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Lattices of Logmodular Algebras
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Abstract

A subalgebra A of a C∗-algebra M is logmodular (resp. has factorization) if the set
{a∗a; a ∈ M is invertible with a, a−1 ∈ A} is dense in (resp. equal to) the set of all pos-
itive and invertible elements of M. In this paper, we show that the lattice of projections
in a (separable) von Neumann algebra M whose ranges are invariant under a logmodular
algebra in M, is a commutative subspace lattice. Further, if M is a factor then this lattice
is a nest. As a special case, it follows that all reflexive (in particular, completely distribu-
tive CSL) logmodular subalgebras of type I factors are nest algebras, thus answering in
the affirmative a question by Paulsen and Raghupathi (Trans. Amer. Math. Soc. 363
(2011) 2627–2640). We also give a complete characterization of logmodular subalgebras
in finite-dimensional von Neumann algebras.

Mathematics Subject Classification 2020: 47L35 (primary); 47L30, 46K50 (secondary).
Keywords: logmodular algebra, factorization, nest, commutative subspace lattice, nest
algebra, CSL algebra.

§1. Introduction

The well-known Cholesky factorization theorem states that any positive and invert-

ible n×n matrix can be written as U∗U for some invertible upper triangular n×n

matrix U (so the inverse U−1 is also upper triangular). We then say that the alge-

bra of upper triangular matrices has factorization in Mn, the algebra of all n× n

complex matrices. Using this or otherwise, one can show that an algebra consisting

of block upper triangular matrices (with respect to some orthonormal basis) also

admits such factorization in Mn. Is there any other algebra in Mn with this prop-

erty? Paulsen and Raghupathi [20] showed that any algebra in Mn containing all
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diagonal matrices, has factorization in Mn if and only if it is unitarily equivalent

to an algebra of block upper triangular matrices (they actually studied the notion

known as logmodular algebra, which is our interest in this paper as well). The

general characterization was settled by Juschenko [15], who showed that up to a

change of basis, all algebras with factorization in Mn contain the diagonal algebra,

thus showing that algebras of block upper triangular matrices are all that have

factorization in Mn.

A natural question that arises is to what extent these results generalize to

infinite-dimensional settings. We say that a (non-self-adjoint) subalgebra A has

factorization in a C∗-algebra M if every positive and invertible element in M can

be expressed as a∗a for some invertible a with a, a−1 ∈ A. The specific interest

of research would be to characterize all subalgebras which have factorization in a

type I factor.

One of the most well-studied algebras having factorization is the class of nest

algebras. Let H be a complex and separable Hilbert space, and let B(H) denote the

algebra of all bounded operators on H. Let E be a collection of closed subspaces

of H totally ordered with respect to inclusion (such a collection is called a nest),

and let Alg E (called a nest algebra) denote the algebra of all operators in B(H)

which leave all subspaces in E invariant. Note that an algebra of block upper

triangular matrices is nothing but Alg E for some nest E on Cn, and vice versa.

So a generalization of Cholesky factorization would be to ask whether Alg E has

factorization in B(H) for a nest E on H. Gohberg and Krein [10] appear to be

the first who studied factorization along nest algebras, mainly examining positive

and invertible operators “close” to the identity operator. Arveson [3] considered

the factorization property of nest algebras arising out of nests of order type Z.
It was Larson [17] who investigated the factorization property of arbitrary nest

algebras, and he proved in particular that if E is a countable complete nest on H,

then Alg E has factorization in B(H). Again, what can be said about the converse?

That is, if a subalgebra A has factorization in B(H), is it of the form Alg E for

some countable complete nest E? In this paper, we show that this is indeed the

case if we also assume that A is reflexive (see Theorem B below).

More generally, the factorization property of subalgebras of arbitrary von

Neumann algebras is considered. A classical result says that the Hardy algebra

H∞(T) on the unit circle has factorization in L∞(T), i.e. for any non-negative

element f ∈ L∞(T) with 1/f ∈ L∞(T), there is an element h ∈ H∞(T) with

1/h ∈ H∞(T) such that f = h̄h. Some other function algebras like weak∗-Dirichlet

algebras introduced by Srinivasan and Wang [27] have factorization. Taking a

cue from analytic function algebras, Arveson [2] introduced the theory of finite

maximal subdiagonal algebras as a non-commutative variant and considered many
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results analogous to the classical Hardy space theory, showing in particular that

they have the factorization property. Later, several authors examined such algebras

in different settings. For more about algebras with factorization see [2, 3, 17, 18,

21, 25, 8, 10], and for some closely related properties see [22, 23, 1, 14, 19, 26], to

name a few.

An algebra with the factorization property is a particular case of a more gen-

eral class of algebras called logmodular algebras. We say that a subalgebra A is

logmodular in a C∗-algebra M if any positive and invertible element in M can

be approximated in norm by elements of the form a∗a, where a is invertible with

a, a−1 ∈ A. It is immediate that all logmodular algebras have factorization as well.

The notion of logmodularity was first introduced by Hoffman [12] for subalgebras

of commutative C∗-algebras, whose main idea was to generalize some classical

results of analytic function theory in the unit disc. Blecher and Labuschagne [5]

extended this notion to subalgebras of non-commutative C∗-algebras. They stud-

ied completely contractive representations on such algebras and their extension

properties. Paulsen and Raghupathi [20] also studied representations of logmodu-

lar algebras and explored conditions under which contractive representations are

automatically completely contractive. In [15], Juschenko gave a complete charac-

terization of all logmodular subalgebras of Mn. See [6] for a beautiful survey on

logmodular algebras arising out of tracial subalgebras and their relation to finite

subdiagonal algebras among others. They show how most results generalized in

the 1960s from the Hardy space on the unit disc to more general function algebras

generalize further to the non-commutative situation, though more sophisticated

proof techniques had to be developed for the purpose. We list some additional

references on logmodular algebras in [12, 13, 9, 5, 6, 20, 15].

In this article, our aim is to understand the behavior of lattices of subspaces (or

projections) invariant under logmodular subalgebras of a (separable) von Neumann

algebra, and to use it to characterize reflexive logmodular algebras. Our main result

is as follows (see Theorem 3.1):

Theorem A. Let M be a von Neumann algebra with separable predual and let

A be a logmodular subalgebra of M. Then the lattice LatM A of projection is a

commutative subspace lattice. Moreover, if M is a factor then LatM A is a nest.

Here, LatM A denotes the lattice of those projections in M whose ranges are

invariant under elements of A. Our proof relies on the structure of two subspaces

provided by Halmos [11].

An immediate consequence of the above result answers a conjecture from [20,

p. 2630] which asks whether every completely distributive CSL logmodular algebra
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of B(H) is a nest algebra. We give an affirmative solution to this question while

proving it for the larger class of reflexive subalgebras of B(H) (see Corollary 3.4).

Theorem B. All reflexive (hence completely distributive CSL) logmodular alge-

bras in B(H) are nest algebras.

See Section 2 for precise definitions of reflexive and CSL algebras. Although

reflexive subalgebras form a large class, whether the reflexivity assumption in the

above result can be dropped (or replaced with some weaker assumptions) remains

an open question. Instead, we attempt to explore some sufficient criteria under

which an algebra with factorization and logmodularity is automatically reflexive

and is a nest algebra. In particular, we prove the following result with a condition

put on the atoms of a lattice of invariant subspaces (see Theorem 5.3). For the

definition of atoms, see Section 2.

Theorem C. Let A be a weakly closed algebra having factorization in B(H). If

all the atoms of the lattice of invariant subspaces of A are finite-dimensional, then

A is reflexive and hence A is a nest algebra.

Next we consider logmodular subalgebras of finite-dimensional von Neumann

algebras. Since all subalgebras having factorization in a finite-dimensional von

Neumann algebra are logmodular as well, we use Theorem C to extend the result

of Juschenko [15] on matrix algebras and give a complete characterization of all

logmodular subalgebras of finite-dimensional von Neumann algebras as follows (see

Corollary 5.7):

Theorem D. A subalgebra of a finite-dimensional von Neumann algebra is log-

modular if and only if it is a nest subalgebra.

Finally, we discuss an example of a subalgebra in a von Neumann algebra

(certainly infinite-dimensional), which has factorization but is not a nest subalge-

bra.

It may be remarked here that we have found a surprising application of our

results about the factorization property of algebras in B(H) in the study of C∗-

convexity and C∗-extreme points of the spaces of normal unital completely positive

maps on von Neumann algebras taking values in B(H). This result is part of the

paper [4] by the authors, and the second author’s PhD thesis [16].

