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Abstract

Racinet studied a scheme associated with the double shuffle and regularization relations
between multiple polylogarithm values at Nth roots of unity and constructed a group
scheme attached to the situation; he also showed it to be the specialization for G = un of
a group scheme DMR§ attached to a finite abelian group G. Then Enriquez and Furusho
proved that DMRS can be essentially identified with the stabilizer of a coproduct element
arising in Racinet’s theory with respect to the action of a group of automorphisms of a
free Lie algebra attached to G. We reformulate Racinet’s construction in terms of crossed
products. Racinet’s coproduct can then be identified with a coproduct AG defined on
a module MG over an algebra WG, which is equipped with its own coproduct AG , and
the group action on Mg extends to a compatible action of We. We then show that the
stabilizer of ﬁé’l, hence DMRY, is contained in the stabilizer of ﬁ‘év thus generalizing
a result of Enriquez and Furusho [Selecta Math. (N.S.) 29 (2023), article no. 3]. This
yields an explicit group scheme containing DMR', which we also express in the Racinet
formalism.
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§0. Introduction

A multiple L-value (MLV in short) is a complex number defined by the series
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where 7, k1, ..., k, are positive integers and z1, ..., z, in pux the group of Nth roots
of unity in C with N a positive integer. The series (0.1) converges if and only if
(kr,zr) # (1,1). These values have been defined by Goncharov [Gon98, Gon01]
and studied by many others like Arakawa and Kaneko [ArKa], and appear as a
generalization of the so-called multiple zeta values which in turn generalize the
special values of the Riemann zeta function. Among the relations satisfied by
the MLVs, our main interests here are the double shuffle and regularization ones.
Understanding these relations has been greatly improved thanks to Racinet’s work
[Rac].

Essentially, he attached to each pair (G,t) of a finite cyclic group G and a
group injection ¢: G — C*, a Q-scheme DMR" which associates to each commu-
tative Q-algebra k, a set DMR‘(k) that can be decomposed as a disjoint union
of sets DMR5 (k) (A € k). For any A € k, DMRj (k) is a subset of the algebra
of noncommutative power series k(X)) over formal noncommutative variables zg
and (z4)geq satisfying the following conditions:

(i) group-likeness for the coproduct A: k(X » = k(X >>®2 for which the elements
zo and (z4)g4eq are primitive;

(ii) group-likeness of the image in k(X)) /k{X )z of a suitable correction of the
element for the coproduct A, : k{(X)/k{(X)zo — (K{(X)/k{(X)xo)®? (see
[Rac, Def. 2.3.1));

(iii) conditions on the degree 1 and 2 terms of the element.

The double shuffle and regularization relations on MLVs are then encoded in
the statement that a suitable generating series of these values belongs to the set
DMR52(C) where tean: G = py — C* is the canonical embedding. Racinet also
proved that for any pair (G,t), the set DMR{(k) equipped with the product ®
given in (1.10) is a group that is independent of the choice of the embedding ¢,
so we denote it DMR (k). The pair (G(k((X))),®) is a group (see Proposition-
Definition 1.2) which contains DIVIR(? as a subgroup. Thanks to [Rac, Thm. IJ,
the sets DMR} (k) have a torsor structure over (DMRS (k), ®). This motivates the
study of this group.

In order to improve the understanding of the group (DMR(? (k), ®), Enriquez
and Furusho related this group with the stabilizer Stab(A,)(k) of the coproduct
A, in [EF18] for an action of (G(k{(X)),®) (see Section 1.2.2).

In addition, Racinet’s work also introduced a subalgebra k{Y)) of k{(X)
spanned by the words ending with z, for some g € G. It is identified, as a k-
module, with k(()f))/k((X))xo and is equipped with a coproduct k{(Y)) — k<<Y>>®2

compatible with A,. For this reason, the former coproduct also has the same nota-
tion in [Rac]. However, we will adopt distinct notation for these two coproducts,
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by denoting the coproducts on k{(Y) and k{(X)/k(X)zo by A¥ and Amed
respectively.
The situation, detailed in Section 1, may be summarized by the diagram

(0.2) k(Y) —— k(X)) ~ k(X)) — k(X))/k(X))xo,

where the first arrow is an algebra morphism, the second is the module structure
of the algebra k{(X)) on itself and the last is a module morphism. The three
last terms of sequence (0.2) are equipped with compatible actions of the group
(G(k{X))),®), while the first and last terms are equipped with the compatible
coproducts A™® and Amed, The stabilizer group construction of [EF18] is then
based on the fourth term of (0.2).

When G = {1}, it was proved in [EF21, Part 2, §3] that the subalgebra k{(Y))
of k(X)) is stable under the action of (G(k{(X))),®) on k{(X)). One can therefore
construct the stabilizer group Stab(A¥#)(k) of A¥® with respect to the action of
(G(K((X)),®) on Morgmed(k(Y), k(Y )®2). By [EF23, §3.1], one then has the
inclusion Stab(A™mod)(k) C Stab(A¥#)(k).

However, if G # {1}, the previous group action of (G(k{X))), ®) on k(X)) no
longer restricts to an action on k({(Y")) (see Proposition 2.15). This forbids a direct
generalization of the result of [EF23]. Such a generalization is obtained in Section 2
by introducing an algebra containing k{{X)), namely, the crossed product algebra
k{X)) x G (see Definition 2.2) and developing a formalism on it which is parallel
to Racinet’s. In this framework, there is a subalgebra WG of ﬁG isomorphic to the
algebra k((Y')) (see Proposition 2.6) and a quotient module Mg of the left-regular
Va- module isomorphic to the module k{X)/k{(X ))wo (see Proposition 2.7). The
algebra WG is equipped with a bialgebra coproduct A and the module MG is
equipped with a compatible coalgebra coproduct AM. The group (G(k{(X)),®)
acts compatibly on the algebra l/}g and on its regular left module. In contrast to
the situation with k(Y)) C k{(X)), the action on the algebra Vg restricts to the
subalgebra Wg, while the action on the left regular VG module induces an action
of the quotient module ./\/lg. This can be summarized in the following diagram:

—

(0.3) Weg —— 9@ &% 9@ E— ./T/l\g.

This situation allows us to define two stabilizers: one denoted Stab(ﬁg")(k) and
another denoted Stab(ﬁ‘év)(k). One shows that the latter group is a generalization
of the group with the same notation defined in [EF23] for G = {1}. One also shows
the inclusion (see Theorem 2.32, generalizing [EF23, Thm. 3.1])

Stab(AX) (k) C Stab(AY) (k).
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In Section 3 we identify Sta b(ﬁé")(k) with Stab(Amed) (k) (see Theorem 3.8).
We also identify the group Stab(AX)(k) with an explicit group Stab(A¥®)(k)
expressed in Racinet’s formalism by working out the suitable isomorphisms (see
Theorem 3.12).

In Section 4 we show that the group functors k — Stab(ﬁg‘)(k) and k —
Sta b(ﬁév) (k) are affine Q-group subschemes of k — (G(k{(X))), ®) and study their
Lie algebras. We show that these are stabilizer Lie algebras corresponding to the
Lie algebra actions which are the infinitesimal versions of the Q-group scheme
morphisms obtained from the previous actions of the group (G(k{(X))),®), which
are made explicit (see Propositions 4.6 and 4.10).

Notation. Throughout this paper, G is a finite abelian group whose product will
be denoted multiplicatively. For a commutative Q-algebra k, a k-algebra A, an
element x € A and a left A-module M we consider

o /.: M — M to be the k-module endomorphism defined by m — zm and if z
is invertible, then ¢, is an automorphism;

e r.: A — A to be the k-module endomorphism defined by a +— ax and if z is
invertible, then r, is an automorphism,;

e ad,: A — A to be the k-module endomorphism given by a — [z, a] = za —ax;

e Ad,: A — A to be the k-algebra automorphism defined by a — zaz~! with
x € A*.

§1. Racinet’s formalism of the double shuffle theory

In this part we recall from [Rac] the basic formalism of the double shuffle theory,
the main ingredients being presented in Section 1.1. In Sections 1.2 and 1.3 we
introduce the double shuffle group and the double shuffle Lie algebra respectively,
and we recall from [EF18] the stabilizer interpretation of both objects.

§1.1. Basic objects of Racinet’s formalism

Let k be a commutative Q-algebra. Let k{(X)) be the free noncommutative asso-
ciative series algebra with unit over the alphabet X = {zo} U{z, | g € G}. It is
complete graded with deg(zo) = deg(xy) = 1 for g € G. This algebra is endowed
with a Hopf algebra structure for the coproduct A: k(X)) — k(X )®? which is
the unique morphism of topological k-algebras given by ﬁ(xg) =z,01+1Qx,,
for any g € G U {0} ([Rac, §2.2.3]). Then let G(k({(X))) be the set of grouplike
elements of k(X)) for the coproduct A (see (1.6)). It is a group for the product of
the algebra k{(X)).
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The group G acts on the set X, the permutation ¢4 corresponding to g € G
being given by tq(xg) = zo, tg(xn) = z4n for h € G. This action extends to an
action by k-algebra automorphisms on k{{X)) ([Rac, §3.1.1]), which will also be
denoted g — t4. By checking on generators one can verify the identity

(1.1) Vg € G, ﬁotg :t;®20£,

since both sides are given as a composition of k-algebra morphisms. As a conse-
quence of (1.1), for any g € G, the k-algebra automorphism t,: k(X)) — k{(X))
restricts to a group automorphism ¢,: G(k{(X))) — G(k{(X)).

Throughout the paper, let us denote by k(X)) — kiwordsin o, (zg)sec}t 4
((v|w))w the map such that v =" (v|w)w (the empty word is equal to 1).

Each word in X can be uniquely written as

ni no Ny MNr41
(330 Lg, Ty Lgy "Ly Tg, Ly )T7n1 »»»»» Nyr41€L>0"
g150-,9r€G

This family forms a topological k-module basis of k{(X)). Let q be the k-module
automorphism of k(X)) given by ([Rac, §2.2.7])

ni—1 no—1 n,—1 Npyp1—1
TG P A S A )
_ ni—1 na—1 L. n,—1 n7~+1—1
(1.2) I R T LI/ S R .

For (n,g) € Zso x G, set yn 4 = xg ‘2, Let Y i= {yny | (n,9) € Zso x G}.
We define k((Y)) to be the topological free k-algebra over Y, where for every
(n,g9) € Zso x G, the element y, 4 is of degree n. One can show that k((Y) is
equal to the k-subalgebra k & @ ., k(X)) x4 of k(X)) ([Rac, §2.2.5] and [EF18,
§2.2]).

One denotes by qy the k-module automorphism of k{(Y")) given by ([Rac,
§2.2.7))

geG

(13) qY(ynl,gl e ynrvg'r‘) = Yni, Yno,gagyt ynr,grg;jl'

Let A2 k{Y) — (k((Y>>)®2 be the unique topological k-algebra morphism
such that for any (n,g) € Zso x G,

n—1

(1.4) A (Y g) = Yng @ L+ 1@ Yng + D Yk ® Yniogh1-

k=1
heG

The map A% is called the harmonic coproduct ([Rac, §2.3.1]) and endows k({(Y))
with a Hopf algebra structure. Moreover, one can easily check that the action ¢ on
k{(X)) restricts to an action on k{(Y)) by k-algebra automorphisms.
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The topological k-module quotient k{ X)) /k{( X))z is a left k(Y ))-module free
of rank 1. The topological k-module morphism 7y : k(X)) — k{X))/k{X)z¢ is a
surjective map and its restriction to k({(Y")) is a bijective map. It follows that there
is a topological k-module morphism

Ao k(X)) k(X Dwo — (K(X) k(X )wo)®2

uniquely defined by the condition that the diagram

(V) — 22 k()@
(1.5) ﬂyi l(m,)(m
k(0 KXty () (X)) 2

commutes. This equips k(X)) /k{X)xzo with a cocommutative coassociative co-
algebra structure.

The k-module automorphism q of k{(X)) preserves the submodule k{X ))x¢
and, therefore, induces a k-module automorphism of k{(X))/k{(X))xzo denoted q,
which is intertwined with the k-module automorphism qy of k{(Y’)) via the iden-
tification k{(Y)) ~ k{X)) /k{(X ) zo.

§1.2. The double shuffle group DMRoe(k)

1.2.1. The group (G(k{(X)),®). Let k be a commutative Q-algebra. Recall
that the set of grouplike elements of k(X)) for the coproduct A is

(L6) Gk(X) = (¥ e k(X)) | A(w) = ¥ o w}.

