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A Weighted Version of Saitoh’s Conjecture

by
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Abstract

In this article, we prove a weighted version of Saitoh’s conjecture. As an application, we
prove a weighted version of Saitoh’s conjecture for higher derivatives.
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§1. Introduction

Let D be a planar regular region with n boundary components which are analytic

Jordan curves (see [18, 22]). Let H
(c)
2 (D) (see [18]) denote the analytic Hardy

class on D defined as the set of all analytic functions f(z) on D such that the

subharmonic functions |f(z)|2 have harmonic majorants U(z):

|f(z)|2 ≤ U(z) on D.

Then each function f(z) ∈ H
(c)
2 (D) has Fatou’s nontangential boundary value a.e.

on ∂D belonging to L2(∂D) (see [5]).

Kernel functions associated with various norms have been shown to play a

fundamental role in several branches of mathematical analysis (see [2, 16]). Let us

recall two reproducing kernels on D.
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Let λ be a positive continuous function on ∂D. We call Kλ(z, w) (see [15])

the weighted Szegö kernel if

f(w) =
1

2π

∫
∂D

f(z)Kλ(z, w)λ(z) |dz|

holds for any f ∈ H
(c)
2 (D). Let GD(p, t) be the Green function on D, and let

∂/∂vp denote the derivative along the outer normal unit vector vp. For fixed t ∈ D,
∂GD(p,t)
∂vp

is positive and continuous on ∂D because of the analyticity of the bound-

ary (see [18, 8]). When λ(p) = (∂GD(p,t)
∂vp

)−1 on ∂D, K̂t(z, w) denotes Kλ(z, w),

which is the so-called conjugate Hardy H2 kernel on D (see [18]). When t = w

and z = w, K̂(z) denotes K̂t(z, w) for simplicity.

Let ρ be a positive Lebesgue measurable function on D, which satisfies that

there exists aU > 0 such that ρ−aU ∈ L1(U) for any open subset U ⋐ D\Z, where

Z is a discrete subset of D. We denote by Bρ(z, w) the weighted Bergman kernel

on D with the weight ρ (see [17]) if

f(w) =

∫
D

f(z)Bρ(z, w)ρ(z)

holds for any holomorphic function f on D satisfying
∫
D
|f(z)|2 < +∞. Denote

Bρ(z) := Bρ(z, z̄).

When ρ ≡ 1, B(z) denotes Bρ(z) for simplicity.

Let cβ(z) be the logarithmic capacity which is defined by

cβ(z) := exp lim
w→z

(GD(w, z) − log |w − z|).

In [22], Yamada listed the following conjectures on cβ(z), B(z) and K̂(z).

Conjecture 1.1. If n > 1, then

(1.1) cβ(z)2 < πB(z) < K̂(z).

The left part of inequality (1.1) is the so-called Suita conjecture (see [20]) and

the right part of inequality (1.1) is the so-called Saitoh conjecture (see [18]).

The original form of the Suita conjecture (see [20]) was posed on open Rie-

mann surfaces admitting nontrivial Green functions. B locki [3] proved the “≤”

part of the Suita conjecture on bounded planar domains. Guan–Zhou [13] proved

the “≤” part of the Suita conjecture on open Riemann surfaces. In [14], Guan–

Zhou proved a necessary and sufficient condition for cβ(z)2 = πB(z) to hold on

open Riemann surfaces, which completed the proof of the Suita conjecture.
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In [8], Guan proved Saitoh’s conjecture:

Theorem 1.2 ([8]). If n > 1, then K̂(z) > πB(z).

We recall some notation (see [7], see also [14, 11, 10]). Let p : ∆ → D be

the universal covering from the unit disc ∆ to D, and let z0 ∈ D. We call the

holomorphic function f on ∆ a multiplicative function, if there is a character χ,

which is the representation of the fundamental group of D, such that g∗f = χ(g)f ,

where |χ| = 1 and g is an element of the fundamental group of D. Denote the set

of such f by Oχ(D).

It is known that for any function u on D with value [−∞,+∞) such that eu

is locally the modulus of a holomorphic function, there exist a character χu and a

multiplicative function fu ∈ Oχu(D), such that |fu| = p∗(eu). If u1 − u2 = log |f |,
where f is a holomorphic function on Ω, then χu1 = χu2 . For the Green function

GD(·, z0), denote χz0 := χGD(·,z0) and fz0 := fGD(·,z0). Note that D is conformally

equivalent to the unit disc (i.e. n = 1) if and only if χz0 ≡ 1 (see [20]).

Let u be a harmonic function on D, and let ρ = e−2u. Yamada [22] posed the

following weighted version of the Suita conjecture, which is the so-called extended

Suita conjecture.

Conjecture 1.3. The inequality c2β(z0) ≤ πρ(z0)Bρ(z0) holds for any z0 ∈ D,

and equality holds if and only if χz0 = χ−u.

In [14], Guan–Zhou proved the extended Suita conjecture. More general

weighted versions of Suita conjecture can be found in [9, 11], and a weighted

version of the Suita conjecture for higher derivatives can be found in [10].

In the present article, we consider weighted versions of Saitoh’s conjecture.

§1.1. Main result

Let D be a planar regular region with n boundary components which are analytic

Jordan curves, and let z0 ∈ D.

