X ◦ (∆X ×∆X) + · · · − Γι ◦∆sm

X ◦ (Γι × Γι))
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= 1/8(∆sm
X − (id× id×ι)∗(∆

sm
X )− (id×ι× id)∗(∆

sm
X )− (ι× id× id)∗(∆

sm
X )

+ (id×ι× ι)∗(∆
sm
X ) + (ι× id×ι)∗(∆

sm
X ) + (ι× ι× id)∗(∆

sm
X )

− (ι× ι× ι)∗(∆
sm
X )) in A2n(X ×X ×X).

Here, the last equality is by virtue of Lieberman’s lemma [35, Lem. 2.1.3]. However,

we have the equality

∆sm
X =

{
(x, x, x)

∣∣ x ∈ X
}
= (ι× ι× ι)∗(∆

sm
X ) in A2n(X ×X ×X),

and so the sum of the first and last summands vanishes. Likewise, we have the

equality

(id×ι× ι)∗(∆
sm
X ) = (id×ι× ι)∗(ι× ι× ι)∗(∆

sm
X )

= (ι× id× id)∗(∆
sm
X ) in A2n(X ×X ×X),

and so the other summands cancel each other pairwise. This proves the lemma.

As a first application of our general criterion, we now proceed to show the

following:

Proposition 3.6. Let X be a smooth projective variety such that X → Pn is

a double cover ramified along a smooth divisor D ⊂ Pn, and assume that either

dimHn(X,Q) > 1, or D has degree d > n. Then X admits an MCK decomposition.

Proof. Double covers X as in the proposition are exactly the smooth hypersurfaces

of degree 2d in the weighted projective space P := P(1n+1, d), where 2d := degD.

Let

B ⊂ B := PH0(P,OP(2d))

denote the Zariski open parametrizing smooth hypersurfaces, and let

B × P ⊃ X → B

denote the universal family. In view of Proposition 3.3, it suffices to check that the

family X ×B X → B has the Franchetta property.

To this end, we remark that the line bundle OP(2d) is very ample (cf. Lemma

3.7 below), which means that the setup verifies condition (∗2) of [12, Def. 2.5].

An application of the stratified projective bundle argument [12, Prop. 2.6] then

implies that

(2) GDA∗
B(Xb ×Xb) = ⟨(pi)∗(h),∆Xb

⟩,



570 R. Laterveer

where we write h ∈ A1(Xb) for the hyperplane class. The excess intersection

formula [14, Thm. 6.3] gives an equality

∆Xb
· (pi)∗(h) = 2d

∑
j

(p1)
∗(hj) · (p2)∗(hn+1−j) in An+1(Xb ×Xb),

and so equality (2) reduces to the equality

GDA∗
B(Xb ×Xb) = ⟨(p1)∗(h), (p2)∗(h)⟩ ⊕Q[∆Xb

].

The “decomposable part” ⟨(p1)∗(h), (p2)∗(h)⟩ injects into cohomology, because of

the Künneth formula for H∗(Xb×Xb,Q). The class of the diagonal in cohomology

is linearly independent of the decomposable part: indeed, if the diagonal were

decomposable it would act as zero on the primitive cohomology

Hn
prim(Xb,Q) := Coker(Hn(Pn,Q) → Hn(Xb,Q)).

But the assumption dimHn(Xb,Q) > 1 is equivalent to having Hn
prim(Xb,Q) ̸= 0.

This proves the Franchetta property for X ×B X → B, and closes the proof.

The case d > n is a special case where Hn
prim(Xb,Q) ̸= 0, because it is known

that the geometric genus of Xb is [9, Sect. 3.5.4]

pg(Xb) =

(
d− 1

n

)
.

It remains to prove the following, which we have used above:

Lemma 3.7. Let P := P(1n+1, d). The sheaf OP(d) is locally free and very ample.

