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The Principle of Limiting Amplitude for
Perturbed Wave Equations in an Exterior Domain

by

Kiyoshi Mochizuki and Hideo Nakazawa

Abstract

In this paper we consider the dissipative wave propagation problem in an exterior domain.
Uniform estimates and Hölder conditions of the resolvent are studied for the reduced wave
operator without dissipation. Based on these results, the validity of the principle of the
limiting amplitude is proved for the wave propagation problem with dissipation.
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§1. Introduction

Let Ω be an exterior domain in Rn with star-shaped complement with respect to

the origin 0 and smooth boundary ∂Ω (the case Ω = Rn is not excluded when

n ≥ 3). We consider in Ω the wave propagation problem

(1.1)

∂2tw + b0(x)∂tw −∆bw + c(x)w = g(x)e−iωt, (x, t) ∈ Ω×R+,

w(x, 0) = 0, ∂tw(x, 0) = 0, x ∈ Ω,

w(x, t) = 0, (x, t) ∈ ∂Ω×R+,

where ∂t = ∂/∂t in t ∈ R+ = (0,∞), ∆b is the magnetic Laplacian

∆b = ∇b · ∇b =

n∑
j=1

(∂j + ibj(x))
2,
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with i =
√
−1, ∂j = ∂/∂xj and real-valued smooth functions bj(x) (j = 1, . . . , n)

of x ∈ Rn, the scalar potential c(x) is a real and b0(x) is a nonnegative bounded

continuous function, ω ̸= 0 is a real number and g(x) belongs to some weighted

L2-space in Ω. Thus, b0(x)∂/∂t represents a dissipation (friction term).

The principle of limiting amplitude states that every solution of the above

problem tends as t→ ∞ to the steady state

e−iωtv(x, ω)

in an appropriate topology, and v satisfies

(1.2) −∆bv + c(x)v − ω2v − iωb0(x)v = g(x) in Ω, v|∂Ω = 0.

This principle has been justified by many authors from various standpoints and

by different methods; see e.g., [2, 4, 13, 14, 15, 16] for wave equations and [5, 7] for

first-order hyperbolic systems. In these works, results are limited to self-adjoint

systems (i.e., the case b0(x) = 0 in the above problem), and most important

properties reduce to show low-frequency estimates of solutions to the stationary

problem.

The dissipative wave equation (1.1) has been studied by Mizohata–Mochizuki

[6] in the whole R3 with no magnetic potentials. The aim of this paper is to extend

the results of [6] to (1.1) with magnetic potentials and in an exterior domain Ω.

Note that our results include the case n = 2. The existence of the dissipative

term makes the problem slightly complicated. Since the spectral theory (Stone’s

formula) does not apply to this case, our proof is as in [6] restricted to the use

of the Laplace inversion formula. So high-frequency estimates for (1.2) also play

an important role. In this sense, our theory is based on the uniform resolvent

estimates of the self-adjoint operator L = −∆b + c(x). Note that in [12] a similar

problem is treated, when L = −∆ and |b0(x)| is small and decays suitably. In our

general case also, the condition b0(x) ≥ 0 is able to be replaced by the smallness

of |b0(x)| (see Remark 3 in Section 4).

The uniform resolvent estimates for L have been developed in Mochizuki [9]

(for n ≥ 3) and Mochizuki–Nakazawa [11] (for n = 2), which we shall examine

precisely here. The results are applied among ordinary tools of functional identities

to show a Hölder continuity of solutions u(·, z) to the stationary problem

(1.3) −∆bu+ c(x)u− zu = f(x) in Ω, u|∂Ω = 0

(cf. e.g., Roach–Zhang [14]). This Hölder condition is available to the dissipative

problem (1.1) under a suitable decay condition on b0(x).