Let ψ be a Lebesgue measurable function on D, which satisfies that ψ is

subharmonic on D, ψ|∂D ≡ 0 and the Lelong number v(ddcψ, z0) > 0, where

dc = ∂−∂̄
2π

√
−1

. Assume that ψ ∈ C1(U ∩ D) for an open neighborhood U of ∂D

and ∂ψ/∂vp is positive on ∂D, where ∂/∂vp denotes the derivative along the outer

normal unit vector vp. Let φ be a Lebesgue measurable function on D satisfying

that φ+ 2ψ is subharmonic on D, the Lelong number

v(ddc(φ+ 2ψ), z0) ≥ 2

and φ is continuous at z for any z ∈ ∂D. Assume that one of the following two

statements holds:
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(a) (ψ − p0GD(·, z0))(z0) > −∞, where p0 = v(ddc(ψ), z0) > 0;

(b) φ+ 2aψ is subharmonic near z0 for some a ∈ [0, 1).

Let c be a positive Lebesgue measurable function on [0,+∞) satisfying that

c(t)e−t is decreasing on [0,+∞), limt→0+0 c(t) = c(0) = 1 and
∫ +∞
0

c(t)e−t dt <

+∞.

Denote

ρ := e−φc(−2ψ) and Kρ,ψ(z) := Kρ( ∂ψ∂vp )
−1(z, z̄),

and assume that ρ has a positive lower bound on any compact subset of D\Z,

where Z ⊂ {ψ = −∞} is a discrete subset of D.

We present a weighted version of Saitoh’s conjecture as follows:

Theorem 1.4. Assume that Bρ(z0) > 0. Then

Kρ,ψ(z0) ≥
(∫ +∞

0

c(t)e−t dt

)
πBρ(z0)

holds, and the equality holds if and only if the following statements hold:

(1) φ+ 2ψ = 2GD(·, z0) + 2u, where u is a harmonic function on D;

(2) ψ = p0GD(·, z0), where p0 = v(ddc(ψ), z0) > 0;

(3) χz0 = χ−u, where χ−u and χz0 are the characters associated to the functions

−u and GD(·, z0) respectively.

Remark 1.5. Let p be the universal covering from the unit disc ∆ to D. When

statements (1)–(3) in Theorem 1.4 hold,

Kρ,ψ(·, z0) =

(∫ +∞

0

c(t)e−t dt

)
πBρ(·, z0) = c1(p∗(fz0))′p∗(fu),

where Kρ,ψ(·, z0) denotes Kρ( ∂ψ∂vp )
−1(·, z0), c1 is a constant, fu is a holomorphic

function on ∆ such that |fu| = p∗(eu) and fz0 is a holomorphic function on ∆

such that |fz0 | = p∗(eGD(·,z0)). We prove the remark in Section 3.

Remark 1.6. For any z0 ∈ D, there exists u ∈ C(D) such that u is harmonic on

D and χz0 = χ−u. In fact, u(z) := log |z − z0| − GD(z, z0) is harmonic on D and

χz0 = χ−u.

Let λ be any positive continuous function on ∂D. By solving the Dirichlet

problem, there exists u ∈ C(D) satisfying that u|∂D = − 1
2 log λ and u is harmonic

on D. When ψ = GD(·, z0), K̂λ(z0) denotes Kλ,ψ(z0).

Theorem 1.4 implies the following corollary.
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Corollary 1.7. The inequality K̂λ(z0) ≥ πBe−2u(z0) holds for any z0 ∈ D, and

the equality holds if and only if χz0 = χ−u.

Note that χz0 ≡ 1 holds if and only if n = 1 (see [20]); then the above corollary

is Theorem 1.2 when λ ≡ 1 and u ≡ 0.

§1.2. Applications: The weighted version of Saitoh’s conjecture for

higher derivatives

Let D be a planar regular region with n boundary components which are analytic

Jordan curves, and let z0 ∈ D.

Let ψ be a Lebesgue measurable function on D, which satisfies that ψ is

subharmonic on D, ψ|∂D ≡ 0 and the Lelong number v(ψ, z0) > 0. Assume that

ψ ∈ C1(U ∩ D) for an open neighborhood U of ∂D and ∂ψ/∂vp is positive on

∂D. Let φ be a Lebesgue measurable function on D satisfying that φ + 2ψ is

subharmonic on D, the Lelong number

v(ddc(φ+ 2ψ), z0) ≥ 2(k + 1)

and φ is continuous at z for any z ∈ ∂D. Assume that one of the following two

statements holds:

(a) (ψ − p0GD(·, z0))(z0) > −∞, where p0 = v(ddc(ψ), z0) > 0;

(b) φ+ 2aψ is subharmonic near z0 for some a ∈ [0, 1).

Let k be a nonnegative integer. Let c be a positive Lebesgue measurable func-

tion on [0,+∞) satisfying that c(t)e−t is decreasing on [0,+∞), limt→0+0 c(t) =

c(0) = 1 and
∫ +∞
0

c(t)e−t dt < +∞.

Denote

ρ := e−φc(−2ψ),

and assume that ρ has a positive lower bound on any compact subset of D\Z,

where Z ⊂ {ψ = −∞} is a discrete subset of D.

Let us consider two kernel functions for higher derivatives. Denote

B(k)
ρ (z0) := sup

{∣∣ f(k)(z0)
k!

∣∣2 : f ∈ O(D),
∫
D
|f |2ρ ≤ 1

and f(z0) = · · · = f (k−1)(z0) = 0
}
.

When ρ ≡ 1, B
(k)
ρ (z0) is the Bergman kernel for higher derivatives (see [2, 4]).

When k = 0, B
(k)
ρ (z0) is the weighted Bergman kernel Bρ(z0) (see Section 1.1).

Denote

K
(k)
ρ,ψ(z0) := sup

{∣∣ f(k)(z0)
k!

∣∣2 : f ∈ H
(c)
2 (D),

∫
∂D

|f |2ρ
(
∂ψ
∂vz

)−1 |dz| ≤ 1

and f(z0) = · · · = f (k−1)(z0) = 0
}
.
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In particular, when k = 0, K
(k)
ρ,ψ(z0) is the weighted Szegö kernel Kρ,ψ(z0) (see

Section 1.1).