§2. Definitions and examples

All Hilbert spaces considered in this paper are complex and separable. Throughout,

B(H) denotes the algebra of all bounded operators on a Hilbert space H. By
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subspaces, projections and operators on H, we mean closed subspaces, orthogonal

projections and bounded operators respectively. We write E⊥ or H ⊖ E for the

orthogonal complement of E in H. The projection onto a subspace E is denoted

by PE . For any projection p, we write p⊥ for the projection 1 − p, where 1 is

the identity operator on H. If {pi}i∈Λ is a collection of projections, then
∨

i∈Λ pi
denotes the projection onto the smallest subspace containing ranges of all pi, and∧

i∈Λ pi denotes the projection onto the intersection of ranges of all pi. For any

operator x in B(H), kerx and R(x) denote the kernel and range of x respectively.

All algebras considered will be subalgebras of B(H), which are always assumed

to be norm closed, and contain the identity operator which we shall denote by 1.

Unless said otherwise, convergence of any sequence of operators is taken in norm

topology.

We briefly recall some basic notions of von Neumann algebra theory. A von

Neumann algebra is a self-adjoint subalgebra of B(H) containing 1 and closed in

weak operator topology (WOT). A von Neumann algebra M is called a factor if

its center M∩M′ is trivial. Here M′ denotes the commutant of M in B(H). Let

p, q be two projections in M. Then p and q are said to be (Murray–von Neumann)

equivalent, and denoted p ∼ q, if there exists a partial isometry v ∈ M such that

v∗v = p and vv∗ = q. We say p ⪯ q if there is a projection q1 ∈ M such that q1 ≤ q

and p ∼ q1. Here ≤ denotes the usual order of self-adjoint operators, while < will

denote the strict order. A projection p ∈ M is called finite if the only projection

q in M such that q ≤ p and q ∼ p is p. The von Neumann algebra M is called

finite if 1 ∈ M is finite. Note that if p is a projection in M, then pMp is a von

Neumann algebra which is ∗-isomorphic to a von Neumann subalgebra of B(K),

where K is the range subspace of p. See [7] for more details on these topics.

We now define some notation relevant to our results. Fix a von Neumann alge-

braM, which is always assumed to be acting on a separable Hilbert space. LetA be

a norm closed subalgebra (not necessarily self-adjoint) of M. We denote by A∗ the

set {x ∈ M; x∗ ∈ A}, and by A−1 the set {x ∈ A; x is invertible with x−1 ∈ A}.
Let M−1

+ denote the set of all positive and invertible elements of M. Note that

all this notation makes sense for any C∗-algebra. But our main focus in this paper

lies in von Neumann algebras.

For M and A as above, let LatM A denote the lattice of all projections in M
whose ranges are invariant under every operator of A, i.e.

LatM A =
{
p ∈ M; p = p2 = p∗ and ap = pap ∀ a ∈ A

}
.

If M = B(H), we denote LatM A simply by LatA. Note that if A is also

considered as a subalgebra of B(H) (where M ⊆ B(H)), then we have LatM A =
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M ∩ LatA. Also, 0, 1 ∈ LatM A and LatM A is closed under the operations ∨
and ∧ of arbitrary subcollection, as well as closed under strong operator topology

(SOT).

Dually, let E be a collection of projections in M (which may not be a lattice),

and let AlgM E (or Alg E when M = B(H)) denote the algebra of all operators in

M which leave the range of every projection of E invariant, i.e.

AlgM E =
{
x ∈ M; xp = pxp ∀ p ∈ E

}
.

Again we note that AlgM E = M ∩ Alg E . It is clear that AlgM E is a unital

subalgebra of M, which is closed in weak operator topology.

Following [12, 5], we now consider the following definitions:

Definition 2.1. Let A be a subalgebra of a C∗-algebra M. Then A is called

logmodular or has logmodularity in M if the set {a∗a; a ∈ A−1} is norm dense in

M−1
+ . The algebra A is said to have factorization or strong logmodularity in M if

{a∗a; a ∈ A−1} = M−1
+ .

It is immediate that any algebra having factorization is logmodular. Below we

collect some known and straightforward results about logmodular algebras whose

proofs are simple, and so are left to the readers (see [5, Prop. 4.6]).

Proposition 2.2. Let ϕ : M → N be a ∗-isomorphism between two C∗-algebras,

and let A be a subalgebra of M. Then A has logmodularity (resp. factorization) in

M if and only if ϕ(A) has logmodularity (resp. factorization) in N . In particular,

if U is an appropriate unitary, then U∗AU has logmodularity (resp. factorization)

in U∗MU if and only if A has logmodularity (resp. factorization) in M.

Proposition 2.3 ([5, Prop. 4.1]). Let A be a subalgebra of a C∗-algebra M. Then

the following are true:

(1) A has factorization in M if and only if A∗ has factorization in M if and

only if for every invertible element x ∈ M, there exist unitaries u, v ∈ M and

invertible elements a, b ∈ A−1 such that x = ua = bv.

(2) A is logmodular in M if and only if A∗ is logmodular in M if and only if

for each invertible element x ∈ M, there exist nets {un}, {vn} of unitaries

in M and invertible elements {an}, {bn} in A−1 such that x = limn unan =

limn bnvn.

There are plenty such algebras known in the literature. The following are

examples of logmodular algebras in commutative C∗-algebras.
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Example 2.4 (Function algebras). A classical result of Szegö ([7, Thm. 25.13])

says that the Hardy algebra H∞(T) has factorization in L∞(T, µ). Here, T is

the unit circle, µ is the one-dimensional Lebesgue measure on T and H∞(T) is the
algebra of all essentially bounded functions on T whose negative Fourier coefficients

are zero.

More generally, let m be a probability measure, and let A be a unital subal-

gebra of L∞(m) satisfying the following:

(i)
∫
fg dm =

∫
f dm

∫
g dm for all f, g ∈ A;

(ii) if h ∈ L1(m) with h ≥ 0 a.e. and
∫
fh dm =

∫
f dm for all f ∈ A, then h = 1

a.e.

Let H2(m) be the closure of A in the Hilbert space L2(m), and let H∞(m) =

H2(m) ∩ L∞(m). Then the proof of [13, Thm. 4] says that H∞(m) has factor-

ization in L∞(m). The algebra H∞(m) satisfies many other equivalent conditions

analogous to classical Hardy space theory (see [27, Thm. 3.1] for details). Also see

[12, 13, 27] for more concrete examples of such measures and algebras.

Example 2.5 (Dirichlet algebras). A closed unital subalgebra A of a commuta-

tive C∗-algebra C(X) is called a Dirichlet algebra if A + Ā is uniformly dense in

C(X) (equivalently, ℜA is uniformly dense in ℜC(X)), where ℜA (resp. ℜC(X))

denotes the set of real parts of the functions in A (resp. C(X)). If A is a Dirich-

let algebra, then since log |A−1| ⊆ ℜA, it is immediate that log |A−1| is dense in

ℜC(X); hence A is a logmodular subalgebra of C(X). But some Dirichlet algebras

may not have factorization. For example, consider the algebra A(D) of all contin-
uous functions on the closed unit disc D which is holomorphic on the open unit

disc D. Then A(D) is a Dirichlet algebra when considered as the subalgebra of

C(T), which is a consequence of Fejér–Riesz theorem on factorization of positive

trigonometric polynomials, but A(D) does not have factorization in C(T). On the

other hand, H∞(T) is an example of an algebra which has factorization in L∞(T),
but which is not a Dirichlet algebra. See [12] for details of these facts and more

concrete examples of Dirichlet algebras.

To see examples and other properties of non-commutative algebras having

factorization and logmodularity, we recall some notions to this end. Let M be a

von Neumann algebra, and let E be a lattice of projections in M (i.e. p ∧ q and

p ∨ q ∈ E whenever p, q ∈ E). Then E is called complete if 0, 1 ∈ E , and
∨

i∈Λ pi
and

∧
i∈Λ pi ∈ E for any arbitrary family {pi}i∈Λ in E . The lattice E is called a

commutative subspace lattice (CSL) if projections of E commute with one another.

Moreover, E is called a nest if E is totally ordered by the usual operator ordering,
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i.e. for any p, q ∈ E , either p ≤ q or q ≤ p holds true. We remark here that some

authors assume a nest or a CSL to be always complete.

A subalgebra A of the von Neumann algebra M is called a nest subalgebra of

M (or a nest algebra when M = B(H)) if A = AlgM E for a nest E in M. Further,

A is called M-reflexive (or reflexive when M = B(H)) if A = AlgM LatM A. Any

subalgebra of M of the form AlgM E for some collection E of projections in M,

is always M-reflexive. In particular, a nest subalgebra of M is M-reflexive. Note

that if M ⊆ B(H), then it is possible that a subalgebra of M can be reflexive in

B(H), but it need not be M-reflexive.