For ¥ € G(k{(X)), let auty be the topological k-algebra automorphism of
k(X)) given by ([EF18, §4.1.3] based on [Rac, §3.1.2])

(1.7) o> 2o and for g € G, g Ady (g-1)(Ty).

Define Sy to be the topological k-module automorphism of k{{ X)) given by ([EF18,
(5.15)] based on [Rac, (3.1.2.1)])

(].8) S\p = g\p oauty .

Lemma 1.1. For ¥ € G(k{(X))), the k-algebra automorphism auty is a bialgebra

automorphism of (k{(X)), 3)
Proof. Both auty and A are k-algebra automorphisms. So, using identity (1.1),
one can check on generators that

~

(1.9) A o auty = (auty)®? o A,

which is the wanted result. O



CROSSED PRODUCT INTERPRETATION OF amtg’ 461

Proposition-Definition 1.2 ([Rac, Prop. 3.1.6]). The pair (G(k{(X))),®) is a
group, where for U, ® € G(k{(X))),

(1.10) U@ P = Sy(d).

A proof of this claim is already available in Racinet’s paper; however, con-
sidering the way it has been stated (using categorical considerations), it might be
hard to read. Thus, we find it useful to rewrite it here. We will then need this
result:

Lemma 1.3. For U, ® € G(k({(X))), we have

(i) autyepe = auty o aute;
(11) S\I}@(I) = S\p ¢} Sq>.

This, in turn, uses the following technical lemma, which can be easily obtained
by checking this identity on generators:

Lemma 1.4. For ¥ € G(k{(X))) and g € G, we have auty oty = t, 0 auty .

Proof of Lemma 1.3. It is enough to prove the identity (i) on generators. Since
for U € G(k{(X))) we have auty(xg) = ¢, identity (i) is immediately true for z.
Then, for g € G, we have
auty o aute (ry) = auty 0 Ady (o-1)(7g) = Adauty (1, (@-1)) © auty(z,)
= Adauty (t,(@-1)) © Ady, (w-1)(Tg) = Ady, (auty (@-1))t, (w-1)(Tg)
= Ady, (auty (@ 1)w-1)(Tg) = Ady, ((wea)-1)(Tg) = attyea(z,),
where the fourth equality is obtained by applying Lemma 1.4. This concludes the
proof of identity (i). Finally, by using the latter, we get
Sy 0 Sp = Ly o auty olg o aute = £y 0 Ly, (9) © auty o aute
= Ly auty (@) © AUty o aute = fyge 0 autyge = Svee,
thus, establishing identity (ii). O
Proof of Proposition-Definition 1.2. From Lemma 1.1, we deduce that ® has its

image in G(k{(X))). Next, thanks to identity (ii) in Lemma 1.3, the product ® is
associative. Indeed, for ¥, ® and A € G(k{(X}))), we have

(Ve P)®A=Suea(A) =Su(Se(A) =Su(P®A) =TV @ (P®A).

Finally, the other group axioms being easy to check, this proves Proposition 1.2.
O
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Corollary 1.5. There is a group action of (G(k{(X)),®) on k{(X)) by

(i) topological k-algebra automorphisms

(L.11) (Gk(X)), ®) = AutiZi (k(X)), > auty,

(ii) topological k-module autornorphisms
(1.12) (G&(XD), ®) = Autilioa(k(X)), ¥+ Sy.
Proof. This result is exactly Lemma 1.3. O

Next we aim to give a group action of (G(k{{X))),®) on the topological k-
module k{(X))/k{(X)xo which is compatible with its action S on k{X)). It is
important to notice that this action is not given by compatibility using wy but by
the following:

Proposition-Definition 1.6 ([EF18, §5.4]). For Ve G(k({(X))), there is a unique
topological k-module automorphism SY of k(X)) /k{(X)zo such that the diagram

k(X)) ——2 s k(X))

(1.13) quYl lqowy
k{X) /k{(X )0 7 k{(X) /k{(X)zo

commutes.

Corollary 1.7. There is a group action of (G(k{(X)),®) on k{(X))/k{(X)xo by
topological k-module automorphisms

(1.14) (G(X)), ®) = Autic-moa (k(X) / k(X )20), ¥ Sy.
Proof. We have

Sy oSy oqomy =Sy oqomy 0Sp =qomy oSy oS =qomy oSysas,
and, by uniqueness of the k-module automorphism S\}J/@qﬂ we obtain

Sy 0S8y = Syeo- O
Let I': k(X)) — Kk[[z]]*, ¥ — D'y be the function given by ([Rac, (3.2.1.2)])

(1.15) Iy (z) =exp (Z (_;yl(qluglxl)xn)

n>2

This function is related to the classical gamma function as established in [Furll,
p. 344], thanks to [Dri90]. Moreover, it satisfies the following property:
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Lemma 1.8. For U, ® € G(k({(X))), we have l'yge = T'el's.

Proof. Lemma 4.12 in [EF18] says that the map (—|z 'z1): (G(k{(X)), ®) —
(k,+) is a group morphism, for any n € Zso. The result is then obtained by
straightforward computations. O

We then define the following topological k-module automorphism of k{X))/
k{X)xo:

(1.16) Ty = broi(pyy © S5 -

Corollary 1.9. There is a group action of (G(k{X)),®) on k{X))/k{(X)zo by
topological k-module automorphisms

(1.17) (G((X)), ®) = AutiZnoq (k(X)/K(X)zo), TSy
Proof. It follows from Corollary 1.7 and Lemma 1.8. O
The above automorphism is related to an automorphism introduced in [EF18].

Proposition 1.10. For any ¥ € G(k(X), the k-module automorphism 'SY is
equal to the k-module automorphism Sg(q,) with ©: (G(k(X)),®)— (k{X))*, ®)
being the group morphism given by ([EF18, Prop. 4.15])

(1.18) QW) =Ty (z1)W exp(—(¥|z0)zo).

Remark 1.11. Note that the product ® extends to a product on k{X))*. See
[EF18, Lem. 4.1] and [Rac, §3.1.2].

Proof of Proposition 1.10. Let ¥ € G(k{(X))) and v € k{(X)). First, we have

Sew)(v) = O(¥) auteg)(v) = (Fg,l(xl)\l' eXp(—(\IJ|xo)xo)) aute (g (v).
Moreover, one can check on generators that

aute(w) = Adexp((W]ao)ao) © AUbY -
Therefore, one obtains
Sew)(v) = Iyt (#1) W auty (v) exp(—(V|zg)z) = Ty’ (21)Sw (v) exp(—(¥|xo)zo).
Consequently,
'Sy (@omy (v)) =Ty (21)Sy (@omy (v)) = Ty (1) (G0 7y (Sw(v)))
=qomy(I'y' (21)Sw(v)) = Gomy(Sew)(v))-

This establishes the identity FS}I; = Sg(\p), thanks to Proposition-Definition 1.6.
O
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1.2.2. The group (DM ROG (k), ®). Let k be a commutative Q-algebra. For ¥ €
Gk( X)), set W, := qomy (I (z1)¥) € k(X)) /k(X)zo.
Proposition-Definition 1.12 ([Rac, Def. 3.2.1 and Thm. I)). If G is a cyclic
group, we define DMRS (k) to be the set of ¥ € G(k({(X) such that

(i) (¥lzo) = (P]a1) = 0;

(i) Aped(T,) =T, ® U,;

(iii) o |G| € {1,2}, (P]zoz1) = 0;

(iv) if |G| >3, for allg € G, (¥]zg —24-1) = 0.
The pair (DMRS (k), ®) is a subgroup of (G(K(X)),®).

Remark 1.13. (i) The notation DMR is for “double mélange et régularization”,
which is French for “double shuffle and regularization”.

(ii) Definition 3.2.1 in [Rac] gives sets DMRj (k) where A € k and ¢: G — C* is
a group embedding (therefore G is cyclic). If |G| € {1, 2}, the embedding ¢ is
unique; and if |G| > 3, for A = 0, condition (iv) does not depend on the choice
of ¢. For this reason, the embedding ¢« does not appear in this paper’s notation.

Thanks to Corollary 1.9, there is a group action of (G(k((X))),®) on the
k-module MoriZi,q (k{(X) /k (X))o, k(X)) /k(X)x0)*?) via

(1.19) U-D:=(FS)®)oDo (Nsy) 1,

with U € G(k((X)) and D € Morir,q (k(X)) /k(X Do, (k(X)/k{(X)x0)®?). In
particular, the stabilizer of D = A™M°4 is the subgroup ([EF18, §5.4])

(1.20)  Stab(A™d)(k) = {¥ € G(k( X)) | ('SY)&? 0 Amod = Amod o Igh1,
Proposition 1.14 ([EF18, Thm. 1.2]). If G is a cyclic group, we have
(1.21) DMRY (k) = {we Stab(A™°d) (k) | (W|zo) = (¥|zy) = 0}.

Since the condition (¥|zg) = (¥]z1) = 0 defines a subgroup of (G(k{(X))), ®),
Proposition 1.14 then identifies DM Rg (k) with the intersection of two subgroups
of (G(k(X)), ®).

1.2.3. An affine Q-group scheme structure. Recall that an affine Q-group
scheme is a functor G from the category of commutative Q-algebras to the category
of groups which is representable by a Hopf Q-algebra (see, for example, [Wat, §1.2]).

Proposition 1.15. The following assignments are affine Q-group schemes:

(i) k= (G(k{(X)), ®);
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(ii) DMRS : k — (DMRS (k), ®);
(i) Stab(Amed): k i (Stab(Amed)(k), ®).

Proof. (i) See [EF18,Lem. 4.6]. (ii) See [Rac, Thm.I]. (iii) See [EF18, Lem. 5.1].
O

Therefore, Proposition 1.14 provides an inclusion of affine Q-group schemes
(1.22) DMRS C Stab(AM°d)  (k v (G(k(X)), ®)).
§1.3. The double shuflfle Lie algebra DmtOG

Recall from [Wat, Thm. 12.2] that there exists a functor Lie from the category of
affine Q-group schemes to the category of Q-Lie algebras such that

Lie(G) = ker(G(Q[e]/ (%)) — G(Q)),

for any Q-group scheme G. In this section we provide an explicit formulation of
the Lie algebras obtained by applying the functor Lie to the inclusions (1.22).

1.3.1. The Lie algebra (Et\b(X), (-y+)). Let Et\b(X) be the free complete
graded Q-Lie algebra over the alphabet X. One can identify the Q-algebra QX))
with the enveloping algebra of EE(X) ([Rac, §2.2.3]). Therefore, EE(X) is identi-
fied with the Lie subalgebra of primitive elements in Q((X) for the coproduct A.
Namely,

(1.23) Sib(X) = {9 € QX)) | AW) = @1+ 109},

For 1) € £ib(X), let dy, be the derivation of QX)) given by ([Rac, (3.1.12.2)])
(1.24) dy(z9) =0, andforge G, dy(zg)=][zg,ts(¢)],
and let sy be the Q-linear endomorphism of Q((X)) given by ([Rac, (3.1.12.1)])
(1.25) Sy =Ly + dy.
We then define a Lie algebra bracket on EE(X) as ([Rac, (3.1.10.2)])

(1.26) V1,2 € Ei\b(X), (P1,102) = sy, (P2) — 5y, (Y1)

1.3.2. The Lie algebra (dmt§, (-,-)). Let us define v: QX)) — Q[[z]], ¥ —
Y, Where

(1.27) o) = 3 E ety )am,

n
n>2
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and for ¢ € Q((X)), set

be 1= Gomy (—(e1) + ) € QUXN/Q(X)o.

Proposition-Definition 1.16 ([Rac, Defs. 3.3.1, 3.3.8 and Prop. 4.A.i]). The set
ome§ of elements 1 € £ib(X) such that

(1) (Wlzo) = (W]a1) = 0;

(i) APY(ys) =1 @1+ 1@
(iii) (elzg ™ ag) = (=1)" (|25 wg-1) for (n,g) € Zso x G;
is a complete graded Lie subalgebra of (I/.‘,E(X), (,))-

Remark 1.17. According to [Rac, Props. 3.3.3 and 3.3.7], it is enough to have
(iii) in these cases:

for (n,g) = (2,1) if |G| = 2,

forn=1and any g € G if |G| > 3,
since this identity is always true for all the other cases.
1.3.3. Relation of DmtOG with a stabilizer Lie algebra.

Proposition 1.18 ([Rac, (3.1.9.2)]). There exists a Lie algebra action of (EE(X),
(,)) by Q-linear endomorphisms on QX)) given by

(1.28) (Cib(X), () — Endg(QYX)), % — sy.