We present a weighted version of Saitoh’s conjecture for higher derivatives as

follows:

Corollary 1.8. Assume that B
(k)
ρ (z0) > 0. Then

K(k)
ρ (z0) ≥

(∫ +∞

0

c(t)e−t dt

)
πB(k)

ρ (z0)

holds, and the equality holds if and only if the following statements hold:

(1) φ+ 2ψ = 2(k + 1)GD(·, z0) + 2u, where u is a harmonic function on D;

(2) ψ = p0GD(·, z0), where p0 = v(ddc(ψ), z0) > 0;

(3) χk+1
z0 = χ−u, where χ−u and χz0 are the characters associated to the functions

−u and GD(·, z0) respectively.

Let λ be an arbitrary positive continuous function on ∂D. By solving the

Dirichlet problem, there exists u ∈ C(D) satisfying that u|∂D = − 1
2 log λ and u is

harmonic on D. When ψ = (k + 1)GD(·, z0), K̂
(k)
λ (z0) denotes K

(k)
λ,ψ(z0).

Corollary 1.8 implies the following corollary:

Corollary 1.9. The inequality K̂
(k)
λ (z0) ≥ πB

(k)
e−2u(z0) holds for any z0 ∈ D, and

the equality holds if and only if χk+1
z0 = χ−u.

§2. Preparations

In this section, we make some preparations.

§2.1. A sufficient condition for f ∈ H
(c)
2 (D)

Let D be a planar regular region with n boundary components which are analytic

Jordan curves, and let z0 ∈ D. Let ψ be as in Theorem 1.4. Let f be a holomorphic

function on D. In this section we give a sufficient condition for f ∈ H
(c)
2 (D) (i.e.

Lemma 2.4).

We recall the following basic formula, and we give a proof for the convenience

of readers.

Lemma 2.1. The equality ∂ψ
∂vz

= ((∂ψ∂x )2 + (∂ψ∂y )2)
1
2 holds on ∂D, where ∂/∂vz

denotes the derivative along the outer normal unit vector vz.

Proof. For fixed z1 ∈ ∂D, as ∂ψ
∂vz

is positive on D, we can assume that ∂ψ
∂y ̸= 0 with-

out loss of generality. Then there exists a neighborhood U1 of z1 with coordinates
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(u, v) = (x, ψ(x+
√
−1y)). It is clear that

∂u

∂x
= 1,

∂u

∂y
= 0,

∂v

∂x
=
∂ψ

∂x
and

∂v

∂y
=
∂ψ

∂y
,

which implies that

∂x

∂u
= 1,

∂y

∂u
= −∂ψ/∂x

∂ψ/∂y
,

∂x

∂v
= 0 and

∂y

∂v
=

(∂ψ
∂y

)−1

.

It is clear that

vz =
(∂ψ∂x ,

∂ψ
∂y )

((∂ψ∂x )2 + (∂ψ∂y )2)
1
2

,

and thus we have ∂ψ
∂vz

= ((∂ψ∂x )2 + (∂ψ∂y )2)
1
2 .

We give a relationship between the superlevel sets of ψ and GD(·, z0).

Lemma 2.2. There exist t0 > 0 and C > 1 such that{
z ∈ D : GD(z, z0) ≥ −t

}
⊂

{
z ∈ D : ψ(z) ≥ −Ct

}
for any t ∈ (0, t0).

Proof. As ∂D is compact, it suffices to prove that for any z1 ∈ ∂D, there exist

a neighborhood U of z1, t0 > 0 and C > 1 such that {z ∈ D ∩ U : GD(z, z0) ≥
−t} ⊂ {z ∈ D ∩ U : ψ(z) ≥ −Ct} for any t ∈ (0, t0).

For fixed z1 ∈ ∂D, as ∂GD(z,z0)
∂vz

is positive on D, we can assume that ∂GD(z,z0)
∂y

̸= 0 and z1 is the origin o in C without loss of generality. Then there exists a

neighborhood U1 of z1 with coordinates (u, v) = (x,GD(x+
√
−1y, z0)). It is clear

that

∂u

∂x
= 1,

∂u

∂y
= 0,

∂v

∂x
=

∂

∂x
G(z, z0) and

∂v

∂y
=

∂

∂y
GD(z, z0),

which implies that

∂x

∂u
= 1,

∂y

∂u
= −

∂
∂xG(z, z0)
∂
∂yGD(z, z0)

,
∂x

∂v
= 0 and

∂y

∂v
=

( ∂

∂y
GD(z, z0)

)−1

.

It is clear that

vz =
(∂GD(z,z0)

∂x , ∂GD(z,z0)
∂y )

((∂GD(z,z0)
∂x )2 + (∂GD(z,z0)

∂y )2)
1
2

on ∂D. Thus, we have

∂ψ

∂u
· ∂GD(z, z0)

∂x
+
∂ψ

∂v
· |∇GD(z, z0)|2

=
(∂ψ
∂x

· ∂x
∂u

+
∂ψ

∂y
· ∂y
∂u

)∂GD(z, z0)

∂x
+
(∂ψ
∂x

· ∂x
∂v

+
∂ψ

∂y
· ∂y
∂v

)
|∇GD(z, z0)|2
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=

(
∂ψ

∂x
− ∂ψ

∂y
·

∂
∂xG(z, z0)
∂
∂yGD(z, z0)

)
∂GD(z, z0)

∂x

+
∂ψ

∂y
·
( ∂

∂y
GD(z, z0)

)−1

·
((∂GD(z, z0)

∂x

)2

+
(∂GD(z, z0)