The assertion about the sheaf being locally free is just because d is a multiple

of the weights of P (cf. [7, Rem. 1.8]). As for the very ampleness, we apply Delorme’s

criterion [7, Prop. 2.3(iii)] (cf. also [4, Thm. 4.B.7]). To prove very ampleness of

OP(d), we need to prove that the integer E as defined in [7] and [4] is equal to 0.

Let us write x0, . . . , xn, y for the weighted homogeneous coefficients of P,
where xj and y have weight 1, resp. d. It is readily seen that every monomial in

xj , y of (weighted) degree m+dk (where m is a positive multiple of d, and k is any

positive integer) is divisible by a monomial of (weighted) degree dk. This means

that the integer E defined in [7, 4] is 0, and so [7, Prop. 2.3(iii)] implies the very

ampleness of OP(d).

This proves the lemma, and ends the proof of the proposition.

Here is another sample application of our general criterion:

Proposition 3.8. Let X ⊂ P(1n, 2, 3) be a smooth hypersurface of (weighted)

degree 6. Assume dimHn(X,Q) > 1. Then X has an MCK decomposition.
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Proof. The varieties X as in the proposition are exactly the smooth double covers

of P := P(1n, 2) branched along a (weighted) degree 6 divisor (cf. [20, Rem. 2.3] and

for n = 3 also [15, Thm. 4.2]). Let X → B denote the family of such double covers.

We are going to check that the family X ×B X → B has the Franchetta property.

Proposition 3.8 is then a special case of our general criterion Proposition 3.3.

Let X → B ∼= Pr denote the universal family of all (possibly singular) hyper-

surfaces of weighted degree 6 in P. The line bundle OP(6) is very ample (cf. Lemma

3.9 below), and so the projection

X ×B X → P× P

has the structure of a stratified projective bundle (with strata the diagonal ∆P
and its complement). One can thus use the stratified projective bundle argument

[12, Prop. 2.6] to deduce the identity

GDA∗
B(X ×X) = ⟨(pi)∗ GDA∗

B(X),∆X⟩
= ⟨(pi)∗(h),∆X⟩

(here, h ∈ A1(X) denotes the restriction toX of an ample generator of A1(P) ∼= Q).

Since X ⊂ P is a hypersurface, the excess intersection formula gives

∆X · (pi)∗(h) = ∆P|X ∈ ⟨(pi)∗(h)⟩.

The above identification thus simplifies to

GDA∗
B(X ×X) = ⟨(pi)∗(h)⟩ ⊕Q[∆X ].

The assumption that dimHn(X,Q) > 1 implies that the diagonal ∆X is lin-

early independent in cohomology from the decomposable classes ⟨(pi)∗(h)⟩ (indeed,
the decomposable classes act as zero on the primitive cohomology of X, while the

diagonal acts as the identity). This shows that GDA∗
B(X ×X) injects into coho-

mology, as requested.

Lemma 3.9. Let P := P(1n, 2, 3). The sheaf OP(6) is (locally free and) very ample.

The assertion about the sheaf being locally free is just because 6 is a multiple

of all the weights (cf. [7, Rem. 1.8]). As for the very ampleness, we apply Delorme’s

criterion [7, Prop. 2.3(iii)] (cf. also [4, Thm. 4.B.7]). To prove very ampleness of

OP(6), we need to prove that the integer E defined in [7] and [4] is equal to 0.

Let us write x1, . . . , y, z for the weighted homogeneous coefficients of P, where
y and z have weight 2, resp. 3. We need to check that every monomial in xj , y, z

of (weighted) degree 6 + 6k is divisible by a monomial of (weighted) degree 6k (if
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this is the case, then E = 0 and [7, Prop. 2.3(iii)] implies the very ampleness of

OP(6)). In the case that the monomial contains z2, it is divisible by z2 and so the

condition is satisfied. Assume now the monomial contains only one z. In the case

that the monomial contains y3 it is divisible by y3. Next, if the monomial contains

y (or y2) it is divisible by zyxj (for some j) and so the condition is satisfied. A

monomial in z and xj obviously satisfies the condition. Finally, monomials in xj

satisfy the condition.