In Section 2 we consider the stationary equation (1.3) with z = κ2, where

κ ∈ C+ = {κ ∈ C; Imκ > 0}. The uniform resolvent estimates developed in [9, 11]



Principle of Limiting Amplitude 585

are summarized in Theorem 1 and a necessary smoothness property for iκ(L−κ2)
is proved there (Corollary 1). In Section 3, we shall show that the solution u(x, z) of

(1.3) satisfy a local Hölder continuity as a function of z (Theorem 2 and Corollary

2). The validity of the principle of limiting amplitude (Theorem 3) is demonstrated

in Section 4. Finally, in Section 5 a concise proof of Theorem 1 is given.

§2. Preliminaries

We list the notation which will be used freely in the sequel:

� For x ∈ Rn, r = |x| = (x21 + · · ·+ x2n)
1/2 and x̃ = x/r = x/|x|.

� ∂j = ∂/∂xj (j = 1, . . . , n), ∂r = ∂/∂r, ∇ = (∂1, . . . , ∂n), b(x) = (b1(x), . . . ,

bn(x)), ∇b = ∇+ b(x), ∇× b(x) = (∂jbk(x)− ∂kbj(x))j<k.

� For z ∈ C, Re z and Im z denote its real and imaginary parts, respectively.

�

√
z denotes the branch of the square root of z ∈ C with Im

√
z ≥ 0.

� Ωs = {x ∈ Ω; |x| < s}, Ω′
s = {x ∈ Ω; |x| > s}, Ss = {x ∈ Rn; |x| = s};

� L2(G), G ⊂ Ω, is the usual L2-space with inner product (f, g)G =∫
G
f(x)g(x) dx and norm ∥f∥G =

√
(f, f)G; in the case that G = Ω, we

simply write
∫
Ω
dx =

∫
dx.

� Hj(Ω) (j = 1, 2, . . .) are the usual Sobolev spaces on Ω.

� H2
loc(Ω) is the space of H2-functions on each compact set of Ω = Ω ∪ ∂Ω.

� For a smooth function ψ(x) ≥ 0, L2
ψ(G) is a class of functions such that

∥f∥2ψ,G =

∫
G

ψ(x)|f(x)|2 dx <∞.

� The weight function µ = µ(r) > 0 is used to be a smooth decreasing function

of r > 0 such that

µ′′(r) ≥ 0 and ∥µ∥1 =

∫ ∞

0

µ(s) ds <∞.

� Also, the weight function ξ(r) = (1 + [r])−2 is used, where

[r] =

{
r,

r(1 + log r/r0),
[n− 2] =

{
n− 2 when n ≥ 3,

1 when n = 2,

and log r/r0 = log(r/r0) with r0 > 0 satisfying Sr0 ⊂ R2 \ Ω. Without loss of

generality we can assume ξ(r) ≤ µ(r) ≤ ξ(r)1/2.

Now we define the operator L = −∆b + c(x) acting in L2(Ω) as

(2.1) D(L) =
{
u ∈ L2(Ω) ∩H2

loc(Ω); (−∆b + c)u ∈ L2(Ω), u|∂Ω = 0
}
.
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As is well known (see e.g., Mochizuki [10]), if

(2.2) max{|∇ × b(x)|, |c(x)|} = o(r−1) as r → ∞,

then L is self-adjoint and its essential spectrum fills the whole nonnegative half-line

[0,∞). If we require

(UC) the operator −∆b + c(x) verifies the unique continuation property,

there are no positive eigenvalues. Moreover, the continuous spectrum is absolutely

continuous if we strengthen the decay condition (2.2) as O(µ). The absolute con-

tinuity is verified by establishing the principle of limiting absorption in L2
µ(Ω).

For z = κ2, κ ∈ C+, the resolvent operator of L is defined by R(z) = (L−z)−1.

For f(x) ∈ L2(Ω) the function u = u(x, κ) = R(κ2)f gives a unique solution in

L2(Ω) of the boundary-value problem

(2.3) −∆bu+ c(x)u− κ2u = f(x) in Ω, u|∂Ω = 0.