Proposition-Definition 1.19 ([Rac, §4.1.1] and [EF18, Lem. 2.2]). For ¢ €
Lib(X), there exists a unique Q-linear endomorphism 53; of QUX ) /QUX ) xo such
that the diagram

QX)) ————— Q(X)

qo‘ﬂ'Yl l(jo#y

QX)) / QLX) xo 5 QX)) / QLX) o
commutes. Moreover, there is a Lie algebra action of (EE(X), (,)) by Q-linear
endomorphisms on QX)) /Q{XYxo given by
(1.29) (£i6(X), (-,)) = Endg(Q(X)/Q(X)zo), > s).

Remark 1.20. For 1) € EE(X ), Racinet defined 83; as a Q-linear endomorphism
of Q(Y')). Even if this paper proceeds differently, Racinet’s notation is kept so the
reader may refer to [Rac].
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For ¢ € EE(X ) we consider the following Q-linear endomorphism on Q{(X))/
QLX) xo:

(1.30) 'Ysi = e—w,(ml) + s};
The following result is an analogue of Proposition 1.10:

Lemma 1.21. For any ¢ € E%(X), the Q-linear endomorphism “*522 is equal to
szf(w), where §: (Et\b(X), (,)) = (QUX), (-,-)) is the Lie algebra morphism given
by ([EF18, Prop. 2.5])

(1.31) 0(¢) = =y (x1) + ¢ — (Plzo)zo
Remark 1.22. One can equip Q{(X)) with the bracket (-, -) as described in (1.26).
Proof of Lemma 1.21. Let ¢ € £ib(X) and a € Q((X)). First, we have
so(p) (@) = 0(¥)a + do(y)(a) = (—yp(21) + ¢ — (Y]zo)wo)a + docy) (a).
Moreover, one can check on generators that
do(y) = ad(yfso)eo + dy-
Therefore, one obtains
so() (@) = (=7 (21) + ¢ = (Plzo)z0)a + ad(y|zg)a, (@) + dy(a)

= =y (®1)a+ sy(a) — (Plro)azo.

Consequently,
"sy, (@0 my(a)) = —yy(21)(@o 1y (a)) + sy, (@0 Ty (a))

=qomy(—yy(z1)a) + qomy(sy(a)
=qomy(—y(z1)a+ sy(a)) = qomy (secy)(a)).

~—

This establishes the identity 7522 = s};( 0) thanks to Proposition-Definition 1.19.
O

Proposition 1.23. There is a Lie algebra action of (EE(X)7 (,)) by Q-linear
endomorphisms on Q(X))/Q{X)xo by

(1.32) (S1b(X), (-,) = Endg(QUX)/QUX)ao), 1 sy

Proof. Thanks to [EF18, §2.5], the map v ~— sq(y) is a Lie algebra action of
(Ei\b(X), () on QX)) /Q{X MHxo. The result then follows from Lemma 1.21. O
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The space of Q-linear morphisms

Morg(Q{X ) /Q(X )zo, (QYX)/QEX)z0)*?)

is then equipped with an action of the Lie algebra (EE(X), (+,-)) given by ([EF18,
§2.5))

(1.33) ¢-D = ("), ®id+id®7s})o D —Do7s),

where 1 € SI(X) and D € Morg(Q((X))/Q{(X o, (QUX)/Q(X)r0)2).
The stabilizer Lie algebra of D = A4 is then the Lie subalgebra of (£ib(X),

(1.34) stab(Am0) = {4 € Lib(X) | (s} @id +id® s)) 0 Amed = Amod o7V,
It is related to the Lie algebra omt§ as follows:

Proposition 1.24. We have

(1.35) ome§ = {4 € stab(A) | (¢zo) = (¢]z1) = 0}.

Proof. Thanks to Lemma 1.21, the stabilizer Lie algebra 5tab(£i“°d) is identified
with the stabilizer Lie algebra given in [EF18]. Therefore, the wanted equality is
stated in [EF18, Thm. 3.10] (omt§ being denoted by dmr in [EF18]). O

1.3.4. Exponential maps.

Proposition 1.25. We have (equalities of k-Lie algebras)

(i) Lie(k = (G(k(X)),®)) = (€ib(X), ().
(ii) Lie(DMRS,®) = (omt§, (-,-)), where G is a cyclic group.
(iii) Lie(Stab(Am0d) @) = (stab(Am0d), (-, .)).

Proof. (i) See [EF18, §4.1.4]. (ii) See [Rac, §3.3.8]. (iii) See [EF18, (5.12)]. O

Let k be a commutative Q-algebra. Let us denote E%k(X ) = EE(X )®k. Let
cbhy_y: Lib(X) x Libk(X) - £ibi(X) be the map defined by cbhy. (1), ¢) =
mory 4(cbh), where cbh in £ibg(a,b) is the Campbell-Baker-Hausdorff series
([EF18, §4.1.2]) cbh = log(exp(a) exp(b)) with log: 1 + Q(a,b) — Q{a, b)) and
mor, ¢ is the Lie algebra morphism @Q(a, b) — (E%k(X), (), a1, b— ¢.
We then define expf: E%k(X ) = G(k({(X))) to be the exponential map; it inter-
twines cbhy. ., and ®. The following proposition recalls from [Rac, §3.1.8] and
[DeGo, Rem. 5.14], the explicit form of expl(fB as well as gives a proof of this state-
ment.
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Proposition 1.26. For a commutative Q-algebra k and ¢ € E%k(X), we have
the following:

(i) the exponential map expk: E%k(X) — G(k(X)) is a bijection;

(ii) Sexplé(w) = exp(sy), where ¢ v sy is the map Eizk(X) — Endk_mod (K{(X)))
obtained from the map £ib(X) — Endg(Q{X))) in (1.25) by tensoring with
k and exp is the usual exponential of an endomorphism;

(iii) expf (1) = exp(sy)(1).

Proof. (i) See [EF18, §4.1.4 and §4.1.5].

(ii) The assignment k — Autk mod(k{(X))) is an affine Q-group scheme and
the map G(k{(X))) — Autxmoda(k(X)), ¥ — Sy defines an affine Q-group
scheme morphism from k — G(k{(X))) to k — Auty moa(k{(X))). Using the usual
dual number formalism, one sees that the associated Q-Lie algebra morphism
is EE(X) — Endg(Q(X)), ¢ — sy. As a consequence, for any ¢ € ﬁk(X),
Sexplé(w) = exp(sy).

(iii) It follows by applying the latter equality to 1, using the identity Sg (1) = ¥
for any ¥ € G(k{(X))). O

To conclude this part, let us note that the bijection of the map expg : E%k(X )
— G(k{(X))) implies that we have an identification between the group actions
defined in Section 1.2 with the exponential of the Lie algebra actions of the current
subsection.

8§2. A crossed product formulation of the double shuffle theory

We construct a crossed product version of the double shuffle formalism. The rele-
vant algebras and modules are introduced in Section 2.1:

(i) an algebra 9@ defined by generators and relations, which is then identi-
fied with a crossed product algebra involving Racinet’s formal series algebra
K(X);

(i) a bialgebra (We, ﬁév) isomorphic to the bialgebra (k{(Y)), A%#), where Weg
is a subalgebra of 9@

(iii) a coalgebra (./T/I\G7 ﬁg‘) isomorphic to the coalgebra (k{( X)) /k{(X )zq, Amed),
where M\G has a ﬁg—modulc structure inducing a free rank-one Wg—modulc
structure on it, compatible with the coproducts AY and AM.
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In Sections 2.2 and 2.3 we construct actions of the group (G(k{(X))),®) on
these objects by algebra and module automorphisms. This leads us in Section
2.4 to define the stabilizer groups of the coproducts ﬁ‘c’}; and ﬁé/‘ and show in
Theorem 2.32 that the stabilizer of the latter is included in the stabilizer of the
former.

§2.1. The algebra Vg, the bialgebra (Wg, A )
and the coalgebra (Mg, A )

2.1.1. The algebras VG and WG and the module Mg. Let 175 (or simply
)7(; if there is no risk of ambiguity) be the complete graded topological k-algebra
generated by {eq,e1} UG, where ey and ey are of degree 1 and elements g € G are
of degree 0 satisfying the relations

(i) g-h=gh;
(i) 1=1¢;
(iii) g-eo = eo - g;
for any g,h € G, where “” is the algebra multiplication which we will no longer
denote if there is no risk of ambiguity.

Remark 2.1. The notation ey and ey is inspired by [EF21] which in turn is
inspired by [DeTe].

Set % =k 9561 (or simply We if there is no risk of ambiguity). It is a
graded topological k-subalgebra of V¢.
Next, the quotient

,/T/l\lé = ﬁé/(ﬁéeo + Z VE(g — 1))

geqG

(or simply M\G if there is no risk of ambiguity) is a topological k-module. It is
also a topological VG module and by restriction, a topologlcal WG module. Let
1rq be the class of 1 € VG in MG The map — - 1aq: VG — MG is a surjective
topological k-module morphism whose kernel is VGeo +> e 9@ (g —1).

2.1.2. The algebra \A)G as a crossed product. First, let us introduce the basic
material about the crossed product of an algebra by a group acting by algebra
automorphisms.

Definition 2.2. Let A be a k-algebra such that the group G acts on A by k-
algebra automorphisms. Let us denote this action by G x A 3 (g,a) — a9 € A.
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The crossed product algebra of the k-algebra A by the group G denoted A x G is
the k-algebra (A ® kG, x), where x is the product given by

(2.1) Z(ag ® g) * Z(bh ® h) = Z ( Z agb‘}ql> ® k,
gelG heG keG *g,heG|gh=k

for ag,by € A with g € G ([Bou, Chap. 3, p. 180, Exer. 11}).

Proposition 2.3 (Universal property of the crossed product algebra). For any
k-algebra B, there is a natural bijection between the set Mork_a15(A % G, B) and
the set of pairs (f,7) € Mork.aig(A, B) X Morg,(G,B*) such that f(a9) =
r(9)f(a)r(g)~".

Proof. Indeed, given a k-algebra morphism 5: A x G — B we consider

e the k-algebra morphism f: A — B given for any a € A by f(a) = f(a ® 1);
e the group morphism 7: G — B* given for any g € G by 7(g9) = S(1 ® g).

These morphisms verify

m(9)fla)m(g™") =Bl @ g)Bla®1)B(1®g™")
=B((1leg*x@al)+(1vg"))
=B ®g)x(1og™)
= pB(a? ®1) = f(a’).

This shows that the map 8 — (f,7) is well defined. Now let us define a converse
map in order to get a bijection. Given any pair (f,7) of morphisms satisfying the
conditions of the proposition, we set 5: a ® g — f(a)7(g) for any a® g € A x G.
This is a k-algebra morphism. Indeed, for any a ® g and b®@ h € A x G,

Bla®g)* (b@h)) = B(ab’ @ gh)
= f(ab?)r(gh) = f(a)f(b7)7(g)7(h)
= f(a)7(9)f(O)T(9) " 7(9)7(R)
= f(a)7(g)f(b)7(h)
=pBla®g)Bb® h).
Thus the map (f,7) — [ is also well defined. Finally, one can easily check that
the composition of the two maps on both sides gives the identity. O

Now recall that g — t, defines an action of G on k{(X)) by k-algebra automor-
phisms ([Rac, §3.1.1]). We can then consider the crossed product algebra k{X) xG
for this action.
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Proposition 2.4. We describe the presentation of the crossed product algebra
k(X)) x G:

(i) There is a unique k-algebra morphism a: Vo — k(X)) x G such that ey —
ro®1l,e1— —x1®1and g— 1®g.
(ii) There is a unique k-algebra morphism B: k(X)) xG — Ve such that o®1
eo and for g € G, 1, @ 1— —ge1g™! and 1@ g~ g.
(iii) The morphisms a and B given respectively in (i) and (ii) are isomorphisms
which are the inverse of one another.

Proof. (i) We verify that the images by the morphism « of the generators of 17G
satisfy the relations of Vg:

e For g,h € G, a(g) xa(h) = (1®g) x (1@ h) = 1ty(1) ® gh = 1 ® gh = a(gh).

e a(lg)=1®1g = a(l).

e For g € G, afg) xaley) = (1®@g) * (xg @ 1) = 1ty(xg) ® g = 29 ® g. On the
other hand, we have a(eg) xa(g) = (2o ®@ 1) * (1 ®¢g) = zot1(1) ® g =20 @ g.

) * a(g).