This proves the lemma, and ends the proof of the proposition.

§4. Main result

Theorem 4.1. The following Fano threefolds admit an MCK decomposition:

(i) hypersurfaces of weighted degree 6 in weighted projective space P(13, 2, 3);
(ii) quartic double solids;

(iii) sextic double solids;

(iv) double covers of a quadric in P4 branched along the intersection with a quartic;

(v) special Gushel–Mukai threefolds.

Proof. Cases (ii) and (iii) are immediate applications of Proposition 3.6. Case (i)

is a special case of Proposition 3.8.

Before proving case (iv), let us first state a preparatory lemma:

Lemma 4.2. Let Z ⊂ P := P(15, 2) be a smooth weighted hypersurface of degree

2. Then

∆Z =
1

2

4∑
j=0

hj × h4−j in A4(Z × Z).

Proof. Since Z is a quotient of a non-singular quadric in P5, Z has trivial Chow

groups (i.e. A∗
hom(Z) = 0). Using [9, Sect. 4.4.2], one can compute the Betti num-

bers of Z and one finds that they are the same as those of projective space P4.

This means that there is a cohomological decomposition of the diagonal

∆Z =
1

2

4∑
j=0

hj × h4−j in H8(Z × Z,Q).

Since Z (and hence also Z ×Z) has trivial Chow groups, the same decomposition

holds modulo rational equivalence, proving the lemma.

Now, to prove case (iv) of Theorem 4.1, we apply our general criterion Propo-

sition 3.3. Let P := P(15, 2), and let Y → B be the universal family of smooth



Some More Fano Threefolds with an MCK decomposition 573

dimensionally transverse complete intersections of OP(2)⊕OP(4), where the base

B is a Zariski open

B ⊂ B := PH0(P,OP(2)⊕OP(4)).

It follows from Lemma 3.7 that OP(2) and OP(4) are very ample line bundles on

P, and so Y ×B Y → P × P is a stratified projective bundle with strata ∆P and

its complement. The usual stratified projective bundle argument [12, Prop. 2.6]

applies, and we find that

GDA∗
B(Y × Y ) = ⟨(pi)∗ GDA∗

B(Y ),∆Y ⟩
= ⟨(pi)∗(h),∆Y ⟩

(here, h ∈ A1(Y ) denotes the restriction to Y of an ample generator of A1(P) ∼= Q).

Let Y = Z ∩Z ′, where Z and Z ′ ⊂ P are hypersurfaces of (weighted) degree 2 and

4. Up to shrinking B, we may assume the hypersurface Z is smooth. Since Y ⊂ Z

is a divisor, the excess intersection formula gives

∆Y · (pi)∗(h) = ∆Z |Y in A4(Y × Y ).

Using Lemma 4.2, it follows that

∆Y · (pi)∗(h) ∈ ⟨(pi)∗(h)⟩.

The above identification thus simplifies to

GDA∗
B(Y × Y ) = ⟨(pi)∗(h)⟩ ⊕Q[∆Y ].

As before, the fact that the diagonal ∆Y is linearly independent of the decompos-

able correspondences in cohomology now shows that

GDA∗
B(Y × Y ) → H∗(Y × Y,Q)

is injective, and so Y verifies the hypotheses of Proposition 3.3.

The argument for case (v) is similar to that of (iv). First, in view of the

spread argument [48, Lem. 3.2], it suffices to establish an MCK decomposition for

the generic special Gushel–Mukai threefold Y . Thus we may assume that there

exists P ⊂ Gr(2, 5), a smooth complete intersection of Plücker hyperplanes, and

a double cover p : Y → P branched along a smooth Gushel–Mukai surface. We

now consider the family Y → B of all double covers of P branched along smooth

Gushel–Mukai surfaces (so B ⊂ B is a Zariski open in the projectivized space

of quadratic sections of the cone over P ), and we apply our general criterion

Proposition 3.3 to this family.
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Lemma 4.3. Let Y → B be the family of double covers of P branched along

smooth Gushel–Mukai surfaces. The family Y → B has the Franchetta property.