∂y

)2)
=
∂ψ

∂y
· ∂GD(z, z0)

∂y
+
∂ψ

∂x
· ∂GD(z, z0)

∂x

=

∂ψ
∂vz

((∂GD(z,z0)
∂x )2 + (∂GD(z,z0)

∂y )2)
1
2

> 0

on ∂D. Note that |∇GD(z, z0)|2 > 0 on ∂D. There exist a ∈ R, m > 0, r0 > 0 and

b > 0 such that

(2.1) m < a
∂ψ

∂u
+ b

∂ψ

∂v
<

1

m

on an open parallelogram U2 := {(u, v) : −r0 < v < r0,
a
b v− r0 < u < a

b v+ r0} ⋐
U1. Note that ψ|{v=0} = ψ|∂D ≡ 0. For any (u, v) ∈ U2, we have (u− a

b v+ ta, tb) ∈
U2 for any t ∈ [0, vb ] and

ψ(u, v) = ψ(u, v) − ψ
(
u− a

b
v, 0

)
= ψ

(
u− a

b
v + ta, tb

)∣∣∣t=v/b
t=0

=

∫ v/b

0

(
a
∂ψ

∂u
+ b

∂ψ

∂v

)(
u− a

b
v + ta, tb

)
dt.(2.2)

Thus, for any t ∈ (0, r0), if G(z, z0) = v ≥ −t, it follows from inequality (2.1) and

equality (2.2) that

ψ(u, v) = −
∫ 0

v/b

(
a
∂ψ

∂u
+ b

∂ψ

∂v

)(
u− a

b
v + ta, tb

)
dt

≥ v

mb

≥ − t

mb
,

which implies that {z ∈ D ∩ U2 : GD(z, z0) ≥ −t} ⊂ {z ∈ D ∩ U2 : ψ(z) ≥ − 1
mb t}

for any t ∈ (0, r0).

Thus, Lemma 2.2 holds.

We recall the following coarea formula.
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Lemma 2.3 (See [6]). Suppose that Ω is an open set in Rn and u ∈ C1(Ω). Then

for any g ∈ L1(Ω),∫
Ω

g(x)|∇u(x)| dx =

∫
R

(∫
u−1(t)

g(x) dHn−1(x)

)
dt,

where Hn−1 is the (n− 1)-dimensional Hausdorff measure.

The following lemma gives a sufficient condition for f ∈ H
(c)
2 (D).

Lemma 2.4. Let f be a holomorphic function on D. Assume that

(2.3) lim inf
r→1−0

∫
{z∈D:ψ(z)≥log r} |f(z)|2

1 − r
< +∞;

then we have f ∈ H
(c)
2 (D).

Proof. It follows from Lemma 2.2 and inequality (2.3) that

lim inf
r→1−0

∫
{z∈D:eGD(z,z0)≥r} |f(z)|2

1 − r

≤ lim inf
r→1−0

∫
{z∈D:ψ(z)≥C log r} |f(z)|2

1 − r

= lim inf
r→1−0

∫
{z∈D:ψ(z)≥C log r} |f(z)|2

1 − rC
× 1 − rC

1 − r

< +∞.(2.4)

Denote

Dr :=
{
z ∈ D : eGD(z,z0) < r

}
,

where r ∈ (0, 1). It is well known that GD(·, z0)−log r is the Green function on Dr.

By the analyticity of the boundary of D, we have that GD(z, w) has an analytic

extension on U × V \{z = w} and ∂GD(z,z0)
∂vz

is positive and smooth on ∂D, where

U is a neighborhood of D and V ⋐ D. Then there exist r0 ∈ (0, 1) and C1 > 0

such that 1
C1

≤ |∇GD(·, z0)| ≤ C1 on {z ∈ D : GD(z, z0) > log r0}, which implies

(2.5)
1

C1
≤ ∂GD(z, z0)

∂vz
≤ C1

holds on {z ∈ D : GD(z, z0) > log r0} (by using Lemma 2.1).

Denote

vr(w) :=
1

2π

∫
∂Dr

|f |2 ∂GDr (z, w)

∂vz
|dz|,
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a harmonic function on Dr, where r ∈ (r0, 1). As GDr (z, z0) = GD(z, z0) − log r,

we have

(2.6) vr(z0) =
1

2π

∫
∂Dr

|f |2 ∂GD(z, z0)

∂vz
|dz|.

For fixed r1 ∈ (r0, 1), inequality (2.5) implies that

vr1(z0) ≤ vr(z0)

=
1

2π

∫
∂Dr

|f |2 ∂GD(z, z0)

∂vz
|dz|

≤ C2

∫
∂Dr

|f |2
(∂GD(z, z0)

∂vz

)−1

|dz|(2.7)

holds for any r ∈ (r1, 1), where C2 is a positive constant independent of r1 and r.

Using Lemmas 2.1, 2.3 and inequality (2.4), we have

vr1(z0) ≤ lim inf
r→1−0

C2

∫ 1

r

(∫
∂Ds

|f |2
(∂GD(z,z0)

∂vz

)−1 |dz|
)
ds

1 − r

= lim inf
r→1−0

C2

∫ 1

r

(∫
{eGD(·,z0)=s} |f |

2eGD(z,z0)|∇eGD(z,z0)|−1 |dz|
)
ds

1 − r

= lim inf
r→1−0

C2

∫
{z∈D:eGD(z,z0)>r} |f |

2eGD(z,z0)

1 − r

≤ C3,(2.8)

where C3 is a positive constant independent of r1. As |f |2 is subharmonic, we have

|f |2 ≤ vr on Dr and {vr} is increasing with respect to r. By Harnack’s principle

(see [1]), the sequence {vr} converges to a harmonic function v on D, which satisfies

|f(z)|2 ≤ v(z) for any z ∈ D. Thus, f ∈ H
(c)
2 (D).