(ii) First, since for any g € G, the element —ge; g~
k-algebra morphism f: k(X)) — 17@ such that o — eg, ¥, — —ge1g~!. Second,
there is a unique group morphism 7: G — ﬁé given by g — g. Next, for any g € G,
the maps k(X)) — Ve defined by a +» f(ty(a)) and a — 7(g)f(a)T(g)~"! are k-
algebra morphisms that are equal by restriction on generators z;, (h € {0} UG) of
k{(X)). Indeed,

Thus a(g) * a(ep) = a(eg

Lig of degree 1, there is a unique

7(9)f(@o)T(9) " = geog ™' = eogg™" =eo = f(w0) = f(ty(w0)),
and for h € G,

7(9)f(@n)7(9) " = g(—herth™")g™" = —ghei(gh) ™" = flxgn) = f(tg(an)).

We then have for any ¢ € G and any a € k(X)), f(ty(a)) = 7(g9)f(a)T(9)" .
Finally, according to the universal property of crossed products, the pair (f,7)
gives a unique k-algebra morphism S: k(X)) x G — ]A/C,v, a® g+ f(a)T(g) which
verifies B(zg ® 1) = f(zo)7(1) = eo, Blwy ® 1) = f(zy)7(1) = —geig™! and
Bleg)=f1)(g9) =g, forgeG.

(iii) It is enough to show that the compositions of o and S give the identity.

First, since o a: \76; — 170, it is enough to compute it on generators. We have
o~ TgR1l—ep, e —xr1R®1—»e;and g— 1R g+ g. Thusﬁoazidgc.
For the converse, we show that a o 8 € Mork.ais (k{(X)) ¥ G, k{X)) x G) and

the identity of k({(X)) x G have the same image via the bijection of the universal



CROSSED PRODUCT INTERPRETATION OF amtg’ 473

property of crossed products. The image of the identity is the pair
fiara—a®l and T4(g) =1®g.
Next, let us compute the image of a o 8. The k-algebra morphism f is given for
any a € k(X)) by
fla)=aoBla®1).
Since it is a k-algebra morphism, it is enough to determine it on x4, g € {0} UG.
We have
flxg) =aoBlzog®1) =aleg) =20 ® 1,
and for g € G,

f(zg) = aoflzg®1) = a(—gerg™")
= —a(g) xaler) xa(g™)
=—(1@g*(—ne@)x(1vg")
=(ty(z)@g)x(1og ) =z,01.

We then deduce that for any a € k{(X)), f(a) = a ® 1. Next, the group morphism
7: G — (k{(X) x G)* is given for any g € G by

T(9) =aof(l®g)=alg) =1®g.

Finally, by uniqueness of the images we conclude that a0 8 = idyxyxa- O
2.1.3. The bialgebra (Wg, A‘é‘)) and the coalgebra (./(/l\g, 33’1)

Proposition 2.5. The family

ni—1 n,.—1 Npyp1—1
(eg'  gre1---eq” greieg Gr+1)r€Zs0,n1 ;.. 1€L50,

91,--,9r+1E€EG

is a basis of the k-module 9@.

Proof. Since the family

r ni—1 ne,—1 Nyy1—1
((_1) Ly Lgy =Ty Lgy---g-Lo )T62207n17'~~7nr+162>07
g1,--,9r€G

is a basis of the k-module k{(X)), it follows that the family

r ni—1 n,.—1 Nnpp1—1
((_1) ) Lg, " Ty Lgy--g.Lg g1 'grngrl)TGZZoml-,---mTHEZw,

g15e9r+1€G

is a basis of the k-module k(X)) ® kG. Thus, its image by the bijection 8 defined
in Proposition 2.4(ii) is a basis of V. Moreover, for r € Z>g,n1, ..., 741 € Zso
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and g1,...,9r+1 € G, we have
xgl_lxgl e xgr_lxgy--grxgwrlil @ g1 Grgr+1
= (@ T @) x (g, @ 1) ke (257 @ L) * (g, @ 1)
(2:2) s (2 T @) (1@ g) x k(1@ g) % (1@ grg).
Then

ﬁ((—l)rmgl_lmgl e 'mgr_lxgl---grxgrﬂil ® g1 GrGrs1)
= (1) Blag @ 1)B(xg, @1) -+ By ©1)B(zg,.g, ® 1)

Blagt e DBleg) - (1 g)B01® gri)

—1 —1 npp1—1

91"'9r€19f1"'9r €9 g1 Grgr+1

np41—1 —1

gt g g gegrerey ™ gy

_ o ni—1 —1 Ny
=€y gi1€191 "€y

= grer e
g g grgr
(2.3) = e grer ey grerey ™ goga,
where the first equality comes from (2.2) and the fact that 5: k(X)) x G — ]A)G is
a k-algebra morphism. The second equality is obtained by computing the images
of appropriate elements by 3. The third equality is a consequence of the equality
geog = epg for any g € G and the last one comes from the fact that the group G is
abelian. O

Proposition 2.6. We have the following:
(i) The family

ni—1 n,.—1 Npyp1—1
{1} U (60 gi€1- - €y greleor gr+1€1)TEZZO,nl,...,nr,nr+1€Z>o,
91se-9r,9r+1€G

is a basis of the k-module Wg.

(ii) The k-subalgebra )7\/\(; is topologically freely generated by the family
Z = {2y = —€} " ger | (n,9) € Zso x G,
where deg(zpn,q) = n.
Proof. (i) First, )//V\G is the image of the k-module morphism k & 17@ — 9@,

(A, v) = XA+ vey. Second, according to Proposition 2.5, the family

G1seeesGr Gr+1€EG
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is a basis of the k-module k & 17(;. Moreover, the image of this basis by this k-
module morphism is the family

ny—1 ny.—1 Nprp1—1
{1} U (601 gi€i - €y 9r€1€07 ngrlel)TEZZO,nl,...,7lr,nr+1€Z>0,
g1se-9r,9r+1€G
which is free since it is contained in a basis of the target. This implies that this
family is a basis of the image of the previous morphism which is Wg.

(ii) Let k((Z)) be the topological free algebra over the letters z,, (n € Zsq,
g € G), which we view as free variables with deg(z, 4) = n. Then there is a unique
k-algebra morphism k{Z)) — WG given by 2, 4 — —ef " 'ge;. Let us show that it
is an isomorphism:

The free k-module k{(Z)) has basis

{1} U (Znhgl e an+l;gr+1)r€ZZO»nl ,,,,, Nr41€ZL>0
91,--,9r+1E€EG

and, as a k-module, )7\/\6 has basis

(AU (ef grer ey T gri1€1)rezan i, 1 €m0,
g1,--,9r+1€EG
according to (i). One computes the image by 2, , — —el~'ge; of the former basis
and finds it to be equal to the latter basis. Therefore, z, 4 — feg_lgel induces a
bijection between the two bases — up to appropriate signs — and then a bijection
between k{(Z) and We. Hence, Zng + —ed 'ge; is a k-algebra isomorphism
between k({(Z)) and We. O

So, from now on, by abuse of notation, we will identify elements of WG with
elements of k(7)) by the k-algebra isomorphism 2, , — —e{l ™' ge;.

Proposition 2.7. There ezists a k-module isomorphism k: k(X)) /k{(X )z —
M uniquely determined by the condition that the diagram

k(xy 2, 9,

(2.4) J l-AlM

k(X)) k(X )xo —— Mg
commautes.

We will prove this proposition by using the following general lemma. In this
lemma, for any k-module M and any submodule M’, let us denote the canonical
projection by can(M,M'): M — M/M’'.
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Lemma 2.8. Let f: M — N be a k-module morphism. Let M’ be a submodule of
M and N’, N” two submodules of N such that

(i) f(M')C N' C f(M')+ N" and
(ii) can(N,N")o f: M — N/N" is a k-module isomorphism.

Then there is a unique k-module morphism f: M/M' — N/(N'+ N") such that
the diagram

M—' N

(25) can(M,M’)J J{can(N,N’#»N”)
M/M' —— N/(N'+N")

commutes. Moreover, [ is a k-module isomorphism.

Proof. Thanks to (i), f(M') C N’. This implies that f(M')+N" Cc N'+N". From
(i) again, we have N’ C f(M') + N”. This implies that N' + N” C f(M') + N".
Therefore

(2.6) F(M')+ N" = N'+N".

Next, from (ii), we have that can(N,N")o f: M — N — N/N” is an isomor-
phism. One checks that it restricts to an isomorphism from M’ to (f(M') +
N")/N". Thanks to equality (2.6), this yields an isomorphism from M’ to (N’ +
N")/N". This allows us to construct a unique k-module morphism f: M/M’' —
(N/N")/((N"+ N'")/N") such that the lower square of the diagram

Can(N,N”)of‘M/

M (N/ + N//)/N//
(2.7) M can(N,N")of N/N"
Can(M7M')l lcan(N/N”,(N’JrN")/N")

M/M" ———— (N/N")/((N"+ N")/N")

commutes. Moreover, since can(N,N”) o f: M — N/N" is an isomorphism, so
is f: M/M’ — (N/N")/((N’ + N")/N"). Finally, we construct an isomorphism
f: M/M' — N/(N'+ N") by composing f with the inverse map (N/N")/((N’' +
N")/N") ~ N/(N' + N") given by the third isomorphism theorem. Thanks to
diagram (2.7), the isomorphism f: M/M’ — N/(N'+ N") is such that diagram
(2.5) commutes. O
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Proof of Proposition 2.7. This is done by application of Lemma 2.8 for M =
K(X), N = Vg, M’ = k(X)zo, N' = Vgeo, N = X, Valg — 1) and f =
B o (—®1). It, therefore, suffices to prove that criteria (i) and (ii) of Lemma 2.8
are satisfied.

Criterion (i). B(k{(X)zo®1) C Vaeo C Bk(X)zo @ 1)+ 3 e Valg — 1).
For the first inclusion, we have for any a € k{({(X)),

Blazo ® 1) = Bla ® 1)B(z0 @ 1) = Bla ® 1)eq € Vaeo.

Therefore, B(k{(X))zo ® 1) C Vgeo.
For the second inclusion, by using the basis of Vg described in Proposition

2.5, we have for r € Z>g, n1,...,nr41 € Z>o and g1,..., 941 € G,
(ep tgrer---eftgrerey ™ gri)en
=g tgrer - 68"71gre1egr“gr+1
=(-1)" (m ‘ 'xgr_lmgr--grxgrﬂ ® g1 Gri1)
= (=1)"B((zqy ‘Tgr_l‘rgl QTISTH 1)IO ®1)g1- gri1
= (=1)"B((zg "ﬂfo" Tagygag T oo @ 1)
+ (D78 gy 2y gy g2 im0 @ 1) (g1 grgr — 1),

where the first equality comes from the relation geg = egg for any g € G, the second
from computation (2.3) and the third from the fact that azo®g = (axo®1)*(1®g)
for any a € k(X)) and any g € G. Finally, the last equality shows that we obtain
an element of B(k{(X)zo®1)+>_ s Va(g—1), thus proving the claimed inclusion.

Criterion (ii). can(Vg, > gea Va(g—1))ofo(—21): k(X)) = Va/ > geG Velg—1)
is an isomorphism.
Let us consider the commutative diagram

k(X)) ® @ kG —— k(X)) @ kG

h

(2.8) EeBG(k«X» ?kG) —— ) ® kG
2 jﬁ

O Ve — Va,
e
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where the top horizontal arrow is the tensor product of the identity and the k-
module morphism

PG > kG,  (hg)gec = Y helg—1),

9€q@ geq

and the bottom horizontal arrow is the k-module morphism
@VG —Va, (vg)gec — ng(g—l)-
geG geG

Since the vertical arrows are isomorphisms, they induce an isomorphism between
the cokernels of the top and bottom morphisms. We can then extend the above
diagram in the following way:

k(X)) ® @ kG — k(X)) @ kG —— coker(k({X}) ® @ kG - k(X)) ® kG)
geG H geG

(2.9) @ k(X)) @kG) — k(X)) @ kG

geG
@ % JB
geG

@D Vo Vo coker < @D Ve — 175;)

geG geqG

On the other hand, we have

cover (Ve = Ve ) = | 3 Tals 1)

geG g€eG
and
coker (@kG — kG) sz/ZkG(g— 1) ~ k.
S geq
Therefore,

coker <k<<X>) ® PG = k(X)) ® kG> ~ k{(X)) ® coker (EB kG — kG)

geG geG
~ k(X)) @ k ~k({(X)).

Thus, the isomorphism between cokernels establishes that k(X)) is isomorphic to
Va/ 3 4eq Va(g — 1). Moreover, thanks to the commutativity of diagram (2.9),

this isomorphism is exactly can(Vg, > gec Valg—1))ofBo(-—@1). O
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Corollary 2.9. We have the following:

(i) The diagram

K(Y) —F 5 We

(2.10) Wl J—'lM

k(X k(X )0 ——= Ma

commutes, where w: k{(Y)) — We is the k-algebra isomorphism uniquely
defined by yn,g — Zn.g-

(ii) The map — - 1pq: )7\/\(; — M\G s a k-module isomorphism and M\G is free of
rank 1 as a Wg—module.

