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Crossed Product Interpretation of the Double
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Group
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Abstract

Racinet studied a scheme associated with the double shuffle and regularization relations
between multiple polylogarithm values at Nth roots of unity and constructed a group
scheme attached to the situation; he also showed it to be the specialization for G = µN of
a group scheme DMRG

0 attached to a finite abelian group G. Then Enriquez and Furusho
proved that DMRG

0 can be essentially identified with the stabilizer of a coproduct element
arising in Racinet’s theory with respect to the action of a group of automorphisms of a
free Lie algebra attached to G. We reformulate Racinet’s construction in terms of crossed
products. Racinet’s coproduct can then be identified with a coproduct ∆̂M

G defined on
a module M̂G over an algebra ŴG, which is equipped with its own coproduct ∆̂W

G , and
the group action on M̂G extends to a compatible action of ŴG. We then show that the
stabilizer of ∆̂M

G , hence DMRG
0 , is contained in the stabilizer of ∆̂W

G thus generalizing
a result of Enriquez and Furusho [Selecta Math. (N.S.) 29 (2023), article no. 3]. This
yields an explicit group scheme containing DMRG

0 , which we also express in the Racinet
formalism.
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Keywords: multiple polylogarithm at roots of unity, double shuffle relations, harmonic
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§0. Introduction

A multiple L-value (MLV in short) is a complex number defined by the series

(0.1) L(k1,...,kr)(z1, . . . , zr) :=
∑

0<m1<···<mr

zm1
1 · · · zmrr
mk1

1 · · ·mkr
r

,
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where r, k1, . . . , kr are positive integers and z1, . . . , zr in µN the group of Nth roots

of unity in C with N a positive integer. The series (0.1) converges if and only if

(kr, zr) ̸= (1, 1). These values have been defined by Goncharov [Gon98, Gon01]

and studied by many others like Arakawa and Kaneko [ArKa], and appear as a

generalization of the so-called multiple zeta values which in turn generalize the

special values of the Riemann zeta function. Among the relations satisfied by

the MLVs, our main interests here are the double shuffle and regularization ones.

Understanding these relations has been greatly improved thanks to Racinet’s work

[Rac].

Essentially, he attached to each pair (G, ι) of a finite cyclic group G and a

group injection ι : G → C×, a Q-scheme DMRι which associates to each commu-

tative Q-algebra k, a set DMRι(k) that can be decomposed as a disjoint union

of sets DMRιλ(k) (λ ∈ k). For any λ ∈ k, DMRιλ(k) is a subset of the algebra

of noncommutative power series k⟨⟨X⟩⟩ over formal noncommutative variables x0
and (xg)g∈G satisfying the following conditions:

(i) group-likeness for the coproduct ∆̂ : k⟨⟨X⟩⟩ → k⟨⟨X⟩⟩⊗̂2 for which the elements

x0 and (xg)g∈G are primitive;

(ii) group-likeness of the image in k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 of a suitable correction of the

element for the coproduct ∆̂⋆ : k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 → (k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0)⊗̂2 (see

[Rac, Def. 2.3.1]);

(iii) conditions on the degree 1 and 2 terms of the element.

The double shuffle and regularization relations on MLVs are then encoded in

the statement that a suitable generating series of these values belongs to the set

DMRιcani2π (C) where ιcan : G = µN → C× is the canonical embedding. Racinet also

proved that for any pair (G, ι), the set DMRι0(k) equipped with the product ⊛
given in (1.10) is a group that is independent of the choice of the embedding ι,

so we denote it DMRG0 (k). The pair (G(k⟨⟨X⟩⟩),⊛) is a group (see Proposition-

Definition 1.2) which contains DMRG0 as a subgroup. Thanks to [Rac, Thm. I],

the sets DMRιλ(k) have a torsor structure over (DMRG0 (k),⊛). This motivates the

study of this group.

In order to improve the understanding of the group (DMRG0 (k),⊛), Enriquez

and Furusho related this group with the stabilizer Stab(∆̂⋆)(k) of the coproduct

∆̂⋆ in [EF18] for an action of (G(k⟨⟨X⟩⟩),⊛) (see Section 1.2.2).

In addition, Racinet’s work also introduced a subalgebra k⟨⟨Y ⟩⟩ of k⟨⟨X⟩⟩
spanned by the words ending with xg for some g ∈ G. It is identified, as a k-

module, with k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 and is equipped with a coproduct k⟨⟨Y ⟩⟩ → k⟨⟨Y ⟩⟩⊗̂2

compatible with ∆̂⋆. For this reason, the former coproduct also has the same nota-

tion in [Rac]. However, we will adopt distinct notation for these two coproducts,
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by denoting the coproducts on k⟨⟨Y ⟩⟩ and k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 by ∆̂alg
⋆ and ∆̂mod

⋆

respectively.

The situation, detailed in Section 1, may be summarized by the diagram

(0.2) k⟨⟨Y ⟩⟩ k⟨⟨X⟩⟩ ↷ k⟨⟨X⟩⟩ k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0,

where the first arrow is an algebra morphism, the second is the module structure

of the algebra k⟨⟨X⟩⟩ on itself and the last is a module morphism. The three

last terms of sequence (0.2) are equipped with compatible actions of the group

(G(k⟨⟨X⟩⟩),⊛), while the first and last terms are equipped with the compatible

coproducts ∆̂alg
⋆ and ∆̂mod

⋆ . The stabilizer group construction of [EF18] is then

based on the fourth term of (0.2).

When G = {1}, it was proved in [EF21, Part 2, §3] that the subalgebra k⟨⟨Y ⟩⟩
of k⟨⟨X⟩⟩ is stable under the action of (G(k⟨⟨X⟩⟩),⊛) on k⟨⟨X⟩⟩. One can therefore

construct the stabilizer group Stab(∆̂alg
⋆ )(k) of ∆̂alg

⋆ with respect to the action of

(G(k⟨⟨X⟩⟩),⊛) on Mork-mod(k⟨⟨Y ⟩⟩,k⟨⟨Y ⟩⟩⊗̂2). By [EF23, §3.1], one then has the

inclusion Stab(∆̂mod
⋆ )(k) ⊂ Stab(∆̂alg

⋆ )(k).

However, if G ̸= {1}, the previous group action of (G(k⟨⟨X⟩⟩),⊛) on k⟨⟨X⟩⟩ no
longer restricts to an action on k⟨⟨Y ⟩⟩ (see Proposition 2.15). This forbids a direct

generalization of the result of [EF23]. Such a generalization is obtained in Section 2

by introducing an algebra containing k⟨⟨X⟩⟩, namely, the crossed product algebra

k⟨⟨X⟩⟩⋊G (see Definition 2.2) and developing a formalism on it which is parallel

to Racinet’s. In this framework, there is a subalgebra ŴG of V̂G isomorphic to the

algebra k⟨⟨Y ⟩⟩ (see Proposition 2.6) and a quotient module M̂G of the left-regular

V̂G-module isomorphic to the module k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 (see Proposition 2.7). The

algebra ŴG is equipped with a bialgebra coproduct ∆̂W
G and the module M̂G is

equipped with a compatible coalgebra coproduct ∆̂M
G . The group (G(k⟨⟨X⟩⟩),⊛)

acts compatibly on the algebra V̂G and on its regular left module. In contrast to

the situation with k⟨⟨Y ⟩⟩ ⊂ k⟨⟨X⟩⟩, the action on the algebra V̂G restricts to the

subalgebra ŴG, while the action on the left regular V̂G-module induces an action

of the quotient module M̂G. This can be summarized in the following diagram:

(0.3) ŴG V̂G ↷ V̂G M̂G.

This situation allows us to define two stabilizers: one denoted Stab(∆̂M
G )(k) and

another denoted Stab(∆̂W
G )(k). One shows that the latter group is a generalization

of the group with the same notation defined in [EF23] for G = {1}. One also shows

the inclusion (see Theorem 2.32, generalizing [EF23, Thm. 3.1])

Stab(∆̂M
G )(k) ⊂ Stab(∆̂W

G )(k).
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In Section 3 we identify Stab(∆̂M
G )(k) with Stab(∆̂mod

⋆ )(k) (see Theorem 3.8).

We also identify the group Stab(∆̂W
G )(k) with an explicit group Stab(∆̂alg

∗ )(k)

expressed in Racinet’s formalism by working out the suitable isomorphisms (see

Theorem 3.12).

In Section 4 we show that the group functors k 7→ Stab(∆̂M
G )(k) and k 7→

Stab(∆̂W
G )(k) are affine Q-group subschemes of k 7→ (G(k⟨⟨X⟩⟩),⊛) and study their

Lie algebras. We show that these are stabilizer Lie algebras corresponding to the

Lie algebra actions which are the infinitesimal versions of the Q-group scheme

morphisms obtained from the previous actions of the group (G(k⟨⟨X⟩⟩),⊛), which

are made explicit (see Propositions 4.6 and 4.10).

Notation. Throughout this paper, G is a finite abelian group whose product will

be denoted multiplicatively. For a commutative Q-algebra k, a k-algebra A, an

element x ∈ A and a left A-module M we consider

� ℓx : M →M to be the k-module endomorphism defined by m 7→ xm and if x

is invertible, then ℓx is an automorphism;

� rx : A → A to be the k-module endomorphism defined by a 7→ ax and if x is

invertible, then rx is an automorphism;

� adx : A→ A to be the k-module endomorphism given by a 7→ [x, a] = xa−ax;
� Adx : A → A to be the k-algebra automorphism defined by a 7→ xax−1 with

x ∈ A×.

§1. Racinet’s formalism of the double shuffle theory

In this part we recall from [Rac] the basic formalism of the double shuffle theory,

the main ingredients being presented in Section 1.1. In Sections 1.2 and 1.3 we

introduce the double shuffle group and the double shuffle Lie algebra respectively,

and we recall from [EF18] the stabilizer interpretation of both objects.

§1.1. Basic objects of Racinet’s formalism

Let k be a commutative Q-algebra. Let k⟨⟨X⟩⟩ be the free noncommutative asso-

ciative series algebra with unit over the alphabet X := {x0} ⊔ {xg | g ∈ G}. It is
complete graded with deg(x0) = deg(xg) = 1 for g ∈ G. This algebra is endowed

with a Hopf algebra structure for the coproduct ∆̂ : k⟨⟨X⟩⟩ → k⟨⟨X⟩⟩⊗̂2
, which is

the unique morphism of topological k-algebras given by ∆̂(xg) = xg ⊗ 1 + 1⊗ xg,

for any g ∈ G ⊔ {0} ([Rac, §2.2.3]). Then let G(k⟨⟨X⟩⟩) be the set of grouplike

elements of k⟨⟨X⟩⟩ for the coproduct ∆̂ (see (1.6)). It is a group for the product of

the algebra k⟨⟨X⟩⟩.
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The group G acts on the set X, the permutation tg corresponding to g ∈ G

being given by tg(x0) = x0, tg(xh) = xgh for h ∈ G. This action extends to an

action by k-algebra automorphisms on k⟨⟨X⟩⟩ ([Rac, §3.1.1]), which will also be

denoted g 7→ tg. By checking on generators one can verify the identity

(1.1) ∀g ∈ G, ∆̂ ◦ tg = t⊗2
g ◦ ∆̂,

since both sides are given as a composition of k-algebra morphisms. As a conse-

quence of (1.1), for any g ∈ G, the k-algebra automorphism tg : k⟨⟨X⟩⟩ → k⟨⟨X⟩⟩
restricts to a group automorphism tg : G(k⟨⟨X⟩⟩) → G(k⟨⟨X⟩⟩).

Throughout the paper, let us denote by k⟨⟨X⟩⟩ → k{words in x0, (xg)g∈G}, v 7→
((v|w))w the map such that v =

∑
w(v|w)w (the empty word is equal to 1).

Each word in X can be uniquely written as

(xn1
0 xg1x

n2
0 xg2 · · ·x

nr
0 xgrx

nr+1

0 )r,n1,...,nr+1∈Z≥0

g1,...,gr∈G
.

This family forms a topological k-module basis of k⟨⟨X⟩⟩. Let q be the k-module

automorphism of k⟨⟨X⟩⟩ given by ([Rac, §2.2.7])

q(xn1−1
0 xg1x

n2−1
0 xg2 · · ·x

nr−1
0 xgrx

nr+1−1
0 )

= xn1−1
0 xg1x

n2−1
0 xg2g−1

1
· · ·xnr−1

0 xgrg−1
r−1

x
nr+1−1
0 .(1.2)

For (n, g) ∈ Z>0 × G, set yn,g := xn−1
0 xg. Let Y := {yn,g | (n, g) ∈ Z>0 × G}.

We define k⟨⟨Y ⟩⟩ to be the topological free k-algebra over Y , where for every

(n, g) ∈ Z>0 × G, the element yn,g is of degree n. One can show that k⟨⟨Y ⟩⟩ is

equal to the k-subalgebra k⊕
⊕

g∈G k⟨⟨X⟩⟩xg of k⟨⟨X⟩⟩ ([Rac, §2.2.5] and [EF18,

§2.2]).

One denotes by qY the k-module automorphism of k⟨⟨Y ⟩⟩ given by ([Rac,

§2.2.7])

(1.3) qY (yn1,g1 · · · ynr,gr ) := yn1,g1yn2,g2g
−1
1

· · · ynr,grg−1
r−1

.

Let ∆̂alg
⋆ : k⟨⟨Y ⟩⟩ → (k⟨⟨Y ⟩⟩)⊗̂2 be the unique topological k-algebra morphism

such that for any (n, g) ∈ Z>0 ×G,

(1.4) ∆̂alg
⋆ (yn,g) = yn,g ⊗ 1 + 1⊗ yn,g +

n−1∑
k=1
h∈G

yk,h ⊗ yn−k,gh−1 .

The map ∆̂alg
⋆ is called the harmonic coproduct ([Rac, §2.3.1]) and endows k⟨⟨Y ⟩⟩

with a Hopf algebra structure. Moreover, one can easily check that the action t on

k⟨⟨X⟩⟩ restricts to an action on k⟨⟨Y ⟩⟩ by k-algebra automorphisms.
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The topological k-module quotient k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 is a left k⟨⟨Y ⟩⟩-module free

of rank 1. The topological k-module morphism πY : k⟨⟨X⟩⟩ → k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 is a

surjective map and its restriction to k⟨⟨Y ⟩⟩ is a bijective map. It follows that there

is a topological k-module morphism

∆̂mod
⋆ : k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 → (k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0)⊗̂2

uniquely defined by the condition that the diagram

(1.5)

k⟨⟨Y ⟩⟩ (k⟨⟨Y ⟩⟩)⊗̂2

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 (k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0)⊗̂2

∆̂alg
⋆

πY (πY )⊗2

∆̂mod
⋆

commutes. This equips k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 with a cocommutative coassociative co-

algebra structure.

The k-module automorphism q of k⟨⟨X⟩⟩ preserves the submodule k⟨⟨X⟩⟩x0
and, therefore, induces a k-module automorphism of k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 denoted q̄,

which is intertwined with the k-module automorphism qY of k⟨⟨Y ⟩⟩ via the iden-

tification k⟨⟨Y ⟩⟩ ≃ k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0.

§1.2. The double shuffle group DMRG
0 (k)

1.2.1. The group (G(k⟨⟨X⟩⟩),⊛). Let k be a commutative Q-algebra. Recall

that the set of grouplike elements of k⟨⟨X⟩⟩ for the coproduct ∆̂ is

(1.6) G(k⟨⟨X⟩⟩) =
{
Ψ ∈ k⟨⟨X⟩⟩×

∣∣ ∆̂(Ψ) = Ψ⊗Ψ
}
.

For Ψ ∈ G(k⟨⟨X⟩⟩), let autΨ be the topological k-algebra automorphism of

k⟨⟨X⟩⟩ given by ([EF18, §4.1.3] based on [Rac, §3.1.2])

(1.7) x0 7→ x0 and for g ∈ G, xg 7→ Adtg(Ψ−1)(xg).

Define SΨ to be the topological k-module automorphism of k⟨⟨X⟩⟩ given by ([EF18,

(5.15)] based on [Rac, (3.1.2.1)])

(1.8) SΨ := ℓΨ ◦ autΨ .

Lemma 1.1. For Ψ ∈ G(k⟨⟨X⟩⟩), the k-algebra automorphism autΨ is a bialgebra

automorphism of (k⟨⟨X⟩⟩, ∆̂).

Proof. Both autΨ and ∆̂ are k-algebra automorphisms. So, using identity (1.1),

one can check on generators that

(1.9) ∆̂ ◦ autΨ = (autΨ)
⊗2 ◦ ∆̂,

which is the wanted result.
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Proposition-Definition 1.2 ([Rac, Prop. 3.1.6]). The pair (G(k⟨⟨X⟩⟩),⊛) is a

group, where for Ψ,Φ ∈ G(k⟨⟨X⟩⟩),

(1.10) Ψ⊛ Φ := SΨ(Φ).

A proof of this claim is already available in Racinet’s paper; however, con-

sidering the way it has been stated (using categorical considerations), it might be

hard to read. Thus, we find it useful to rewrite it here. We will then need this

result:

Lemma 1.3. For Ψ,Φ ∈ G(k⟨⟨X⟩⟩), we have

(i) autΨ⊛Φ = autΨ ◦ autΦ;
(ii) SΨ⊛Φ = SΨ ◦ SΦ.