Let I = [λ1, λ2] be an interval in R+. For a small ν0 > 0 we set

(2.4)
Γ± = Γ±(I, ν0) =

{
z ∈ C; Re z ∈ I, 0 < ± Im z ≤ ν0

}
,

Γ± = Γ± ∪ I.

The principle of limiting absorption asserts the existence of the limit of R(z) as

z → λ ∈ I. Since λ is in the spectrum of L, it cannot converge to a limit in the

uniform operator topology, and it is necessary to adopt a weaker topology.

Definition 1. For µ = µ(r) given above we choose here φ = (
∫∞
r
µ(τ) dτ)−1. A

solution u = u(x, κ) of (2.3) with z = κ2 ∈ Γ± is said to satisfy the radiation

condition if we have

(2.5)±

∫
Ω′

R1

µ(r)|u|2 dx <∞ and

∫
Ω′

R1

φ(r)′|x̃ · θ|2 dx <∞,

where R1 > 0 is chosen to satisfy ∂Ω ⊂ ΩR1
and θ = θ(x,

√
z) = θ(x, κ) is a

vector-valued function

(2.6) θ = ∇bu+ x̃
(n− 1

2r
u− i

√
z
)
u.

When z = λ ± i0, solutions u(x,
√
λ + i0) and u(x,−

√
λ + i0) satisfy the same

equation. They are distinguished as outgoing (+) and incoming (−) solutions.

For λ ∈ I, every solution u ∈ H2
loc(Ω) of the generalized eigenvalue problem

(−∆b + c(x)− λ)u = 0 in Ω, u|∂Ω = 0
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satisfies the following growth property: if the support in Ω of u is not compact,

then

lim inf
s→∞

∫
Ss

|x̃ · θ(x,±
√
λ+ i0)|2 dS ̸= 0

(see Jäger–Rejto [3]). Since φ(r)′ ̸∈ L1(R+), this contradicts the radiation con-

dition, and (UC) is applied to show the uniqueness of the solution of (2.3) and

(2.5)± when κ = ±
√
λ+ i0. As is well known, (UC) is guaranteed for −∆b + c(x)

if bj(x) ∈ C2(Ω) and c(x) is Hölder continuous in Ω.

When z ∈ Γ± solutions of (2.3) and (2.5)± are also unique and coincide with

the L2-solution R(z)f . Moreover, there exists C = C(Γ±) > 0 such that∫
Ω′

R

µ|R(z)f |2 dx ≤ Cφ(R)−1

∫
µ−1|f |2 dx for R ≥ R1,(2.7) ∫

µ|R(z)f |2 dx+

∫
Ω′

R1

φ′|θ|2 dx ≤ C

∫
µ−1|f |2 dx.(2.8)

These resolvent estimates and the above uniqueness results imply, with the help

of the Rellich compactness criterion, the existence of the limit

(2.9)± u(±
√
λ+ i0) = lim

ε↓0
R(λ± iε)f in L2

µ(Ω),

which gives the unique solution of (2.3) and (2.5)± for κ = ±
√
λ+ i0. Thus, R(z)

is continuously extended to Γ± as an operator from L2
µ−1(Ω) to L2

µ(Ω) (cf. e.g.,

Mochizuki [8]).

Note that the assertions of [3] and [8] are summarized in [10, Chaps. 3–5] for

more general second-order elliptic equations in an exterior domain.

To proceed with problem (1.1), the constant C = C(Γ±) in (2.7) and (2.8)

should be improved to be chosen independent of z ∈ C \R. To this end we add a

smallness of the coefficients.

(BC.1) Assume that c(x) = c0(x) + c1(x) and ∇ × b(x) and c0(x) are small: for

ε0 > 0 small,

{|∇ × b(x)|2 + |c0(x)|2}1/2 ≤ ε0[r]
−2;

c1(x) is not necessarily small but satisfies

c1(x) ≥ 0 and ∂r{rc1(x)} ≤ 0.