Proof. (i) One needs to show the equality of two maps from k((Y')) to M. Since
these maps are both k-module morphisms, it is enough to show the equality of

the images of the elements of a basis of the source module. Such a basis is ([Rac,
§2.2.7.])

(yn1791 e ynrgr)7’62207"17--47"»~GZ>07'

For r € Z>¢, n1,...,ny € Zso and gy, ..., g9, € G we have

(_ : 1/\/1) © w(y’ﬂhgl T ynr,gr) = Zni,g1 " Ang,ge IyvE
On the other hand,

KO (171 © Try(ynl,gl o 'ynr»gr) =

(
(mglilxgl "'xgrilxgr--gr ®1)-1pm

1

-1 =1 -1 -
—1)"ey " Tgier-ceq” gre1gy oo gyl

(
(—ef* grer) - (—efmgrer) - T
z.

ni,g1 " Ang,gr Im,
where the first equality comes from [Rac, §2.2.7], the second from the commuta-
tive diagram (2.4), the third from computation (2.3) with n,4; = 1 and g,4+1 =

(g1-+-gr)"! and the fourth from the fact that for any v € Vg and any g € G, we
have vg - 1y = v - 1pq.

(ii) First, the following maps are k-module isomorphisms:

o @: k{(Y)) — We: it sends the basis

(ynhgl T ynr,gr)TGZzo,nl,---,nr€Z>0,
g1,--,9r€G
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of the k-module k{(Y)) to the basis

(Znhgl T an,gr)TGZzoﬂh ,,,,, nr€L>0,
g1,--,9r€G

of the k-module Wg (where the latter family is a basis of We thanks to
Proposition 2.6).

o my: k({(Y) = k{(X))/k{(X)xo: see [Rac, §2.2.5].

o ko !t k(X)) /k(X )z — Mg: see Proposition 2.7 and [Rac, §2.2.7].

Next, the diagram (2 10) commutes, thanks to (i). This allows us to conclude that
the map — - 1pq: WG — MG is a k-module isomorphism and that MG is a free
Wea-module of rank 1. O

Remark 2.10. If G # {1}, the composed algebra morphisms

®1)

K(Y) 2 We s Vo and  k(Y) < k(X)) 22520, 5,

1

do not coincide. This is motivated by the presence of @~ in diagram (2.10) whereas

it is missing in diagram (2.4).

Now we are able to put more structure on WG and MG More precisely, we
are going to define a coproduct on WG and a coproduct on MG

Proposition-Definition 2.11. We consider the coproducts on 17\/\@ and on ﬂg:

(i) There exists a unique topological k-algebra morphism ﬁé‘} W\G — W§2 such
that for any (n,g) € Zso x G,

n—1

(2.11) ﬁév(zn’g) =2ng®1+1® 24,4+ Z Zkh @ Zn_k gh—1-

k=1
heG

The pair (WG, 31&\/) is then a topological bialgebra.
(ii) There exists a unique topological k-module morphism ﬁé’l M\G — ./T/l\%2
such that the diagram

We _Ae (WG)@
(2.12) _ 1% J,,lm
MG T (M\G)

commutes. The pair (Mg,AéA) is then a cocommutative coassociative co-
algebra.



CROSSED PRODUCT INTERPRETATION OF amtg’ 481

(iii) For any w € We and any m € Mg we have
(2.13) AM(w-m) = AW (w) - AN (m).
Proof. (i) This is a consequence of Proposition 2.6(ii).
(ii) This is a consequence of (i) and Corollary 2.9(ii).
(iii) Since — - 1pq: W\G — M\G is a k-module isomorphism, for m € M\G there
exists a unique w’ € Wg such that m = w’ - 1,4. We then have
A (w-m) = A (ww' - 1) = AP (ww') - 152
= AG ()AL (w') 137 = AF (w) - (A (w') - 157)

~

= AP (w) - AN (w' - 1p1) = AP (w) - AY (m),

where the first and the fourth equalities come from — - 1a: WG — /\//TG being a
Wea-module isomorphism, the second and the fifth from the commutative diagram
(2.12) and the third from the fact that A} is a k-algebra morphism. O

§2.2. Actions of the group (G(k{(X))),®) by automorphisms

We recall that the map 8: k(X)) x G — Vg is the k-algebra isomorphism given
in Proposition 2.4(ii).

2.2.1. Actions of (G(k{X))),®) by algebra automorphisms.

Proposition-Definition 2.12. Let U € G(k{(X))). There ezists a unique topo-
logical k-algebra automorphism aut}fj(o)
of k(X)) of (1.7) such that

of \A/G extending the automorphism auty

(2.14) eorrep; e BUTIR1)eB(T®1); g g, forgeG,

Proof. First, let us verify that the images by the morphism aut\qj,’(o)

ators of Vg satisfy the relations of Vg. Indeed, for g, h € G we have
. autv’(o)(g) auty, V(0 )(h) =g-h=gh= aut]l},’(o) (gh);

e aut (0)(1(;) =lg=1= autv (O)(l),
V(O)( ) - V,(0 )(

of the gener-

e aut auty” (eg) =g-ep=¢ep-g= autz’(o)(eo) : autg’(o)(g).

This proves the existence and uniqueness of the algebra endomorphism autg’(o).

V,(0) .

Next, in order to prove that auty™  is an automorphism, we show that the diagram

k(X)) %G —2 Vg
(215) auty ®idkci J{dutv (0

k(X)) x G —— Vo
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commutes, where auty is the k-algebra automorphism in (1.7). Since all arrows of
diagram (2.15) are k-algebra morphisms, it is enough to check the commutativity
on generators:
. autz’( ) of(zg ® 1) = aut]f,’(o)(eo) = ¢ep and S o (auty ®idkg)(zo ® 1) =
Blauty (zo) ® 1) = B(zo ® 1) = eo.
e For g € G, autv (0) of(l®g) = autv (0)( ) =g and Bo (auty ®idkg)(1®g) =
Blauty (1) @ g) = (1 © g) = g.
e For g € G, we have

auty ) of(z, @ 1) = auty ” (—gerg ™) = —gBT T @ e f(¥ @ 1)g !
and

ﬂ ] (autq; ®idkg)(l’g ® ].)

=gB(V ' ®@1)g " (—gerg™ NgBT @ 1)g~"
—gB(¥ @ e (¥ @ 1)g ™"

Therefore, autg’(o) is an automorphism thanks to the commutativity of diagram

(2.15) and the fact that 8: k(X)) x G — Vg and auty Qidgg: k(X)) x G —
k(X)) x G are k-algebra isomorphisms.

V,(0)

Finally, the automorphism auty ™ of \7(; extends the automorphism auty of

k{(X)). Indeed, combining diagram (2.15) with the commutative diagram

k(X)) —25 k(X)) % G

aut\pl laut\p ®idkg

k(X)) —p k(X)) x G,

we obtain the commutative diagram
Bo(-®1)
%

(2.16) au”’l lautgv(o)
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Definition 2.13. For ¥ € G(k{X))), we define aut‘q),’(l) to be the topological
k-algebra automorphism of Vg given by

(2.17) auty " = Adgper) oauty .

Proposition 2.14. There is a group action of (G(k(X)),®) on Vg by

(1) k-algebra automorphisms
(G((X)), ®) — Autiag(Ve), > auty ),

(ii) k-algebra automorphisms
(g(k<<X>>)7 ®) - AUtk-alg(ﬁG)a U autv (1)
(iii) Both group actions induce actions of (G(k{(X)),®) on k(X)) by k-algebra
automorphisms, the former by U — auty (1.11) and the latter by ¥ —
Adyg oauty.

Proof. (i) Let us show that for any ¥, ® € G(k{(X))), we have

V,(0) V,(0)

aut‘1,®<I> = auty, v (O)

oautg

It suffices to prove this identity on generators. Since for ¥ € G(k({(X))) we have
autv © (e0) = e and autv (O)( ) = g, this is immediately true for ey and g € G.

Moreover,

aut‘q},é%(el)

BlP @) @l)ef(Ved)l)

Blauty (P~ HT ! @ 1)e, BV auty (P) @ 1)
B(aut\p(CI)_l) DAY @1)e1B(¥ @ 1)B(auty (P) @ 1)
= aut (ﬂ (e '®1 )aut]l},’(o)(el) aut]l}, (0) B(P®1))
=auty P (B@ ' @ 1)e18(® @ 1)) = aut @ oautl© (ey),

where the fourth equality comes from the commutativity of diagram (2.15).

(ii) Using identity (i), we get

aut‘q},’(l) o autg’(l) = Adgwgr)© aut}l},‘(o) o Adgeg1) © autg’(o)
= Adswen) ©Ad, v 3ap1)) © auty o auty
= Adﬁ(\l}@l)ﬁ(aut\p(@)@l) o aut\I,’( ) o auti,’(o)

= Adg(wea)e1) oautq,’(gg - autg’@gg .
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(iii) The first part of the claim is a consequence of the fact that for any ¥ €
G(k{(X)), the automorphism autq,’( ) extends the automorphism auty thanks to
Proposition-Definition 2.12. The same proposition-definition allows us to obtain
the following commutative diagram:

k() 220, v,
(2.18) Adwaut\{ l G
k(X)) ool Vo

Vi) _ V,(0)

This implies that the automorphism auty™’ = Adgwegi)cauty™ " extends the

automorphism Adyg o auty; thus it proves the second part of the claim. O

We are now in a position to prove a claim from the introduction which can
be formulated in the following way:

Proposition 2.15. If G # {1}, the action of the group (G(k({(X)),®) on k{X))
by k-algebra automorphisms ¥ — Ady o auty does not restrict to an action on the
topological subalgebra k{(Y)).

In order to prove this proposition, we will need the following lemma:

Lemma 2.16. Let g € G, u € k{(X))* and v € k(X)). Then uzqyv € k({Y)) if
and only if v € k({(Y)).

Proof. If v € k((Y)), then, since uz, € k((Y)) and k({(Y)) is an algebra, we have
that uzgyv € k(Y)). Conversely, by the decomposition k(X)) = k(X ))zo ® k({(Y")),
there exist a € k(X)) and b € k((Y)) such that v = axg + b. Then

uryv = uxg(aro + b) = urgazg + uxyb.

Since ux, and b belong to the algebra k((Y)) then uz,b € k(Y)). Since, by
assumption, uzgv € k((Y)), then uzjazy € k((Y)). By the previous direct sum
decomposition, this implies that uzgzaxq = 0. Since v is invertible this is equiv-
alent to z5axo = 0 which implies that @ = 0 thanks to k(X)) being an integral
domain. Finally,

v=axg+b=">beck(Y). O

Proof of Proposition 2.15. Since G # {1}, let g # 1 be an element of G. Let us
set ¥ = exp([z1,z0]) € G(k{X))). We have

Adygoauty(z,) = Wt, (U Hayt, (U)T
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Set u = Wt,(U~1) and v = t, (V)P 1. One checks that u € k{(X))* and v € k({(X)).
One may therefore apply Lemma 2.16 with these values of v and v and obtain that
uryv = Wty (V" Nzt (P)U~! belongs to k(Y)) if and only if v = ¢, (V)T ! is in
k(Y ). On the other hand, one has

ty (W)Ut = exp([zy, zo]) exp(—[z1,20]) = 1 + [x4 — 21, T0] + terms of order > 2.