We state the following celebrated result by Larson [17] regarding the factor-

ization property of nest algebras.

Theorem 2.6 ([17, Thm. 4.7]). Let E be a complete nest on a separable Hilbert

space H. Then Alg E has factorization in B(H) if and only if E is countable.

The following are some examples of algebras having factorization in non-

commutative von Neumann algebras.

Example 2.7 (Nest subalgebras). As already mentioned above, Alg E has factor-

ization in B(H) for any countable complete nest E in B(H). More generally, Pitts

proved that if E is a complete nest in a factor M, then AlgM E has factorization

in M if and only if a “certain” subnest Er of E is countable ([21, Thm. 6.4]).

Moreover, if E is a nest (not necessarily countable) in a finite von Neumann

algebra M (not necessarily a factor), then AlgM E has factorization in M ([21,

Cor. 5.11]).

Example 2.8 (Subdiagonal algebras). Let A be a subalgebra of a von Neumann

algebra M, and let ϕ : M → M be a faithful normal expectation (i.e. ϕ is positive,

ϕ(1) = 1 and ϕ ◦ ϕ = ϕ). Then A is called a subdiagonal algebra with respect to ϕ

if it satisfies

(i) A+A∗ is σ-weakly dense in M;

(ii) ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A;

(iii) ϕ(A) ⊆ A ∩A∗.

Moreover, if the von Neumann algebra M is finite with a distinguished trace τ ,

then the subdiagonal algebra A is called finite if τ ◦ ϕ = τ .

Arveson proved that if A is a maximal (with respect to ϕ) finite subdiagonal

algebra of M, then A has factorization in M ([2, Thm. 4.2.1]). A nest subalgebra

of a finite von Neumann algebra is an example of a maximal finite subdiagonal

algebra ([2, Cor. 3.1.2]). See Example 5.9 for another concrete example of a finite



Lattices of Logmodular Algebras 515

subdiagonal algebra. There are other subdiagonal algebras (not necessarily finite)

as well, which are known to have factorization. For example, all subdiagonal alge-

bras arising out of periodic flow have factorization. See [25] for more details of

these notions and Corollary 3.11 therein.

We believe that some known facts about subdiagonal algebras can also be

deduced from our result. One such is [19, Thm. 5.1], which follows directly from

Corollary 3.2. However, we have not explored other possible consequences in depth.

The following are some concrete examples of nest algebras which do not have

factorization.

Example 2.9. Let E be the nest {pt; t ∈ [0, 1]} of projections on L2([0, 1]), where

pt denotes the projection onto L2([0, t]), considered as a subspace of L2([0, 1]).

Then E is complete and uncountable; hence Alg E does not have factorization in

B(L2([0, 1])) by Theorem 2.6. Additionally, let F = {pi; i ∈ Q} be the nest of

projections on ℓ2(Q), where pi denotes the projection onto the subspace span{ej ;
j ≤ i}, for the canonical basis {ei; i ∈ Q} of ℓ2(Q). Although F is a countable

nest, it is easy to verify that its completion is not countable (actually indexed by

R⊔Q) and hence AlgF does not have factorization in B(ℓ2(Q)). At this point, we

do not know whether these algebras are logmodular.

Below is an example of a non-commutative logmodular algebra which does

not have factorization. To the best of our knowledge, this is the first such example

in a non-commutative setting. Here we use the fact that positive and invertible

operators of the form I + K factor along any nest whenever K is a finite-rank

operator, while this is not true in general if K is a compact operator.

Example 2.10. Let K(H) denote the algebra of compact operators on a separable

Hilbert space H, and let M = K(H) +C be the unitization of K(H). Let E be an

uncountable complete nest of projections on H, and consider the subalgebra of M
by

A := M∩Alg E .

Since Alg E contains plenty of finite-rank operators ([8, Thm. 3.11]), A is a non-

trivial algebra. It is well established that A does not have factorization in M;

indeed, one can get a compact operator K with ∥K∥ < 1 such that I +K ̸= A∗A

for any invertible operator A with A,A−1 ∈ Alg E ([17, Thm. 4.7]).

We claim that A is a logmodular subalgebra in M. Let K be a compact

operator such that I +K is positive and invertible in M. Get a sequence {Kn} of

finite-rank operators such that limn Kn = K, and I+Kn is positive and invertible

for all n. Since each Kn is of finite rank, we can find a compact operator Cn
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such that Sn := I + Cn is invertible, Sn, S
−1
n ∈ Alg E and I + Kn = S∗

nSn ([8,

Thm. 14.9]). Thus we have Sn ∈ A−1 and I +K = limn S
∗
nSn.

§3. Main results on logmodular algebras

We are now ready to state the main result of this paper. This tells us the behavior

of lattices of logmodular algebras.

Theorem 3.1. Let A be a logmodular algebra in a von Neumann algebra M.

Then LatM A is a commutative subspace lattice. Moreover, if M is a factor, then

LatM A is a nest.

We postpone the proof of Theorem 3.1 to the next section, and instead look

at some of its consequences first. Since any algebra having factorization is also

logmodular, the following corollary is immediate.

Corollary 3.2. Let A be an algebra having factorization in a von Neumann alge-

bra M. Then LatM A is a commutative subspace lattice. Moreover, if M is a

factor, then LatM A is a nest.

Remark 3.3. If M is an arbitrary von Neumann algebra which is not a factor,

and A is a subalgebra of M, then we can never expect LatM A to be a nest,

irrespective of whether A is logmodular or has factorization. In fact, if PZ denotes

the lattice of all projections in the center Z of M, then it is always true that

PZ ⊆ LatM A. So LatM A can never be a nest if the center Z is non-trivial.

Now let M be a factor, and let A be an M-reflexive subalgebra of M.

If A is logmodular in M, then LatM A is a nest by Theorem 3.1. Since A =

AlgM LatM A, it follows that A is a nest subalgebra of M.

We now answer an open question posed by Paulsen and Raghupathi (see [20,

p. 2630]) using the above observation. They conjectured that every completely dis-

tributive CSL logmodular algebra in B(H) is a nest algebra. Here a (completely

distributive) CSL algebra means an algebra of the form Alg E , where E is a (com-

pletely distributive) commutative subspace lattice (see [8] for more on completely

distributive CSL algebras). Notice that all nests are completely distributive. Since

any CSL algebra is a special case of a reflexive algebra, we have thus answered

their question in the affirmative. We record it below.

Corollary 3.4. An M-reflexive logmodular algebra in a factor M is a nest sub-

algebra of M. In particular, all reflexive (hence completely distributive CSL) log-

modular algebras in B(H) are nest algebras.
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We next give a complete characterization of all reflexive algebras having fac-

torization in B(H) by combining Larson’s results and ours. If an algebra A has

factorization in B(H), then Alg LatA also has factorization in B(H) as A is con-

tained in Alg LatA. Since LatA is a complete nest, we infer from Theorem 2.6 that

LatA is a countable nest. In particular, if A is reflexive, i.e. A = Alg E for a com-

plete lattice E of projections in H, then E is a countable nest because E ⊆ LatA.

Thus we get the following corollary, which is a strengthening of Larson’s result,

Theorem 2.6.

Corollary 3.5. Let E be a complete lattice of projections on a separable Hilbert

space H. Then Alg E has factorization in B(H) if and only if E is a countable nest.

We recall some crucial terminology to be used later. LetM be a von Neumann

algebra, and let E be a complete nest in M. For any projection p ∈ E , let

p− = ∨{q ∈ E ; q < p} and p+ = ∧{q ∈ E ; q > p}.

An atom of E is a non-zero projection of the form p − p− for some p ∈ E with

p ̸= p−. Clearly, two distinct atoms are mutually orthogonal. The nest E is called

atomic if there is a finite or countably infinite sequence {rn} of atoms of E such

that
∑

n rn = 1, where the sum converges in SOT.

Let E be a complete nest in B(H). Let {rn} be the collection of all atoms of

E , and let r =
∑

n rn in SOT convergence. If r ̸= 1, then it is straightforward to

check that the nest {p ∧ r⊥; p ∈ E} in B(R(r⊥)) is complete and has no atom

(such nests without any atom are called continuous). But then any continuous

complete nest has to be uncountable (in fact indexed by [0, 1]; see [8, Lem. 13.3]).

In particular, if the nest E is countable, then r = 1 and hence E is atomic. We

record this observation in the following remark.