Under these conditions we shall prove (in the last Section 5) the following

theorem which represents a uniform resolvent estimate:

Theorem 1. Assume (BC.1) and (UC). Let u = R(κ2)f . Then we have the fol-

lowing:
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(i) There exists C1 = C1(ε0) > 0 such that

(2.10) P∂Ω(u) +

∫
Imκr + 1

4[r]2
|u|2 dx ≤ C1

∫
[r]2|f |2 dx, ∀κ ∈ C+,

where

P∂Ω(u) = −1

2

∫
∂Ω

(ν · x)|ν · ∇u|2 dS,

with the outer unit normal ν = ν(x) to the boundary ∂Ω.

(ii) There exists C2 = C2(ε0, ∥µ∥1) > 0 such that∫
µ{|∇bu|2 + |κu|2} dx ≤ C2

∫
max{[r]2, µ−1}|f |2 dx ∀κ ∈ C+,

where µ = µ(r) is a weight function given above.

As a corollary of this theorem we have the following:

Corollary 1. There exists C > 0 such that∫
µ(r)3/2|κu|2 dx ≤ C

∫
µ(r)−3/2|f |2 dx, ∀κ ∈ C+.

Proof. Since [r]2 ≤ µ(r)−2 and L is self-adjoint, we have from Theorem 1(ii),

∥µ1/2R(κ2)µ∥2 ≤ |κ|−2C2, ∥µR(κ2)µ1/2∥2 ≤ |κ|−2C2

for any κ ∈ C+. Interpolation between these two inequalities gives the desired

conclusion.

Remark 1. (i) If n ≥ 3 and c0(x) satisfies a stronger condition

|c0(x)|2 ≤ −ε0
n− 1

2r
µ(r)µ′(r),

then (see [8]) there exists C3 = C3(ε0, ∥µ∥L1) > 0 such that for any κ ∈ C+ ∪R,∫
µ{|∇bu|2 + |κu|2} dx ≤ C3

∫
µ−1|f |2 dx.

(ii) The case Ω = R2 is excluded in the above theorem. But in the special case of

Laplacian L = −∆ in R2, it is known (see Barcelo–Ruiz–Vega [1]) that, for any

δ > 0, there exists C4 = C4(δ) > 0 such that∫
(1 + r)−1−δ{|∇u|2 + |κu|2} dx ≤ C4

∫
(1 + r)1+δ|u|2 dx.
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§3. Local Hölder continuity of R(z)f

To enter into the proof of the principle of limiting amplitude we need one more

theorem: the local Hölder continuity of the resolvent R(z). For this aim, we apply

the results of Theorem 1 and Corollary 1 to a functional identity for solutions of

(2.3) under slightly stronger conditions on the coefficients:

(BC.2) Assume that c(x) = c0(x) + c1(x) and ∇ × b(x) and c0(x) are small: for

ε0 > 0 small,

{|∇ × b(x)|2 + |c0(x)|2}1/2 ≤ ε0(1 + r)−1µ(r);

c1(x) is not necessarily small but satisfies for some C5 > 0,

0 ≤ c1(x) ≤ C5µ(r) and − C5µ(r) ≤ ∂r{rc1(x)} ≤ 0.

For f , g ∈ L2(Ω) let u = R(κ2)f and v = R(κ̄2)g (note that v̄ = R(κ2)ḡ).

Consider the functional

(3.1) J = ∆bu(φx̃ · ∇bv) + ∆bv(φx̃ · ∇bu).

We can follow a similar argument to the proof of Proposition 1 in Section 5 to

obtain

J = ∇ · {∇bu(φx̃ · ∇bv) +∇bv(φx̃ · ∇bu)} − ∇ · {φx̃(∇bu · ∇bv)}

+
(
φ
n− 1

r
+ φ′

)
(∇bu · ∇bv)− 2φ′(x̃ · ∇bv)(x̃ · ∇bu)

− 2φ

r
{∇bu · ∇bv − (x̃ · ∇bu)(x̃ · ∇bv)}

− iφ{(x̃×∇bu) · (∇× b)v̄ + (x̃×∇bv)(∇× b)u}.