This, in turn, uses the following technical lemma, which can be easily obtained

by checking this identity on generators:

Lemma 1.4. For Ψ ∈ G(k⟨⟨X⟩⟩) and g ∈ G, we have autΨ ◦tg = tg ◦ autΨ .

Proof of Lemma 1.3. It is enough to prove the identity (i) on generators. Since

for Ψ ∈ G(k⟨⟨X⟩⟩) we have autΨ(x0) = x0, identity (i) is immediately true for x0.

Then, for g ∈ G, we have

autΨ ◦ autΦ(xg) = autΨ ◦Adtg(Φ−1)(xg) = AdautΨ(tg(Φ−1)) ◦ autΨ(xg)
= AdautΨ(tg(Φ−1)) ◦Adtg(Ψ−1)(xg) = Adtg(autΨ(Φ−1))tg(Ψ−1)(xg)

= Adtg(autΨ(Φ−1)Ψ−1)(xg) = Adtg((Ψ⊛Φ)−1)(xg) = autΨ⊛Φ(xg),

where the fourth equality is obtained by applying Lemma 1.4. This concludes the

proof of identity (i). Finally, by using the latter, we get

SΨ ◦ SΦ = ℓΨ ◦ autΨ ◦ℓΦ ◦ autΦ = ℓΨ ◦ ℓautΨ(Φ) ◦ autΨ ◦ autΦ
= ℓΨautΨ(Φ) ◦ autΨ ◦ autΦ = ℓΨ⊛Φ ◦ autΨ⊛Φ = SΨ⊛Φ,

thus, establishing identity (ii).

Proof of Proposition-Definition 1.2. From Lemma 1.1, we deduce that ⊛ has its

image in G(k⟨⟨X⟩⟩). Next, thanks to identity (ii) in Lemma 1.3, the product ⊛ is

associative. Indeed, for Ψ,Φ and Λ ∈ G(k⟨⟨X⟩⟩), we have

(Ψ⊛ Φ)⊛ Λ = SΨ⊛Φ(Λ) = SΨ(SΦ(Λ)) = SΨ(Φ⊛ Λ) = Ψ⊛ (Φ⊛ Λ).

Finally, the other group axioms being easy to check, this proves Proposition 1.2.
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Corollary 1.5. There is a group action of (G(k⟨⟨X⟩⟩),⊛) on k⟨⟨X⟩⟩ by

(i) topological k-algebra automorphisms

(1.11) (G(k⟨⟨X⟩⟩),⊛) → Autcontk-alg(k⟨⟨X⟩⟩), Ψ 7→ autΨ,

(ii) topological k-module automorphisms

(1.12) (G(k⟨⟨X⟩⟩),⊛) → Autcontk-mod(k⟨⟨X⟩⟩), Ψ 7→ SΨ.

Proof. This result is exactly Lemma 1.3.

Next we aim to give a group action of (G(k⟨⟨X⟩⟩),⊛) on the topological k-

module k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 which is compatible with its action S on k⟨⟨X⟩⟩. It is

important to notice that this action is not given by compatibility using πY but by

the following:

Proposition-Definition 1.6 ([EF18, §5.4]). For Ψ∈ G(k⟨⟨X⟩⟩), there is a unique

topological k-module automorphism SYΨ of k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 such that the diagram

(1.13)

k⟨⟨X⟩⟩ k⟨⟨X⟩⟩

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0

SΨ

q̄◦πY q̄◦πY

SYΨ

commutes.

Corollary 1.7. There is a group action of (G(k⟨⟨X⟩⟩),⊛) on k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 by

topological k-module automorphisms

(1.14) (G(k⟨⟨X⟩⟩),⊛) → Autk-mod(k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0), Ψ 7→ SYΨ .

Proof. We have

SYΨ ◦ SYΦ ◦ q̄ ◦ πY = SYΨ ◦ q̄ ◦ πY ◦ SΦ = q̄ ◦ πY ◦ SΨ ◦ SΦ = q̄ ◦ πY ◦ SΨ⊛Φ,

and, by uniqueness of the k-module automorphism SYΨ⊛Φ, we obtain

SYΨ ◦ SYΦ = SYΨ⊛Φ.

Let Γ: k⟨⟨X⟩⟩ → k[[x]]×, Ψ 7→ ΓΨ be the function given by ([Rac, (3.2.1.2)])

(1.15) ΓΨ(x) := exp

(∑
n≥2

(−1)n

n
(Ψ|xn−1

0 x1)x
n

)
.

This function is related to the classical gamma function as established in [Fur11,

p. 344], thanks to [Dri90]. Moreover, it satisfies the following property:
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Lemma 1.8. For Ψ,Φ ∈ G(k⟨⟨X⟩⟩), we have ΓΨ⊛Φ = ΓΨΓΦ.

Proof. Lemma 4.12 in [EF18] says that the map (−|xn−1
0 x1) : (G(k⟨⟨X⟩⟩),⊛) →

(k,+) is a group morphism, for any n ∈ Z>0. The result is then obtained by

straightforward computations.

We then define the following topological k-module automorphism of k⟨⟨X⟩⟩/
k⟨⟨X⟩⟩x0:

(1.16) ΓSYΨ := ℓΓ−1
Ψ (x1)

◦ SYΨ .

Corollary 1.9. There is a group action of (G(k⟨⟨X⟩⟩),⊛) on k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 by

topological k-module automorphisms

(1.17) (G(k⟨⟨X⟩⟩),⊛) → Autcontk-mod(k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0), Ψ 7→ ΓSYΨ.

Proof. It follows from Corollary 1.7 and Lemma 1.8.

The above automorphism is related to an automorphism introduced in [EF18].

Proposition 1.10. For any Ψ ∈ G(k⟨⟨X⟩⟩), the k-module automorphism ΓSYΨ is

equal to the k-module automorphism SYΘ(Ψ) with Θ: (G(k⟨⟨X⟩⟩),⊛)→((k⟨⟨X⟩⟩)×,⊛)

being the group morphism given by ([EF18, Prop. 4.13])

(1.18) Θ(Ψ) := Γ−1
Ψ (x1)Ψ exp(−(Ψ|x0)x0).

Remark 1.11. Note that the product ⊛ extends to a product on k⟨⟨X⟩⟩×. See
[EF18, Lem. 4.1] and [Rac, §3.1.2].

Proof of Proposition 1.10. Let Ψ ∈ G(k⟨⟨X⟩⟩) and v ∈ k⟨⟨X⟩⟩. First, we have

SΘ(Ψ)(v) = Θ(Ψ) autΘ(Ψ)(v) =
(
Γ−1
Ψ (x1)Ψ exp(−(Ψ|x0)x0)

)
autΘ(Ψ)(v).

Moreover, one can check on generators that

autΘ(Ψ) = Adexp((Ψ|x0)x0) ◦ autΨ .

Therefore, one obtains

SΘ(Ψ)(v) = Γ−1
Ψ (x1)Ψ autΨ(v) exp(−(Ψ|x0)x0) = Γ−1

Ψ (x1)SΨ(v) exp(−(Ψ|x0)x0).

Consequently,

ΓSYΨ(q̄ ◦ πY (v)) = Γ−1
Ψ (x1)S

Y
Ψ (q̄ ◦ πY (v)) = Γ−1

Ψ (x1)
(
q̄ ◦ πY (SΨ(v))

)
= q̄ ◦ πY (Γ−1

Ψ (x1)SΨ(v)) = q̄ ◦ πY (SΘ(Ψ)(v)).

This establishes the identity ΓSYΨ = SYΘ(Ψ), thanks to Proposition-Definition 1.6.
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1.2.2. The group (DMRG
0 (k),⊛). Let k be a commutative Q-algebra. For Ψ ∈

G(k⟨⟨X⟩⟩), set Ψ⋆ := q̄ ◦ πY (Γ−1
Ψ (x1)Ψ) ∈ k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0.

Proposition-Definition 1.12 ([Rac, Def. 3.2.1 and Thm. I]). If G is a cyclic

group, we define DMRG0 (k) to be the set of Ψ ∈ G(k⟨⟨X⟩⟩) such that

(i) (Ψ|x0) = (Ψ|x1) = 0;

(ii) ∆̂mod
⋆ (Ψ⋆) = Ψ⋆ ⊗Ψ⋆;

(iii) if |G| ∈ {1, 2}, (Ψ|x0x1) = 0;

(iv) if |G| ≥ 3, for all g ∈ G, (Ψ|xg − xg−1) = 0.

The pair (DMRG0 (k),⊛) is a subgroup of (G(k⟨⟨X⟩⟩),⊛).

Remark 1.13. (i) The notation DMR is for “double mélange et régularization”,

which is French for “double shuffle and regularization”.

(ii) Definition 3.2.1 in [Rac] gives sets DMRιλ(k) where λ ∈ k and ι : G → C∗ is

a group embedding (therefore G is cyclic). If |G| ∈ {1, 2}, the embedding ι is

unique; and if |G| ≥ 3, for λ = 0, condition (iv) does not depend on the choice

of ι. For this reason, the embedding ι does not appear in this paper’s notation.

Thanks to Corollary 1.9, there is a group action of (G(k⟨⟨X⟩⟩),⊛) on the

k-module Morcontk-mod(k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0, (k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0)⊗̂2) via

(1.19) Ψ ·D := ((ΓSYΨ)
⊗2) ◦D ◦ (ΓSYΨ)−1,

with Ψ ∈ G(k⟨⟨X⟩⟩) and D ∈ Morcontk-mod(k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0, (k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0)⊗̂2). In

particular, the stabilizer of D = ∆̂mod
⋆ is the subgroup ([EF18, §5.4])

(1.20) Stab(∆̂mod
⋆ )(k) :=

{
Ψ ∈ G(k⟨⟨X⟩⟩)

∣∣ (ΓSYΨ)⊗2 ◦ ∆̂mod
⋆ = ∆̂mod

⋆ ◦ ΓSYΨ
}
.

Proposition 1.14 ([EF18, Thm. 1.2]). If G is a cyclic group, we have

(1.21) DMRG0 (k) =
{
Ψ ∈ Stab(∆̂mod

⋆ )(k)
∣∣ (Ψ|x0) = (Ψ|x1) = 0

}
.

Since the condition (Ψ|x0) = (Ψ|x1) = 0 defines a subgroup of (G(k⟨⟨X⟩⟩),⊛),

Proposition 1.14 then identifies DMRG0 (k) with the intersection of two subgroups

of (G(k⟨⟨X⟩⟩),⊛).

1.2.3. An affine Q-group scheme structure. Recall that an affine Q-group

scheme is a functor G from the category of commutative Q-algebras to the category

of groups which is representable by a HopfQ-algebra (see, for example, [Wat, §1.2]).

Proposition 1.15. The following assignments are affine Q-group schemes:

(i) k 7→ (G(k⟨⟨X⟩⟩),⊛);
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(ii) DMRG0 : k 7→ (DMRG0 (k),⊛);

(iii) Stab(∆̂mod
⋆ ) : k 7→ (Stab(∆̂mod

⋆ )(k),⊛).

Proof. (i) See [EF18, Lem. 4.6]. (ii) See [Rac, Thm. I]. (iii) See [EF18, Lem. 5.1].

Therefore, Proposition 1.14 provides an inclusion of affine Q-group schemes

(1.22) DMRG0 ⊂ Stab(∆̂mod
⋆ ) ⊂

(
k 7→ (G(k⟨⟨X⟩⟩),⊛)

)
.

§1.3. The double shuffle Lie algebra dmrG0

Recall from [Wat, Thm. 12.2] that there exists a functor Lie from the category of

affine Q-group schemes to the category of Q-Lie algebras such that

Lie(G) = ker
(
G(Q[ε]/(ε2)) → G(Q)

)
,

for any Q-group scheme G. In this section we provide an explicit formulation of

the Lie algebras obtained by applying the functor Lie to the inclusions (1.22).

1.3.1. The Lie algebra (L̂ib(X), ⟨·, ·⟩). Let L̂ib(X) be the free complete

graded Q-Lie algebra over the alphabet X. One can identify the Q-algebra Q⟨⟨X⟩⟩
with the enveloping algebra of L̂ib(X) ([Rac, §2.2.3]). Therefore, L̂ib(X) is identi-

fied with the Lie subalgebra of primitive elements in Q⟨⟨X⟩⟩ for the coproduct ∆̂.

Namely,

(1.23) L̂ib(X) ≃
{
ψ ∈ Q⟨⟨X⟩⟩

∣∣ ∆̂(ψ) = ψ ⊗ 1 + 1⊗ ψ
}
.

For ψ ∈ L̂ib(X), let dψ be the derivation of Q⟨⟨X⟩⟩ given by ([Rac, (3.1.12.2)])

(1.24) dψ(x0) = 0, and for g ∈ G, dψ(xg) = [xg, tg(ψ)],

and let sψ be the Q-linear endomorphism of Q⟨⟨X⟩⟩ given by ([Rac, (3.1.12.1)])

(1.25) sψ := ℓψ + dψ.

We then define a Lie algebra bracket on L̂ib(X) as ([Rac, (3.1.10.2)])

(1.26) ∀ψ1, ψ2 ∈ L̂ib(X), ⟨ψ1, ψ2⟩ := sψ1(ψ2)− sψ2(ψ1).

1.3.2. The Lie algebra (dmrG0 , ⟨·, ·⟩). Let us define γ : Q⟨⟨X⟩⟩ → Q[[x]], ψ 7→
γψ, where

(1.27) γψ(x) :=
∑
n≥2

(−1)n

n
(ψ|xn−1

0 x1)x
n,
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and for ψ ∈ Q⟨⟨X⟩⟩, set

ψ⋆ := q̄ ◦ πY (−γψ(x1) + ψ) ∈ Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0.

Proposition-Definition 1.16 ([Rac, Defs. 3.3.1, 3.3.8 and Prop. 4.A.i]).The set

dmrG0 of elements ψ ∈ L̂ib(X) such that

(i) (ψ|x0) = (ψ|x1) = 0;

(ii) ∆̂mod
⋆ (ψ⋆) = ψ⋆ ⊗ 1 + 1⊗ ψ⋆;

(iii) (ψ⋆|xn−1
0 xg) = (−1)n−1(ψ⋆|xn−1

0 xg−1) for (n, g) ∈ Z>0 ×G;

is a complete graded Lie subalgebra of (L̂ib(X), ⟨·, ·⟩).

Remark 1.17. According to [Rac, Props. 3.3.3 and 3.3.7], it is enough to have

(iii) in these cases: {
for (n, g) = (2, 1) if |G| = 2,

for n = 1 and any g ∈ G if |G| ≥ 3,

since this identity is always true for all the other cases.

1.3.3. Relation of dmrG0 with a stabilizer Lie algebra.

Proposition 1.18 ([Rac, (3.1.9.2)]). There exists a Lie algebra action of (L̂ib(X),

⟨·, ·⟩) by Q-linear endomorphisms on Q⟨⟨X⟩⟩ given by

(1.28) (L̂ib(X), ⟨·, ·⟩) → EndQ(Q⟨⟨X⟩⟩), ψ 7→ sψ.

Proposition-Definition 1.19 ([Rac, §4.1.1] and [EF18, Lem. 2.2]). For ψ ∈
L̂ib(X), there exists a unique Q-linear endomorphism sYψ of Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0 such

that the diagram

Q⟨⟨X⟩⟩ Q⟨⟨X⟩⟩

Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0 Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0

sψ

q̄◦πY q̄◦πY

sYψ

commutes. Moreover, there is a Lie algebra action of (L̂ib(X), ⟨·, ·⟩) by Q-linear

endomorphisms on Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0 given by

(1.29) (L̂ib(X), ⟨·, ·⟩) → EndQ(Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0), ψ 7→ sYψ .

Remark 1.20. For ψ ∈ L̂ib(X), Racinet defined sYψ as a Q-linear endomorphism

of Q⟨⟨Y ⟩⟩. Even if this paper proceeds differently, Racinet’s notation is kept so the

reader may refer to [Rac].
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For ψ ∈ L̂ib(X) we consider the following Q-linear endomorphism on Q⟨⟨X⟩⟩/
Q⟨⟨X⟩⟩x0:

(1.30) γsYψ := ℓ−γψ(x1) + sYψ .

The following result is an analogue of Proposition 1.10:

Lemma 1.21. For any ψ ∈ L̂ib(X), the Q-linear endomorphism γsYψ is equal to

sYθ(ψ), where θ : (L̂ib(X), ⟨·, ·⟩) → (Q⟨⟨X⟩⟩, ⟨·, ·⟩) is the Lie algebra morphism given

by ([EF18, Prop. 2.5])

(1.31) θ(ψ) := −γψ(x1) + ψ − (ψ|x0)x0.

Remark 1.22. One can equip Q⟨⟨X⟩⟩ with the bracket ⟨·, ·⟩ as described in (1.26).

Proof of Lemma 1.21. Let ψ ∈ L̂ib(X) and a ∈ Q⟨⟨X⟩⟩. First, we have

sθ(ψ)(a) = θ(ψ)a+ dθ(ψ)(a) = (−γψ(x1) + ψ − (ψ|x0)x0)a+ dθ(ψ)(a).

Moreover, one can check on generators that

dθ(ψ) = ad(ψ|x0)x0
+ dψ.