Remark 3.6. If an algebra A has factorization in B(H), then Alg LatA also has

factorization in B(H) as it contains A. Since LatA is complete, it follows from

Corollary 3.5 that LatA is a countable nest, and hence by the above discussion,

LatA is an atomic nest.

§4. Proof of the main result

This section is devoted to the proof of our main result (Theorem 3.1). We first

discuss some general ingredients required for this. A simple observation which will

be used throughout the article is the following remark. Recall that p⊥ denotes the

projection 1− p for any projection p.
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Remark 4.1. For any subalgebra A of a von Neumann algebra M,

p ∈ LatM A ⇔ ap = pap ∀ a ∈ A
⇔ pa∗ = pa∗p ∀ a ∈ A
⇔ a∗p⊥ = p⊥a∗p⊥ ∀ a ∈ A
⇔ p⊥ ∈ LatM A∗.

The following proposition says that logmodularity and factorization are pre-

served under compression of algebras by appropriate projections. This result must

be well established, but we sketch an outline of the proof for the purpose of com-

pleteness.

Here, pAp denotes the subspace {pap; a ∈ A} for any projection p and an

algebra A. Note that pAp need not always be an algebra.

Proposition 4.2. Let A be an algebra having logmodularity (resp. factorization)

in a von Neumann algebra M, and let p, q ∈ LatM A be such that p ≥ q. Then

(p− q)A(p− q) has logmodularity (resp. factorization) in (p− q)M(p− q).

Proof. We shall prove only the case of logmodularity. That of factorization follows

similarly. So assume that A is logmodular in M.

Set r = p − q. That rAr is an algebra is a direct consequence of well-known

facts about the semi-invariant property of r that the map x 7→ rxr is an algebra

homomorphism from A onto rAr (see [7, Lem. 35.6]).

To show that rAr is logmodular in rMr, fix a positive and invertible element

x in rMr. Set x̃ = x+ q+ p⊥. Note that x = rx̃r. It is clear that x̃ is positive and

invertible in M (as x is positive and invertible). We use logmodularity of A in M
to get a sequence {ãn} in A−1 such that x̃ = limn ã

∗
nãn. For each n, we have

(qãnq)(qã
−1
n q) = qãnã

−1
n q = q and (qã−1

n q)(qãnq) = qã−1
n ãnq = q,

which is to say that qãnq is invertible in qMq with (qãnq)
−1 = qã−1

n q ∈ qAq. In

particular, since the sequence {ã−1
n } is bounded (as {(ã∗nãn)−1} is a convergent

sequence), the sequence {(qãnq)−1} is bounded. Note that qx̃r = 0, and since

qã∗n = qã∗nq for all n, we have

0 = qx̃r = lim
n

qã∗nãnr = lim
n
(qã∗nq)(qãnr).

Multiplying on the left of the above sequence by the bounded sequence (qã∗nq)
−1

yields limn qãnr = 0, using which, along with the expression ãnr = pãnr, we get

x = rx̃r = lim
n

rã∗nãnr = lim
n

rã∗n(pãnr)

= lim
n

rã∗n(qãnr) + lim
n

rã∗n(rãnr) = lim
n

a∗nan,
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where an = rãnr ∈ rAr. Using the algebra property of rAr, for each n, we

have r = rã−1
n rãnr = rãnrã

−1
n r, which shows that an = rãnr is invertible with

inverse rã−1
n r in rAr. Thus we get a sequence {an} of invertible elements with

an, a
−1
n ∈ rAr for all n such that x = limn a

∗
nan. Since x is an arbitrary positive

and invertible element, we conclude that rAr is logmodular in rMr.

We now recall some basic facts about subspaces in a separable Hilbert space.

The structure theorems of two subspaces provided by Halmos constitute the main

step towards the proof of our result. Following Halmos [11], we say two non-zero

subspaces E and F of a Hilbert space are in generic position if all the subspaces

E ∩ F, E ∩ F⊥, E⊥ ∩ F, E⊥ ∩ F⊥

are zero. We are going to use Halmos’s two subspace theorem, which character-

izes subspaces in generic position. Recall that PE denotes the projection onto a

subspace E, and kerx denotes the kernel of any operator x.

Lemma 4.3 ([11, Thm. 2]). Let E and F be two subspaces in generic position in

a separable Hilbert space H. Then there exist a Hilbert space K, a unitary U : H →
K ⊕ K and commuting positive contractions x, y ∈ B(K) such that x2 + y2 = 1,

kerx = ker y = 0 and

UPEU
∗ =

[
1 0

0 0

]
and UPFU

∗ =

[
x2 xy

xy y2

]
.

The following proposition, which describes the structure of any two general

subspaces, is a well-known direct consequence of Halmos’s two subspace theorem.

Proposition 4.4. Let E and F be two subspaces in a Hilbert space H. Then

there is a Hilbert space K (could be zero) and commuting positive contractions

x, y ∈ B(K) with x2 + y2 = 1 and kerx = ker y = 0 such that, up to unitary

equivalence,

H = E ∩ F ⊕ E ∩ F⊥ ⊕ E⊥ ∩ F ⊕ E⊥ ∩ F⊥ ⊕K ⊕K

and

PE = 1⊕ 1⊕ 0⊕ 0⊕ 1⊕ 0 and PF = 1⊕ 0⊕ 1⊕ 0⊕

[
x2 xy

xy y2

]
.

Here, any of the components in the decomposition could be 0. Moreover, PEPF =

PFPE = PE∩F if and only if K = {0}.

When K ̸= 0 in the proposition above, we call the components of E and F in

the summand K ⊕K the generic part of E and F respectively.
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We are now ready to give the proof of our main result through a series of

lemmas. The next two lemmas deal with factor von Neumann algebras only, where

we use the following comparison theorem of projections (see [7, Cor. 47.9]):

If M is a factor and p, q are two non-zero projections in M, then either p ⪯ q

or q ⪯ p, i.e. there is a non-zero partial isometry v ∈ M such that v∗v ≤ p and

vv∗ ≤ q. The same is clearly not true for arbitrary von Neumann algebras.

Before going forward, we reiterate that, throughout, convergence of any se-

quence of operators is taken in norm topology unless stated otherwise.

Lemma 4.5. Let M be a factor, and let p, q be non-zero mutually orthogonal

projections in M. Then AlgM{p, q} is not logmodular in M.

Proof. Since M is a factor and p, q ∈ M are non-zero, it follows that there is a

non-zero partial isometry v ∈ M such that v∗v ≤ p and vv∗ ≤ q. In particular, we

have

(4.1) v = qv = vp.

Assume to the contrary that AlgM{p, q} is logmodular in M. Let x = 1+ε(v+v∗)

for some fixed scalar 0 < ε < 1. Then x is positive and invertible in M (as

∥v + v∗∥ = 1). Hence, there exists a sequence {an} of invertible elements in

AlgM{p, q} such that x = limn a
∗
nan. Since pq = 0, we note from (4.1) that

v∗p = (v∗q)p = 0; hence we get qxp = εqvp = εv. We also have anp = panp and

qa∗n = qa∗nq for all n; thus it follows that

εv = qxp = lim
n

qa∗nanp = lim
n

qa∗nqpanp = 0,

which is a contradiction, as v ̸= 0.

The following lemma proves the second assertion of Theorem 3.1, once we

assume the first.

Lemma 4.6. Let M be a factor, and let A be a logmodular algebra in M. If

p, q ∈ LatM A are such that pq = qp, then either p ≤ q or q ≤ p holds true.

Proof. Since p and q are commuting projections, the operators pq, pq⊥ and p⊥q are

projections. We assume without loss of generality that r := (pq)⊥ ̸= 0 (otherwise

p = pq = q, so there is nothing to prove).

Consider the compression rAr of the algebra A. Note that r⊥ = pq ∈ LatM A.

We know thanks to Proposition 4.2 that the algebra rAr is logmodular in rMr. It

is clear that pq⊥, p⊥q ∈ rMr, and it is straightforward to verify that pq⊥, p⊥q ∈
LatrMr(rAr) (see Lemma 5.1 below). But pq⊥ and p⊥q are mutually orthogonal
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projections, and since AlgrMr{p⊥q, pq⊥} (which contains rAr) is logmodular in

rMr, it follows from Lemma 4.5 that either pq⊥ = 0 or p⊥q = 0. If pq⊥ = 0,

then p = p(q + q⊥) = pq which implies that p ≤ q. Likewise, p⊥q = 0 will imply

q ≤ p.

The next two lemmas are simple but useful observations.

Lemma 4.7. Let {an} be a sequence of invertible elements in a C∗-algebra such

that limn a
∗
nan = 1. Then {a−1

n } is bounded and limn ana
∗
n = 1.