§2.2. Concavity property of minimal L2 integrals

In this section we recall the concavity property of minimal L2 integrals on open

Riemann surfaces and a characterization for the concavity degenerating to linearity

([11], see also [10, 12]).

Let D be a planar regular region with n boundary components which are

analytic Jordan curves. Let ψ be a negative subharmonic function on D, and let φ

be a Lebesgue measurable function on D, such that φ + ψ is a plurisubharmonic

function on D.

Let z0 ∈ D be such that I(φ+ ψ)z0 ̸= Oz0 , where I(φ+ ψ) is the multiplier

ideal sheaf, which is the sheaf of germs of holomorphic functions h such that
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|h|2e−φ−ψ is locally integrable. Let f be a holomorphic function on a neighborhood

of z0. Let Fz0 ⊇ I(φ+ ψ)z0 be an ideal of Oz0 .

Denote

inf
{∫

{ψ<−t} |f̃ |
2e−φc(−ψ) : (f̃ − f, z0) ∈ Fz0 and f̃ ∈ O({ψ < −t})

}
by G(t; c) (without misunderstanding, we denote G(t; c) by G(t)), where t ∈
[0,+∞) and c is a nonnegative measurable function on (0,+∞).

Let c be a positive measurable function c on (0,+∞), which satisfies that

c(t)e−t is decreasing with respect to t,
∫ +∞
0

c(s)e−s ds < +∞ and e−φc(−ψ) has

a positive lower bound on any compact subset of D\Z, where Z ⊂ {ψ = −∞} is

a discrete subset of M .

We recall some results about the concavity of G(t), which will be used in the

proof of Theorem 1.4.

Theorem 2.5 ([11]). Let h(t) =
∫ +∞
t

c(s)e−s ds. Then G(h−1(r)) is concave with

respect to r ∈ (0,
∫ +∞
0

c(s)e−s ds), limt→T+0G(t) = G(0) and limt→+∞G(t) = 0.

Lemma 2.6 ([11]). There exists a unique holomorphic function F on {ψ < −t}
satisfying (F − f, z0) ∈ Fz0 and G(t; c) =

∫
{ψ<−t} |F |

2e−φc(−ψ). Furthermore,

for any holomorphic function F̂ on {ψ < −t} satisfying (F̂ − f, z0) ∈ Fz0 and∫
{ψ<−t} |F̂ |

2e−φc(−ψ) < +∞, we have the equality∫
{ψ<−t}

|Ft|2e−φc(−ψ) +

∫
{ψ<−t}

|F̂ − Ft|2e−φc(−ψ)

=

∫
{ψ<−t}

|F̂ |2e−φc(−ψ).

We recall a necessary condition and a characterization of the concavity degen-

erating to linearity.

Corollary 2.7 ([11]). If G(h−1(r)) is linear with respect to r∈[0,
∫ +∞
0

c(s)e−s ds),

where h(t) =
∫ +∞
t

c(s)e−s ds, then there is a unique holomorphic function F on

D satisfying (F − f, z0) ∈ Fz0 and G(t; c) =
∫
{ψ<−t} |F |

2e−φc(−ψ) for any t ≥ 0.

Furthermore,

(2.9)

∫
{−t1≤ψ<−t2}

|F |2e−φa(−ψ) =
G(0; c)∫ +∞

0
c(s)e−s ds

∫ t1

t2

a(t)e−t dt

for any nonnegative measurable function a on (0,+∞), where +∞ ≥ t1 > t2 ≥ 0.

Theorem 2.8 ([11], see also [12]). Assume that one of the following two state-

ments holds:
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(a) (ψ − 2p0GD(·, z0))(z0) > −∞, where p0 = 1
2v(ddc(ψ), z0) > 0;

(b) φ+ aψ is subharmonic near z0 for some a ∈ [0, 1).

Then G(h−1(r)) is linear with respect to r if and only if the following state-

ments hold:

(1) ψ = 2p0GD(·, z0), where p0 = 1
2v(ddc(ψ), z0) > 0;

(2) φ + ψ = 2 log |g| + 2GD(·, z0) + 2u and Fz0 = I(φ + ψ)z0 , where g is a

holomorphic function on D such that ordz0(g) = ordz0(f) and u is a harmonic

function on D;

(3) χz0 = χ−u, where χ−u and χz0 are the characters associated to the functions

−u and GD(·, z0) respectively.

Remark 2.9 ([12]). Assume statements (1)–(3) in Theorem 2.8 hold. Let p be

the universal covering from unit disc ∆ to D. Let fu be a holomorphic function on

∆ such that |fu| = p∗(eu), and let fz0 be a holomorphic function on ∆ such that

|fz0 | = p∗(eGD(·,z0)). Denote c0 := limz→z0
f

p0gp∗(fu)(p∗(fz0 ))
′ . Then

c0p0gp∗(fu)(p∗(fz0))′

is the unique holomorphic function F on D such that (F − f, z0) ∈ Fz0 and

G(t) =
∫
{ψ<−t} |F |

2e−φc(−ψ) for any t ≥ 0.

§2.3. Some other required results

Let D be a planar regular region with n boundary components which are analytic

Jordan curves, and let z0 ∈ D.

Lemma 2.10 (See [19]; see also [21]). The Green function

GD(z, z0) = sup
v∈∆∗

D(z0)

v(z),

where ∆∗
D(z0) is the set of negative subharmonic functions on D such that v(z) −

log |z−z0| has a locally finite upper bound near z0. Moreover, GD(z, z0)−log |z−z0|
is harmonic on D.