Therefore, one obtains

sθ(ψ)(a) = (−γψ(x1) + ψ − (ψ|x0)x0)a+ ad(ψ|x0)x0
(a) + dψ(a)

= −γψ(x1)a+ sψ(a)− (ψ|x0)ax0.

Consequently,

γsYψ (q̄ ◦ πY (a)) = −γψ(x1)(q̄ ◦ πY (a)) + sYψ (q̄ ◦ πY (a))
= q̄ ◦ πY (−γψ(x1)a) + q̄ ◦ πY (sψ(a))
= q̄ ◦ πY (−γψ(x1)a+ sψ(a)) = q̄ ◦ πY (sθ(ψ)(a)).

This establishes the identity γsYψ = sYθ(ψ), thanks to Proposition-Definition 1.19.

Proposition 1.23. There is a Lie algebra action of (L̂ib(X), ⟨·, ·⟩) by Q-linear

endomorphisms on Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0 by

(1.32) (L̂ib(X), ⟨·, ·⟩) → EndQ(Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0), ψ 7→ γsψ.

Proof. Thanks to [EF18, §2.5], the map ψ 7→ sθ(ψ) is a Lie algebra action of

(L̂ib(X), ⟨·, ·⟩) on Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0. The result then follows from Lemma 1.21.
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The space of Q-linear morphisms

MorQ(Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0, (Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0)⊗̂2)

is then equipped with an action of the Lie algebra (L̂ib(X), ⟨·, ·⟩) given by ([EF18,

§2.5])

(1.33) ψ ·D := (γsYψ ⊗ id + id⊗ γsYψ ) ◦D −D ◦ γsYψ ,

where ψ ∈ L̂ib(X) and D ∈ MorQ(Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0, (Q⟨⟨X⟩⟩/Q⟨⟨X⟩⟩x0)⊗̂2).

The stabilizer Lie algebra of D = ∆̂mod
⋆ is then the Lie subalgebra of (L̂ib(X),

⟨·, ·⟩) given by ([EF18, §2.5])

(1.34) stab(∆̂mod
⋆ ) :=

{
ψ ∈ L̂ib(X)

∣∣ (γsYψ ⊗ id+ id⊗ γsYψ )◦ ∆̂mod
⋆ = ∆̂mod

⋆ ◦ γsYψ
}
.

It is related to the Lie algebra dmrG0 as follows:

Proposition 1.24. We have

(1.35) dmrG0 =
{
ψ ∈ stab(∆̂mod

⋆ )
∣∣ (ψ|x0) = (ψ|x1) = 0

}
.

Proof. Thanks to Lemma 1.21, the stabilizer Lie algebra stab(∆̂mod
⋆ ) is identified

with the stabilizer Lie algebra given in [EF18]. Therefore, the wanted equality is

stated in [EF18, Thm. 3.10] (dmrG0 being denoted by dmr0 in [EF18]).

1.3.4. Exponential maps.

Proposition 1.25. We have (equalities of k-Lie algebras)

(i) Lie(k 7→ (G(k⟨⟨X⟩⟩),⊛)) = (L̂ib(X), ⟨·, ·⟩).
(ii) Lie(DMRG0 ,⊛) = (dmrG0 , ⟨·, ·⟩), where G is a cyclic group.

(iii) Lie(Stab(∆̂mod
⋆ ),⊛) = (stab(∆̂mod

⋆ ), ⟨·, ·⟩).

Proof. (i) See [EF18, §4.1.4]. (ii) See [Rac, §3.3.8]. (iii) See [EF18, (5.12)].

Let k be a commutative Q-algebra. Let us denote L̂ibk(X) := L̂ib(X)⊗̂k. Let

cbh⟨·,·⟩ : L̂ibk(X) × L̂ibk(X) → L̂ibk(X) be the map defined by cbh⟨·,·⟩(ψ, ϕ) :=

morψ,ϕ(cbh), where cbh in L̂ibQ(a, b) is the Campbell–Baker–Hausdorff series

([EF18, §4.1.2]) cbh = log(exp(a) exp(b)) with log : 1 + Q⟨⟨a, b⟩⟩ → Q⟨⟨a, b⟩⟩0 and

morψ,ϕ is the Lie algebra morphism L̂ibQ(a, b) → (L̂ibk(X), ⟨·, ·⟩), a 7→ ψ, b 7→ ϕ.

We then define expk⊛ : L̂ibk(X) → G(k⟨⟨X⟩⟩) to be the exponential map; it inter-

twines cbh⟨·,·⟩ and ⊛. The following proposition recalls from [Rac, §3.1.8] and

[DeGo, Rem. 5.14], the explicit form of expk⊛ as well as gives a proof of this state-

ment.
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Proposition 1.26. For a commutative Q-algebra k and ψ ∈ L̂ibk(X), we have

the following:

(i) the exponential map expk⊛ : L̂ibk(X) → G(k⟨⟨X⟩⟩) is a bijection;

(ii) Sexpk
⊛(ψ) = exp(sψ), where ψ 7→ sψ is the map L̂ibk(X) → Endk-mod(k⟨⟨X⟩⟩)

obtained from the map L̂ib(X) → EndQ(Q⟨⟨X⟩⟩) in (1.25) by tensoring with

k and exp is the usual exponential of an endomorphism;

(iii) expk⊛(ψ) = exp(sψ)(1).

Proof. (i) See [EF18, §4.1.4 and §4.1.5].

(ii) The assignment k 7→ Autk-mod(k⟨⟨X⟩⟩) is an affine Q-group scheme and

the map G(k⟨⟨X⟩⟩) → Autk-mod(k⟨⟨X⟩⟩), Ψ 7→ SΨ defines an affine Q-group

scheme morphism from k 7→ G(k⟨⟨X⟩⟩) to k 7→ Autk-mod(k⟨⟨X⟩⟩). Using the usual

dual number formalism, one sees that the associated Q-Lie algebra morphism

is L̂ib(X) → EndQ(Q⟨⟨X⟩⟩), ψ 7→ sψ. As a consequence, for any ψ ∈ L̂ibk(X),

Sexpk
⊛(ψ) = exp(sψ).

(iii) It follows by applying the latter equality to 1, using the identity SΨ(1) = Ψ

for any Ψ ∈ G(k⟨⟨X⟩⟩).

To conclude this part, let us note that the bijection of the map exp⊛ : L̂ibk(X)

→ G(k⟨⟨X⟩⟩) implies that we have an identification between the group actions

defined in Section 1.2 with the exponential of the Lie algebra actions of the current

subsection.

§2. A crossed product formulation of the double shuffle theory

We construct a crossed product version of the double shuffle formalism. The rele-

vant algebras and modules are introduced in Section 2.1:

(i) an algebra V̂G defined by generators and relations, which is then identi-

fied with a crossed product algebra involving Racinet’s formal series algebra

k⟨⟨X⟩⟩;
(ii) a bialgebra (ŴG, ∆̂

W
G ) isomorphic to the bialgebra (k⟨⟨Y ⟩⟩, ∆̂alg

⋆ ), where ŴG

is a subalgebra of V̂G;
(iii) a coalgebra (M̂G, ∆̂

M
G ) isomorphic to the coalgebra (k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0, ∆̂mod

⋆ ),

where M̂G has a V̂G-module structure inducing a free rank-one ŴG-module

structure on it, compatible with the coproducts ∆̂W
G and ∆̂M

G .
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In Sections 2.2 and 2.3 we construct actions of the group (G(k⟨⟨X⟩⟩),⊛) on

these objects by algebra and module automorphisms. This leads us in Section

2.4 to define the stabilizer groups of the coproducts ∆̂W
G and ∆̂M

G and show in

Theorem 2.32 that the stabilizer of the latter is included in the stabilizer of the

former.

§2.1. The algebra V̂G, the bialgebra (ŴG, ∆̂W
G )

and the coalgebra (M̂G, ∆̂M
G )

2.1.1. The algebras V̂G and ŴG and the module M̂G. Let V̂k
G (or simply

V̂G if there is no risk of ambiguity) be the complete graded topological k-algebra

generated by {e0, e1}⊔G, where e0 and e1 are of degree 1 and elements g ∈ G are

of degree 0 satisfying the relations

(i) g · h = gh;

(ii) 1 = 1G;

(iii) g · e0 = e0 · g;

for any g, h ∈ G, where “·” is the algebra multiplication which we will no longer

denote if there is no risk of ambiguity.

Remark 2.1. The notation e0 and e1 is inspired by [EF21] which in turn is

inspired by [DeTe].

Set Ŵk
G := k ⊕ V̂k

Ge1 (or simply ŴG if there is no risk of ambiguity). It is a

graded topological k-subalgebra of V̂G.
Next, the quotient

M̂k
G := V̂k

G

/(
V̂k
Ge0 +

∑
g∈G

V̂k
G(g − 1)

)

(or simply M̂G if there is no risk of ambiguity) is a topological k-module. It is

also a topological V̂G-module and, by restriction, a topological ŴG-module. Let

1M be the class of 1 ∈ V̂G in M̂G. The map − · 1M : V̂G → M̂G is a surjective

topological k-module morphism whose kernel is V̂Ge0 +
∑
g∈G V̂G(g − 1).

2.1.2. The algebra V̂G as a crossed product. First, let us introduce the basic

material about the crossed product of an algebra by a group acting by algebra

automorphisms.

Definition 2.2. Let A be a k-algebra such that the group G acts on A by k-

algebra automorphisms. Let us denote this action by G × A ∋ (g, a) 7→ ag ∈ A.
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The crossed product algebra of the k-algebra A by the group G denoted A⋊G is

the k-algebra (A⊗ kG, ∗), where ∗ is the product given by

(2.1)
∑
g∈G

(ag ⊗ g) ∗
∑
h∈G

(bh ⊗ h) :=
∑
k∈G

( ∑
g,h∈G|gh=k

agb
g
h

)
⊗ k,

for ag, bg ∈ A with g ∈ G ([Bou, Chap. 3, p. 180, Exer. 11]).

Proposition 2.3 (Universal property of the crossed product algebra). For any

k-algebra B, there is a natural bijection between the set Mork-alg(A ⋊ G,B) and

the set of pairs (f, τ) ∈ Mork-alg(A,B) × Morgrp(G,B
×) such that f(ag) =

τ(g)f(a)τ(g)−1.

Proof. Indeed, given a k-algebra morphism β : A⋊G→ B we consider

� the k-algebra morphism f : A→ B given for any a ∈ A by f(a) = β(a⊗ 1);

� the group morphism τ : G→ B× given for any g ∈ G by τ(g) = β(1⊗ g).

These morphisms verify

τ(g)f(a)τ(g−1) = β(1⊗ g)β(a⊗ 1)β(1⊗ g−1)

= β((1⊗ g) ∗ (a⊗ 1) ∗ (1⊗ g−1))

= β((ag ⊗ g) ∗ (1⊗ g−1))

= β(ag ⊗ 1) = f(ag).

This shows that the map β 7→ (f, τ) is well defined. Now let us define a converse

map in order to get a bijection. Given any pair (f, τ) of morphisms satisfying the

conditions of the proposition, we set β : a⊗ g 7→ f(a)τ(g) for any a⊗ g ∈ A⋊G.

This is a k-algebra morphism. Indeed, for any a⊗ g and b⊗ h ∈ A⋊G,

β((a⊗ g) ∗ (b⊗ h)) = β(abg ⊗ gh)

= f(abg)τ(gh) = f(a)f(bg)τ(g)τ(h)

= f(a)τ(g)f(b)τ(g)−1τ(g)τ(h)

= f(a)τ(g)f(b)τ(h)

= β(a⊗ g)β(b⊗ h).

Thus the map (f, τ) → β is also well defined. Finally, one can easily check that

the composition of the two maps on both sides gives the identity.

Now recall that g 7→ tg defines an action of G on k⟨⟨X⟩⟩ by k-algebra automor-

phisms ([Rac, §3.1.1]). We can then consider the crossed product algebra k⟨⟨X⟩⟩⋊G
for this action.
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Proposition 2.4. We describe the presentation of the crossed product algebra

k⟨⟨X⟩⟩⋊G:

(i) There is a unique k-algebra morphism α : V̂G → k⟨⟨X⟩⟩ ⋊ G such that e0 7→
x0 ⊗ 1, e1 7→ −x1 ⊗ 1 and g 7→ 1⊗ g.

(ii) There is a unique k-algebra morphism β : k⟨⟨X⟩⟩⋊G→ V̂G such that x0⊗1 7→
e0 and for g ∈ G, xg ⊗ 1 7→ −ge1g−1 and 1⊗ g 7→ g.

(iii) The morphisms α and β given respectively in (i) and (ii) are isomorphisms

which are the inverse of one another.

Proof. (i) We verify that the images by the morphism α of the generators of V̂G
satisfy the relations of V̂G:

� For g, h ∈ G, α(g) ∗ α(h) = (1⊗ g) ∗ (1⊗ h) = 1tg(1)⊗ gh = 1⊗ gh = α(gh).

� α(1G) = 1⊗ 1G = α(1).

� For g ∈ G, α(g) ∗ α(e0) = (1 ⊗ g) ∗ (x0 ⊗ 1) = 1tg(x0) ⊗ g = x0 ⊗ g. On the

other hand, we have α(e0) ∗ α(g) = (x0 ⊗ 1) ∗ (1⊗ g) = x0t1(1)⊗ g = x0 ⊗ g.

Thus α(g) ∗ α(e0) = α(e0) ∗ α(g).

(ii) First, since for any g ∈ G, the element −ge1g−1 is of degree 1, there is a unique

k-algebra morphism f : k⟨⟨X⟩⟩ → V̂G such that x0 7→ e0, xg 7→ −ge1g−1. Second,

there is a unique group morphism τ : G→ V̂×
G given by g 7→ g. Next, for any g ∈ G,

the maps k⟨⟨X⟩⟩ → V̂G defined by a 7→ f(tg(a)) and a 7→ τ(g)f(a)τ(g)−1 are k-

algebra morphisms that are equal by restriction on generators xh (h ∈ {0}⊔G) of
k⟨⟨X⟩⟩. Indeed,

τ(g)f(x0)τ(g)
−1 = ge0g

−1 = e0gg
−1 = e0 = f(x0) = f(tg(x0)),

and for h ∈ G,

τ(g)f(xh)τ(g)
−1 = g(−he1h−1)g−1 = −ghe1(gh)−1 = f(xgh) = f(tg(xh)).

We then have for any g ∈ G and any a ∈ k⟨⟨X⟩⟩, f(tg(a)) = τ(g)f(a)τ(g)−1.

Finally, according to the universal property of crossed products, the pair (f, τ)

gives a unique k-algebra morphism β : k⟨⟨X⟩⟩⋊G→ V̂G, a⊗ g 7→ f(a)τ(g) which

verifies β(x0 ⊗ 1) = f(x0)τ(1) = e0, β(xg ⊗ 1) = f(xg)τ(1) = −ge1g−1 and

β(1⊗ g) = f(1)τ(g) = g, for g ∈ G.

(iii) It is enough to show that the compositions of α and β give the identity.

First, since β ◦ α : V̂G → V̂G, it is enough to compute it on generators. We have

e0 7→ x0 ⊗ 1 7→ e0, e1 7→ −x1 ⊗ 1 7→ e1 and g 7→ 1⊗ g 7→ g. Thus β ◦ α = idV̂G .

For the converse, we show that α ◦ β ∈ Mork-alg(k⟨⟨X⟩⟩⋊G,k⟨⟨X⟩⟩⋊G) and

the identity of k⟨⟨X⟩⟩ ⋊ G have the same image via the bijection of the universal
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property of crossed products. The image of the identity is the pair

fid : a 7→ a⊗ 1 and τid(g) = 1⊗ g.

Next, let us compute the image of α ◦ β. The k-algebra morphism f is given for

any a ∈ k⟨⟨X⟩⟩ by
f(a) = α ◦ β(a⊗ 1).

Since it is a k-algebra morphism, it is enough to determine it on xg, g ∈ {0} ⊔G.
We have

f(x0) = α ◦ β(x0 ⊗ 1) = α(e0) = x0 ⊗ 1,

and for g ∈ G,

f(xg) = α ◦ β(xg ⊗ 1) = α(−ge1g−1)

= −α(g) ∗ α(e1) ∗ α(g−1)

= −(1⊗ g) ∗ (−x1 ⊗ 1) ∗ (1⊗ g−1)

= (tg(x1)⊗ g) ∗ (1⊗ g−1) = xg ⊗ 1.

We then deduce that for any a ∈ k⟨⟨X⟩⟩, f(a) = a⊗ 1. Next, the group morphism

τ : G→ (k⟨⟨X⟩⟩⋊G)× is given for any g ∈ G by

τ(g) = α ◦ β(1⊗ g) = α(g) = 1⊗ g.

Finally, by uniqueness of the images we conclude that α ◦ β = idk⟨⟨X⟩⟩⋊G.

2.1.3. The bialgebra (ŴG, ∆̂W
G ) and the coalgebra (M̂G, ∆̂M

G ).

Proposition 2.5. The family

(en1−1
0 g1e1 · · · enr−1

0 gre1e
nr+1−1
0 gr+1)r∈Z≥0,n1,...,nr+1∈Z>0,

g1,...,gr+1∈G

is a basis of the k-module V̂G.