On the other hand, the definitions of u and v give, with a simple calculation,

J = ∇ · {x̃φ(c1 − κ2)uv̄} −
(n− 1

r
φ+ φ′

)
(c1 − κ2)uv̄ − φ∂rc1uv̄

+ φ(c0u− f)(x̃ · ∇bv) + φ(c0v̄ − ḡ)(x̃ · ∇bu).

Choose φ = r in these expressions of J . Then

J = ∇ · {r∇bu(x̃ · ∇bv) + r∇bv(x̃ · ∇bu)} − ∇ · {rx̃(∇bu · ∇bv)}
+ (n− 2)(∇bu · ∇bv)− ir{(x̃×∇bu) · (∇× b)v̄ + (x̃×∇bv)(∇× b)u}

= ∇ · {x̃r(c1 − κ2)uv̄} − n(c1 − κ2)uv̄ − r∂rc1uv̄

+ r(c0u− f)(x̃ · ∇bv) + r(c0v̄ − ḡ)(x̃ · ∇bu).
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So, integrating over ΩR (R large), we have∫
SR

r{2(x̃ · ∇bu)(x̃ · ∇bv)−∇bu · ∇bv} dS +

∫
∂Ω

r(ν · x̃)(ν · ∇u)(ν · ∇v) dS

+

∫
ΩR

(n− 2)∇bu · ∇bv dx− i

∫
r(∇× b) · {(x̃×∇bu)v̄ + (x̃×∇bv)u} dx

=

∫
SR

r(c1 − κ2)uv̄ dS +

∫
ΩR

[
n(κ2 − c1)uv̄ − r∂rc1uv̄ − r(c0u+ f)(x̃ · ∇bv)

− r(c0v̄ + ḡ)(x̃ · ∇bu)
]
dx.

Let R→ ∞ in this equality. Then noting∫
ΩR

(n− 2)∇bu · ∇bv dx =
n− 2

2

∫
SR

{(x̃ · ∇bu)v̄ + u(x̃ · ∇bv)} dS

+ (n− 2)

∫
ΩR

{
(κ2 − c)uv̄ +

1

2
(fv̄ + uḡ)

}
dx,

we conclude the equation

2κ2
∫
uv̄ dx =

∫ [
{2c1 + r∂rc1 + (n− 2)c0}uv̄

+
n− 2

2
(fv̄ + uḡ)− ir(∇× b){(x̃×∇bu)v̄ − u(x̃×∇bv)}

+ r{(c0u+ f)(x̃ · ∇bv) + (c0v̄ + ḡ)(x̃ · ∇bu)}
]
dx

+

∫
∂Ω

r(ν · x̃)(ν · ∇u)(ν · ∇v) dS.(3.2)

Lemma 1. Assume that (1 + r)f(x), (1 + r)g(x) ∈ L2
µ−1(Ω). Then we have∣∣∣∣κ2 ∫

Ω

uv̄ dx

∣∣∣∣ ≤ C{(1 + |κ|−2)∥f∥ξ−1 + ∥rf∥µ−1}∥g∥ξ−1

+ C{(1 + |κ|−2)∥g∥ξ−1 + ∥rg∥µ−1}∥f∥ξ−1 .(3.3)

Proof. Let us estimate each term on the right-hand side of (3.2). By assumptions

(BC.2) on b(x) and c(x) we have, from Theorem 1(ii),∣∣∣∣∫ {2c1 + r∂rc1 + (n− 2)c0}uv̄ dx
∣∣∣∣ ≤ C∥u∥µ∥v∥µ ≤ C|κ|−2∥f∥ξ−1∥g∥ξ−1 .