Proof. We consider the family Y → B with the projection to the cone C over P .

This is a projective bundle, and so for any fiber Y = Yb with b ∈ B we have

GDA∗
B(Y ) = Im(A∗(C) → A∗(Y )).

The condition b ∈ B means exactly that Y avoids the summit of the cone C, and

so (writing C◦ ⊂ C for the complement of the summit of the cone) we have

(3) GDA∗
B(Y ) = Im(A∗(C◦) → A∗(Y )).

But C◦ → P is an affine bundle, and

A∗(P ) = Im
(
A∗(Gr(2, 5)) → A∗(P )

)
= ⟨h⟩,

where h denotes the restriction to P of a Plücker hyperplane (this follows from

[28, Thm. 3.17], or alternatively from the fact that the derived category of P has

a full exceptional collection of length 4 [38]). Thus, (3) reduces to

GDA∗
B(Y ) = ⟨h⟩.

This proves the Franchetta property for Y .

Lemma 4.4. Let Y → B be as in Lemma 4.3. The family Y ×B Y → B has the

Franchetta property.

Proof. Let us consider the family Y ×B Y → B with the projection to C×C. This

is a stratified projective bundle, with strata ∆C and its complement. Thus, the

stratified projective bundle argument [12, Prop. 2.6] implies that

GDA∗
B(Y × Y ) = ⟨Im(A∗(C◦ × C◦) → A∗(Y × Y )),∆Y ⟩.

Since A∗(C◦) = Im(A∗(Gr(2, 5)) → A∗(C◦)), we find that

GDA∗
B(Y × Y ) =

〈
Im

(
A∗(Gr(2, 5)×Gr(2, 5)) → A∗(Y × Y )

)
,∆Y

〉
.

But A∗(Gr(2, 5)×Gr(2, 5)) = A∗(Gr(2, 5))⊗A∗(Gr(2, 5)) since the Grassmannian

has trivial Chow groups, and so

GDA∗
B(Y × Y ) = ⟨GDB(Y ),∆Y ⟩

= ⟨h,∆Y ⟩

(where the last equality follows from Lemma 4.3).
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To finish the proof of the lemma, we now claim that for any (ordinary or

special) Gushel–Mukai threefold Y we have

(4) ∆Y · h ∈
〈
Im

(
A∗(Gr(2, 5)) → A∗(Y )

)〉
.

Combined with Lemma 4.3, this means that for a special Gushel–Mukai threefold

Y (and Y → B as above) there is the equality

GDA∗
B(Y × Y ) = ⟨h⟩ ⊕Q[∆Y ].

Then, since the diagonal is linearly independent in cohomology of ⟨h⟩ (since

h1,2(Y ) ̸= 0), this proves the lemma.

It remains to prove claim (4). Using the spread argument [48, Lem. 3.2], it

suffices to prove equality (4) for the very general Gushel–Mukai threefold. Thus,

we may assume that Y is ordinary, and moreover that

Y = Y ′ ∩Q,

where Q is a quadric and Y ′ = Gr(2, 5)∩H1 ∩H2 is a smooth fourfold (where H1,

H2 are Plücker hyperplanes) and Y ′ is such that

A∗(Y ′) = Im
(
A∗(Gr(2, 5)) → A∗(Y ′)

)
.

(Indeed, the smooth fourfold Y ′ has trivial Chow groups [28, Cor. 4.6], and the

very general Y ′ has no primitive cohomology, as follows from [28, Lem. 3.15]). The

excess intersection formula then implies that

∆Y · h =
1

2
∆Y ′ |Y×Y ,

and the claim (4) follows.