Proof. Since limn a
∗
nan = 1, it follows that limn(a

∗
nan)

−1 = 1 and so {(a∗nan)−1}
is bounded. This implies the first assertion that {a−1

n } is bounded. Further, we

have limn a
∗
nana

∗
nan = 1, and hence

0 = lim
n
(a∗nana

∗
nan − a∗nan) = lim

n
a∗n(ana

∗
n − 1)an.

Since the sequence {a−1
n } is bounded, it follows by multiplying by a∗n

−1 on the left

and by a−1
n on the right of the sequence that limn(ana

∗
n − 1) = 0, as was to be

proved.

Lemma 4.8. Let an algebra A have logmodularity (resp. factorization) in a von

Neumann algebra M, and let p, q ∈ LatM A. If r = (p∧q)∨(p⊥∧q⊥), then r⊥Ar⊥

has logmodularity (resp. factorization) in r⊥Mr⊥.

Proof. Write r1 = p ∧ q and r2 = p⊥ ∧ q⊥. It is clear that r1r2 = 0 and r =

r1 + r2. Since p, q ∈ LatM A, it follows that r1 ∈ LatM A. Also, we note that

p⊥, q⊥ ∈ LatM A∗ and hence r2 ∈ LatM A∗, which is to say that r⊥2 ∈ LatM A.

Note that r⊥ = 1− r2 − r1 = r⊥2 − r1, and so r1 ≤ r⊥2 . Both the assertions about

logmodularity and factorization now follow from Proposition 4.2.

Finally, we prove our main theorem in full generality. Recall that R(x) denotes

the range of an operator x.

Proof of Theorem 3.1. Let A be a logmodular subalgebra of a von Neumann

algebra M, and let p, q ∈ LatM A. We have to show that pq = qp. The second

assertion that p ≤ q or q ≤ p whenever M is a factor, will then follow thanks to

Lemma 4.6.

Set r = (p ∧ q) ∨ (p⊥ ∧ q⊥). Then r⊥Ar⊥ is a logmodular algebra in r⊥Mr⊥

by Lemma 4.8. The projections p and q commute with r, and hence with r⊥. So

if we write

p′ = r⊥pr⊥ and q′ = r⊥qr⊥,
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then it is immediate that p′, q′ are projections in r⊥Mr⊥, and we have p′ = p∧r⊥

and q′ = q ∧ r⊥. Observe that

pq(p ∧ q) = p ∧ q = qp(p ∧ q) and pq(p⊥ ∧ q⊥) = 0 = qp(p⊥ ∧ q⊥).

So we have pqr = p ∧ q = qpr, which further yields

pq = pq(r + r⊥) = pqr + pqr⊥ = p ∧ q + (r⊥pr⊥)(r⊥qr⊥) = p ∧ q + p′q′,

qp = qpr + qpr⊥ = p ∧ q + (r⊥qr⊥)(r⊥pr⊥) = p ∧ q + q′p′.

Therefore, in order to show the required assertion, it is enough to prove that

p′q′ = q′p′. We note that

p′ ∧ q′ = p ∧ q ∧ r⊥ ≤ r ∧ r⊥ = 0

and

(r⊥ − p′) ∧ (r⊥ − q′) = (r⊥ − pr⊥) ∧ (r⊥ − qr⊥) = p⊥r⊥ ∧ q⊥r⊥

= (p⊥ ∧ q⊥) ∧ r⊥ ≤ r ∧ r⊥ = 0.

Here, r⊥−p′ and r⊥−q′ are the orthogonal complements of the projections p′ and

q′ in r⊥Mr⊥ respectively. Thus if necessary, by replacing the algebras M and A
by r⊥Mr⊥ and r⊥Ar⊥ respectively, and the projections p, q by p′, q′ respectively,

we assume without loss of generality that

(4.2) p ∧ q = 0 = p⊥ ∧ q⊥,

so that r = 0 and M = r⊥Mr⊥. The purpose of reducing M to r⊥Mr⊥ is just

to avoid multiple cases, and work with 4× 4 matrices rather than 6× 6 matrices,

as we shall see below.

Now assume that pq ̸= qp, contrary to what we need to show. Then the

generic parts of R(p) and R(q) in H are non-zero by Proposition 4.4, where H is

the separable Hilbert space on which the von Neumann algebra M acts.

We need to deal with the following three cases:

(1) p ∧ q⊥ ̸= 0 and p⊥ ∧ q ̸= 0,

(2) p ∧ q⊥ ̸= 0 and p⊥ ∧ q = 0 (or by symmetry, p ∧ q⊥ = 0 and p⊥ ∧ q ̸= 0),

(3) p ∧ q⊥ = 0 and p⊥ ∧ q = 0.

We proceed towards getting a contradiction assuming the first case. The detailed

procedure in the other two cases follows similar lines.

So for the remainder of the proof, we assume that both the projections p∧ q⊥

and p⊥∧q are non-zero. It then follows from Proposition 4.4 that there exist a non-

zero Hilbert space K and commuting positive contractions x, y ∈ B(K) satisfying
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x2 + y2 = 1 and kerx = 0 = ker y such that, up to unitary equivalence, we have

(4.3) H = R(p ∧ q⊥)⊕K ⊕K ⊕ R(p⊥ ∧ q)

and

(4.4) p =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 and q =


0 0 0 0

0 x2 xy 0

0 xy y2 0

0 0 0 1

 .

Since logmodularity is preserved under unitary equivalence by Proposition 2.2,

we assume without loss of generality that M is a von Neumann subalgebra of

B(R(p ∧ q⊥)⊕K ⊕K ⊕ R(p⊥ ∧ q)), and p, q have the form given in (4.4). Set

K̃1 = R(p ∧ q⊥)⊕K and K̃2 = K ⊕ R(p⊥ ∧ q),

so that

(4.5) H = K̃1 ⊕ K̃2.

Throughout the proof, we make use of the decomposition of H in both (4.3) and

(4.5), which should be understood according to the context. Fix a scalar α ≥ 1,

and define the operator Z ∈ B(H) by

(4.6) Z =


1 0 0 0

0 1 α 0

0 α α2 + 1 0

0 0 0 1

 =:

[
1 Z2

Z∗
2 Z3

]
,

where

Z2 =

[
0 0

α 0

]
and Z3 =

[
α2 + 1 0

0 1

]
.

Here, digressing momentarily, it is imperative to mention that in the case when

p ∧ q⊥ ̸= 0 and p⊥ ∧ q = 0, we would have considered the operator Z as1 0 0

0 1 α

0 α α2 + 1

 ∈ B(R(p ∧ q⊥)⊕K ⊕K),

while for the case p ∧ q⊥ = 0 and p⊥ ∧ q = 0, we would have considered the

following operator for Z: [
1 α

α α2 + 1

]
∈ B(K ⊕K).
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In both of these two other cases, the computations follow almost the same (and

possibly easier) steps as below.

Now we come back to the operator Z as considered in (4.6). It is clear that Z

is a positive and invertible operator in B(H). We claim that Z ∈ M. Since p and

q are in M, it follows that
0 0 0 0

0 x2 0 0

0 0 0 0

0 0 0 0

 = pqp ∈ M and


0 0 0 0

0 0 0 0

0 0 y2 0

0 0 0 0

 = p⊥qp⊥ ∈ M.

Thus, their sum pqp+ p⊥qp⊥ ∈ M, which means that

T :=


0 0 0 0

0 0 xy 0

0 xy 0 0

0 0 0 0

 = (q − p⊥ ∧ q)− (pqp+ p⊥qp⊥) ∈ M.

Let T = U |T | be the polar decomposition of T , where |T | denotes the square root

of the operator T ∗T . As x and y are commuting positive operators, we note that

xy ≥ 0 and T = T ∗. It is straightforward to check (using uniqueness of polar

decomposition) that

|T | =


0 0 0 0

0 xy 0 0

0 0 xy 0

0 0 0 0

 and U =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 .

Since M is a von Neumann algebra and T ∈ M, it follows that U ∈ M and so
0 0 0 0

0 0 α 0

0 α 0 0

0 0 0 0

 = αU ∈ M.

Also, since 
1 0 0 0

0 1 0 0

0 0 α2 + 1 0

0 0 0 1

 = p+ (α2 + 1)p⊥ − α2(p⊥ ∧ q) ∈ M,

we conclude that their sum Z ∈ M, as claimed.