The order 2 term has k{(Y')) component equal to zo(z1 — z4) and k{(X)xo com-
ponent equal to (z, — x1)zo; the latter being nonzero, t,(¥)¥ 1 is, therefore, not
in k((Y)) which implies, by Lemma 2.16, that Wt (¥~ 1)z,t, (V)P ¢ k(Y)). O

Proposition-Definition 2.17. For ¥ € G(k({(X)), the automorphism autq,( )
VG — VG restricts to a topological k-algebra automorphism on the k-subalgebra WG
W) Moreover, there is a group action of (G(k(X)),®)
on WG by k-algebra automorphisms

whzch will be denoted auty,

(2.19) (GK(X)),®) = Autiht, (We), ¥+ auty .
Proof. For w = \+ve; € Wg, we have
auty ™ (w) = A+ auty V()BT @ BT @ 1)e1 (T @ BT @ 1)
=+ autv (1)(11)61 € We.
This implies that autv (1) o
pullback of this endomorphism under the k-module isomorphism k x Vg — Weg,

(A, v) = X+ ve;p is the pair (id, autq,( ))
W) is a k-module automorphism, and therefore a k-algebra

induces a k-algebra endomorphism of Wg. Moreover, the

, which is a k-module automorphism.
This implies that auty,
automorphism. Thanks to this, the second part of this result can be deduced from
Proposition 2.14(ii), by restriction on Wg. O

2.2.2. Action of (G(k{(X))),®) by module automorphisms.

Definition 2.18. For ¥ € G(k{(X))), we define aut\q},’(lo) to be the topological
k-module automorphism of Vg given by

(2.20) auty ' = g1 0 auty

Remark 2.19. Let us notice that, for any ¥ € G(k{(X))), we also have

V,(10) _ W _ V(1)

V,(0 v,
auty % = g 0auty ) = lawen 0 Adsy-1g1) oauty Y =1y e cauty

Proposition 2.20. There is a group action of (G(k{(X)),®) on Ve by topological
k-module automorphisms given by

(GO(X)). ®) = Autfhty (Va), ¥ s auty 1)
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Proof. For ¥, ® € G(k({(X))), we have

V,(10)

V010 5 ot

auty,’ V.0

= lgwel) © aut‘q),’(o) olg(ae1) © auty

_ V,(0)
= 65(\1,@1) o Kaut“;,‘(o)(ﬂ@)@l)) o auty,

V,(0
= Eﬁ (T®1)B(auty (®)®1) © aut\l,( )

0 V,(10
= lg((ved)21) © autq/é)qz = t\p@qa)’

o autv (0

o autv (0

where the last equality comes from the commutativity of diagram (2.15) and from
Proposition 2.14(i). O

Lemma 2.21. For any ¥ € G(k{(X))), we have the following identities:
(i) For all a,b € Vg, autv Uo)(ab) = aut )( )autv (O)(b).
(i) For all a,b € Vg, autv (10)(ab) aut ( )aut\I,( )(b).
Proof. Let a,b € V. We have
autv (10) (ab) = Lzwgr) © aut]‘;,’(o)(ab)
= Lywen (auty @ (a) auty @ (b))
= (Lgwer) © autq,’( )(a)) autv (0)(b)
autv (10)( ) aut]f,’(o)(b),
and
autv uo)(ab) = rg(wel) © autq,’( )(ab)
— t v( ) tv (1) b
rawen (auty” (a) auty™ (b))
= anty, ! (@) (rp(wan) 0 auty (1))
v W (@) auty M (). O

= aut

Proposition 2.22. For ¥ € G(k({(X))), the k-module automorphism autv( 0

preserves the submodule Vaeo + deG Va(g—1).

Proof. Using Lemma 2.21(i), we obtain for any a € Vg and (by)gcc € (Va)©,

autg’(lo) <CL60 + Z bg(g — 1)>

geG
= autg’(w)( )autv (O (eo) + Z aut‘qj,’(lo)(bg) aut]\;,’(o) (g—1)
geG

= auty "V (@)eg + Y auty "V (by) (g — 1) € Vgeo + > Valg—1). O
9geG geG
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Proposition-Definition 2.23. For ¥ € G(k{(X))), there is a unique k-module

automorphism auty’(lo) of M\G such that the diagram
~ autz’(m)
Vg —— Vg

(2.21) ,.1% l,.lM

Mg —aao” Mg
auty,

commutes.
Proof. Tt follows from Proposition 2.22. O

Lemma 2.24. For any ¥ € G(k{(X))), we have

(i) for all (a,m) € Vg x Mq, autfl\,/l’(w) (a-m)= autzf,’(l)(a) ~aut/\1\,/l"(10) (m);
(ii) for all (w,m) € We x Mg, autf\l,/l’(lo) (w-m) = autll/,v’(l)(w) . autg/[’(lo) (m).

Proof. The first identity is proved by using a combination of Proposition-Definition
2.23 and Lemma 2.21(ii). The second identity can be deduced from the first by
restriction on the subalgebra Wg. O

Corollary 2.25. There is a group action of (G(k{(X))),®) on Me by topological
k-module automorphisms

(222) (g(k<<X>>)7 @) — Autio_rrlgod(/(/l\G), U — autjq\,/l’(w) .
Proof. Tt is a combination of Proposition-Definition 2.23 and Proposition 2.20. [

§2.3. The cocycle I' and twisted actions

To an element ¥ € G(k{X))), one associates I'y € k[[z]]* (see (1.15)). Then
I'y(—eq) is an invertible element of V.

Definition 2.26. For ¥ € G(k({(X))), we define the topological k-algebra auto-
morphism of Vg:

V,(1)

(2.23) Fautg’(l) = Adl—‘gl(7 o auty

e1)

" .. ) v,(1
Proposition-Definition 2.27. For ¥ € G(k{(X))), the automorphism Tauty, )

restricts to a topological k-algebra automorphism of the subalgebra 17\/\@ denoted
T,V (1)
autg .

Proof. Tt follows from Proposition-Definition 2.17 and the fact that I'g(—e;) is an
invertible element of Wg. O
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Proposition 2.28. There is a group action of (G(k{X)),®) on
(i) ]A)G by topological k-algebra automorphisms

(224)  (GO(X).®) = Autiila(Ve). ¥ Tauty
(ii) )7\/\@ by topological k-module automorphisms

(2.25) (G(K(XN), ®) — Autiht (We), ¥+ Tauty) .

Proof. (i) It follows from Proposition 2.14(ii), Lemma 1.8 and the fact that e; is
invariant under aut‘q},’(l) for any ¥ € G(k{(X))).

(ii) It follows from (i) thanks to Proposition-Definition 2.17. O

Definition 2.29. For ¥ € G(k({(X))), we define the following topological k-mod-
ule automorphism of Mg:

(2.26) Pauty 1 =ty o autyt M.

Lemma 2.30. For any ¥ € G(k{(X))), we have

(i) for all (a,m) € Vo x Mg, autM (10)(a -m) = autv (1)( )-Ta M’(lo)( );
(ii) for all (w,m) € We x Mg, autM (10) (w-m) = autW m(w) autM (10) (m).

Proof. Tt follows by a computation involving Lemma 2.24. O

Proposition 2.31. There is a group action of (G(k{(X))),®) on Mg by topolog-
ical k-module automorphisms

221)  (GO(X)),®) = At (M), @ e Tt

Proof. For any ¥, ® € G(k({(X))), we have

M, (10)
autq,®q> = Krf o(=e1 ) 0 auty gy

M, (10)

_ M,(10)
= KFQI(—el)F;I(—el) @) autq,

o auty

= él—\—l(_el) ol ro'(=er) © autM 10, M’(m)
= E —ep) © autM (10) ol (e © autM (10)

r M ,(10)

= "au o autM (10)



CROSSED PRODUCT INTERPRETATION OF amtg’ 489

where the second equality uses Lemma 1.8 and Corollary 2.25, and the fourth
equality comes from the following computation:

1 © autf;l’(w)(m) =T, (—e1) autfl\,/l’(w)(m)
= auty D (T51 (—ep)) auty 0 (m)
= auty (T (—er)m)

= autg/l’(lo) of

-

Py (—en) (M);

for any m € /T/l\g, where the second equality uses the fact e; is invariant under

V,(1)

auty™ ' and the third equality comes from Lemma 2.24. O

§2.4. The stabilizer groups Stab(AY)(k) and Stab(AA1) (k)

Using Proposition 2.28, we define the following group action of (G(k{(X))),®) on
MOI‘k_alg(WG, (Wg)®2)2
(2.28) U - DW= (Taut))")®2 o DW o (Taut (V)1

)

with ¥ € G(k(X))) and D"V € Morﬁ?gfg(W@ (Wg)®2). In particular, the stabilizer
of DY = AW is the subgroup

(2.29) Stab(AY)(k) == {¥ € G(k(X)) | (Fauty” )92 AW = AW oTaut’ "V}

Similarly, Proposition 2.31 provides a group action of (G(k{(X))),®) on the
k-module Mor{®™ (Mg, (Mg)%?):

(2.30) U DM = (Tautht(10)e2 o pM o (Tauet(19) =1

In particular, the stabilizer of DM = ﬁé/‘ is the subgroup

(2.31) Stab(ﬁfc‘;‘)(k) ::{\Ilgg(k«X») | (FautM <10))®2 AM AMOFautM (10)}
We then have the following inclusion of subgroups:

Theorem 2.32. Stab(ﬁé’l)(k) - Stab(ﬁév)(k) (as subgroups of (G(k{(X)),®)).

Proof. Let U € Stab(ﬁé”t)(k). First, let us notice that

(T ()BT ® 1) - 1)®? = (Fauty " (14))®?
(“a

M (10) )®2 o AM(

M)
(2.32)

)

AG o lauty ’(10)(1M)
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where the last equality follows from the assumption on ¥. Then for any w € Wg,

AV (Fauty ™ (w)) - (Pg ! (—e) BT @ 1) - 10,)®?

)
D2(AW (w) - AY (1))
uty ") B2 (AM (1))

(2.33) = Iyl (—e)B(T @ 1) - 12,

where the first and seventh equalities come from (2.32), the second and the fifth
from Proposition-Definition 2.11(iii), the third and the sixth from Lemma 2.30 and
the fourth from the fact that ¥ € Stab(AM)(k) Next, since T'y'(—e1)B(¥ @ 1)
is invertible in Vg, the map W(; — ./\/lG7 w — wly Y—e)B(T ®1) -1y is an
isomorphism of left WG modules. Consequently, 1dent1ty (2.33) implies that

(2.34) Vw e W, (Tauty M)E2(AW (w)) = AW (Cauty ™ (w)),

thus establishing that ¥ € Stab(ﬁé‘/)(k). O

§3. The stabilizer groups in terms of Racinet’s formalism

In this part we translate the inclusion of stabilizers in Theorem 2.32 into Racinet’s
formalism. In Section 3.1 we relate the various (G(k{(X))), ®)-actions, the ones
which we recalled from [Rac] in Section 1 and the ones we constructed in Section
2. This allows us to identify the group Stab(ﬁé") from (2.31) with the group
Stab(A™°d) from [EF18]. In Section 3.2 we transport the action of the group
(G(k{X)),®) on We given in Proposition 2.28(ii) into an action of the same
group on the algebra k((Y)) and express the latter action in terms of Racinet’s
formalism. This enables us to identify the stabilizer group Stab(ﬁ}’;") given in
(2.29) with a group Stab(A¥#) defined in the framework of Racinet’s formalism.
The inclusion of stabilizers from Theorem 2.32 is then expressed as the inclusion
Stab(Amed)  Stab(A'#) (see Corollary 3.13).

§3.1. Identification of the subgroups Stab(&é’l) and Stab(&f‘c’d)

3.1.1. A (G(k{X))),®)-module isomorphism. Let usrecall 5: k(X)) xG —
Ve, the k-algebra isomorphism given in Proposition 2.4(ii).
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Lemma 3.1. For ¥ € G(k{(X))), the diagram

k() 22 v
(3.1) S“’l Jautz,m
KX G Ve

commutes.

Proof. Thanks to identities (1.8) and (2.20), this is done by composing the bottom
of diagram (2.16) with the following commutative diagram:

k(x) 222D, P

é\pi ym\v@l)

k<<X>> W VG D

Lemma 3.2. For ¥ € G(k{(X))), the diagram

(3.2) SQ P YRED)

commutes.

Proof. Let us consider the following cube:

/k«X D /KX)o M
k(X)) gelzel) Vo
S\}/’ autgA’(lo)
Sw autg’(m)
/k«X>>/k<<X>>xo Mg
k(X)) Vo
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First, the left (resp. right) side commutes by definition of SY (resp. autfl\,/t’(lo)).

Then the upper and lower sides are exactly the same square, which is commutative
thanks to Proposition 2.7. Finally, Lemma 3.1 gives us the commutativity of the
front side. This collection of commutativities together with the surjectivity of
q o my implies that the back side of the cube commutes, which is exactly diagram
(3.2). O

Proposition 3.3. For ¥ € G(k{(X))), the diagram
K(X) /KX)o~ Mo

(3.3) rsgl lrautgxt,(w)
MO OY S E— v

commutes.

Remark 3.4. It follows from diagram (3.3) that x o ! is an isomorphism

between the (G(k{(X))),®)-modules k{X))/k{X))zo and Me. .
For the (G(k{(X))), ®)-module structure of k{(X))/k{X)xo (resp. Mg), see
Corollary 1.9 (resp. Proposition 2.31).