Lemma 4.4 being proven, all conditions of Proposition 3.3 are met, and so

fibers Y of the family Y → B have an MCK decomposition; this settles (v).

§5. The tautological ring

Theorem 5.1. Let Y be a Fano threefold of Picard number 1. Assume that Y

has an MCK decomposition, and Y is a member of a family Y → B such that

Y ×B Y → B has the Franchetta property. For m ∈ N, let

R∗(Y m) := ⟨(pi)∗(h), (pij)∗(∆Y )⟩ ⊂ A∗(Y m)

be the Q-subalgebra generated by pullbacks of the polarization h ∈ A1(Y ) and

pullbacks of the diagonal ∆Y ∈ A3(Y × Y ). (Here pi and pij denote the various
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projections from Y m to Y , resp. to Y ×Y ). The cycle class map induces injections

R∗(Y m) ↪→ H∗(Y m,Q) for all m ∈ N.

Proof. This is inspired by an analogous result for cubic hypersurfaces [11, Sect.

2.3]. In its turn, the result of [11] was inspired by analogous results for hyperelliptic

curves [43, 44] (cf. Remark 5.2 below) and for K3 surfaces [47, 49].

Let d denote the degree of Y , and let 2b := dimH3(Y,Q). As in [11, Sect. 2.3],

let us write o := 1
dh

3 ∈ A3(Y ) (the “distinguished zero-cycle”) and

τ := ∆Y − 1

d

3∑
j=0

hj × h3−j ∈ A3(Y × Y )

(this cycle τ is nothing but the projector on the motive h3(Y ) considered above).

Moreover, let us write

hi := (pi)
∗(h) ∈ A1(Y m),

oi := (pi)
∗(o) ∈ A3(Y m),

τi,j := (pij)
∗(τ) ∈ A3(Y m).

We define the Q-subalgebra

R∗(Y m) := ⟨oi, hi, τi,j⟩ ⊂ H∗(Y m,Q)

(where i ranges over 1 ≤ i ≤ m, and 1 ≤ i < j ≤ m). One can prove (just as [11,

Lem. 2.11] and [49, Lem. 2.3]) that the Q-algebra R∗(Y m) is isomorphic to the

free graded Q-algebra generated by oi, hi, τij , modulo the following relations:

oi · oi = 0, hi · oi = 0, h3
i = doi;(5)

τi,j · oi = 0, τi,j · hi = 0, τi,j · τi,j = 2boi · oj ;(6)

τi,j · τi,k = τj,k · oi;(7) ∑
σ∈S2b+2

b+1∏
i=1

τσ(2i−1),σ(2i) = 0.(8)

To prove Theorem 5.1, we need to check that these relations are also verified

modulo rational equivalence. The relations (5) take place in R∗(Y ) and so they

follow from the Franchetta property for Y . The relations (6) take place in R∗(Y 2).

The first and the last relations are trivially verified, because Y being Fano one has

A6(Y 2) = Q. As for the second relation of (6), this follows from the Franchetta

property for Y × Y . (Alternatively, it is possible to deduce the second relation
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from the MCK decomposition: indeed, the product τ · hi lies in A4
(0)(Y

2), and it

is readily checked that A4
(0)(Y

2) injects into H8(Y 2,Q).)

Relation (7) takes place in R∗(Y 3) and follows from the MCK relation. Indeed,

we have

∆sm
Y ◦ (π3

Y × π3
Y ) = π6

Y ◦∆sm
Y ◦ (π3

Y × π3
Y ) in A6(Y 3),

which (using Lieberman’s lemma) translates into

(π3
Y × π3

Y ×∆Y )∗∆
sm
Y = (π3

Y × π3
Y × π6

Y )∗∆
sm
Y in A6(Y 3),

which means that

τ1,3 · τ2,3 = τ1,2 · o3 in A6(Y 3).