Lattices of Logmodular Algebras 525

Since A is logmodular in M and Z is positive and invertible in M, we get a

sequence {Sn} of invertible operators in A−1 such that Z = limn S
∗
nSn. For each

n, we have Snp = pSnp and S−1
n p = pS−1

n p; hence the operators Sn and S−1
n have

the forms

Sn =


an bn rn sn
cn dn tn un

0 0 en fn
0 0 gn hn

 =:

[
An Bn

0 Cn

]

and

S−1
n =


a′n b′n r′n s′n
c′n d′n t′n u′

n

0 0 e′n f ′
n

0 0 g′n h′
n

 =:

[
A′

n B′
n

0 C ′
n

]
,

for appropriate operators an, bn, . . . , a
′
n, b

′
n, . . . . In particular, we get AnA

′
n = 1 =

A′
nAn, i.e. An is invertible in B(K̃1). Similarly, Cn is invertible in B(K̃2). Now

(4.7)

[
1 Z2

Z∗
2 Z3

]
= Z = lim

n
S∗
nSn = lim

n

[
A∗

nAn A∗
nBn

B∗
nAn B∗

nBn + C∗
nCn

]
.

Then we obtain limn A
∗
nAn = 1 and since An is invertible, it follows from Lemma

4.7 that

(4.8) lim
n

AnA
∗
n = 1.

We also have limn A
∗
nBn = Z2, which after multiplication by An on the left of the

sequence and using (4.8) yields limn(Bn −AnZ2) = 0. But

Bn −AnZ2 =

[
rn sn
tn un

]
−

[
an bn
cn dn

][
0 0

α 0

]
=

[
rn − αbn sn
tn − αdn un

]
,

and thus we get the following equations:

lim
n
(rn − αbn) = 0,(4.9)

lim
n
(tn − αdn) = 0.(4.10)

If we write Dn = Bn−AnZ2 for all n, then limn Dn = 0 and since limn A
∗
nAn = 1,

we have

lim
n

B∗
nBn = lim

n
(Dn +AnZ2)

∗(Dn +AnZ2) = lim
n

Z∗
2A

∗
nAnZ2 = Z∗

2Z2.
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This, along with the expression limn(B
∗
nBn + C∗

nCn) = Z3 from (4.7), further

yields

lim
n

C∗
nCn = Z3 − Z∗

2Z2 =

[
α2 + 1 0

0 1

]
−

[
α2 0

0 0

]
=

[
1 0

0 1

]
.(4.11)

Consequently, by computing entries of the matrices C∗
nCn, we get limn(e

∗
nen +

g∗ngn) = 1; hence there exists m ∈ N such that ∥e∗nen∥ ≤ 2 for n ≥ m, which in

turn yields

(4.12) ene
∗
n ≤ 2 ∀n ≥ m.

Now

Snq =


0 bnx

2 + rnxy bnxy + rny
2 sn

0 dnx
2 + tnxy dnxy + tny

2 un

0 enxy eny
2 fn

0 gnxy gny
2 hn


and

qSnq=


0 0 0 0

0 x2dnx
2 + x2tnxy + xyenxy x2dnxy + x2tny

2 + xyeny
2 x2un + xyfn

0 xydnx
2 + xytnxy + y2enxy xydnxy + xytny

2 + y2eny
2 xyun + y2fn

0 gnxy gny
2 hn

 .

Since Snq = qSnq for each n, by equating the (3, 2) entries of the respective

matrices and then using 1 − y2 = x2, we get the expression x2enxy = xydnx
2 +

xytnxy. But x is one-to-one and hence x has dense range, so x cancels from both

sides of the equation to yield

xeny = ydnx+ ytny.

If we set vn = tn − αdn for all n, then the above equation further implies

xeny = ydnx+ y(αdn + vn)y = ydn(x+ αy) + yvny = ydnz + yvny,

where z = x + αy. Since α ≥ 1, we note that z is positive and invertible (in fact

z2 = 1 + (α2 − 1)y2 + 2αxy ≥ 1), and thus we get

(4.13) ydn = xenyz
−1 − yvnyz

−1.

Observe that

z2 = (x+ αy)2 = x2 + α2y2 + 2αxy ≥ α2y2,

and since y and z commute, it follows that

(4.14) y2z−2 ≤ 1/α2.
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Next, by equating the (1, 2) entries of Snq and qSnq, we get bnx
2 + rnxy = 0;

again since x has dense range, it follows that bnx+ rny = 0 for all n. So by using

(4.9) we have

0 = lim
n
(bnx+ rny) = lim

n
bn(x+ αy) + lim

n
(rn − αbn)y = lim

n
bn(x+ αy).

But x+ αy is invertible as seen before, so the above equation yields

(4.15) lim
n

bn = 0.

Similarly, since each S−1
n also has all these properties, we have

(4.16) lim
n

b′n = 0.

Now we compute the (2, 2) entry of the matrix SnS
−1
n (with respect to the decom-

position of H in (4.3)), to get cnb
′
n + dnd

′
n = 1 for all n. Since limn b

′
n = 0 from

(4.16), it follows that

lim
n

dnd
′
n = 1.

So there exists n0 ∈ N such that ∥dnd′n−1∥ < 1 for all n ≥ n0, which in particular

says that dnd
′
n is invertible for all n ≥ n0; thus

dnd
′
n(dnd

′
n)

−1 = 1,

which implies that dn is right invertible for all n ≥ n0. Likewise, from the (2, 2)

entry of S−1
n Sn and using limn bn = 0 from (4.15), we get

lim
n

d′ndn = 1.

A similar argument implies that, for large n, d′ndn is invertible, which forces that

dn is left invertible. Thus we have shown that dn is both left and right invertible,

which is to say that dn is invertible, for large n.

Now for each n, the (2, 2) entry of the matrix S∗
nSn (with respect to the

decomposition of H in (4.3)) is b∗nbn + d∗ndn. Since limn S
∗
nSn = Z, it then follows

that limn(b
∗
nbn+d∗ndn) = 1, and since limn bn = 0 from (4.15), we get limn d

∗
ndn =

1. But dn is invertible for large n, so it follows from Lemma 4.7 that

(4.17) lim
n

dnd
∗
n = 1.

Finally, we make use of the expression limn vn = 0 from (4.10), and equations

(4.12), (4.13), (4.14) and (4.17) to get

y2 = lim
n

ydnd
∗
ny = lim

n
(ydn)(ydn)

∗

= lim
n
(xenyz

−1 − yvnyz
−1)(xenyz

−1 − yvnyz
−1)∗
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= lim
n
(xenyz

−1)(xenyz
−1)∗ = lim

n
xeny

2z−2e∗nx

≤ 1

α2
lim
n

xene
∗
nx ≤ 2

α2
x2.

Since α ≥ 1 is arbitrary, it follows by taking α → ∞ that y = 0, which is a contra-

diction. Thus our assumption that pq ̸= qp is false. The proof is now complete.

§5. Reflexivity of algebras with the factorization property

One of the main results of this article says that the lattice of any algebra with

the factorization property in a factor is a nest. A natural question that arises

is whether algebras having factorization are also nest subalgebras, i.e. are they

reflexive? Certainly, we cannot always expect automatic reflexivity of such algebras

(see Example 5.9). But then what extra condition can be imposed in order to show

that they are reflexive? A result due to Radjavi and Rosenthal [24] says that a

weakly closed algebra in B(H) whose lattice is a nest, is a nest algebra if and only if

it contains a maximal abelian self-adjoint algebra (masa). In this section we show

that if the lattice of an algebra with factorization in B(H) has finite-dimensional

atoms, then it contains a masa and hence it is reflexive. This fact further helps

us in characterizing all logmodular algebras in finite-dimensional von Neumann

algebras.

We begin with the following simple lemma. Recall that an algebra A in M
is called M-transitive (simply transitive when M = B(H)) if LatM A = {0, 1}.
Transitive algebras are very well-studied objects and have attracted deep inves-

tigations over the decades. Interested readers can consult Radjavi and Rosenthal

[24] for history and some major unsolved open problems on this topic.

Lemma 5.1. Let A be an algebra in a von Neumann algebra M such that LatM A
is a nest, and let p, q ∈ LatM A with p < q. If r = q − p, then LatrMr(rAr) =

{s ∈ rMr; p+ s ∈ LatM A}. In particular, if p = q− then rAr is rMr-transitive.

Proof. As seen in Proposition 4.2, rAr is a subalgebra of rMr. Let s ∈
LatrMr(rAr), and a ∈ A. Note that (rar)s = s(rar)s, and since rs = s, it follows

that ras = sas, using which, along with the conditions aq = qaq and qs = s, we

have

(5.1) as = aqs = qaqs = qas = pas+ ras = pas+ sas = (p+ s)as.