Proof of Proposition 3.3. This is done by composing the bottom of diagram (3.2)
with the following diagram:

k(X k(X Yzo 229 Mo

0
ZFQI(M)J J{ rgt(=en)

k(X k(X )wo ——— Mc
The above diagram is commutative because we have

g (cenokod to@omy =l o (= lm)ofo(-@1)

(= 1am) o lyrgt @en B o (= @1)

(—-1p)o0Bo(—®1) ng\il(xl)

=koq loqomyo fpgl(xl)
=Ko 6171 o KF;(TJ) oqoTy,

where the first and fourth equalities come from the commutativity of diagram

(2.4), the second from the fact that —-1,: Vg — Mg is a Vg-module morphism,

the third from the fact that S o (— ® 1): k(X)) — Vg is a k-algebra morphism
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and the last from the fact that 7y : k(X)) — k{X))/k{X )z is k{X))-module
morphism and that for any a € k{{(X)), q(z1a) = z1q(a).
Finally, since q o my is a surjective k-module morphism, it follows that

1 1
EF?(iel)onoq =Koq OEF‘;1(II),
which is the wanted result. O

3.1.2. An isomorphism of coalgebras. Let us recall w: k({(Y)) — We the
k-algebra isomorphism given in Corollary 2.9(i).

Lemma 3.5. The diagram
k(YY) —Z— Wg
(3.4) Ei‘gi Jﬁg
k(Y)®2 —5 WE
commutes.

Remark 3.6. It follows from diagram (3.4) that the map w is a bialgebra iso-
morphism.

Proof of Lemma 3.5. Since all arrows on diagram (3.4) are k-algebra morphisms,
it is enough to work on generators. For (n,g) € Zsg X G we have

n—1
W®2 o Ailg(yn,g) = W®2 <yn,g ®I+1® Yn,g + Z Yk,h ® yn—k,gh—l)

k=1
hea
n—1
= Zn,g ® 1 + 1 ® Z’n,7g + Z Zk;7h ® Zn_k7gh71.
=
On the other hand,
n—1
RY 0 @(yng) = B (209) = 209 O 1+ 1@ 20g+ I 200 @ 2ppgnre O
Kea
Lemma 3.7. The diagram
kog ! -
k(X)) k(X )zg ———— Mg

(3.5) &,,odl J&g
(k(X ) /(X )20)®? ————s ME?2

(kog™ ")

commutes.
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Proof. Let us consider the following cube:

/k«X>>/k<<X>>xo Me
k() = Wo
apes Ay
N AY
(X)) k(X o) =2 e M
/ o (—1a0)®2
k()2 — we?

First, the left (resp. right) side commutes by definition of Amed (resp. ﬁé’t) Then
the upper side commutes thanks to Corollary 2.9. Since the lower side is exactly
the tensor square of the upper side, it is commutative. Finally, Lemma 3.5 gives
us the commutativity of the front side. This collection of commutativities together
with the surjectivity of my implies that the back side of the cube commutes, which
is exactly diagram (3.5). O

3.1.3. Identification of stabilizer groups.
Theorem 3.8. Stab(ﬁé’l)(k) = Stab(ﬁf"’d)(k) (as subgroups of (G(k{(X))),®)).

Proof. Thanks to Proposition 3.3, the map x o q~1: k(X )/k{(X)zo — Mg is
a (G(k{(X))),®)-module isomorphism. So it induces a (G(k{(X))), ®)-module iso-

morphism
Morfeht ) (kX)) /K(X Do, k(X)) /k(X ) a0)E?) — Morgont y(Ma, ME?)

given by
A (koq H®o0Ao(koq ')t

where the (G(k{(X))), ®)-module structure on the k-module Mor{®™, , (./T/I\Gu M\%Q)
(resp. Moy (k (X)) /k{(X ) zo, (k<<X>>/k<(X>>x0)®2))Ais defined in (2.30) (resp.

(1.19)). Moreover, thanks to Lemma 3.7, the coproduct A™°? is sent to the coprod-
uct AN via this isomorphism. Thus, they have the same stabilizer. O
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§3.2. The stabilizer group Stab(&é") in Racinet’s formalism

Proposition-Definition 3.9. For ¥ € G(k(X))), we consider the k-algebra
automorphism of k{(Y')) given by

(3.6) Tauty =wto F:cmutl;,v’(l) ow

Then there is a group action of (G(k{X))),®) on k{(Y)) by topological k-algebra
automorphisms given by

(3.7) G(k(X)) — Autioh, (k(Y), ¥ — Tauty.

Proof. For U, ® € G(k{(X))) we have

w,(1)

-1 T
o aut\1,®<I> ow

Faut§®q> =w

_ w,(1 W, (1
=w 1orautq, ()orautq, ()ow
_ W, (1 _ W, (1
=w lorautq, ()owow 1orauut<I> ()ow
= Tauty o Mautl. O

We aim to give an explicit formulation of the action "aut" in terms of Racinet’s
objects. Recall from Section 1.1 that for any ¢ € G and any a € k(X)), az, €
k{(Y)). We then have the following lemma:

Lemma 3.10. Let g € G. For any a € k(X)) we have B(az,® g) = woqy (azy).

Proof. Tt is enough to show this on a basis of the k-module k{(X)). Let us take
the family

R e R o WP
g15e-,9r€G
as such a basis. For r € Z>¢, n1,...,nr41 € Z>o and g1, ..., 9 € G we have
= (25 T @ 1) # (g, @ 1) %ok (257 @ 1) % (g, © 1)
(3.8) * (:ESTH*l 1) x(zg01)x(1®g).

Therefore, we obtain

ni—1 n,.—1 Npy1—1
Blag' @y, - 3G g, Ty ®9)
_ r+1 ni—1 —1 ngo—1 —1 np_1—1 —1
=(-1) €9 gi€i1g; €g g2¢1g9 - €g gr—1€19,_1

-1 —1 _nr41—1 -1
gr€19, €g gerg g

d

n
'60



496 K. YADDADEN

_ r+1 _ni—1 no—1 _—1 Npeq_1—1 —1

= (*1) 601 gi€é1 602 g1 g2€1°--€g 9r_209r—1€1
n.—1 +1—1 —1
BOT gr 1g7“61 6O g g€1

= -1 s —1 —1 —1
Z"hglznmgl g2 anfhgr,zgrflan,gr,lgrznwrhgr g’

where the first equality comes from the computation (3.8) and the fact that
B: k(X)) ¥ G — Vg is a k-algebra morphism and the second equality comes
from the fact for any i € {2,...,r}, gi_leo = eogi_l. On the other hand,

ni—1 no—1 np—1—1 n.—1 npy1—1
wodqy(zy' Tg Ty Tg, 0T Lg._1Ty Lg, Lo Tg)

= —1 e —1 -1 —1
w(ynl’glynmgl g2 ynr—l;gr,z!]r—lyn'mgrflgrynrﬁ»lygr g)

= An1,91%n0,,07  ge T P 1,9 e Gr 1 PR g 9 P 1,97 g

Proposition 3.11. For ¥ € G(k{(X))) and (n,g) € Zso x G we have

(3.9) Fauty (Yn.g) = ay (T (21) Wag ™ g (U Ty (21))ay).

Proof. Let us start with the following computation:

autq, (1)(Zn,g) F\pl( e1)B(V @ 1)eg™ 95(‘1’ ® eIy (—e1)
Ty (—e1)B(Y @ 1)ef ' gB(¥ " @ 1)Ty(—er)e
=B(C3' (@) @) * (T 1) * (27 @ 1) *(1®g)
(U1 ®1)x (Dy(z1) @1) % (11 ® 1))
=BTy  (21)Wag g (V' Ty (21))zg @ g)
=woqy(l'y Y)Wl (\Il_ll"\p(xl))xg),

where t, is the k-algebra automorphism given in Section 1.1, and the last equality
comes from Lemma 3.10. Thanks to this, we have for any (n,g) € Zso x G,

1 w.(1)

Fauty, (yn,g) = w0 Tauty " 0 w(yn,g)

Zn,g)
=@ owoqy (Iy' (21)Wag 'ty (V' Ty (z1)),)
—qy(F (:El)\le" 1 (U™ qu,(scl))wg). O

-1

=w "o zauutW (1)(

Using Proposition 3.9, we define the following group action of (G(k{(X))), ®)
on Mory g (k(Y)), k(Y)®?):

(3.10) - D= ("auty)®? o Do (fauty) ™,



CROSSED PRODUCT INTERPRETATION OF amtg’ 497

with U € G(k{(X))) and D € Morf{?gfg(k«Y)),k<<Y>>®2). In particular, the stabi-

lizer of A¥® is the subgroup
(3.11)  Stab(A#)(k) = {¥ € G(k( X)) | (Tauty)®? o A2le = A2l8 o Tauty ]
Theorem 3.12. Stab(A%'%)(k) = Stab(AW)(K) (as subgroups of (G(k(X)),®)).

Proof. Thanks to Proposition-Definition 3.9, the map w: k({(Y)) — We is an
isomorphism of (G(k{{X))), ®)-modules. So it induces a (G(k{X))), ®)-module iso-
morphism Mory aig (K(Y), k(Y)®?) — Morialg(Wa, WS?) which is given by

A w®2oAow™ L

Moreover, thanks to Lemma 3.5, the coproduct ﬁilg is sent to the coproduct ﬁév
via this isomorphism. Thus, they have the same stabilizer. O

Corollary 3.13. Stab(A™°d)(k) C Stab(A%2)(k) (as subgroups of (G(K(X)), ®)).

Proof. 1t follows immediately from Theorem 2.32 thanks to Theorems 3.8 and
3.12. 0

§4. Affine group scheme and Lie algebraic aspects

In this part we show that the results obtained in Sections 2 and 3 fit into the
framework of affine Q-group schemes and we make explicit the associated Lie
algebraic aspects. More precisely, we use the result of [EF18, Lem. 5.1] to show
that the stabilizer group functors Stab(ﬁ‘é\)) and Stab(ﬁé/l) are affine Q-group
schemes, whose Lie algebras are stabilizer Lie algebras which we make explicit. In
order to carry out this program, in Section 4.1 we define Lie algebra actions of
(@(X ), {-,+)) on l//\g by derivations and by endomorphisms. From this, we derive
in Section 4.2 endomorphism actions on M\G that lead us to an explicit form of the
Lie algebra of Stab(ﬁé/‘) that we show to be equal to the Lie algebra 5tab(£f‘°d)
of (1.34). In Section 4.3 we define derivation actions on We that make explicit
the Lie algebra 5tab(3‘é‘}) of Stab(ﬁé\}) which we show to contain 5tab(£g’1). In
Section 4.4 we identify 5tab(ﬁév) with a Lie algebra stabilizer 5tab(£ilg) defined in
Racinet’s formalism by considering the infinitesimal version of the (G(k{(X))), ®)-
action Taut¥ given in Section 3.2. We conclude by the inclusion 5tub(ﬁf‘°d) -
stab(A%8),
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§4.1. Actions of the Lie algebra (EE(X), (+,+)) on \Aig

Proposition-Definition 4.1. Let ¢ € EE(X) There exists a unique Q-algebra
derivation derZ’(O) of Vg given by

e0—0, e —le,f®1)], ¢g—0, forged.
There is a Lie algebra action of (El\b(X), (,)) on lA/g by Q-algebra derivations
(Lib(X), {-,-)) = Derg_ag(Ve), %+ der))”.

Proof. One can prove that the assignment k +— Autk_alg(ﬁc) is a Q-group scheme

with Lie algebra DerQ_alg(ﬁg) and that the map (G(k({(XY)),®) = Auty,(Va),

U autg’(o) is a morphism of Q-group schemes from k — (G(k{(X))),®) to the

latter k — Autk_alg(f)g) using Proposition 2.14(i). One checks that the corre-
sponding morphism of Lie algebras is as announced. O

Proposition-Definition 4.2. For ¢ € E@(X), we define derZ’(l), the Q-algebra
derivation of ]A/g given by

(4.1) derZ’(l) = adgyg1) + deri’(o) .

There is a Lie algebra action of (El\b(X), (-,-)) on lA/g by Q-algebra derivations
i 3 V,(1
(E’lb(X)a <'a >) - Der@—alg(vg)v Y derw W :

Proof. Same as the proof of Proposition-Definition 4.1, replacing the morphism

v autg’(o) by ¥ — autg’(l) and using Proposition 2.14(ii). O

Proposition-Definition 4.3. For ¢ € E%(X), we define endZ’(lo) to be the Q-

linear endomorphism of 9% given by

(4.2) endZ’(lo) =ALgye1) T derz’(o) .