The following two properties of the weighted Szegö kernel can be found in [15].

Lemma 2.11 ([15]). Let λ be a positive continuous function on ∂D. There exists

an analytic function Kλ(z, w) with the following properties: Kλ(z, w) is holomor-

phic on D ×D; |Kλ(z, w)| is continuous on D for fixed w ∈ D;∫
∂D

f(z)Kλ(z, w)λ(z) |dz| = f(w)

holds for any f ∈ H
(c)
2 (D).
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Lemma 2.12 ([15]). Let λ be a positive continuous function on ∂D, and let f ∈
H

(c)
2 (D) satisfy f(z0) = 1. Then we have

(2.10)

∫
∂D

|M(z)|2λ(z) |dz| ≤
∫
∂D

|f(z)|2λ(z) |dz|,

where M(z) := Kλ(z,z0)
Kλ(z0,z0)

. Equality in (2.10) holds if and only if f(z) ≡M(z).

§3. Proofs of Theorem 1.4 and Remark 1.5

In this section we prove Theorem 1.4 and Remark 1.5.

Proof of Theorem 1.4. We prove Theorem 1.4 in three steps: Firstly, we prove that

“≥” holds, secondly we prove the necessity of the characterization and finally we

prove the sufficiency of the characterization.

Step 1. Denote

inf
{∫

{2ψ<−t} |f̃ |
2e−φc(−2ψ) : f̃(z0) = 1 and f̃ ∈ O({2ψ < −t})

}
by G(t) for t ≥ 0; then we have

G(0) =
1

Bρ(z0)
,

where ρ = e−φc(−2ψ). Lemma 2.6 tells us that there exists a holomorphic function

F0 on D such that F0(z0) = 1 and G(0) =
∫
D
|F0|2e−φc(−2ψ). Theorem 2.5 shows

that G(h−1(r)) is concave, where h(t) =
∫ +∞
t

c(s)e−s ds. Note that

G(− log r) ≤
∫
{2ψ<log r}

|F0|2e−φc(−2ψ)

for r ∈ (0, 1]; then we have∫
{z∈D:2ψ(z)≥log r} |F0(z)|2e−φc(−2ψ)∫ − log r

0
c(t)e−t dt

≤ G(0) −G(− log r)∫ − log r

0
c(t)e−t dt

≤ G(0)∫ +∞
0

c(t)e−t dt
.(3.1)

There exists r0 ∈ (0, 1) such that inf{e−φ(z)c(−ψ(z)) : z ∈ D and 2GD(z, z0) ≥
log r0} > 0. As v(ddcψ, z0) > 0, it follows from Lemma 2.10 that there exists

r1 ∈ (0, 1) such that {z ∈ D : 2ψ(z) ≥ log r1} ⊂ {z ∈ D : 2GD(z, z0) ≥ log r0}.
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Note that limt→0+0 c(t) = 1. Then inequality (3.1) implies that

lim inf
r→1−0

∫
{z∈D:2ψ(z)≥log r} |F0(z)|2

1 − r

≤ C1 lim inf
r→1−0

∫
{z∈D:2ψ(z)≥log r} |F0(z)|2e−φc(−2ψ)∫ − log r

0
c(t)e−t dt

×
∫ − log r

0
c(t)e−t dt

1 − r

≤ C1
G(0)∫ +∞

0
c(t)e−t dt

lim inf
r→1−0

∫ − log r

0
c(t)e−t dt

1 − r

< +∞.

Using Lemma 2.4, we have F0 ∈ H
(c)
2 (D).

Note that F0 has Fatou’s nontangential boundary value and |F0| ∈ L2(∂D).

It follows from Fatou’s lemma and Lemmas 2.1 and 2.3 that∫
∂D

|F0|2e−φc(−2ψ)
( ∂ψ
∂vz

)−1

|dz|

=

∫
∂D

|F0|2e−φc(−2ψ)|∇ψ|−1 |dz|

≤ lim inf
r→1−0

∫ 0
1
2 log r

(∫
{z∈D:ψ(z)=s} |F0|2e−φc(−2ψ)|∇ψ

∣∣−1 |dz|) ds

− 1
2 log r

= lim inf
r→1−0

∫
{z∈D:2ψ(z)≥log r} |F0|2e−φc(−2ψ)∫ − log r

0
c(t)e−t dt

×
∫ − log r

0
c(t)e−t dt

− 1
2 log r

= 2 lim inf
r→1−0

∫
{z∈D:2ψ(z)≥log r} |F0|2e−φc(−2ψ)∫ − log r

0
c(t)e−t dt

.(3.2)

As F0 ∈ H
(c)
2 (D), we have

1 = F0(z0) =
1

2π

∫
∂D

F0(z)Kρ( ∂ψ∂vz )
−1(z, z0)ρ

( ∂ψ
∂vz

)−1

|dz|.

By the Cauchy–Schwarz inequality, it follows that

1 ≤ 1

(2π)2

(∫
∂D

|F0|2ρ
( ∂ψ
∂vz

)−1

|dz|
)

×
(∫

∂D

|Kρ( ∂ψ∂vz )
−1(z, z0)|2ρ

( ∂ψ
∂vz

)−1

|dz|
)

=
1

2π

(∫
∂D

|F0|2ρ
( ∂ψ
∂vz

)−1

|dz|
)
×Kρ,ψ(z0).(3.3)
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Combining inequalities (3.1), (3.2) and (3.3), we obtain(∫ +∞

0

c(t)e−t dt

)
Bρ(z0) =

∫ +∞
0

c(t)e−t dt

G(0)

≤ lim sup
r→1−0

∫ − log r

0
c(t)e−t dt∫

{z∈D:2ψ(z)≥log r} |F0|2e−φc(−2ψ)

≤ 2

(∫
∂D

|F0|2e−φc(−2ψ)
( ∂ψ
∂vz

)−1

|dz|
)−1

≤ 1

π
Kρ,ψ(z0).(3.4)

Thus, we have proved the inequality part of Theorem 1.4.