Since sp = 0 and ap = pap, we have sap = spap = 0, which along with (5.1) yields

(p+ s)a(p+ s) = pap+ sap+ (p+ s)as = ap+ as = a(p+ s).
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Since a is arbitrary inA, it follows that p+s ∈ LatM A. Conversely, let s ∈ rMr be

a projection such that p+s ∈ LatM A, and fix a ∈ A. Then a(p+s) = (p+s)a(p+s),

and since ps = 0 = pr and rs = s, we have

(rar)s = ras = ra(p+ s)s = r(p+ s)a(p+ s)s = s(rar)s.

Again as a ∈ A is arbitrary, we conclude that s ∈ LatrMr(rAr). Thus we have

proved the first assertion. Note that if p = q− then for any s ∈ rMr, p+s ∈ LatM A
if and only if s = 0 or s = r. The second assertion then follows from the first.

The following proposition is the crux of this section. Recall our convention

that all algebras are unital and norm closed.

Proposition 5.2. Let A be an algebra having factorization in a von Neumann

algebra M, and let p, q ∈ LatM A be such that p < q. If q−p has finite-dimensional

range, then q−p ∈ A. In particular, if either p or p⊥ has finite-dimensional range,

then p ∈ A.

Proof. The second assertion clearly follows from the first. To prove the first asser-

tion, set r = q−p. Let M be a von Neumann subalgebra of B(H) for some Hilbert

space H. Note that

H = R(p)⊕ R(r)⊕ R(q⊥),

and we consider operators of B(H) with respect to this decomposition. For each

n ∈ N, consider the operator

Xn = r +
1

n
r⊥ =

1/n 0 0

0 1 0

0 0 1/n

 .

It is clear that each Xn is a positive and invertible operator, and since r ∈ M it

follows that Xn ∈ M. So by the factorization property of A in M, there exists

an invertible operator Sn ∈ A−1 such that Xn = S∗
nSn. Each Sn leaves R(p) and

R(q) invariant, which equivalently says that Sn has the form

(5.2) Sn =

an bn cn
0 dn en
0 0 fn

 ,

for appropriate operators an, bn, . . . . We claim that the off-diagonal entries bn, cn,

en are 0 for all n. Since S−1
n ∈ A, S−1

n leaves R(p) and R(q) invariant, meaning

that S−1
n is also upper triangular. Consequently, the diagonal entries an, dn, fn of
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Sn are invertible. Now, for all n, we have1/n 0 0

0 1 0

0 0 1/n

 = Xn = S∗
nSn =

a∗nan a∗nbn a∗ncn
b∗nan b∗nbn + d∗ndn b∗ncn + d∗nen
c∗nan c∗nbn + e∗ndn c∗ncn + e∗nen + f∗

nfn

 .

By equating entries of the matrices, we get the expressions a∗nbn = 0 and a∗ncn = 0.

Since an is invertible, it follows that bn = 0 and cn = 0. We also have b∗ncn+d∗nen =

0, and since bn = 0 and dn is invertible, it follows that en = 0. This proves the

claim that for all n, the operators bn, cn and en are 0.

We further have a∗nan = 1/n and c∗ncn + e∗nen + f∗
nfn = 1/n for all n, which

imply that limn an = 0 and limn fn = 0. Also, b∗nbn + d∗ndn = 1, but bn = 0, so we

get d∗ndn = 1. Since R(r) is finite-dimensional by hypothesis, it follows that dn is a

unitary for every n. By compactness of the unitary group in finite dimensions, we

extract a subsequence {dnk
} converging to a unitary d in B(R(r)). Thus we have

limk Snk
= S, where

S =

0 0 0

0 d 0

0 0 0

 .

Since each Snk
∈ A and A is norm closed, it follows that S ∈ A. Note that

limk d
−1
nk

= limk d
∗
nk

= d∗ = d−1, using which we obtain

lim
k

S−1
nk

S = lim
k

a−1
nk

0 0

0 d−1
nk

0

0 0 f−1
nk


0 0 0

0 d 0

0 0 0

 = lim
k

0 0 0

0 d∗nk
d 0

0 0 0

 =

0 0 0

0 1 0

0 0 0

 ,

i.e. limk S
−1
nk

S = r. Since S−1
nk

S ∈ A (as S−1
nk

and S ∈ A) for all k, we conclude

that r ∈ A, as was required to prove.

We now discuss a sufficient criterion imposed on the dimension of atoms of

the lattice to prove the reflexivity of an algebra having factorization in B(H). It

is clearly not necessary, as any nest algebra arising out of a countable nest has

factorization and is reflexive.

Theorem 5.3. Let A be a weakly closed algebra having factorization in B(H). If

all the atoms of the lattice LatA have finite-dimensional range, then A is reflexive

and hence A is a nest algebra.

Proof. We shall show that A contains a masa. As observed above, this claim, along

with the fact that LatA is a nest (from Corollary 3.2), will imply the required

assertion that A is reflexive and a nest algebra ([24, Thm. 9.24]).
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Let {ri}i∈Λ be the collection of all the atoms of LatA for some finite or

countable indexing set Λ (countability of index follows from separability of the

Hilbert space H; see Corollary 3.5). Since LatA is atomic (Remark 3.6), it follows

that
∑

i∈Λ ri = 1 in SOT convergence; hence H =
⊕

i∈Λ Hi, where Hi = R(ri),

which satisfies Hi ⊥ Hj for all i ̸= j. For each i ∈ Λ, given ri is an atom, we

have ri = pi − qi for some pi, qi ∈ LatA (where qi = pi−), and as ri has finite-

dimensional range by hypothesis, that ri ∈ A follows from Proposition 5.2.

Recognize the von Neumann algebra riB(H)ri with B(Hi), for each i ∈ Λ.

Since ri is an atom, we know from Lemma 5.1 that riAri is a transitive subalgebra

of B(Hi). Then, given that Hi is finite-dimensional, we invoke Burnside’s theorem

([24, Cor. 8.6]) to conclude that riAri = B(Hi). In other words, this says that

riB(H)ri = riAri, and since ri ∈ A, it follows that

(5.3) riB(H)ri ⊆ A.

Now for each i, let Li be a masa in B(Hi), and let L =
⊕

i∈Λ Li, which is considered

a subalgebra of B(H). It is clear that L is a masa in B(H). Note that Lri = riL
for all i ∈ Λ. Also, it follows from (5.3) that riLri ⊆ riB(H)ri ⊆ A, and since A
is WOT closed we have

L = L
∑
i∈Λ

ri ⊆
∑
i∈Λ

Lri =
∑
i∈Λ

riLri ⊆ A,

where the sum above is in WOT. Thus we have shown our requirement that A
contains a masa, completing the proof.

A nest of projections on a Hilbert space is called maximal or simple if it is

not contained in any larger nest. It is easy to verify that a nest E is maximal if

and only if all atoms in E are one-dimensional. Thus the following corollary is

immediate from Theorem 5.3.

Corollary 5.4. Let A be a weakly closed algebra having factorization in B(H),

and let LatA be a maximal nest. Then A is reflexive, and so A is a nest algebra.

We emphasize the importance of the above corollary in the following example.

Example 5.5. Consider the Hilbert space H = ℓ2(Γ), for Γ = N or Z, and let

A be the reflexive algebra of upper triangular matrices in B(H) with respect to

the canonical basis {en}n∈Γ. Note that LatA = {pn; n ∈ Γ}, where pn is the

projection onto the subspace span{em; m ≤ n}. Clearly, LatA is a maximal nest.

So if B is any subalgebra of A with LatB a nest, then LatA ⊆ LatB, which implies

by maximality that LatA = LatB. Thus an appeal to Corollary 5.4 says that the

only subalgebra of A that has factorization in B(H) is A.
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Next we consider some consequences of the above results for subalgebras of

finite-dimensional von Neumann algebras. Let Mn denote the algebra of all n× n

complex matrices for some natural number n. Let A be a logmodular algebra in

Mn. It can readily be verified using compactness of the closed unit ball of Mn that

the algebra A has factorization in Mn as well. Since all atoms of LatA are clearly

finite-dimensional, A is a nest algebra in Mn thanks to Theorem 5.3. Thus we have

shown that, up to unitary equivalence, A is an algebra of block upper triangular

matrices in Mn. This assertion was put as a conjecture in [20], and an affirmative

answer was given in [15]. We have provided a different solution, and we state it

below.

Corollary 5.6. Let A be a logmodular algebra in Mn. Then A is an algebra of

block upper triangular matrices up to unitary equivalence.