Proof. Since the family

((−1)rxn1−1
0 xg1 · · ·x

nr−1
0 xg1···grx

nr+1−1
0 )r∈Z≥0,n1,...,nr+1∈Z>0,

g1,...,gr∈G

is a basis of the k-module k⟨⟨X⟩⟩, it follows that the family

((−1)rxn1−1
0 xg1 · · ·x

nr−1
0 xg1···grx

nr+1−1
0 ⊗ g1 · · · grgr+1)r∈Z≥0,n1,...,nr+1∈Z>0,

g1,...,gr+1∈G

is a basis of the k-module k⟨⟨X⟩⟩ ⊗kG. Thus, its image by the bijection β defined

in Proposition 2.4(ii) is a basis of V̂G. Moreover, for r ∈ Z≥0, n1, . . . , nr+1 ∈ Z>0
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and g1, . . . , gr+1 ∈ G, we have

xn1−1
0 xg1 · · ·x

nr−1
0 xg1···grx

nr+1−1
0 ⊗ g1 · · · grgr+1

= (xn1−1
0 ⊗ 1) ∗ (xg1 ⊗ 1) ∗ · · · ∗ (xnr−1

0 ⊗ 1) ∗ (xg1···gr ⊗ 1)

∗ (xnr+1−1
0 ⊗ 1) ∗ (1⊗ g1) ∗ · · · ∗ (1⊗ gr) ∗ (1⊗ gr+1).(2.2)

Then

β((−1)rxn1−1
0 xg1 · · ·x

nr−1
0 xg1···grx

nr+1−1
0 ⊗ g1 · · · grgr+1)

= (−1)rβ(xn1−1
0 ⊗ 1)β(xg1 ⊗ 1) · · ·β(xnr−1

0 ⊗ 1)β(xg1···gr ⊗ 1)

· β(xnr+1−1
0 ⊗ 1)β(1⊗ g1) · · ·β(1⊗ gr)β(1⊗ gr+1)

= en1−1
0 g1e1g

−1
1 · · · enr−1

0 g1 · · · gre1g−1
1 · · · g−1

r e
nr+1−1
0 g1 · · · grgr+1

= en1−1
0 g1e1 · · · enr−1

0 g−1
1 · · · g−1

r−1g1 · · · gr−1gre1e
nr+1−1
0 g−1

1

· · · g−1
r g1 · · · grgr+1

= en1−1
0 g1e1 · · · enr−1

0 gre1e
nr+1−1
0 gr+1,(2.3)

where the first equality comes from (2.2) and the fact that β : k⟨⟨X⟩⟩⋊G→ V̂G is

a k-algebra morphism. The second equality is obtained by computing the images

of appropriate elements by β. The third equality is a consequence of the equality

ge0 = e0g for any g ∈ G and the last one comes from the fact that the group G is

abelian.

Proposition 2.6. We have the following:

(i) The family

{1} ∪ (en1−1
0 g1e1 · · · enr−1

0 gre1e
nr+1−1
0 gr+1e1)r∈Z≥0,n1,...,nr,nr+1∈Z>0,

g1,...,gr,gr+1∈G

is a basis of the k-module ŴG.

(ii) The k-subalgebra ŴG is topologically freely generated by the family

Z =
{
zn,g := −en−1

0 ge1
∣∣ (n, g) ∈ Z>0 ×G

}
,

where deg(zn,g) = n.

Proof. (i) First, ŴG is the image of the k-module morphism k ⊕ V̂G → V̂G,
(λ, v) 7→ λ+ ve1. Second, according to Proposition 2.5, the family

(1, 0), (0, en1−1
0 g1e1 · · · enr−1

0 gre1e
nr+1−1
0 gr+1)r∈Z≥0,n1,...,nr,nr+1∈Z>0,

g1,...,gr,gr+1∈G
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is a basis of the k-module k ⊕ V̂G. Moreover, the image of this basis by this k-

module morphism is the family

{1} ∪ (en1−1
0 g1e1 · · · enr−1

0 gre1e
nr+1−1
0 gr+1e1)r∈Z≥0,n1,...,nr,nr+1∈Z>0,

g1,...,gr,gr+1∈G

which is free since it is contained in a basis of the target. This implies that this

family is a basis of the image of the previous morphism which is ŴG.

(ii) Let k⟨⟨Z⟩⟩ be the topological free algebra over the letters zn,g (n ∈ Z>0,

g ∈ G), which we view as free variables with deg(zn,g) = n. Then there is a unique

k-algebra morphism k⟨⟨Z⟩⟩ → ŴG given by zn,g 7→ −en−1
0 ge1. Let us show that it

is an isomorphism:

The free k-module k⟨⟨Z⟩⟩ has basis

{1} ∪ (zn1,g1 · · · znr+1,gr+1
)r∈Z≥0,n1,...,nr+1∈Z>0

g1,...,gr+1∈G

and, as a k-module, ŴG has basis

{1} ∪ (en1−1
0 g1e1 · · · enr+1−1

0 gr+1e1)r∈Z≥0,n1,...,nr+1∈Z>0,
g1,...,gr+1∈G

according to (i). One computes the image by zn,g 7→ −en−1
0 ge1 of the former basis

and finds it to be equal to the latter basis. Therefore, zn,g 7→ −en−1
0 ge1 induces a

bijection between the two bases – up to appropriate signs – and then a bijection

between k⟨⟨Z⟩⟩ and ŴG. Hence, zn,g 7→ −en−1
0 ge1 is a k-algebra isomorphism

between k⟨⟨Z⟩⟩ and ŴG.

So, from now on, by abuse of notation, we will identify elements of ŴG with

elements of k⟨⟨Z⟩⟩ by the k-algebra isomorphism zn,g 7→ −en−1
0 ge1.

Proposition 2.7. There exists a k-module isomorphism κ : k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 →
M̂G uniquely determined by the condition that the diagram

(2.4)

k⟨⟨X⟩⟩ V̂G

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

β◦(−⊗1)

πY −·1M

κ

commutes.

We will prove this proposition by using the following general lemma. In this

lemma, for any k-module M and any submodule M ′, let us denote the canonical

projection by can(M,M ′) : M →M/M ′.
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Lemma 2.8. Let f : M → N be a k-module morphism. Let M ′ be a submodule of

M and N ′, N ′′ two submodules of N such that

(i) f(M ′) ⊂ N ′ ⊂ f(M ′) +N ′′ and

(ii) can(N,N ′′) ◦ f : M → N/N ′′ is a k-module isomorphism.

Then there is a unique k-module morphism f̄ : M/M ′ → N/(N ′ +N ′′) such that

the diagram

(2.5)

M N

M/M ′ N/(N ′ +N ′′)

f

can(M,M ′) can(N,N ′+N ′′)

f̄

commutes. Moreover, f̄ is a k-module isomorphism.

Proof. Thanks to (i), f(M ′) ⊂ N ′. This implies that f(M ′)+N ′′ ⊂ N ′+N ′′. From

(i) again, we have N ′ ⊂ f(M ′) +N ′′. This implies that N ′ +N ′′ ⊂ f(M ′) +N ′′.

Therefore

(2.6) f(M ′) +N ′′ = N ′ +N ′′.

Next, from (ii), we have that can(N,N ′′) ◦ f : M → N → N/N ′′ is an isomor-

phism. One checks that it restricts to an isomorphism from M ′ to (f(M ′) +

N ′′)/N ′′. Thanks to equality (2.6), this yields an isomorphism from M ′ to (N ′ +

N ′′)/N ′′. This allows us to construct a unique k-module morphism f̃ : M/M ′ →
(N/N ′′)/((N ′ +N ′′)/N ′′) such that the lower square of the diagram

(2.7)

M ′ (N ′ +N ′′)/N ′′

M N/N ′′

M/M ′ (N/N ′′)/((N ′ +N ′′)/N ′′)

can(N,N ′′)◦f|M′

can(N,N ′′)◦f

can(M,M ′) can(N/N ′′,(N ′+N ′′)/N ′′)

f̃

commutes. Moreover, since can(N,N ′′) ◦ f : M → N/N ′′ is an isomorphism, so

is f̃ : M/M ′ → (N/N ′′)/((N ′ + N ′′)/N ′′). Finally, we construct an isomorphism

f̄ : M/M ′ → N/(N ′ +N ′′) by composing f̃ with the inverse map (N/N ′′)/((N ′ +

N ′′)/N ′′) ≃ N/(N ′ + N ′′) given by the third isomorphism theorem. Thanks to

diagram (2.7), the isomorphism f̄ : M/M ′ → N/(N ′ + N ′′) is such that diagram

(2.5) commutes.
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Proof of Proposition 2.7. This is done by application of Lemma 2.8 for M =

k⟨⟨X⟩⟩, N = V̂G, M ′ = k⟨⟨X⟩⟩x0, N ′ = V̂Ge0, N ′′ =
∑
g∈G V̂G(g − 1) and f =

β ◦ (− ⊗ 1). It, therefore, suffices to prove that criteria (i) and (ii) of Lemma 2.8

are satisfied.

Criterion (i). β(k⟨⟨X⟩⟩x0 ⊗ 1) ⊂ V̂Ge0 ⊂ β(k⟨⟨X⟩⟩x0 ⊗ 1) +
∑
g∈G V̂G(g − 1).

For the first inclusion, we have for any a ∈ k⟨⟨X⟩⟩,

β(ax0 ⊗ 1) = β(a⊗ 1)β(x0 ⊗ 1) = β(a⊗ 1)e0 ∈ V̂Ge0.

Therefore, β(k⟨⟨X⟩⟩x0 ⊗ 1) ⊂ V̂Ge0.
For the second inclusion, by using the basis of V̂G described in Proposition

2.5, we have for r ∈ Z≥0, n1, . . . , nr+1 ∈ Z>0 and g1, . . . , gr+1 ∈ G,

(en1−1
0 g1e1 · · · enr−1

0 gre1e
nr+1−1
0 gr+1)e0

= en1−1
0 g1e1 · · · enr−1

0 gre1e
nr+1

0 gr+1

= (−1)rβ(xn1−1
0 xg1 · · ·x

nr−1
0 xg1···grx

nr+1

0 ⊗ g1 · · · gr+1)

= (−1)rβ((xn1−1
0 xg1 · · ·x

nr−1
0 xg1···grx

nr+1−1
0 )x0 ⊗ 1)g1 · · · gr+1

= (−1)rβ((xn1−1
0 xg1 · · ·x

nr−1
0 xg1···grx

nr+1−1
0 )x0 ⊗ 1)

+ (−1)rβ((xn1−1
0 xg1 · · ·x

nr−1
0 xg1···grx

nr+1−1
0 )x0 ⊗ 1)(g1 · · · gr+1 − 1),

where the first equality comes from the relation ge0 = e0g for any g ∈ G, the second

from computation (2.3) and the third from the fact that ax0⊗g = (ax0⊗1)∗(1⊗g)
for any a ∈ k⟨⟨X⟩⟩ and any g ∈ G. Finally, the last equality shows that we obtain

an element of β(k⟨⟨X⟩⟩x0⊗1)+
∑
g∈G V̂G(g−1), thus proving the claimed inclusion.

Criterion (ii). can(V̂G,
∑
g∈G V̂G(g−1))◦β◦(−⊗1) : k⟨⟨X⟩⟩ → V̂G/

∑
g∈G V̂G(g−1)

is an isomorphism.

Let us consider the commutative diagram

(2.8)

k⟨⟨X⟩⟩ ⊗
⊕
g∈G

kG k⟨⟨X⟩⟩ ⊗ kG

⊕
g∈G

(k⟨⟨X⟩⟩ ⊗ kG) k⟨⟨X⟩⟩ ⊗ kG

⊕
g∈G

V̂G V̂G,

⊕
g∈G

β β
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where the top horizontal arrow is the tensor product of the identity and the k-

module morphism ⊕
g∈G

kG→ kG, (hg)g∈G 7→
∑
g∈G

hg(g − 1),

and the bottom horizontal arrow is the k-module morphism⊕
g∈G

V̂G → V̂G, (vg)g∈G 7→
∑
g∈G

vg(g − 1).

Since the vertical arrows are isomorphisms, they induce an isomorphism between

the cokernels of the top and bottom morphisms. We can then extend the above

diagram in the following way:

(2.9)

k⟨⟨X⟩⟩ ⊗
⊕
g∈G

kG k⟨⟨X⟩⟩ ⊗ kG coker
(
k⟨⟨X⟩⟩ ⊗

⊕
g∈G

kG→ k⟨⟨X⟩⟩ ⊗ kG
)

⊕
g∈G

(k⟨⟨X⟩⟩ ⊗ kG) k⟨⟨X⟩⟩ ⊗ kG

⊕
g∈G

V̂G V̂G coker
( ⊕
g∈G

V̂G → V̂G
)
.

⊕
g∈G

β β

On the other hand, we have

coker

(⊕
g∈G

V̂G → V̂G
)

= V̂G
/∑

g∈G
V̂G(g − 1)

and

coker

(⊕
g∈G

kG→ kG

)
= kG

/∑
g∈G

kG(g − 1) ≃ k.

Therefore,

coker

(
k⟨⟨X⟩⟩ ⊗

⊕
g∈G

kG→ k⟨⟨X⟩⟩ ⊗ kG

)
≃ k⟨⟨X⟩⟩ ⊗ coker

(⊕
g∈G

kG→ kG

)
≃ k⟨⟨X⟩⟩ ⊗ k ≃ k⟨⟨X⟩⟩.

Thus, the isomorphism between cokernels establishes that k⟨⟨X⟩⟩ is isomorphic to

V̂G/
∑
g∈G V̂G(g − 1). Moreover, thanks to the commutativity of diagram (2.9),

this isomorphism is exactly can(V̂G,
∑
g∈G V̂G(g − 1)) ◦ β ◦ (−⊗ 1).
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Corollary 2.9. We have the following:

(i) The diagram

(2.10)

k⟨⟨Y ⟩⟩ ŴG

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

ϖ

πY −·1M

κ◦q̄−1

commutes, where ϖ : k⟨⟨Y ⟩⟩ → ŴG is the k-algebra isomorphism uniquely

defined by yn,g 7→ zn,g.

(ii) The map − · 1M : ŴG → M̂G is a k-module isomorphism and M̂G is free of

rank 1 as a ŴG-module.

Proof. (i) One needs to show the equality of two maps from k⟨⟨Y ⟩⟩ to M̂G. Since

these maps are both k-module morphisms, it is enough to show the equality of

the images of the elements of a basis of the source module. Such a basis is ([Rac,

§2.2.7.])

(yn1,g1 · · · ynrgr )r∈Z≥0,n1,...,nr∈Z>0,
g1,...,gr∈G

.

For r ∈ Z≥0, n1, . . . , nr ∈ Z>0 and g1, . . . , gr ∈ G we have

(− · 1M) ◦ϖ(yn1,g1 · · · ynr,gr ) = zn1,g1 · · · znr,gr · 1M.

On the other hand,

κ ◦ q̄−1 ◦ πY (yn1,g1 · · · ynr,gr ) = κ(xn1−1
0 xg1 · · ·x

n1−1
0 xg1···gr )

= β(xn1−1
0 xg1 · · ·x

nr−1
0 xg1···gr ⊗ 1) · 1M

= (−1)ren1−1
0 g1e1 · · · enr−1

0 gre1g
−1
1 · · · g−1

r · 1M
= (−en1−1

0 g1e1) · · · (−enr−1
0 gre1) · 1M

= zn1,g1 · · · znr,gr · 1M,

where the first equality comes from [Rac, §2.2.7], the second from the commuta-

tive diagram (2.4), the third from computation (2.3) with nr+1 = 1 and gr+1 =

(g1 · · · gr)−1 and the fourth from the fact that for any v ∈ V̂G and any g ∈ G, we

have vg · 1M = v · 1M.

(ii) First, the following maps are k-module isomorphisms:

� ϖ : k⟨⟨Y ⟩⟩ → ŴG: it sends the basis

(yn1,g1 · · · ynr,gr )r∈Z≥0,n1,...,nr∈Z>0,
g1,...,gr∈G
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of the k-module k⟨⟨Y ⟩⟩ to the basis

(zn1,g1 · · · znr,gr )r∈Z≥0,n1,...,nr∈Z>0,
g1,...,gr∈G

of the k-module ŴG (where the latter family is a basis of ŴG thanks to

Proposition 2.6).

� πY : k⟨⟨Y ⟩⟩ → k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0: see [Rac, §2.2.5].

� κ ◦ q̄−1 : k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 → M̂G: see Proposition 2.7 and [Rac, §2.2.7].

Next, the diagram (2.10) commutes, thanks to (i). This allows us to conclude that

the map − · 1M : ŴG → M̂G is a k-module isomorphism and that M̂G is a free

ŴG-module of rank 1.

Remark 2.10. If G ̸= {1}, the composed algebra morphisms

k⟨⟨Y ⟩⟩ ϖ−→ ŴG ↪→ V̂G and k⟨⟨Y ⟩⟩ ↪→ k⟨⟨X⟩⟩ β◦(−⊗1)−−−−−−→ V̂G

do not coincide. This is motivated by the presence of q̄−1 in diagram (2.10) whereas

it is missing in diagram (2.4).

Now we are able to put more structure on ŴG and M̂G. More precisely, we

are going to define a coproduct on ŴG and a coproduct on M̂G.