There is a Lie algebra action of (El\b(X), (-,)) on 9% by Q-linear endomorphisms
(Cib(X), () = Endg(V3), %+~ end) "

Proof. Same as the proof of Proposition-Definition 4.1, replacing Autk_alg(ﬁg) by

Autimod(Va), Derg_az(V2) by Endg(V2) and the morphism ¥ — autyy @ by
the morphism ¥ — autz’(m)7 and using Proposition 2.20. O
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§4.2. The stabilizer Lie algebra 5tab(3g’t)

Proposition-Definition 4.4. For ¢ € EE(X), there is a unique Q-linear endo-
morphism endd)M’(lo) of Mg such that the diagram

V,(10)
=0 endw

Vg —L s VS

|-

—1m
M WY

end 00

(4.3)

commutes. There is a Lie algebra action of (EE(X),(,» on Mg by Q-linear
endomorphisms

(Tib(X), (-,-)) = Endg(M%), &~ end)" "

Proof. The commutative diagram is given by an application of Proposition-Defi-
nition 2.23 for k = Q[e]/(¢?) and ¢ € ker(G(k{X))) — G(Q{X))).

For the second statement, one first checks that the assignment k +—
Autk_mod(x/l\g) is an affine Q-group scheme whose Lie algebra is EndQ(/a%).
Then, using Corollary 2.25, one deduces that the map ¥ +— aut{;l’(lo) is a Q-
group scheme morphism from (k — (G(k{(X))),®)) to (k = Autk.mod (M\G)) One

finally proves that end™ (19 ig jts corresponding Lie algebra morphism. O

To v € £ib(X), one associates vy € Q[[z]] (see (1.27)). Then ~y(—eq) is an
element of Vg.

Proposition-Definition 4.5. For ¢ € E%(X), we define the following Q-linear
endomorphism of M%

M, (10) M,(10
(4.4) Tend,, 10— C_r(—ey) +endy (10,

There is a Lie algebra action of (E&\[J(X)7 (,)) on //\/\l% by Q-linear endomorphisms

(4.5) (Lib(X), (-, ) — Endg(MQ), %" end}*"?.
Proof. The maps ¥ autfl\,/t’(lo) and ¥ — Fauty’(m) are Q-group scheme mor-
phisms from (k — (G(k{(X)),®)) to (k — Autk.moa(Mg)). The Q-Lie algebra

morphism associated to the former QQ-group scheme morphism is ¥ — ende’(lo)

by the proof of Proposition-Definition 4.4. The Lie algebra morphism associated
to the latter Q-group scheme morphism takes ¢ € EE(X ) to the right-hand side
of (4.4) in view of (2.26), and therefore is given by ¢ — “’endf’(m). It follows
that the latter map is a Lie algebra morphism. O
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Thanks to this result, we are able to provide a Lie algebra action of (m(X ),
{-,-)) on the space MorQ_)(./T/l\%7 (MZ)%?) via

(4.6) - DM = (Wend 19 @ id +id ® WendM (10)) o DM - DMo 'VendM (10),
In particular, the stabilizer of DM = AM is the Lie subalgebra

stab(ﬁé/l) ={ye E%(X) | (7 end 10 o id +id ® ”end ) o 8/(\;’1
(4.7) = AM “’end 10)}

For a commutative Q-algebra k, recall the group Stab(ﬁé/l)(k) in (2.31). One
then has the following proposition:

Proposition 4.6. The assignment Stab(ﬁé’l): k — Stab(ﬁé’t)(k) is an affine
Q-group scheme and Lie(Stab(A}!)) = stab(A).

Proof. The first statement is obtained by an application of [EF18, Lem. 5.1], where
v = ﬁé’t, and the second comes from the fact that the (El\b(X), (-,-))-action on
1\/101r@(/\//\l%7 (A//T%)@Q) given in (4.6) is the infinitesimal version of the group action
of (G(k{X))),®) on Mork_mod(ﬂ/l\c, (./(/l\g)@) given in (2.30), for any Q-algebra k.

O

Corollary 4.7. stab(ﬁé/‘) = stab(A™°Y) (as Lie subalgebras of (EE(X), (,9)).
Proof. Tt follows from Theorem 3.8 thanks to Propositions 4.6 and 1.25(iii). O

§4.3. The stabilizer Lie algebra stab(AY)

Proposition-Definition 4.8. For vy € EiE(X), we define the Q-algebra deriva-
tion of Vg :

(4.8) VderZ’(l) =ad_,, (e t+ derZ’(l) .

There is a Lie algebra action of (E@(X), (-,-)) on lA/g by Q-algebra derivations

(4.9) (Si(X), (-,-)) — Derg_ag(VE), ¢~ Vder ™.

V,(1) V,(1)

Proof. The maps ¥ + auty,’’ and ¥ — Tauty ' are Q-group scheme morphisms
from (k — (G(k{X)), @)) to (k — Autk_ﬂg(Vg)) The Q-Lie algebra morphism
associated to the former Q-group scheme morphism is ¢ — derv (1) by the proof
of Proposition-Definition 4.2. The Lie algebra morphism absomated to the latter
Q-group scheme morphism takes ¢ € EE( X) to the right-hand side of (4.9) in
view of (2.23), and therefore is given by ¢ — 7 der ‘M1t follows that the latter

map is a Lie algebra morphism. O
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Proposition-Definition 4.9. For 1/1 € S/JE( X), the derivation ¥ der,;’ VD) pestricts
to a derivation of the subalgebra WG denoted derww( ) Moreover, there s a Lie
algebra action of (Slb( ), {-,-)) on Wg by Q-algebra derivations

(410) (EE(X)v <'7 >) - Der@—alg(w\g), P 7 derzv’(l) .

Proof. One can prove that the assignment k +— Autk_alg(WG) is a Q-group scheme
with Lie algebra DerQ_alg(Wg). The map ¥ Fautg’(l) is a Q-group scheme
morphism from (k — (G(k(X)),®)) to (k — Autyz(Ve)) and, by the proof of
Proposition-Definition 4.8, its associated Q-Lie algebra is ¢ — 7 der ‘(M Thanks
to Proposition 2.28(ii), we obtain the commutative diagram

1"a W, (1)

WG —>WG

l l

-
Vo XY Ve,

where ¥ € G(k({(X))) with k a commutative Q-algebra. Using this diagram for
k = Q[]/(e?) and ¢ € ker(G(k({(X))) — G(Q{X))), one obtains that the deriva-
tion VderZ’ D restricts to a derivation on Wg associated to the automorphism

autw’(l) which is denoted by 7 derw’(l) Moreover the diagram states that the
Q-group scheme morphlsm provided by U — aut V(1) defines a Q-group scheme
morphism ¥ +— Faut ) from (k — (g(k((X))),GB)) to (k — Autk_alg(WG)).
Therefore, the map 1/} — 7 derzv’(l) from (El\b(X), (-,-)) to Der@,alg(f\/\g), which
is the infinitesimal version of the latter Q-group scheme morphism, is a Q-Lie
algebra morphism. O

Using Proposition-Definition 4.9, one can define the following Lie algebra
action of (£ib(X), (-,-)) on the space MorQ(Wg, (Wg)@’z):

(411) DW= (Vder)V @id +id® " der))" V) o DY — DV o7 der)) V.
In particular, the stabilizer of DY = AZY is the Lie subalgebra

stab(AY) = {v € Cib(X) | ("der))" @id +id ® 7 der))" V) o AW
(4.12) =AW o7 der) M.
For a commutative Q-algebra k, recall the group Stab(ﬁ‘é‘))(k) in (2.29).

Proposition 4.10. The assignment Stab(AG) k — Stab(ﬁév)(k) is an affine
Q-group scheme and Lie(Stab(AY)) = stab(AY).
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Proof. The first statement is obtained by an application of [EF18, Lem. 5.1] where
v = A and the second comes from the fact that the Lie algebra action of
(Lib(X), (-,-)) on MorQ(Wg, (Wg)®2) given in (4.11) is the infinitesimal version
of the group action of (G(k{(X))),®) on Mork.moa Wa, Wg)®?) given in (2.28),
for any Q-algebra k. O
Corollary 4.11. 5tab(£g") C 5tab(ﬁé\’) (as Lie subalgebras of (Et\b(X), ;)

Proof. Tt follows from Theorem 2.32 thanks to Propositions 4.10 and 4.6. O

§4.4. The stabilizer Lie algebra 5tab(3g) in Racinet’s formalism

Proposition-Definition 4.12. For ¢ € Ei\b(X), we consider the derivation of
Q(Y) given by

(4.13) 'Ydi =w to? derww’(l) oww,

where "Yder:;v’(l) is as in Proposition-Definition 4.9 and w: Q(Y)) — Wg is
the Q-algebra isomorphism of Corollary 2.9(i). There is a Lie algebra action of
(Lib(X), (-,-)) on QUY) by derivations given by

(4.14) Lib(X) — Dergag(QUY)), ¢~ 7dY.

Proof. One can prove that the assignment k +— Auti g (k(Y))) is a Q-group
scheme with Lie algebra Derg_ai(Q{Y))). Thanks to Proposition-Definition 3.9,
the map (G(k{(X)), ®) = Auti aig(k(Y)), ¥ — Taut} is a morphism of Q-group
schemes from k — (G(k({(X))),®) to the latter k — Auti aig(k({(Y))). It is related
to the morphism of Q-group schemes ¥ +— Fautg,v’(l) of Proposition-Definition
2.27 by (3.6). It follows that the corresponding Q-Lie algebra morphism takes
(S El\b(X) to the right-hand side of (4.13). The statement then follows from

(4.13). 0

For any ¢ € Et\b(X ), the derivation Vdg can be expressed in the formalism of
[Rac] as follows:

Proposition 4.13. For ) € EE(X) and (n,g) € Zso X G we have
Wd?;(yn,g) =Qqy (Wxg_l - xg_ltg(w))xg)
(4.15) +ay (25~ v (2g) — v (1)ag " ag).
Proof. The infinitesimal version of the identity in Proposition 3.11 is given by
YA (Yn.g) = ay (((—yw (@) + )ag " + 2l g (v (1) — ) zy).

Identity (4.15) then follows. O
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From Proposition 4.12, we define a Lie algebra action of (EE(X), (+,-)) on the
space Morg(Q(Y)), Q(Y)®?) by

(4.16) ¢-D = ("d}, ®id+id®d)) oD — Do7dy.

In particular, the stabilizer of D = A% is the Lie subalgebra

(4.17) stab(A¥%) == { € Lib(X) | ("} ®id +id ©7dY) o A2 = A28 0 7gY L,
For a commutative Q-algebra k, recall the group Stab(A%$)(k) in (3.11).

Proposition 4.14. The assignment Stab(A¥2): k — Stab(A¥8)(k) is an affine
Q-group scheme and Lie(Stab(A'#)) = stab(A¥#).

Proof. The first statement is a consequence of [EF18, Lem. 5.1] where v =
A¥ and the second comes from the fact that the (E%(X)7<~7~>)—action on
Mor@(Q«Y»,Q((Y»@z) given in (4.16) is the infinitesimal version of the group
action of (G(k{(X))),®) on Mork_alg(k<<Y>>7k<<Y)>‘§’2) given in (3.10), for any Q-
algebra k. O

Corollary 4.15. stab(A%8) = stab(AY) (as Lie subalgebras of (€ib(X), (-,-))).
Proof. It follows from Theorem 3.12 thanks to Propositions 4.14 and 4.10. O
Finally, in Racinet’s formalism, this translates to the following corollary:
Corollary 4.16. stab(Am°d) C stab(A¥8) (as Lie subalgebras of (£ib(X), (-,-))).

Proof. It follows immediately from Corollary 4.11 thanks to Corollaries 4.7 and
4.15. O
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AV, 480 k(X)) /(X ) xo, 460 Stab(A¥#)(k), 497
der)"®, 498 K((Y), 459 stab(A%1), 500
der)’™, 408 k(Z)), 475 Stab(AZ")(k), 489
ome§, 466 K, 475 5tab(é§“°d), 468
DMRY (k), 464 — Stab(Ay°?) (k), 464
Liby(X), 468 stab(AY), 501
end*t (19 499 i}b(ﬁi ), 465 Stab(AY)(k), 489
end’ 1), 498 le, 465
expk , 468 M, 470 g, 459
./\//Tlé, 470 O, 463
G, 458 0, 467
mory, 4, 468
G(k(X)), 460 N
T, 462 @, 479 Vg, 470
~, 465 Ty, 460 V§, 470
Taut" (1) 488 (1, s), 465 _
Fautl' ™ 487 U@, 461 We, 470
Tautl* @) 487 U, 464 Wé, 470
Tauty, 495 by, 466
dy;, 502 X, 458
7 der” ™, 500 d, 459 o, 458
R q, 460 Tq4, 458
¥ der’” M, 501 ’
f/t 10’ v, 459
Tend) "%, 499 Y, 459
TSy, 463 Sy, 460 Yn.g, 459
Vs), 467 5y, 465
SY . 462 Z, 474
k((X)), 458 5),, 466 Zn,g, 474
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