Moreover, the corollary above generalizes to any logmodular subalgebras of

finite-dimensional von Neumann algebras. This characterizes all logmodular alge-

bras in finite-dimensional von Neumann algebras.

Corollary 5.7. Let A be a subalgebra of a finite-dimensional von Neumann alge-

bra M. Then A is logmodular in M if and only if A is a nest subalgebra of M.

In this case, A is M-reflexive.

Proof. That a nest subalgebra has factorization (and hence is logmodular) in any

finite von Neumann algebra is a well-known fact of Arveson (see [2, Thm. 4.2.1];

also see Example 2.7).

Conversely, let A be logmodular in M. Since M is a finite-dimensional von

Neumann algebra, there exist natural numbers n1, . . . , nk such that M is ∗-
isomorphic to Mn1

⊕ · · · ⊕ Mnk
. In view of Proposition 2.2, we assume without

loss of generality that

M = Mn1 ⊕ · · · ⊕Mnk
,

which acts on the Hilbert space H = Cn1 ⊕ · · · ⊕ Cnk . Using compactness of the

unit ball in finite-dimensional algebras, we note that A has factorization in M.

For i = 1, . . . , k, let pi denote the orthogonal projection ofH onto the subspace

Cni (considered as a subspace of H), and let Ai = piApi. We claim that

A = A1 ⊕ · · · ⊕ Ak.

Firstly, note that pi ∈ M∩M′; hence pi ∈ LatM A. This in particular says that

Ai is an algebra. Since pi has finite-dimensional range, it follows from Proposition

5.2 that pi ∈ A. This implies that Ai ⊆ A for each i; hence A1 ⊕ · · · ⊕ Ak ⊆ A.
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On the other hand, by using
∑k

i=1 pi = 1, we get

A = A
k∑

i=1

pi ⊆
k∑

i=1

Api =

k∑
i=1

piApi =

k⊕
i=1

Ai,

proving our claim that A =
⊕k

i=1 Ai. Note that Mni = piMpi for each i. So the

algebra Ai has factorization in Mni
by Proposition 4.2. An appeal to Corollary

5.6 yields

Ai = AlgMni
Ei,

for some nest Ei (= LatMni
Ai) in Mni

. Consider the lattice

E =

k⊕
i=1

Ei =
{⊕k

i=1 qi; qi ∈ Ei, 1 ≤ i ≤ k
}

in M. It is clear that E = LatM A, which implies A ⊆ AlgM E . The lattice E is

not a nest if k ≥ 2. Choose a sublattice, namely F , of E such that F is a nest and

each element qi in Ei appears at least once as the ith coordinate of an element of

F . Such an F can always be chosen: for example, consider the nest Fi for each i

given by

Fi =
{
e1 ⊕ · · · ⊕ ei−1 ⊕ qi ⊕ 0⊕ · · · ⊕ 0; qi ∈ Ei

}
⊆ E ,

where ei denotes the identity of Mni
, and let F =

⋃k
i Fi. Since each Ei is a nest

and F1 ⊆ F2 ⊆ · · · ⊆ Fk, the sublattice F is a nest in M, and F fulfils the

requirement. We claim that

A = AlgM F ,

which will prove that A is a nest subalgebra of M. Clearly, as F ⊆ E , we have

A ⊆ AlgM E ⊆ AlgM F . Conversely, let x ∈ AlgM F , and let x =
⊕k

i=1 xi for

some xi ∈ Mni
, 1 ≤ i ≤ k. The way F has been chosen, each element of Ei appears

as the ith coordinate of some element of F , so it follows that xiq = qxiq for all

q ∈ Ei and 1 ≤ i ≤ k. This shows that xi ∈ AlgMni
Ei = Ai; hence x ∈ A.

Therefore, we conclude that AlgM F ⊆ A, proving the claim.

Finally, since F ⊆ E = LatM A, it follows that AlgM LatM A ⊆ AlgM F = A.

Since the other inclusion is obvious, we have A = AlgM LatM A, which is to say

that A is M-reflexive.

More generally, Corollary 5.7 can easily be extended to logmodular sub-

algebras of those von Neumann algebras which are direct sums of finite-dimensional

von Neumann algebras, whose proof goes along the same lines. We record the state-

ment here.
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Corollary 5.8. Let M be a (possibly countably infinite) direct sum of finite-

dimensional von Neumann algebras, and let A be a weakly closed subalgebra of

M. Then A is logmodular in M if and only if A is a nest subalgebra of M. In

this case, A is M-reflexive.

In general, Corollary 5.7 fails to be true for algebras having factorization

(or logmodularity) in infinite-dimensional von Neumann algebra, as the following

example suggests.

Example 5.9. Let A be an algebra having factorization in a von Neumann alge-

bra M such that A ≠ M, and D = A ∩ A∗ is a factor. We claim that A is

not M-reflexive. Assume otherwise that A = AlgM LatM A. Then note that since

LatM A is commutative (by Corollary 3.2), we have LatM A ⊆ AlgM LatM A = A,

which implies that LatM A ⊆ D. Also, it is easy to verify that LatM A ⊆ D′ and

thus we have LatM A ⊆ D ∩ D′ = C. It then follows that LatM A = {0, 1}, so
A = AlgM{0, 1} = M, which is not true.

There are plenty such algebras. To see one, let G be a countable discrete

ordered group. Let

ℓ2(G) =
{
f : G → C;

∑
g∈G |f(g)|2 < ∞

}
,

and for each g ∈ G, let Ug : ℓ
2(G) → ℓ2(G) be the unitary operator defined by

Ugf(g
′) = f(g−1g′) for f ∈ ℓ2(G) and g′ ∈ G.

Let M be the finite von Neumann algebra in B(ℓ2(G)) generated by the family

{Ug}g∈G, called the group von Neumann algebra of G. Note that each element X

of B(ℓ2(G)) has a matrix representation (xgh) with respect to the canonical basis

of ℓ2(G). Let

A =
{
X = (xgh) ∈ M; xgh = 0 for g > h

}
.

Then A is an example of a finite maximal subdiagonal algebra in M with respect

to the expectation ϕ : M → M given by

ϕ((xgh)) = xee1 for (xgh) ∈ M,

where e denotes the identity of G (see [2, Exm. 3]). In particular, A has factoriza-

tion in M ([2, Thm. 4.2.1,]). But note that A∩A∗ = C (in fact if (xgh) ∈ A∩A∗,

then xgh = 0 for all g ̸= h and xgg = xg′g′ for all g, g′ ∈ G), so A cannot be

M-reflexive as discussed above. Moreover, we can choose the ordered group G to

be countable with the infinite conjugacy class (ICC) property (e.g. G = F2, the

free group on two generators), so that M is a factor. In this case, although LatM A
is a nest, A cannot be a nest subalgebra of M (otherwise A ∩ A∗ would contain

the nest and so could not be equal to C).
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§6. Concluding remarks

In this paper we have discussed the “universal” or “strong” factorization prop-

erty for subalgebras of von Neumann algebras. But there are weaker notions of

factorization which can also be explored. We say a subalgebra A has the weak

factorization property (WFP) in a von Neumann algebra M if for any positive

element x ∈ M, there is an element a ∈ A such that x = a∗a. Here the invertibil-

ity assumption is relaxed.

Power [22] has studied the WFP of nest algebras, where he proved that if a

nest E of projections on a Hilbert space H is well ordered (i.e. p ̸= p+ =
⋂

q>p q

for all p ∈ E with p ̸= 1), then Alg E has the WFP in B(H). Inspired by our result

on lattices of algebras with factorization, it appears that lattices of algebras with

the WFP in a factor should also be a nest. But it is not clear to us at this point.

However, for a subalgebra in a finite von Neumann algebra we can certainly say

so. We can follow similar lines of proof along with the fact that any left (or right)

invertible element in a finite von Neumann algebra is invertible. We record it here.

Theorem 6.1. Let A be a subalgebra of a finite von Neumann algebra (resp. fac-

tor) M having the WFP. Then LatM A is a commutative subspace lattice (resp.

nest).

So a natural question is the following:

Question 6.2. Is the lattice of a subalgebra having the WFP in a von Neumann

algebra (resp. factor) a commutative subspace lattice (resp. nest)?

We conclude with the question of reflexivity of algebras with factorization.

We showed that a weakly closed algebra with factorization in B(H) has a masa

and hence is reflexive, if we impose some dimensionality condition on the atoms

of its lattice. But we still do not know whether every algebra with factorization in

B(H) has a masa. Thus the following question remains open:

Question 6.3. Is a weakly closed algebra having factorization in B(H) automati-

cally reflexive? In particular, is a weakly closed transitive algebra with factorization

equal to B(H)?
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