Proposition-Definition 2.11. We consider the coproducts on ŴG and on M̂G:

(i) There exists a unique topological k-algebra morphism ∆̂W
G : ŴG → Ŵ⊗̂2

G such

that for any (n, g) ∈ Z>0 ×G,

(2.11) ∆̂W
G (zn,g) = zn,g ⊗ 1 + 1⊗ zn,g +

n−1∑
k=1
h∈G

zk,h ⊗ zn−k,gh−1 .

The pair (ŴG, ∆̂
W
G ) is then a topological bialgebra.

(ii) There exists a unique topological k-module morphism ∆̂M
G : M̂G → M̂⊗̂2

G

such that the diagram

(2.12)

ŴG (ŴG)
⊗̂2

M̂G (M̂G)
⊗̂2

∆̂W
G

−·1M −·1⊗2
M

∆̂M
G

commutes. The pair (M̂G, ∆̂
M
G ) is then a cocommutative coassociative co-

algebra.
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(iii) For any w ∈ ŴG and any m ∈ M̂G we have

(2.13) ∆̂M
G (w ·m) = ∆̂W

G (w) · ∆̂M
G (m).

Proof. (i) This is a consequence of Proposition 2.6(ii).

(ii) This is a consequence of (i) and Corollary 2.9(ii).

(iii) Since − · 1M : ŴG → M̂G is a k-module isomorphism, for m ∈ M̂G there

exists a unique w′ ∈ ŴG such that m = w′ · 1M. We then have

∆̂M
G (w ·m) = ∆̂M

G (ww′ · 1M) = ∆̂W
G (ww′) · 1⊗2

M

= ∆̂W
G (w)∆̂W

G (w′) · 1⊗2
M = ∆̂W

G (w) · (∆̂W
G (w′) · 1⊗2

M )

= ∆̂W
G (w) · ∆̂M

G (w′ · 1M) = ∆̂W
G (w) · ∆̂M

G (m),

where the first and the fourth equalities come from − · 1M : ŴG → M̂G being a

ŴG-module isomorphism, the second and the fifth from the commutative diagram

(2.12) and the third from the fact that ∆̂W
G is a k-algebra morphism.

§2.2. Actions of the group (G(k⟨⟨X⟩⟩),⊛) by automorphisms

We recall that the map β : k⟨⟨X⟩⟩ ⋊ G → V̂G is the k-algebra isomorphism given

in Proposition 2.4(ii).

2.2.1. Actions of (G(k⟨⟨X⟩⟩),⊛) by algebra automorphisms.

Proposition-Definition 2.12. Let Ψ ∈ G(k⟨⟨X⟩⟩). There exists a unique topo-

logical k-algebra automorphism aut
V,(0)
Ψ of V̂G extending the automorphism autΨ

of k⟨⟨X⟩⟩ of (1.7) such that

(2.14) e0 7→ e0; e1 7→ β(Ψ−1 ⊗ 1)e1β(Ψ⊗ 1); g 7→ g, for g ∈ G,

Proof. First, let us verify that the images by the morphism aut
V,(0)
Ψ of the gener-

ators of V̂G satisfy the relations of V̂G. Indeed, for g, h ∈ G we have

� aut
V,(0)
Ψ (g) · autV,(0)Ψ (h) = g · h = gh = aut

V,(0)
Ψ (gh);

� aut
V,(0)
Ψ (1G) = 1G = 1 = aut

V,(0)
Ψ (1);

� aut
V,(0)
Ψ (g) · autV,(0)Ψ (e0) = g · e0 = e0 · g = aut

V,(0)
Ψ (e0) · autV,(0)Ψ (g).

This proves the existence and uniqueness of the algebra endomorphism aut
V,(0)
Ψ .

Next, in order to prove that aut
V,(0)
Ψ is an automorphism, we show that the diagram

(2.15)

k⟨⟨X⟩⟩⋊G V̂G

k⟨⟨X⟩⟩⋊G V̂G

β

autΨ ⊗idkG aut
V,(0)
Ψ

β
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commutes, where autΨ is the k-algebra automorphism in (1.7). Since all arrows of

diagram (2.15) are k-algebra morphisms, it is enough to check the commutativity

on generators:

� aut
V,(0)
Ψ ◦β(x0 ⊗ 1) = aut

V,(0)
Ψ (e0) = e0 and β ◦ (autΨ ⊗idkG)(x0 ⊗ 1) =

β(autΨ(x0)⊗ 1) = β(x0 ⊗ 1) = e0.

� For g ∈ G, aut
V,(0)
Ψ ◦β(1⊗ g) = aut

V,(0)
Ψ (g) = g and β ◦ (autΨ ⊗idkG)(1⊗ g) =

β(autΨ(1)⊗ g) = β(1⊗ g) = g.

� For g ∈ G, we have

aut
V,(0)
Ψ ◦β(xg ⊗ 1) = aut

V,(0)
Ψ (−ge1g−1) = −gβ(Ψ−1 ⊗ 1)e1β(Ψ⊗ 1)g−1

and

β ◦ (autΨ ⊗idkG)(xg ⊗ 1)

= β(autΨ(xg)⊗ 1)

= β(tg(Ψ
−1)xgtg(Ψ)⊗ 1)

= β((1⊗g) ∗ (Ψ−1⊗1) ∗ (1⊗g−1) ∗ (xg⊗1) ∗ (1⊗g) ∗ (Ψ⊗1) ∗ (1⊗g−1))

= β(1⊗ g)β(Ψ−1 ⊗ 1)β(1⊗ g−1)β(xg ⊗ 1)β(1⊗ g)β(Ψ⊗ 1)β(1⊗ g−1)

= gβ(Ψ−1 ⊗ 1)g−1(−ge1g−1)gβ(Ψ⊗ 1)g−1

= −gβ(Ψ−1 ⊗ 1)e1β(Ψ⊗ 1)g−1.

Therefore, aut
V,(0)
Ψ is an automorphism thanks to the commutativity of diagram

(2.15) and the fact that β : k⟨⟨X⟩⟩ ⋊ G → V̂G and autΨ ⊗idkG : k⟨⟨X⟩⟩ ⋊ G →
k⟨⟨X⟩⟩⋊G are k-algebra isomorphisms.

Finally, the automorphism aut
V,(0)
Ψ of V̂G extends the automorphism autΨ of

k⟨⟨X⟩⟩. Indeed, combining diagram (2.15) with the commutative diagram

k⟨⟨X⟩⟩ k⟨⟨X⟩⟩⋊G

k⟨⟨X⟩⟩ k⟨⟨X⟩⟩⋊G,

−⊗1

autΨ autΨ ⊗idkG

−⊗1

we obtain the commutative diagram

k⟨⟨X⟩⟩ V̂G

k⟨⟨X⟩⟩ V̂G.

β◦(−⊗1)

autΨ aut
V,(0)
Ψ

β◦(−⊗1)

(2.16)
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Definition 2.13. For Ψ ∈ G(k⟨⟨X⟩⟩), we define aut
V,(1)
Ψ to be the topological

k-algebra automorphism of V̂G given by

(2.17) aut
V,(1)
Ψ := Adβ(Ψ⊗1) ◦ aut

V,(0)
Ψ .

Proposition 2.14. There is a group action of (G(k⟨⟨X⟩⟩),⊛) on V̂G by

(i) k-algebra automorphisms

(G(k⟨⟨X⟩⟩),⊛) → Autk-alg(V̂G), Ψ 7→ aut
V,(0)
Ψ ,

(ii) k-algebra automorphisms

(G(k⟨⟨X⟩⟩),⊛) → Autk-alg(V̂G), Ψ 7→ aut
V,(1)
Ψ .

(iii) Both group actions induce actions of (G(k⟨⟨X⟩⟩),⊛) on k⟨⟨X⟩⟩ by k-algebra

automorphisms, the former by Ψ 7→ autΨ (1.11) and the latter by Ψ 7→
AdΨ ◦ autΨ.

Proof. (i) Let us show that for any Ψ,Φ ∈ G(k⟨⟨X⟩⟩), we have

aut
V,(0)
Ψ⊛Φ = aut

V,(0)
Ψ ◦ autV,(0)Φ .

It suffices to prove this identity on generators. Since for Ψ ∈ G(k⟨⟨X⟩⟩) we have

aut
V,(0)
Ψ (e0) = e0 and aut

V,(0)
Ψ (g) = g, this is immediately true for e0 and g ∈ G.

Moreover,

aut
V,(0)
Ψ⊛Φ(e1) = β((Ψ⊛ Φ)−1 ⊗ 1)e1β((Ψ⊛ Φ)⊗ 1)

= β(autΨ(Φ
−1)Ψ−1 ⊗ 1)e1β(Ψ autΨ(Φ)⊗ 1)

= β(autΨ(Φ
−1)⊗ 1)β(Ψ−1 ⊗ 1)e1β(Ψ⊗ 1)β(autΨ(Φ)⊗ 1)

= aut
V,(0)
Ψ (β(Φ−1 ⊗ 1)) aut

V,(0)
Ψ (e1) aut

V,(0)
Ψ (β(Φ⊗ 1))

= aut
V,(0)
Ψ (β(Φ−1 ⊗ 1)e1β(Φ⊗ 1)) = aut

V,(0)
Ψ ◦ autV,(0)Φ (e1),

where the fourth equality comes from the commutativity of diagram (2.15).

(ii) Using identity (i), we get

aut
V,(1)
Ψ ◦ autV,(1)Φ = Adβ(Ψ⊗1) ◦ aut

V,(0)
Ψ ◦Adβ(Φ⊗1) ◦ aut

V,(0)
Φ

= Adβ(Ψ⊗1) ◦Ad
aut

V,(0)
Ψ (β(Φ⊗1))

◦ autV,(0)Ψ ◦ autV,(0)Φ

= Adβ(Ψ⊗1)β(autΨ(Φ)⊗1) ◦ aut
V,(0)
Ψ ◦ autV,(0)Φ

= Adβ((Ψ⊛Φ)⊗1) ◦ aut
V,(0)
Ψ⊛Φ = aut

V,(1)
Ψ⊛Φ .
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(iii) The first part of the claim is a consequence of the fact that for any Ψ ∈
G(k⟨⟨X⟩⟩), the automorphism aut

V,(0)
Ψ extends the automorphism autΨ thanks to

Proposition-Definition 2.12. The same proposition-definition allows us to obtain

the following commutative diagram:

(2.18)

k⟨⟨X⟩⟩ V̂G

k⟨⟨X⟩⟩ V̂G

β◦(−⊗1)

AdΨ ◦ autΨ aut
V,(1)
Ψ

β◦(−⊗1)

This implies that the automorphism aut
V,(1)
Ψ = Adβ(Ψ⊗1) ◦ aut

V,(0)
Ψ extends the

automorphism AdΨ ◦ autΨ; thus it proves the second part of the claim.

We are now in a position to prove a claim from the introduction which can

be formulated in the following way:

Proposition 2.15. If G ̸= {1}, the action of the group (G(k⟨⟨X⟩⟩),⊛) on k⟨⟨X⟩⟩
by k-algebra automorphisms Ψ 7→ AdΨ ◦ autΨ does not restrict to an action on the

topological subalgebra k⟨⟨Y ⟩⟩.

In order to prove this proposition, we will need the following lemma:

Lemma 2.16. Let g ∈ G, u ∈ k⟨⟨X⟩⟩× and v ∈ k⟨⟨X⟩⟩. Then uxgv ∈ k⟨⟨Y ⟩⟩ if

and only if v ∈ k⟨⟨Y ⟩⟩.

Proof. If v ∈ k⟨⟨Y ⟩⟩, then, since uxg ∈ k⟨⟨Y ⟩⟩ and k⟨⟨Y ⟩⟩ is an algebra, we have

that uxgv ∈ k⟨⟨Y ⟩⟩. Conversely, by the decomposition k⟨⟨X⟩⟩ = k⟨⟨X⟩⟩x0 ⊕ k⟨⟨Y ⟩⟩,
there exist a ∈ k⟨⟨X⟩⟩ and b ∈ k⟨⟨Y ⟩⟩ such that v = ax0 + b. Then

uxgv = uxg(ax0 + b) = uxgax0 + uxgb.

Since uxg and b belong to the algebra k⟨⟨Y ⟩⟩ then uxgb ∈ k⟨⟨Y ⟩⟩. Since, by

assumption, uxgv ∈ k⟨⟨Y ⟩⟩, then uxgax0 ∈ k⟨⟨Y ⟩⟩. By the previous direct sum

decomposition, this implies that uxgax0 = 0. Since u is invertible this is equiv-

alent to xgax0 = 0 which implies that a = 0 thanks to k⟨⟨X⟩⟩ being an integral

domain. Finally,

v = ax0 + b = b ∈ k⟨⟨Y ⟩⟩.

Proof of Proposition 2.15. Since G ̸= {1}, let g ̸= 1 be an element of G. Let us

set Ψ = exp([x1, x0]) ∈ G(k⟨⟨X⟩⟩). We have

AdΨ ◦ autΨ(xg) = Ψtg(Ψ
−1)xgtg(Ψ)Ψ−1.
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Set u = Ψtg(Ψ
−1) and v = tg(Ψ)Ψ−1. One checks that u ∈ k⟨⟨X⟩⟩× and v ∈ k⟨⟨X⟩⟩.

One may therefore apply Lemma 2.16 with these values of u and v and obtain that

uxgv = Ψtg(Ψ
−1)xgtg(Ψ)Ψ−1 belongs to k⟨⟨Y ⟩⟩ if and only if v = tg(Ψ)Ψ−1 is in

k⟨⟨Y ⟩⟩. On the other hand, one has

tg(Ψ)Ψ−1 = exp([xg, x0]) exp(−[x1, x0]) = 1 + [xg − x1, x0] + terms of order > 2.

The order 2 term has k⟨⟨Y ⟩⟩ component equal to x0(x1 − xg) and k⟨⟨X⟩⟩x0 com-

ponent equal to (xg − x1)x0; the latter being nonzero, tg(Ψ)Ψ−1 is, therefore, not

in k⟨⟨Y ⟩⟩ which implies, by Lemma 2.16, that Ψtg(Ψ
−1)xgtg(Ψ)Ψ−1 /∈ k⟨⟨Y ⟩⟩.

Proposition-Definition 2.17. For Ψ ∈ G(k⟨⟨X⟩⟩), the automorphism aut
V,(1)
Ψ :

V̂G→V̂G restricts to a topological k-algebra automorphism on the k-subalgebra ŴG

which will be denoted aut
W,(1)
Ψ . Moreover, there is a group action of (G(k⟨⟨X⟩⟩),⊛)

on ŴG by k-algebra automorphisms

(2.19) (G(k⟨⟨X⟩⟩),⊛) → Autcontk-alg(ŴG), Ψ 7→ aut
W,(1)
Ψ .

Proof. For w = λ+ ve1 ∈ ŴG, we have

aut
V,(1)
Ψ (w) = λ+ aut

V,(1)
Ψ (v)β(Ψ⊗ 1)β(Ψ−1 ⊗ 1)e1β(Ψ⊗ 1)β(Ψ−1 ⊗ 1)

= λ+ aut
V,(1)
Ψ (v)e1 ∈ ŴG.

This implies that aut
V,(1)
Ψ induces a k-algebra endomorphism of ŴG. Moreover, the

pullback of this endomorphism under the k-module isomorphism k × V̂G → ŴG,

(λ, v) 7→ λ + ve1 is the pair (id, aut
V,(1)
Ψ ), which is a k-module automorphism.

This implies that aut
W,(1)
Ψ is a k-module automorphism, and therefore a k-algebra

automorphism. Thanks to this, the second part of this result can be deduced from

Proposition 2.14(ii), by restriction on ŴG.

2.2.2. Action of (G(k⟨⟨X⟩⟩),⊛) by module automorphisms.

Definition 2.18. For Ψ ∈ G(k⟨⟨X⟩⟩), we define aut
V,(10)
Ψ to be the topological

k-module automorphism of V̂G given by

(2.20) aut
V,(10)
Ψ := ℓβ(Ψ⊗1) ◦ aut

V,(0)
Ψ .

Remark 2.19. Let us notice that, for any Ψ ∈ G(k⟨⟨X⟩⟩), we also have

aut
V,(10)
Ψ = ℓβ(Ψ⊗1)◦aut

V,(0)
Ψ = ℓβ(Ψ⊗1)◦Adβ(Ψ−1⊗1) ◦ aut

V,(1)
Ψ = rβ(Ψ⊗1)◦aut

V,(1)
Ψ .

Proposition 2.20. There is a group action of (G(k⟨⟨X⟩⟩),⊛) on V̂G by topological

k-module automorphisms given by

(G(k⟨⟨X⟩⟩),⊛) → Autcontk-mod(V̂G), Ψ 7→ aut
V,(10)
Ψ .
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Proof. For Ψ,Φ ∈ G(k⟨⟨X⟩⟩), we have

aut
V,(10)
Ψ ◦ autV,(10)Φ = ℓβ(Ψ⊗1) ◦ aut

V,(0)
Ψ ◦ℓβ(Φ⊗1) ◦ aut

V,(0)
Φ

= ℓβ(Ψ⊗1) ◦ ℓautV,(0)Ψ (β(Φ⊗1))
◦ autV,(0)Ψ ◦ autV,(0)Φ

= ℓβ(Ψ⊗1)β(autΨ(Φ)⊗1) ◦ aut
V,(0)
Ψ ◦ autV,(0)Φ

= ℓβ((Ψ⊛Φ)⊗1) ◦ aut
V,(0)
Ψ⊛Φ = aut

V,(10)
Ψ⊛Φ ,

where the last equality comes from the commutativity of diagram (2.15) and from

Proposition 2.14(i).