It is left to consider relation (8), which takes place in R∗(Y 2b+2). To check

that this relation is also verified modulo rational equivalence, we observe that

relation (8) involves a cycle contained in

A∗(Sym2b+2(h3(Y ))
)
.

But we have vanishing of the Chow motive

Sym2b+2 h3(Y ) = 0 in Mrat,

because dimH3(Y,Q) = 2b and h3(Y ) is oddly finite-dimensional in the sense

of Kimura [18] (all Fano threefolds are known to have Kimura finite-dimensional

motive [45, Thm. 4]). This establishes relation (8), modulo rational equivalence,

and ends the proof.

Remark 5.2. Given a curve C and an integer m ∈ N, one can define the tauto-

logical ring

R∗(Cm) := ⟨(pi)∗(KC), (pij)
∗(∆C)⟩ ⊂ A∗(Cm)

(where pi, pij denote the various projections from Cm to C, resp. C×C). Tavakol

has proven [44, Cor. 6.4] that if C is a hyperelliptic curve, the cycle class map

induces injections

R∗(Cm) ↪→ H∗(Cm,Q) for all m ∈ N.

On the other hand, there are many (non-hyperelliptic) curves for which the tau-

tological ring R∗(C3) does not inject into cohomology (this is related to the

non-vanishing of the Ceresa cycle, cf. [44, Rem. 4.2] and also [12, Exm. 2.3 and

Rem. 2.4]).
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§6. A table

Table 1 lists all Fano threefolds with Picard number 1 (the classification of Fano

threefolds is contained in [16]). The last column indicates the existence of an

MCK decomposition. Note that a Fano threefold X with h1,2(X) = 0 has trivial

Chow groups (i.e. A∗
hom(X) = 0), and so these Fano threefolds have an MCK

decomposition for trivial reasons. The asterisks indicate new cases settled in this

paper. Question marks indicate cases I am not able to settle.

Label Index Degree h1,2 Description MCK

4 4 1 0 P3 Trivial

3 3 2 0 X2 ⊂ P4 Trivial

2.1 2 1 21 X6 ⊂ P(13, 2, 3) ∗
2.2 2 2 10 X4 ⊂ P(14, 2) ∗
2.3 2 3 5 X3 ⊂ P4 [8, 12]

2.4 2 4 2 X(2,2) ⊂ P5 [26]

2.5 2 5 0 Gr(2, 5) ∩ L ⊂ P9 Trivial

1.2 1 2 52 X6 ⊂ P(14, 3) ∗
1.4.a 1 4 30 X4 ⊂ P4 ?

1.4.b 1 4 30 X
2:1−−→ Q with quartic branch locus ∗

1.6 1 6 20 X(2,3) ⊂ P5 [27]

1.8 1 8 14 X(2,2,2) ⊂ P6 ?

1.10.a 1 10 10 Ordinary Gushel–Mukai threefold ?

1.10.b 1 10 10 Special Gushel–Mukai threefold ∗
1.12 1 12 7 OGr+(5, 10) ∩ L ⊂ P15 ?

1.14 1 14 5 Gr(2, 6) ∩ L ⊂ P14 [25]

1.16 1 16 3 LGr(3, 6) ∩ L ⊂ P13 ?

1.18 1 18 2 G2/P ∩ L ⊂ P13 [31]

1.22 1 22 0 V (s) ⊂ Gr(3, 7) Trivial

Table 1. All Fano threefolds with Picard number 1. Here, X(d1,...,dr) denotes a

complete intersection of multidegree (d1, . . . , dr), Q is a quadric, and L ⊂ Pr

is a linear subspace of the appropriate dimension. The notation LGr(3, 6) and

OGr+(5, 10) indicates the Lagrangian Grassmannian, resp. a connected component

of the orthogonal Grassmannian. In 1.22, V (s) denotes the zero locus of a section

of some vector bundle.
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