Similarly, we have

n− 2

2

∣∣∣∣∫ (fv̄ + uḡ) dx

∣∣∣∣ ≤ C{∥f∥µ−1∥v∥µ + ∥u∥µ∥g∥µ−1} ≤ C|κ|−1∥f∥ξ−1∥g∥ξ−1
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and ∣∣∣∣∫ ir(∇× b){(x̃×∇bu)v̄ − u(x̃×∇bv)} dx
∣∣∣∣

≤ C|κ|−1{∥f∥ξ−1∥g∥ξ−1 + ∥f∥ξ−1∥g∥ξ−1},

where we have used r|∇ × b| ≤ ε0µ(r), and∣∣∣∣∫ r{(c0u+ f)(x̃ · ∇bv) + (c0v̄ + ḡ)(x̃ · ∇bu)} dx
∣∣∣∣

≤ C{∥r(c0u+ f)∥µ−1∥x̃ · ∇bv∥µ + ∥r(c0v + g)∥µ−1∥x̃ · ∇bu∥µ}
≤ C{∥u∥µ + ∥rf∥µ−1}∥g∥ξ−1 + C{∥v∥µ + ∥rg∥µ−1}∥f∥ξ−1

≤ C{(|κ|−1∥f∥ξ−1 + ∥rf∥µ−1)∥g∥ξ−1 + (|κ|−1∥g∥ξ−1 + ∥rg∥µ−1)∥f∥ξ−1},

where we have used r|c0| ≤ ε0µ(r). Finally, if we remember that ∂Ω is star shaped,

then P∂Ω(u) in Theorem 1(i) becomes nonnegative, and it follows that∣∣∣∣∫
∂Ω

(ν · x)(ν · ∇u)(ν · ∇v) dS
∣∣∣∣ ≤ C1∥f∥ξ−1∥g∥ξ−1 .

Summarizing these inequalities, we conclude the assertion of the lemma.

Theorem 2. Assume (UC) and (BC.2). Let z, z′ ∈ Γ± with |z − z′| < 1. Then

there exists C6 > 0 independent of z, z′ such that

∥{R(z)−R(z′)}f∥
ξ
1/p
1

≤ C6(1 + |z|−2/p)|z − z′|δ∥f∥ξ−1
1
,

where ξ1(r) = ξ(r)µ(r), p, q satisfy 1 > 1
p = 1− 1

q >
1
3 and δ = 1− 3

2q > 0.

Proof. We consider only the case z, z′ ∈ Γ+. The resolvent equation

(3.4) R(z)−R(z′) = (z − z′)R(z)R(z′)

shows that dR(z)f
dz = R(z){R(z)f} in L2(Ω). So we have

(3.5)
(dR(z)f

dz
, ḡ
)
= (R(z)f,R(z)g) =

∫
Ω

uv dx,

and hence, by use of (3.3) in the above lemma with z = κ2,∣∣∣(dR(z)f
dz

, ḡ
)∣∣∣ ≤ C|z|−1{(1 + |z|−1)∥f∥ξ−1 + ∥rf∥µ−1}∥g∥ξ−1

+ C|z|−1{(1 + |z|−1)∥g∥ξ−1 + ∥rg∥µ−1}∥f∥ξ−1 .

Here, choose g = ξ1
dR(z)f
dz . Then since (1 + r)2µ−1 ≤ ξ1(r)

−1, the inequality

(3.6)
∥∥∥dR(z)f

dz

∥∥∥
ξ1

≤ C(1 + |z|−2)∥f∥ξ−1
1
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follows. On the other hand, the Green formula for the solution u = R(z)f of (2.3)

gives

Im z∥R(z)f∥2 = − Im(f,R(z)f).

Using this equality twice, we have∥∥∥dR(z)f
dz

∥∥∥ ≤ (Im z)−1∥R(z)f∥ ≤ (Im z)−3/2{∥f∥ξ−1∥R(z)f∥ξ}1/2

≤ C(Im z)−3/2∥f∥ξ−1 .(3.7)