Lemma 2.21. For any Ψ ∈ G(k⟨⟨X⟩⟩), we have the following identities:

(i) For all a, b ∈ V̂G, autV,(10)Ψ (ab) = aut
V,(10)
Ψ (a) aut

V,(0)
Ψ (b).

(ii) For all a, b ∈ V̂G, autV,(10)Ψ (ab) = aut
V,(1)
Ψ (a) aut

V,(10)
Ψ (b).

Proof. Let a, b ∈ V̂G. We have

aut
V,(10)
Ψ (ab) = ℓβ(Ψ⊗1) ◦ aut

V,(0)
Ψ (ab)

= ℓβ(Ψ⊗1)(aut
V,(0)
Ψ (a) aut

V,(0)
Ψ (b))

= (ℓβ(Ψ⊗1) ◦ aut
V,(0)
Ψ (a)) aut

V,(0)
Ψ (b)

= aut
V,(10)
Ψ (a) aut

V,(0)
Ψ (b),

and

aut
V,(10)
Ψ (ab) = rβ(Ψ⊗1) ◦ aut

V,(1)
Ψ (ab)

= rβ(Ψ⊗1)(aut
V,(1)
Ψ (a) aut

V,(1)
Ψ (b))

= aut
V,(1)
Ψ (a)(rβ(Ψ⊗1) ◦ aut

V,(1)
Ψ (b))

= aut
V,(1)
Ψ (a) aut

V,(10)
Ψ (b).

Proposition 2.22. For Ψ ∈ G(k⟨⟨X⟩⟩), the k-module automorphism aut
V,(10)
Ψ

preserves the submodule V̂Ge0 +
∑
g∈G V̂G(g − 1).

Proof. Using Lemma 2.21(i), we obtain for any a ∈ V̂G and (bg)g∈G ∈ (V̂G)G,

aut
V,(10)
Ψ

(
ae0 +

∑
g∈G

bg(g − 1)

)
= aut

V,(10)
Ψ (a) aut

V,(0)
Ψ (e0) +

∑
g∈G

aut
V,(10)
Ψ (bg) aut

V,(0)
Ψ (g − 1)

= aut
V,(10)
Ψ (a)e0 +

∑
g∈G

aut
V,(10)
Ψ (bg)(g − 1) ∈ V̂Ge0 +

∑
g∈G

V̂G(g − 1).
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Proposition-Definition 2.23. For Ψ ∈ G(k⟨⟨X⟩⟩), there is a unique k-module

automorphism aut
M,(10)
Ψ of M̂G such that the diagram

(2.21)

V̂G V̂G

M̂G M̂G

aut
V,(10)
Ψ

−·1M −·1M

aut
M,(10)
Ψ

commutes.

Proof. It follows from Proposition 2.22.

Lemma 2.24. For any Ψ ∈ G(k⟨⟨X⟩⟩), we have

(i) for all (a,m) ∈ V̂G × M̂G, aut
M,(10)
Ψ (a ·m) = aut

V,(1)
Ψ (a) · autM,(10)

Ψ (m);

(ii) for all (w,m) ∈ ŴG × M̂G, aut
M,(10)
Ψ (w ·m) = aut

W,(1)
Ψ (w) · autM,(10)

Ψ (m).

Proof. The first identity is proved by using a combination of Proposition-Definition

2.23 and Lemma 2.21(ii). The second identity can be deduced from the first by

restriction on the subalgebra ŴG.

Corollary 2.25. There is a group action of (G(k⟨⟨X⟩⟩),⊛) on M̂G by topological

k-module automorphisms

(2.22) (G(k⟨⟨X⟩⟩),⊛) → Autcontk-mod(M̂G), Ψ 7→ aut
M,(10)
Ψ .

Proof. It is a combination of Proposition-Definition 2.23 and Proposition 2.20.

§2.3. The cocycle Γ and twisted actions

To an element Ψ ∈ G(k⟨⟨X⟩⟩), one associates ΓΨ ∈ k[[x]]× (see (1.15)). Then

ΓΨ(−e1) is an invertible element of V̂G.

Definition 2.26. For Ψ ∈ G(k⟨⟨X⟩⟩), we define the topological k-algebra auto-

morphism of V̂G:

(2.23) Γaut
V,(1)
Ψ := AdΓ−1

Ψ (−e1) ◦ aut
V,(1)
Ψ .

Proposition-Definition 2.27. For Ψ ∈ G(k⟨⟨X⟩⟩), the automorphism Γaut
V,(1)
Ψ

restricts to a topological k-algebra automorphism of the subalgebra ŴG denoted
Γaut

W,(1)
Ψ .

Proof. It follows from Proposition-Definition 2.17 and the fact that ΓΨ(−e1) is an
invertible element of ŴG.
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Proposition 2.28. There is a group action of (G(k⟨⟨X⟩⟩),⊛) on

(i) V̂G by topological k-algebra automorphisms

(2.24) (G(k⟨⟨X⟩⟩),⊛) → Autcontk-mod(V̂G), Ψ 7→ Γaut
V,(1)
Ψ ,

(ii) ŴG by topological k-module automorphisms

(2.25) (G(k⟨⟨X⟩⟩),⊛) → Autcontk-mod(ŴG), Ψ 7→ Γaut
W,(1)
Ψ .

Proof. (i) It follows from Proposition 2.14(ii), Lemma 1.8 and the fact that e1 is

invariant under aut
V,(1)
Ψ for any Ψ ∈ G(k⟨⟨X⟩⟩).

(ii) It follows from (i) thanks to Proposition-Definition 2.17.

Definition 2.29. For Ψ ∈ G(k⟨⟨X⟩⟩), we define the following topological k-mod-

ule automorphism of M̂G:

(2.26) Γaut
M,(10)
Ψ := ℓΓ−1

Ψ (−e1) ◦ aut
M,(10)
Ψ .

Lemma 2.30. For any Ψ ∈ G(k⟨⟨X⟩⟩), we have

(i) for all (a,m) ∈ V̂G × M̂G,
Γaut

M,(10)
Ψ (a ·m) = Γaut

V,(1)
Ψ (a) · ΓautM,(10)

Ψ (m);

(ii) for all (w,m) ∈ ŴG×M̂G,
Γaut

M,(10)
Ψ (w ·m) = Γaut

W,(1)
Ψ (w) ·ΓautM,(10)

Ψ (m).

Proof. It follows by a computation involving Lemma 2.24.

Proposition 2.31. There is a group action of (G(k⟨⟨X⟩⟩),⊛) on M̂G by topolog-

ical k-module automorphisms

(2.27) (G(k⟨⟨X⟩⟩),⊛) → Autcontk-mod(M̂G), Ψ 7→ Γaut
M,(10)
Ψ .

Proof. For any Ψ,Φ ∈ G(k⟨⟨X⟩⟩), we have

Γaut
M,(10)
Ψ⊛Φ = ℓΓ−1

Ψ⊛Φ(−e1) ◦ aut
M,(10)
Ψ⊛Φ

= ℓΓ−1
Ψ (−e1)Γ−1

Φ (−e1) ◦ aut
M,(10)
Ψ ◦ autM,(10)

Φ

= ℓΓ−1
Ψ (−e1) ◦ ℓΓ−1

Φ (−e1) ◦ aut
M,(10)
Ψ ◦ autM,(10)

Φ

= ℓΓ−1
Ψ (−e1) ◦ aut

M,(10)
Ψ ◦ℓΓ−1

Φ (−e1) ◦ aut
M,(10)
Φ

= Γaut
M,(10)
Ψ ◦ Γaut

M,(10)
Φ ,
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where the second equality uses Lemma 1.8 and Corollary 2.25, and the fourth

equality comes from the following computation:

ℓΓ−1
Φ (−e1) ◦ aut

M,(10)
Ψ (m) = Γ−1

Φ (−e1) autM,(10)
Ψ (m)

= aut
V,(1)
Ψ (Γ−1

Φ (−e1)) autM,(10)
Ψ (m)

= aut
M,(10)
Ψ (Γ−1

Φ (−e1)m)

= aut
M,(10)
Ψ ◦ℓΓ−1

Φ (−e1)(m),

for any m ∈ M̂G, where the second equality uses the fact e1 is invariant under

aut
V,(1)
Ψ and the third equality comes from Lemma 2.24.

§2.4. The stabilizer groups Stab(∆̂W
G )(k) and Stab(∆̂M

G )(k)

Using Proposition 2.28, we define the following group action of (G(k⟨⟨X⟩⟩),⊛) on

Mork-alg(ŴG, (ŴG)
⊗̂2):

(2.28) Ψ ·DW := (Γaut
W,(1)
Ψ )⊗2 ◦DW ◦ (ΓautW,(1)

Ψ )−1,

with Ψ ∈ G(k⟨⟨X⟩⟩) andDW ∈ Morcontk-alg(ŴG, (ŴG)
⊗̂2). In particular, the stabilizer

of DW = ∆̂W
G is the subgroup

(2.29) Stab(∆̂W
G )(k) :=

{
Ψ ∈ G(k⟨⟨X⟩⟩)

∣∣ (ΓautW,(1)
Ψ )⊗2◦∆̂W

G = ∆̂W
G ◦Γaut

W,(1)
Ψ

}
.

Similarly, Proposition 2.31 provides a group action of (G(k⟨⟨X⟩⟩),⊛) on the

k-module Morcontk-mod(M̂G, (M̂G)
⊗̂2):

(2.30) Ψ ·DM := (Γaut
M,(10)
Ψ )⊗2 ◦DM ◦ (ΓautM,(10)

Ψ )−1.

In particular, the stabilizer of DM = ∆̂M
G is the subgroup

(2.31) Stab(∆̂M
G )(k) :=

{
Ψ∈G(k⟨⟨X⟩⟩)

∣∣ (ΓautM,(10)
Ψ )⊗2◦∆̂M

G =∆̂M
G ◦ΓautM,(10)

Ψ

}
.

We then have the following inclusion of subgroups:

Theorem 2.32. Stab(∆̂M
G )(k) ⊂ Stab(∆̂W

G )(k) (as subgroups of (G(k⟨⟨X⟩⟩),⊛)).

Proof. Let Ψ ∈ Stab(∆̂M
G )(k). First, let us notice that

(Γ−1
Ψ (−e1)β(Ψ⊗ 1) · 1M)⊗2 = (Γaut

M,(10)
Ψ (1M))⊗2

= (Γaut
M,(10)
Ψ )⊗2 ◦ ∆̂M

G (1M)

= ∆̂M
G ◦ Γaut

M,(10)
Ψ (1M),(2.32)
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where the last equality follows from the assumption on Ψ. Then for any w ∈ ŴG,

∆̂W
G (Γaut

W,(1)
Ψ (w)) · (Γ−1

Ψ (−e1)β(Ψ⊗ 1) · 1M)⊗2

= ∆̂W
G (Γaut

W,(1)
Ψ (w)) · ∆̂M

G (Γaut
M,(10)
Ψ (1M))

= ∆̂M
G (Γaut

W,(1)
Ψ (w) · ΓautM,(10)

Ψ (1M))

= ∆̂M
G (Γaut

M,(10)
Ψ (w · 1M))

= (Γaut
M,(10)
Ψ )⊗2 ◦ ∆̂M

G (w · 1M)

= (Γaut
M,(10)
Ψ )⊗2(∆̂W

G (w) · ∆̂M
G (1M))

= (Γaut
W,(1)
Ψ )⊗2(∆̂W

G (w)) · (ΓautM,(10)
Ψ )⊗2(∆̂M

G (1M))

= (Γaut
W,(1)
Ψ )⊗2(∆̂W

G (w)) · (Γ−1
Ψ (−e1)β(Ψ⊗ 1) · 1M)⊗2,(2.33)

where the first and seventh equalities come from (2.32), the second and the fifth

from Proposition-Definition 2.11(iii), the third and the sixth from Lemma 2.30 and

the fourth from the fact that Ψ ∈ Stab(∆̂M
G )(k). Next, since Γ−1

Ψ (−e1)β(Ψ ⊗ 1)

is invertible in V̂G, the map ŴG → M̂G, w 7→ wΓ−1
Ψ (−e1)β(Ψ ⊗ 1) · 1M is an

isomorphism of left ŴG-modules. Consequently, identity (2.33) implies that

(2.34) ∀w ∈ ŴG, (Γaut
W,(1)
Ψ )⊗2(∆̂W

G (w)) = ∆̂W
G (Γaut

W,(1)
Ψ (w)),

thus establishing that Ψ ∈ Stab(∆̂W
G )(k).

§3. The stabilizer groups in terms of Racinet’s formalism

In this part we translate the inclusion of stabilizers in Theorem 2.32 into Racinet’s

formalism. In Section 3.1 we relate the various (G(k⟨⟨X⟩⟩),⊛)-actions, the ones

which we recalled from [Rac] in Section 1 and the ones we constructed in Section

2. This allows us to identify the group Stab(∆̂M
G ) from (2.31) with the group

Stab(∆̂mod
⋆ ) from [EF18]. In Section 3.2 we transport the action of the group

(G(k⟨⟨X⟩⟩),⊛) on ŴG given in Proposition 2.28(ii) into an action of the same

group on the algebra k⟨⟨Y ⟩⟩ and express the latter action in terms of Racinet’s

formalism. This enables us to identify the stabilizer group Stab(∆̂W
G ) given in

(2.29) with a group Stab(∆̂alg
⋆ ) defined in the framework of Racinet’s formalism.

The inclusion of stabilizers from Theorem 2.32 is then expressed as the inclusion

Stab(∆̂mod
⋆ ) ⊂ Stab(∆̂alg

⋆ ) (see Corollary 3.13).

§3.1. Identification of the subgroups Stab(∆̂M
G ) and Stab(∆̂mod

⋆ )

3.1.1. A (G(k⟨⟨X⟩⟩),⊛)-module isomorphism. Let us recall β : k⟨⟨X⟩⟩⋊G→
V̂G, the k-algebra isomorphism given in Proposition 2.4(ii).
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Lemma 3.1. For Ψ ∈ G(k⟨⟨X⟩⟩), the diagram

(3.1)

k⟨⟨X⟩⟩ V̂G

k⟨⟨X⟩⟩ V̂G

β◦(−⊗1)

SΨ aut
V,(10)
Ψ

β◦(−⊗1)

commutes.

Proof. Thanks to identities (1.8) and (2.20), this is done by composing the bottom

of diagram (2.16) with the following commutative diagram:

k⟨⟨X⟩⟩ V̂G

k⟨⟨X⟩⟩ V̂G.

β◦(−⊗1)

ℓΨ ℓβ(Ψ⊗1)

β◦(−⊗1)

Lemma 3.2. For Ψ ∈ G(k⟨⟨X⟩⟩), the diagram

(3.2)

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

κ◦q̄−1

SYΨ aut
M,(10)
Ψ

κ◦q̄−1

commutes.

Proof. Let us consider the following cube:

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

k⟨⟨X⟩⟩ V̂G

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G.

k⟨⟨X⟩⟩ V̂G

SYΨ

κ◦q̄−1

aut
M,(10)
Ψ

β◦(−⊗1)

SΨ

q̄◦πY

aut
V,(10)
Ψ

−·1M

κ◦q̄−1

β◦(−⊗1)

q̄◦πY
−·1M
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First, the left (resp. right) side commutes by definition of SYΨ (resp. aut
M,(10)
Ψ ).

Then the upper and lower sides are exactly the same square, which is commutative

thanks to Proposition 2.7. Finally, Lemma 3.1 gives us the commutativity of the

front side. This collection of commutativities together with the surjectivity of

q̄ ◦ πY implies that the back side of the cube commutes, which is exactly diagram

(3.2).

Proposition 3.3. For Ψ ∈ G(k⟨⟨X⟩⟩), the diagram

(3.3)

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

κ◦q̄−1

ΓSYΨ
Γaut

M,(10)
Ψ

κ◦q̄−1

commutes.

Remark 3.4. It follows from diagram (3.3) that κ ◦ q̄−1 is an isomorphism

between the (G(k⟨⟨X⟩⟩),⊛)-modules k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 and M̂G.

For the (G(k⟨⟨X⟩⟩),⊛)-module structure of k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 (resp. M̂G), see

Corollary 1.9 (resp. Proposition 2.31).