Step 2. Assume that the equality

(3.5) Kρ,ψ(z0) =

(∫ +∞

0

c(t)e−t dt

)
πBρ(z0)

holds. Then inequality (3.4) becomes an equality, which shows that∫ +∞
0

c(t)e−t dt

G(0)
= lim sup

r→1−0

∫ − log r

0
c(t)e−t dt∫

{z∈D:2ψ(z)≥log r} |F0|2e−φc(−2ψ)
.

Following from the concavity of G(h−1(r)), we obtain that G(h−1(r)) is linear

with respect to r ∈ (0,
∫ +∞
0

c(t)e−t dt). Theorem 2.8 shows that the following

statements hold:

(1) ψ = p0GD(·, z0), where p0 = v(ddc(ψ), z0) > 0;

(2) φ+ 2ψ = 2 log |g| + 2GD(·, z0) + 2u1, where g is a holomorphic function on D

such that ordz0(g) = 0 and u1 is a harmonic function on D;

(3) χz0 = χ−u1
.

In the following, we will prove that 2 log |g| is harmonic on D, a.e., g(z) ̸= 0

holds for any z ∈ D.

Denote h := φ+ 2ψ − 2GD(·, z0), a function on D; thus h is subharmonic on

D and h is continuous at z for any z ∈ ∂D. By the analyticity of ∂D, there exists

h̃ ∈ C(D) such that h̃|∂D = h|∂D and h̃ is harmonic on D. As h is subharmonic

on D, we have

h ≤ h̃

on D. Denote

φ̃ := φ+ h̃− h.
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Then we have φ̃|∂D = φ|∂D and φ̃+ 2ψ = 2GD(·, z0) + h̃. Denote ρ̃ := e−φ̃c(−2ψ).

It is clear that

Kρ̃,ψ(z0) = Kρ,ψ(z0) and Bρ̃(z0) ≥ Bρ(z0).

Following equality (3.5) and the result in Step 1, we have

Kρ,ψ(z0)∫ +∞
0

c(t)e−t dt
= πBρ(z0) ≤ πBρ̃(z0) ≤ Kρ̃,ψ(z0)∫ +∞

0
c(t)e−t dt

=
Kρ,ψ(z0)∫ +∞

0
c(t)e−t dt

,

which implies that

Bρ(z0) = Bρ̃(z0).

Then we have ρ̃ = ρ, i.e. h̃ = h, which implies that 2 log |g| is harmonic on D.

Denote

u = log |g| + u1,

a harmonic function on D. Then we have φ + 2ψ = 2GD(·, z0) + 2u and χz0 =

χ−u1
= χ−u.

Step 3. Assume that statements (1)–(3) hold.

It follows from Theorem 2.8 that G(h−1(r)) is linear with respect to r ∈
(0,

∫ +∞
0

c(t)e−t dt). By Corollary 2.7 and Remark 2.9, we get that

(3.6) G(t) =

∫
{2ψ<−t}

|F0|2e−φc(−2ψ)

holds for any t ≥ 0 and

F0 = c0(p∗(fz0))′p∗(fu),

where c0 is a constant, p is the universal covering from unit disc ∆ to D, fu is

a holomorphic function on ∆ such that |fu| = p∗(eu), and fz0 is a holomorphic

function on ∆ such that |fz0 | = p∗(eGD(·,z0)). It follows from equality (3.6) that

(3.7)

∫ +∞
0

c(t)e−t dt

G(0)
= lim sup

r→1−0

∫ − log r

0
c(t)e−t dt∫

{z∈D:2ψ(z)≥log r} |F0|2e−φc(−2ψ)
.

As u = φ
2 + ψ − GD(·, z0), we have u ∈ C(D), which implies that p∗(|fu|) ∈

C(D). As GD(·, z0) can be extended to a harmonic function on a U\{z0}, where

U is a neighborhood of D, we have |(p∗(fz0))′| ∈ C(D). Thus, we have

|F0| ∈ C(D).
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Following from the dominated convergence theorem and Lemma 2.3, we obtain

lim sup
r→1−0

∫
{z∈D:2ψ(z)≥log r} |F0|2e−φc(−2ψ)∫ − log r

0
c(t)e−t dt

=
1

2

∫
∂D

|F0|2e−φc(−2ψ)
( ∂ψ
∂vz

)−1

|dz|.(3.8)

Denote M(z) := Kλ(z,z0)
Kλ(z0,z0)

, where λ = ρ( ∂ψ∂vz )−1. Note that
∫
D
|F0|2e−φc(−2ψ)

< +∞ implies that
∫
D
e−φc(−2ψ) < +∞. Lemma 2.11 shows that |M(z)| ∈ C(D);

then we have ∫
D

|M |2e−φc(−2ψ) < +∞.