So, the Hölder inequality with 1 > 1
p = 1− 1

q >
1
3 and (3.6), (3.7) show∫

Ω

ξ
1/p
1

∣∣∣dR(z)f
dz

∣∣∣2 dx ≤
{∫

Ω

ξ1

∣∣∣dR(z)f
dz

∣∣∣2 dx}1/p{∫
Ω

∣∣∣dR(z)f
dz

∣∣∣2 dx}1/q

≤ C{(1 + |z|−2)∥f∥ξ−1
1

}2/p{(Im z)−3/2∥f∥ξ−1}2/q

≤ {C(1 + |z|−2/p)(Im z)−3/2q∥f∥ξ−1
1

}2(3.8)

Now let z = λ+ iε, z′ = λ′ + iε′. Then since

R(z)−R(z′) = {R(z)−R(z̃)}+ {R(z̃)−R(z̃′)}+ {R(z̃′)−R(z′)},

where z̃ = λ+ iτ and z̃′ = λ′ + iτ with τ = max{ε, ε′, |λ− λ′|}, (3.8) implies

∥{R(z)−R(z′)}f∥
ξ
1/p
1

≤ C|ε− τ |
∥∥∥dR(z̃)f

dτ

∥∥∥
ξ
1/p
1

+ C|λ− λ′|
∥∥∥dR(z̃)f

dλ

∥∥∥
ξ
1/p
1

+ C|τ − ε′|
∥∥∥dR(z̃′)f

dτ

∥∥∥
ξ
1/p
1

≤ C(1 + |z|−2/p)τ(Im z̃)−3/2q∥f∥ξ−1
1
,

and the desired inequality holds true.

Corollary 2. For 1
3 <

1
p < 1 and 0 ≤ s ≤ 1 put

(3.9) α =
1

p
+
(
1− 1

p

)
s, β = 1−

(
1− 1

p

)
s.

Then there exists C7 = C7(Γ±) > 0 independent of α, β such that

∥ξα/21 {R(z)−R(z′)}ξβ/21 f∥ ≤ C7|z − z′|δ∥f∥.

Proof. It follows from the above theorem that

∥ξ1/2p1 {R(z)−R(z′)}ξ1/21 f∥ ≤ C(Γ±)|z − z′|δ∥f∥.

So, as in the proof of Corollary 1, the assertion is concluded by the interpolation

method.
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§4. The principle of limiting amplitude

Now we return to the wave propagation problem (1.1) with the above two theorems.

Here the potentials c(x) = c0(x) + c1(x) and b(x) satisfy (BC.2) and (UC), and

the coefficient b0(x) of the friction term is required to be smooth and satisfy

(B0) there exists C8 > 0 such that

0 ≤ b0(x) ≤ C8ξ1(r) = C8(1 + [r])−2µ(r) in Ω.

Under these conditions, it is well known that for each g(x) ∈ L2(Ω), solutions

w(t) = w(x, t) of problem (1.1) exist and are unique in the class of differentiable

functions of t > 0 with values in L2(Ω).

For this solution we shall prove the following theorem which establishes the

principle of limiting amplitude:

Theorem 3. Assume (BC.2), (UC) and (B0). Let g(x) ∈ L2
ξ−1
1

(Ω). Then, as

t→ ∞,

w(x, t) = v(x, ω + i0)e−iωt + o(1) strongly in L2

ξ
1/2
1

(Ω),

where v(x, ω + i0) ∈ L2

ξ
1/2
1

(Ω) is the unique solution of the problem

(4.1) −∆bv + c(x)v − iκb0(x)v − κ2v = g(x), v|∂Ω = 0,

with κ = ω + i0.

Let

w̃ =

∫ ∞

0

w(x, t)eiκt dt,

where κ ∈ C+. Then w̃ satisfies the reduced equation

−∆bw̃ + c(x)w̃ − iκb0(x)w̃ − κ2w̃ =
g(x)

−i(κ− ω)
, w̃|∂Ω = 0,

So, if v solves problem (4.1), then w̃ = v
−i(κ−ω) and the solution of (1.1) is given

by

(4.2) w(x, t) =
1

2πi
lim
τ→∞

∫ −τ+iσ0

τ+iσ0

v(x, κ)

κ− ω
e−iκt dκ,

where σ0 is a large positive number.