Proof of Proposition 3.3. This is done by composing the bottom of diagram (3.2)

with the following diagram:

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

κ◦q̄−1

ℓ
Γ
−1
Ψ

(x1)
ℓ
Γ
−1
Ψ

(−e1)

κ◦q̄−1

The above diagram is commutative because we have

ℓΓ−1
Ψ (−e1) ◦ κ ◦ q̄−1 ◦ q̄ ◦ πY = ℓΓ−1

Ψ (−e1) ◦ (− · 1M) ◦ β ◦ (−⊗ 1)

= (− · 1M) ◦ ℓβ(Γ−1
Ψ (x1)⊗1) ◦ β ◦ (−⊗ 1)

= (− · 1M) ◦ β ◦ (−⊗ 1) ◦ ℓΓ−1
Ψ (x1)

= κ ◦ q̄−1 ◦ q̄ ◦ πY ◦ ℓΓ−1
Ψ (x1)

= κ ◦ q̄−1 ◦ ℓΓ−1
Ψ (x1)

◦ q̄ ◦ πY ,

where the first and fourth equalities come from the commutativity of diagram

(2.4), the second from the fact that −·1M : V̂G → M̂G is a V̂G-module morphism,

the third from the fact that β ◦ (− ⊗ 1) : k⟨⟨X⟩⟩ → V̂G is a k-algebra morphism
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and the last from the fact that πY : k⟨⟨X⟩⟩ → k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 is k⟨⟨X⟩⟩-module

morphism and that for any a ∈ k⟨⟨X⟩⟩, q(x1a) = x1q(a).

Finally, since q̄ ◦ πY is a surjective k-module morphism, it follows that

ℓΓ−1
Ψ (−e1) ◦ κ ◦ q̄−1 = κ ◦ q̄−1 ◦ ℓΓ−1

Ψ (x1)
,

which is the wanted result.

3.1.2. An isomorphism of coalgebras. Let us recall ϖ : k⟨⟨Y ⟩⟩ → ŴG the

k-algebra isomorphism given in Corollary 2.9(i).

Lemma 3.5. The diagram

(3.4)

k⟨⟨Y ⟩⟩ ŴG

k⟨⟨Y ⟩⟩⊗2 Ŵ⊗2
G

ϖ

∆̂alg
⋆

∆̂W
G

ϖ⊗2

commutes.

Remark 3.6. It follows from diagram (3.4) that the map ϖ is a bialgebra iso-

morphism.

Proof of Lemma 3.5. Since all arrows on diagram (3.4) are k-algebra morphisms,

it is enough to work on generators. For (n, g) ∈ Z>0 ×G we have

ϖ⊗2 ◦ ∆̂alg
⋆ (yn,g) = ϖ⊗2

(
yn,g ⊗ 1 + 1⊗ yn,g +

n−1∑
k=1
h∈G

yk,h ⊗ yn−k,gh−1

)

= zn,g ⊗ 1 + 1⊗ zn,g +

n−1∑
k=1
h∈G

zk,h ⊗ zn−k,gh−1 .

On the other hand,

∆̂W
G ◦ϖ(yn,g) = ∆̂W

G (zn,g) = zn,g ⊗ 1 + 1⊗ zn,g +

n−1∑
k=1
h∈G

zk,h ⊗ zn−k,gh−1 .

Lemma 3.7. The diagram

(3.5)

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

(k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0)⊗2 M̂⊗2
G

κ◦q̄−1

∆̂mod
⋆

∆̂M
G

(κ◦q̄−1)⊗2

commutes.
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Proof. Let us consider the following cube:

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 M̂G

k⟨⟨Y ⟩⟩ ŴG

(k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0)⊗2 M̂⊗̂2
G .

k⟨⟨Y ⟩⟩⊗2 Ŵ⊗̂2
G

∆̂mod
⋆

κ◦q̄−1

∆̂M
G

ϖ

∆̂alg
⋆

πY

∆̂W
G

−·1M

(κ◦q̄−1)⊗2

ϖ⊗2

π⊗2
Y

(−·1M)⊗2

First, the left (resp. right) side commutes by definition of ∆̂mod
⋆ (resp. ∆̂M

G ). Then

the upper side commutes thanks to Corollary 2.9. Since the lower side is exactly

the tensor square of the upper side, it is commutative. Finally, Lemma 3.5 gives

us the commutativity of the front side. This collection of commutativities together

with the surjectivity of πY implies that the back side of the cube commutes, which

is exactly diagram (3.5).

3.1.3. Identification of stabilizer groups.

Theorem 3.8. Stab(∆̂M
G )(k) = Stab(∆̂mod

⋆ )(k) (as subgroups of (G(k⟨⟨X⟩⟩),⊛)).

Proof. Thanks to Proposition 3.3, the map κ ◦ q̄−1 : k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0 → M̂G is

a (G(k⟨⟨X⟩⟩),⊛)-module isomorphism. So it induces a (G(k⟨⟨X⟩⟩),⊛)-module iso-

morphism

Morcontk-mod(k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0, (k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0)⊗2) → Morcontk-mod(M̂G,M̂⊗2
G )

given by

∆ 7→ (κ ◦ q̄−1)⊗2 ◦∆ ◦ (κ ◦ q̄−1)−1,

where the (G(k⟨⟨X⟩⟩),⊛)-module structure on the k-module Morcontk-mod(M̂G,M̂⊗̂2
G )

(resp. Morcontk-mod(k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0, (k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0)⊗2)) is defined in (2.30) (resp.

(1.19)). Moreover, thanks to Lemma 3.7, the coproduct ∆̂mod
⋆ is sent to the coprod-

uct ∆̂M
G via this isomorphism. Thus, they have the same stabilizer.
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§3.2. The stabilizer group Stab(∆̂W
G ) in Racinet’s formalism

Proposition-Definition 3.9. For Ψ ∈ G(k⟨⟨X⟩⟩), we consider the k-algebra

automorphism of k⟨⟨Y ⟩⟩ given by

(3.6) ΓautYΨ := ϖ−1 ◦ Γaut
W,(1)
Ψ ◦ϖ.

Then there is a group action of (G(k⟨⟨X⟩⟩),⊛) on k⟨⟨Y ⟩⟩ by topological k-algebra

automorphisms given by

(3.7) G(k⟨⟨X⟩⟩) → Autcontk-alg(k⟨⟨Y ⟩⟩), Ψ 7→ ΓautYΨ.

Proof. For Ψ,Φ ∈ G(k⟨⟨X⟩⟩) we have

ΓautYΨ⊛Φ = ϖ−1 ◦ Γaut
W,(1)
Ψ⊛Φ ◦ϖ

= ϖ−1 ◦ Γaut
W,(1)
Ψ ◦ Γaut

W,(1)
Φ ◦ϖ

= ϖ−1 ◦ Γaut
W,(1)
Ψ ◦ϖ ◦ϖ−1 ◦ Γaut

W,(1)
Φ ◦ϖ

= ΓautYΨ ◦ ΓautYΦ .

We aim to give an explicit formulation of the action ΓautY in terms of Racinet’s

objects. Recall from Section 1.1 that for any g ∈ G and any a ∈ k⟨⟨X⟩⟩, axg ∈
k⟨⟨Y ⟩⟩. We then have the following lemma:

Lemma 3.10. Let g ∈ G. For any a ∈ k⟨⟨X⟩⟩ we have β(axg⊗ g) = ϖ ◦qY (axg).

Proof. It is enough to show this on a basis of the k-module k⟨⟨X⟩⟩. Let us take

the family

(xn1−1
0 xg1x

n2−1
0 xg2 · · ·x

nr−1
0 xgrx

nr+1−1
0 )r∈Z≥0,n1,...,nr+1∈Z>0,

g1,...,gr∈G

as such a basis. For r ∈ Z≥0, n1, . . . , nr+1 ∈ Z>0 and g1, . . . , gr ∈ G we have

xn1−1
0 xg1 · · ·x

nr−1
0 xgrx

nr+1−1
0 xg ⊗ g

= (xn1−1
0 ⊗ 1) ∗ (xg1 ⊗ 1) ∗ · · · ∗ (xnr−1

0 ⊗ 1) ∗ (xgr ⊗ 1)

∗ (xnr+1−1
0 ⊗ 1) ∗ (xg ⊗ 1) ∗ (1⊗ g).(3.8)

Therefore, we obtain

β(xn1−1
0 xg1 · · ·x

nr−1
0 xgrx

nr+1−1
0 xg ⊗ g)

= (−1)r+1en1−1
0 g1e1g

−1
1 en2−1

0 g2e1g
−1
2 · · · enr−1−1

0 gr−1e1g
−1
r−1

· enr−1
0 gre1g

−1
r e

nr+1−1
0 ge1g

−1g
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= (−1)r+1en1−1
0 g1e1 e

n2−1
0 g−1

1 g2e1 · · · enr−1−1
0 g−1

r−2gr−1e1

· enr−1
0 g−1

r−1gre1 e
nr+1−1
0 g−1

r ge1

= zn1,g1zn2,g
−1
1 g2

· · · znr−1,g
−1
r−2gr−1

znr,g−1
r−1gr

znr+1,g
−1
r g,

where the first equality comes from the computation (3.8) and the fact that

β : k⟨⟨X⟩⟩ ⋊ G → V̂G is a k-algebra morphism and the second equality comes

from the fact for any i ∈ {2, . . . , r}, g−1
i e0 = e0g

−1
i . On the other hand,

ϖ ◦ qY (xn1−1
0 xg1x

n2−1
0 xg2 · · ·x

nr−1−1
0 xgr−1

xnr−1
0 xgrx

nr+1−1
0 xg)

= ϖ(yn1,g1yn2,g
−1
1 g2

· · · ynr−1,g
−1
r−2gr−1

ynr,g−1
r−1gr

ynr+1,g
−1
r g)

= zn1,g1zn2,g
−1
1 g2

· · · znr−1,g
−1
r−2gr−1

znr,g−1
r−1gr

znr+1,g
−1
r g.

Proposition 3.11. For Ψ ∈ G(k⟨⟨X⟩⟩) and (n, g) ∈ Z>0 ×G we have

(3.9) ΓautYΨ(yn,g) = qY
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg(Ψ

−1ΓΨ(x1))xg
)
.

Proof. Let us start with the following computation:

Γaut
W,(1)
Ψ (zn,g) = −Γ−1

Ψ (−e1)β(Ψ⊗ 1)en−1
0 gβ(Ψ−1 ⊗ 1)e1ΓΨ(−e1)

= −Γ−1
Ψ (−e1)β(Ψ⊗ 1)en−1

0 gβ(Ψ−1 ⊗ 1)ΓΨ(−e1)e1
= β

(
(Γ−1

Ψ (x1)⊗ 1) ∗ (Ψ⊗ 1) ∗ (xn−1
0 ⊗ 1) ∗ (1⊗ g)

∗ (Ψ−1 ⊗ 1) ∗ (ΓΨ(x1)⊗ 1) ∗ (x1 ⊗ 1)
)

= β
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg(Ψ

−1ΓΨ(x1))xg ⊗ g
)

= ϖ ◦ qY
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg(Ψ

−1ΓΨ(x1))xg
)
,

where tg is the k-algebra automorphism given in Section 1.1, and the last equality

comes from Lemma 3.10. Thanks to this, we have for any (n, g) ∈ Z>0 ×G,

ΓautYΨ(yn,g) = ϖ−1 ◦ Γaut
W,(1)
Ψ ◦ϖ(yn,g)

= ϖ−1 ◦ Γaut
W,(1)
Ψ (zn,g)

= ϖ−1 ◦ϖ ◦ qY
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg(Ψ

−1ΓΨ(x1))xg
)

= qY
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg(Ψ

−1ΓΨ(x1))xg
)
.

Using Proposition 3.9, we define the following group action of (G(k⟨⟨X⟩⟩),⊛)

on Mork-alg(k⟨⟨Y ⟩⟩,k⟨⟨Y ⟩⟩⊗̂2):

(3.10) Ψ ·D := (ΓautYΨ)
⊗2 ◦D ◦ (ΓautYΨ)−1,
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with Ψ ∈ G(k⟨⟨X⟩⟩) and D ∈ Morcontk-alg(k⟨⟨Y ⟩⟩,k⟨⟨Y ⟩⟩⊗̂2). In particular, the stabi-

lizer of ∆̂alg
⋆ is the subgroup

(3.11) Stab(∆̂alg
⋆ )(k) :=

{
Ψ ∈ G(k⟨⟨X⟩⟩)

∣∣ (ΓautYΨ)⊗2 ◦ ∆̂alg
⋆ = ∆̂alg

⋆ ◦ ΓautYΨ
}
.

Theorem 3.12. Stab(∆̂alg
⋆ )(k) = Stab(∆̂W

G )(k) (as subgroups of (G(k⟨⟨X⟩⟩),⊛)).

Proof. Thanks to Proposition-Definition 3.9, the map ϖ : k⟨⟨Y ⟩⟩ → ŴG is an

isomorphism of (G(k⟨⟨X⟩⟩),⊛)-modules. So it induces a (G(k⟨⟨X⟩⟩),⊛)-module iso-

morphism Mork-alg(k⟨⟨Y ⟩⟩,k⟨⟨Y ⟩⟩⊗2) → Mork-alg(ŴG, Ŵ⊗2
G ) which is given by

∆ 7→ ϖ⊗2 ◦∆ ◦ϖ−1.

Moreover, thanks to Lemma 3.5, the coproduct ∆̂alg
⋆ is sent to the coproduct ∆̂W

G

via this isomorphism. Thus, they have the same stabilizer.

Corollary 3.13. Stab(∆̂mod
⋆ )(k)⊂ Stab(∆̂alg

⋆ )(k) (as subgroups of (G(k⟨⟨X⟩⟩),⊛)).

Proof. It follows immediately from Theorem 2.32 thanks to Theorems 3.8 and

3.12.

§4. Affine group scheme and Lie algebraic aspects

In this part we show that the results obtained in Sections 2 and 3 fit into the

framework of affine Q-group schemes and we make explicit the associated Lie

algebraic aspects. More precisely, we use the result of [EF18, Lem. 5.1] to show

that the stabilizer group functors Stab(∆̂W
G ) and Stab(∆̂M

G ) are affine Q-group

schemes, whose Lie algebras are stabilizer Lie algebras which we make explicit. In

order to carry out this program, in Section 4.1 we define Lie algebra actions of

(L̂ib(X), ⟨·, ·⟩) on V̂Q
G by derivations and by endomorphisms. From this, we derive

in Section 4.2 endomorphism actions on M̂G that lead us to an explicit form of the

Lie algebra of Stab(∆̂M
G ) that we show to be equal to the Lie algebra stab(∆̂mod

⋆ )

of (1.34). In Section 4.3 we define derivation actions on ŴG that make explicit

the Lie algebra stab(∆̂W
G ) of Stab(∆̂W

G ) which we show to contain stab(∆̂M
G ). In

Section 4.4 we identify stab(∆̂W
G ) with a Lie algebra stabilizer stab(∆̂alg

⋆ ) defined in

Racinet’s formalism by considering the infinitesimal version of the (G(k⟨⟨X⟩⟩),⊛)-

action ΓautY given in Section 3.2. We conclude by the inclusion stab(∆̂mod
⋆ ) ⊂

stab(∆̂alg
⋆ ).
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§4.1. Actions of the Lie algebra (L̂ib(X), ⟨·, ·⟩) on V̂Q
G

Proposition-Definition 4.1. Let ψ ∈ L̂ib(X). There exists a unique Q-algebra

derivation der
V,(0)
ψ of V̂Q

G given by

e0 7→ 0, e1 7→ [e1, β(ψ ⊗ 1)], g 7→ 0, for g ∈ G.

There is a Lie algebra action of (L̂ib(X), ⟨·, ·⟩) on V̂Q
G by Q-algebra derivations

(L̂ib(X), ⟨·, ·⟩) → DerQ−alg(V̂Q
G), ψ 7→ der

V,(0)
ψ .

Proof. One can prove that the assignment k 7→ Autk-alg(V̂G) is a Q-group scheme

with Lie algebra DerQ−alg(V̂Q
G) and that the map (G(k⟨⟨X⟩⟩),⊛) → Autk-alg(V̂G),

Ψ 7→ aut
V,(0)
Ψ is a morphism of Q-group schemes from k 7→ (G(k⟨⟨X⟩⟩),⊛) to the

latter k 7→ Autk-alg(V̂G) using Proposition 2.14(i). One checks that the corre-

sponding morphism of Lie algebras is as announced.

Proposition-Definition 4.2. For ψ ∈ L̂ib(X), we define der
V,(1)
ψ , the Q-algebra

derivation of V̂Q
G given by

(4.1) der
V,(1)
ψ = adβ(ψ⊗1) + der

V,(0)
ψ .

There is a Lie algebra action of (L̂ib(X), ⟨·, ·⟩) on V̂Q
G by Q-algebra derivations

(L̂ib(X), ⟨·, ·⟩) → DerQ−alg(V̂Q
G), ψ 7→ der

V,(1)
ψ .

Proof. Same as the proof of Proposition-Definition 4.1, replacing the morphism

Ψ 7→ aut
V,(0)
Ψ by Ψ 7→ aut

V,(1)
Ψ and using Proposition 2.14(ii).

Proposition-Definition 4.3. For ψ ∈ L̂ib(X), we define end
V,(10)
ψ to be the Q-

linear endomorphism of V̂Q
G given by

(4.2) end
V,(10)
ψ := ℓβ(ψ⊗1) + der

V,(0)
ψ .

There is a Lie algebra action of (L̂ib(X), ⟨·, ·⟩) on V̂Q
G by Q-linear endomorphisms

(L̂ib(X), ⟨·, ·⟩) → EndQ(V̂Q
G), ψ 7→ end

V,(10)
ψ .