Note that M(z0) = 1. By using Lemma 2.6 and inequality (3.6), we have∫
{2ψ<−t}

|M |2e−φc(−2ψ) =

∫
{2ψ<−t}

|F0|2e−φc(−2ψ)

+

∫
{2ψ<−t}

|M − F0|2e−φc(−2ψ),

which implies that

(3.9)

∫
{2ψ<−t}

F0F0 −Me−φc(−2ψ) = 0

holds for any t ≥ 0. Note that ψ = p0GD(·, z0). It follows from Lemma 2.3 and

equality (3.9) that there exists r1 > 0 such that

(3.10)

∫
{z∈D:GD(z,z0)=r}

F0F0 −Me−φ
(∂GD(·, z0)

∂vz

)−1

|dz| = 0

holds for any r ∈ (0, r1). Note that |F0| ∈ C(D) and |M | ∈ C(D); then it follows

from the dominated convergence theorem and equality (3.10) that∫
∂D

F0F0 −Me−φ
(∂GD(·, z0)

∂vz

)−1

|dz| = 0,

which implies that∫
∂D

|M |2e−φ
(∂GD(·, z0)

∂vz

)−1

|dz|

=

∫
∂D

|M − F0|2e−φ
(∂GD(·, z0)

∂vz

)−1

|dz|

+

∫
∂D

|F0|2e−φ
(∂GD(·, z0)

∂vz

)−1

|dz|.
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Lemma 2.12 tells us that∫
∂D

|M |2e−φ
(∂GD(·, z0)

∂vz

)−1

|dz| ≤
∫
∂D

|F0|2e−φ
(∂GD(·, z0)

∂vz

)−1

|dz|.

Then we have∫
∂D

|M |2e−φ
(∂GD(·, z0)

∂vz

)−1

|dz| =

∫
∂D

|F0|2e−φ
(∂GD(·, z0)

∂vz

)−1

|dz|.

It follows from Lemma 2.12 that

(3.11) F0 ≡M.

Thus, inequality (3.3) becomes an equality, i.e.

(3.12) 1 =
1

2π

(∫
∂D

|F0|2ρ
( ∂ψ
∂vz

)−1

|dz|
)
×Kρ,ψ(z0).

Combining equalities (3.7), (3.8) and (3.12), we know that inequality (3.4) becomes

an equality, i.e. (∫ +∞

0

c(t)e−t dt

)
Bρ(z0) =

1

π
Kρ,ψ(z0).

Then Theorem 1.4 has been proved.

Proof of Remark 1.5. Assume that statements (1)–(3) in Theorem 1.4 hold. Fol-

lowing the discussions in Step 3 in the proof of Theorem 1.4, we obtain

F0 = c0(p∗(fz0))′p∗(fu), F0 ≡M and M(z) =
Kλ(z, z0)

Kλ(z0, z0)
,

where λ = ρ( ∂ψ∂vz )−1. Thus, we have

Kρ,ψ(·, z0) = Kρ,ψ(z0, z0)F0 = c1(p∗(fz0))′p∗(fu),

where c1 is a constant. As∫
D

∣∣∣ Bρ(·, z0)

Bρ(z0, z0)

∣∣∣2ρ =
1

Bρ(z0, z0)
= G(0),

it follows from Lemma 2.6 that

Bρ(·, z0)

Bρ(z0, z0)
= F0.

Theorem 1.4 shows that Kρ,ψ(z0, z0) = (
∫ +∞
0

c(t)e−t dt)πBρ(z0, z0), and thus we

obtain

Kρ,ψ(·, z0) =

(∫ +∞

0

c(t)e−t dt

)
πBρ(·, z0).
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§4. Proof of Corollary 1.8

In this section we prove Corollary 1.8 by using Theorem 1.4.

Let φ̃ = φ− 2k log |z − z0|; then it is clear that φ̃+ 2ψ is subharmonic on D

and v(ddc(φ̃+ 2ψ), z0) ≥ 2. Denote ρ̃ := e−φ̃c(−2ψ) = |z − z0|2kρ. Note that

B(k)
ρ (z0) = sup

{∣∣ f(k)(z0)
k!

∣∣2 : f ∈ O(D),
∫
D
|f |2ρ ≤ 1

and f(z0) = · · · = f (k−1)(z0) = 0
}

= sup
{
|g(z0)|2 : g ∈ O(D) and

∫
D
|g|2ρ̃ ≤ 1

}
= Bρ̃(z0),

and

K
(k)
ρ,ψ(z0) = sup

{∣∣ f(k)(z0)
k!

∣∣2 : f ∈ H
(c)
2 (D),

∫
∂D

|f |2ρ
(
∂ψ
∂vz

)−1 |dz| ≤ 1

and f(z0) = · · · = f (k−1)(z0) = 0
}

= sup
{
|g(z0)|2 : g ∈ H

(c)
2 (D) and

∫
∂D

|g|2ρ̃
(
∂ψ
∂vz

)−1 |dz| ≤ 1
}

= Kρ̃,ψ(z0).

Theorem 1.4 tell us that

(4.1) Kρ̃,ψ(z0) ≥
(∫ +∞

0

c(t)e−t dt

)
πBρ̃(z0)

holds and the equality holds if and only if the following statements hold:

(1) φ̃+ 2ψ = 2GD(·, z0) + 2u1, where u1 is a harmonic function on D;

(2) ψ = p0GD(·, z0), where p0 = v(ddc(ψ), z0) > 0;

(3) χz0 = χ−u1
.

Then inequality (4.1) implies that

(4.2) K
(k)
ρ,ψ(z0) ≥

(∫ +∞

0

c(t)e−t dt

)
πB(k)

ρ (z0)

holds. Let u(z) = u1(z) + k(log |z − z0| − GD(z, z0)) on D; then it follows from

Lemma 2.10 that u is harmonic on D if and only if u1 is harmonic on D. It is clear

that χ−uχ
k
z0 = χ−u1 when u is harmonic on D. Thus, the equality in (4.2) holds

if and only if the following statements hold:

(1) φ+ 2ψ = 2(k + 1)GD(·, z0) + 2u, where u is a harmonic function on D;

(2) ψ = p0GD(·, z0), where p0 = v(ddc(ψ), z0) > 0;

(3) χk+1
z0 = χ−u.

Thus, Corollary 1.8 holds.
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