Proof. Same as the proof of Proposition-Definition 4.1, replacing Autk-alg(V̂G) by
Autk-mod(V̂G), DerQ−alg(V̂Q

G) by EndQ(V̂Q
G) and the morphism Ψ 7→ aut

V,(0)
Ψ by

the morphism Ψ 7→ aut
V,(10)
Ψ , and using Proposition 2.20.
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§4.2. The stabilizer Lie algebra stab(∆̂M
G )

Proposition-Definition 4.4. For ψ ∈ L̂ib(X), there is a unique Q-linear endo-

morphism end
M,(10)
ψ of M̂Q

G such that the diagram

(4.3)

V̂Q
G V̂Q

G

M̂Q
G M̂Q

G

end
V,(10)
ψ

−·1M −·1M

end
M,(10)
ψ

commutes. There is a Lie algebra action of (L̂ib(X), ⟨·, ·⟩) on M̂G by Q-linear

endomorphisms

(L̂ib(X), ⟨·, ·⟩) → EndQ(M̂Q
G), ψ 7→ end

M,(10)
ψ .

Proof. The commutative diagram is given by an application of Proposition-Defi-

nition 2.23 for k = Q[ε]/(ε2) and ψ ∈ ker(G(k⟨⟨X⟩⟩) → G(Q⟨⟨X⟩⟩)).
For the second statement, one first checks that the assignment k 7→

Autk-mod(M̂G) is an affine Q-group scheme whose Lie algebra is EndQ(M̂Q
G).

Then, using Corollary 2.25, one deduces that the map Ψ 7→ aut
M,(10)
Ψ is a Q-

group scheme morphism from (k 7→ (G(k⟨⟨X⟩⟩),⊛)) to (k 7→ Autk-mod(M̂G)). One

finally proves that endM,(10) is its corresponding Lie algebra morphism.

To ψ ∈ L̂ib(X), one associates γψ ∈ Q[[x]] (see (1.27)). Then γψ(−e1) is an

element of V̂Q
G.

Proposition-Definition 4.5. For ψ ∈ L̂ib(X), we define the following Q-linear

endomorphism of M̂Q
G:

(4.4) γend
M,(10)
ψ := ℓ−γψ(−e1) + end

M,(10)
ψ .

There is a Lie algebra action of (L̂ib(X), ⟨·, ·⟩) on M̂Q
G by Q-linear endomorphisms

(4.5) (L̂ib(X), ⟨·, ·⟩) → EndQ(M̂Q
G), ψ 7→γ end

M,(10)
ψ .

Proof. The maps Ψ 7→ aut
M,(10)
Ψ and Ψ 7→ Γaut

M,(10)
Ψ are Q-group scheme mor-

phisms from (k 7→ (G(k⟨⟨X⟩⟩),⊛)) to (k 7→ Autk-mod(M̂G)). The Q-Lie algebra

morphism associated to the former Q-group scheme morphism is ψ 7→ end
M,(10)
ψ

by the proof of Proposition-Definition 4.4. The Lie algebra morphism associated

to the latter Q-group scheme morphism takes ψ ∈ L̂ib(X) to the right-hand side

of (4.4) in view of (2.26), and therefore is given by ψ 7→ γend
M,(10)
ψ . It follows

that the latter map is a Lie algebra morphism.
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Thanks to this result, we are able to provide a Lie algebra action of (L̂ib(X),

⟨·, ·⟩) on the space MorQ(M̂Q
G, (M̂

Q
G)

⊗̂2) via

(4.6) ψ ·DM := (γend
M,(10)
ψ ⊗ id + id⊗ γend

M,(10)
ψ ) ◦DM −DM ◦ γendM,(10)

ψ .

In particular, the stabilizer of DM = ∆̂M
G is the Lie subalgebra

stab(∆̂M
G ) :=

{
ψ ∈ L̂ib(X)

∣∣ (γendM,(10)
ψ ⊗ id + id⊗ γend

M,(10)
ψ ) ◦ ∆̂M

G

= ∆̂M
G ◦ γendM,(10)

ψ

}
.(4.7)

For a commutative Q-algebra k, recall the group Stab(∆̂M
G )(k) in (2.31). One

then has the following proposition:

Proposition 4.6. The assignment Stab(∆̂M
G ) : k 7→ Stab(∆̂M

G )(k) is an affine

Q-group scheme and Lie(Stab(∆̂M
G )) = stab(∆̂M

G ).

Proof. The first statement is obtained by an application of [EF18, Lem. 5.1], where

v = ∆̂M
G , and the second comes from the fact that the (L̂ib(X), ⟨·, ·⟩)-action on

MorQ(M̂Q
G, (M̂

Q
G)

⊗̂2) given in (4.6) is the infinitesimal version of the group action

of (G(k⟨⟨X⟩⟩),⊛) on Mork-mod(M̂G, (M̂G)
⊗̂2) given in (2.30), for any Q-algebra k.

Corollary 4.7. stab(∆̂M
G ) = stab(∆̂mod

⋆ ) (as Lie subalgebras of (L̂ib(X), ⟨·, ·⟩)).

Proof. It follows from Theorem 3.8 thanks to Propositions 4.6 and 1.25(iii).

§4.3. The stabilizer Lie algebra stab(∆̂W
G )

Proposition-Definition 4.8. For ψ ∈ L̂ib(X), we define the Q-algebra deriva-

tion of V̂Q
G:

(4.8) γder
V,(1)
ψ := ad−γψ(−e1) + der

V,(1)
ψ .

There is a Lie algebra action of (L̂ib(X), ⟨·, ·⟩) on V̂Q
G by Q-algebra derivations

(4.9) (L̂ib(X), ⟨·, ·⟩) → DerQ−alg(V̂Q
G), ψ 7→ γ der

V,(1)
ψ .

Proof. The maps Ψ 7→ aut
V,(1)
Ψ and Ψ 7→ Γaut

V,(1)
Ψ are Q-group scheme morphisms

from (k 7→ (G(k⟨⟨X⟩⟩),⊛)) to (k 7→ Autk-alg(V̂G)). The Q-Lie algebra morphism

associated to the former Q-group scheme morphism is ψ 7→ der
V,(1)
ψ by the proof

of Proposition-Definition 4.2. The Lie algebra morphism associated to the latter

Q-group scheme morphism takes ψ ∈ L̂ib(X) to the right-hand side of (4.9) in

view of (2.23), and therefore is given by ψ 7→ γ der
V,(1)
ψ . It follows that the latter

map is a Lie algebra morphism.
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Proposition-Definition 4.9. For ψ ∈ L̂ib(X), the derivation γ der
V,(1)
ψ restricts

to a derivation of the subalgebra ŴQ
G denoted γ der

W,(1)
ψ . Moreover, there is a Lie

algebra action of (L̂ib(X), ⟨·, ·⟩) on ŴQ
G by Q-algebra derivations

(4.10) (L̂ib(X), ⟨·, ·⟩) → DerQ−alg(ŴQ
G), ψ 7→γ der

W,(1)
ψ .

Proof. One can prove that the assignment k 7→ Autk-alg(ŴG) is a Q-group scheme

with Lie algebra DerQ−alg(ŴQ
G). The map Ψ 7→ Γaut

V,(1)
Ψ is a Q-group scheme

morphism from (k 7→ (G(k⟨⟨X⟩⟩),⊛)) to (k 7→ Autk-alg(V̂G)) and, by the proof of

Proposition-Definition 4.8, its associated Q-Lie algebra is ψ 7→ γ der
V,(1)
ψ . Thanks

to Proposition 2.28(ii), we obtain the commutative diagram

ŴG ŴG

V̂G V̂G,

Γaut
W,(1)
Ψ

Γaut
V,(1)
Ψ

where Ψ ∈ G(k⟨⟨X⟩⟩) with k a commutative Q-algebra. Using this diagram for

k = Q[ε]/(ε2) and ψ ∈ ker(G(k⟨⟨X⟩⟩) → G(Q⟨⟨X⟩⟩)), one obtains that the deriva-

tion γ der
V,(1)
ψ restricts to a derivation on ŴQ

G associated to the automorphism
Γaut

W,(1)
Ψ , which is denoted by γ der

W,(1)
ψ . Moreover, the diagram states that the

Q-group scheme morphism provided by Ψ 7→ Γaut
V,(1)
Ψ defines a Q-group scheme

morphism Ψ 7→ Γaut
W,(1)
Ψ from (k 7→ (G(k⟨⟨X⟩⟩),⊛)) to (k 7→ Autk-alg(ŴG)).

Therefore, the map ψ 7→ γ der
W,(1)
ψ from (L̂ib(X), ⟨·, ·⟩) to DerQ−alg(ŴQ

G), which

is the infinitesimal version of the latter Q-group scheme morphism, is a Q-Lie

algebra morphism.

Using Proposition-Definition 4.9, one can define the following Lie algebra

action of (L̂ib(X), ⟨·, ·⟩) on the space MorQ(ŴQ
G, (Ŵ

Q
G)

⊗̂2):

(4.11) ψ ·DW := (γ der
W,(1)
ψ ⊗ id + id⊗ γ der

W,(1)
ψ ) ◦DW −DW ◦ γ derW,(1)

ψ .

In particular, the stabilizer of DW = ∆̂W
G is the Lie subalgebra

stab(∆̂W
G ) :=

{
ψ ∈ L̂ib(X)

∣∣ (γ derW,(1)
ψ ⊗ id + id⊗ γ der

W,(1)
ψ ) ◦ ∆̂W

G

= ∆̂W
G ◦ γ derW,(1)

ψ

}
.(4.12)

For a commutative Q-algebra k, recall the group Stab(∆̂W
G )(k) in (2.29).

Proposition 4.10. The assignment Stab(∆̂W
G ) : k 7→ Stab(∆̂W

G )(k) is an affine

Q-group scheme and Lie(Stab(∆̂W
G )) = stab(∆̂W

G ).
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Proof. The first statement is obtained by an application of [EF18, Lem. 5.1] where

v = ∆̂W
G and the second comes from the fact that the Lie algebra action of

(L̂ib(X), ⟨·, ·⟩) on MorQ(ŴQ
G, (Ŵ

Q
G)

⊗̂2) given in (4.11) is the infinitesimal version

of the group action of (G(k⟨⟨X⟩⟩),⊛) on Mork-mod(ŴG, (ŴG)
⊗̂2) given in (2.28),

for any Q-algebra k.

Corollary 4.11. stab(∆̂M
G ) ⊂ stab(∆̂W

G ) (as Lie subalgebras of (L̂ib(X), ⟨·, ·⟩)).

Proof. It follows from Theorem 2.32 thanks to Propositions 4.10 and 4.6.

§4.4. The stabilizer Lie algebra stab(∆̂W
G ) in Racinet’s formalism

Proposition-Definition 4.12. For ψ ∈ L̂ib(X), we consider the derivation of

Q⟨⟨Y ⟩⟩ given by

(4.13) γdYψ := ϖ−1 ◦ γ derW,(1)
ψ ◦ϖ,

where γ der
W,(1)
ψ is as in Proposition-Definition 4.9 and ϖ : Q⟨⟨Y ⟩⟩ → ŴQ

G is

the Q-algebra isomorphism of Corollary 2.9(i). There is a Lie algebra action of

(L̂ib(X), ⟨·, ·⟩) on Q⟨⟨Y ⟩⟩ by derivations given by

(4.14) L̂ib(X) → DerQ−alg(Q⟨⟨Y ⟩⟩), ψ 7→ γdYψ .

Proof. One can prove that the assignment k 7→ Autk-alg(k⟨⟨Y ⟩⟩) is a Q-group

scheme with Lie algebra DerQ−alg(Q⟨⟨Y ⟩⟩). Thanks to Proposition-Definition 3.9,

the map (G(k⟨⟨X⟩⟩),⊛) → Autk-alg(k⟨⟨Y ⟩⟩), Ψ 7→ ΓautYΨ is a morphism of Q-group

schemes from k 7→ (G(k⟨⟨X⟩⟩),⊛) to the latter k 7→ Autk-alg(k⟨⟨Y ⟩⟩). It is related
to the morphism of Q-group schemes Ψ 7→ Γaut

W,(1)
Ψ of Proposition-Definition

2.27 by (3.6). It follows that the corresponding Q-Lie algebra morphism takes

ψ ∈ L̂ib(X) to the right-hand side of (4.13). The statement then follows from

(4.13).

For any ψ ∈ L̂ib(X), the derivation γdYψ can be expressed in the formalism of

[Rac] as follows:

Proposition 4.13. For ψ ∈ L̂ib(X) and (n, g) ∈ Z>0 ×G we have

γdYψ (yn,g) = qY
(
(ψxn−1

0 − xn−1
0 tg(ψ))xg

)
+ qY

(
(xn−1

0 γψ(xg)− γψ(x1)x
n−1
0 )xg

)
.(4.15)

Proof. The infinitesimal version of the identity in Proposition 3.11 is given by

γdYψ (yn,g) = qY
((
(−γψ(x1) + ψ)xn−1

0 + xn−1
0 tg(γψ(x1)− ψ)

)
xg

)
.

Identity (4.15) then follows.
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From Proposition 4.12, we define a Lie algebra action of (L̂ib(X), ⟨·, ·⟩) on the

space MorQ(Q⟨⟨Y ⟩⟩,Q⟨⟨Y ⟩⟩⊗̂2) by

(4.16) ψ ·D := (γdYψ ⊗ id + id⊗ γdYψ ) ◦D −D ◦ γdYψ .

In particular, the stabilizer of D = ∆̂alg
⋆ is the Lie subalgebra

(4.17) stab(∆̂alg
⋆ ) :=

{
ψ ∈ L̂ib(X)

∣∣ (γdYψ ⊗ id + id⊗ γdYψ ) ◦ ∆̂alg
⋆ = ∆̂alg

⋆ ◦ γdYψ
}
.

For a commutative Q-algebra k, recall the group Stab(∆̂alg
⋆ )(k) in (3.11).

Proposition 4.14. The assignment Stab(∆̂alg
⋆ ) : k 7→ Stab(∆̂alg

⋆ )(k) is an affine

Q-group scheme and Lie(Stab(∆̂alg
⋆ )) = stab(∆̂alg

⋆ ).

Proof. The first statement is a consequence of [EF18, Lem. 5.1] where v =

∆̂alg
⋆ and the second comes from the fact that the (L̂ib(X), ⟨·, ·⟩)-action on

MorQ(Q⟨⟨Y ⟩⟩,Q⟨⟨Y ⟩⟩⊗̂2) given in (4.16) is the infinitesimal version of the group

action of (G(k⟨⟨X⟩⟩),⊛) on Mork-alg(k⟨⟨Y ⟩⟩,k⟨⟨Y ⟩⟩⊗̂2) given in (3.10), for any Q-

algebra k.

Corollary 4.15. stab(∆̂alg
⋆ ) = stab(∆̂W

G ) (as Lie subalgebras of (L̂ib(X), ⟨·, ·⟩)).

Proof. It follows from Theorem 3.12 thanks to Propositions 4.14 and 4.10.

Finally, in Racinet’s formalism, this translates to the following corollary:

Corollary 4.16. stab(∆̂mod
⋆ ) ⊂ stab(∆̂alg

⋆ ) (as Lie subalgebras of (L̂ib(X), ⟨·, ·⟩)).

Proof. It follows immediately from Corollary 4.11 thanks to Corollaries 4.7 and

4.15.
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1M, 470

A⋊G, 471
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aut
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∆̂mod
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∆̂W
G , 480

der
V,(0)
ψ , 498

der
V,(1)
ψ , 498

dmrG0 , 466

DMRG0 (k), 464

end
M,(10)
ψ , 499

end
V,(10)
ψ , 498

expk⊛, 468

G, 458

G(k⟨⟨X⟩⟩), 460
Γ, 462

γ, 465
Γaut

M,(10)
Ψ , 488

Γaut
V,(1)
Ψ , 487

Γaut
W,(1)
Ψ , 487

ΓautYΨ, 495
γdYψ , 502
γ der

V,(1)
ψ , 500

γ der
W,(1)
ψ , 501

γend
M,(10)
ψ , 499

ΓSYΨ, 463
γsYψ , 467

k⟨⟨X⟩⟩, 458

k⟨⟨X⟩⟩/k⟨⟨X⟩⟩x0, 460
k⟨⟨Y ⟩⟩, 459
k⟨⟨Z⟩⟩, 475
κ, 475

L̂ibk(X), 468

L̂ib(X), 465

Lie, 465

M̂G, 470

M̂k
G, 470

morψ,ϕ, 468

ϖ, 479

πY , 460

⟨ψ1, ψ2⟩, 465
Ψ⊛ Φ, 461

Ψ⋆, 464

ψ⋆, 466

q, 459

q̄, 460

qY , 459

SΨ, 460

sψ, 465

SYΨ , 462

sYψ , 466

Stab(∆̂alg
⋆ )(k), 497

stab(∆̂M
G ), 500

Stab(∆̂M
G )(k), 489

stab(∆̂mod
⋆ ), 468

Stab(∆̂mod
⋆ )(k), 464

stab(∆̂W
G ), 501

Stab(∆̂W
G )(k), 489

tg, 459

Θ, 463

θ, 467

V̂G, 470
V̂k
G, 470

ŴG, 470

Ŵk
G, 470

X, 458

x0, 458

xg, 458

Y , 459

yn,g, 459
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