Put b0(x) = a(x)2 and let A be a multiplication operator Ag = a(x)g(x).

Choose a new unknown ϕ = Av in the above (4.1). Then it changes to

(4.3) ϕ− iκAR(κ2)Aϕ = AR(κ2)g(x).
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Conversely, let ϕ ∈ L2(Ω) satisfy this equation. Then the unique solution of (4.1)

is given by

(4.4) v = iκR(κ2)Aϕ+R(κ2)g.

In fact, if we denote the right-hand side by h, then we have (L−κ2)h = iκAϕ+ g.

By means of (4.3),

−iκAϕ = −iκA{iκAR(κ2)Aϕ+AR(κ2)g}
= −iκA2{iκR(κ2)Aϕ+R(κ2)g} = −iκb(x)h.

Thus, h satisfies the equation (L− κ2)h = iκb(x)h+ g showing h = v.

Lemma 2. The operator AR(κ2)A is compact in L2(Ω), and for each κ = −σ+iτ
(τ ≥ 0) and f ∈ L2(Ω) we have

(4.5) Re[−iκ(AR(κ2)Af, f)] ≥ 0.

Proof. The compactness of AR(κ2)A is obvious from the condition (B0) : A =

ξ(r)1/2o(r−1/2) and the Rellich criterion. The positivity (4.5) is also easily verified.

In fact, we have

Re[−iκ(R(κ2)Af,Af)] =
∫ ∞

0

(λ+ σ2 + τ2)τ

(λ− σ2 + τ2)2 + (2τσ)2
d

dλ
(E(λ)Af,Af)dλ ≥ 0,

where E(λ) is the spectral family of the operator L. On the other hand,

lim
τ↓0

Re[−iκ(R(κ2)Af,Af)] = −|σ|
2i

(
{R(σ2 − i0)−R(σ2 + i0)}Af,Af

)
= π|σ| d

dλ
(E(λ)Af,Af)|λ=σ2 ≥ 0.

This lemma shows the uniqueness and the existence of solutions ϕ = ϕ(x, κ)

of (4.3) in L2(Ω). Moreover, we have the following lemma:

Lemma 3. Assume (B0). Then there exists C > 0 such that for each κ ∈ C+,

(4.6) ∥ϕ(κ)∥ ≤ C(1 + |κ|)−1∥g∥ξ−1 .

Proof. By use of Lemma 2 and (4.3) we have

∥ϕ(κ)∥ ≤ ∥AR(κ2)g∥.

Then (4.6) is direct since A(x)2 ≤ ξ(r) ≤ µ(r).
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Lemma 4. Under (B0) there exists C > 0 such that for all κ ∈ C+,

∥v(κ)∥ξ + |κ|∥v∥µ ≤ C∥g∥ξ−1 ,(4.7)

∥v(κ)∥
ξ
1/2
1

≤ C|κ|−1/2∥g∥ξ−1 .(4.8)

Moreover, there exists C(Γ±) > 0 such that for all κ2, κ′2 ∈ Γ±,

(4.9) ∥v(κ)− v(κ′)∥
ξ
1/2
1

≤ C(Γ±)|κ− κ′|1/4∥g∥ξ−1
1
.

Proof. Note (4.6) and A2 ≤ Cξ. Then we have from (4.4),

∥v∥ξ + |κ|∥v∥µ ≤ |κ|{∥R(κ2)Aϕ∥ξ + |κ|∥R(κ2)Aϕ∥µ}+ ∥R(κ2)g∥ξ + |κ|∥R(κ2)g∥µ
≤ C{|κ|∥Aϕ∥ξ−1 + ∥g∥ξ−1}
≤ C{|κ|∥ϕ∥+ ∥g∥ξ−1} ≤ C∥g∥ξ−1 ,

showing (4.7). Inequality (4.8) easily follows from (4.7) since we have

(4.10) ∥u∥
ξ
1/2
1

≤ C∥u∥1/2ξ ∥u∥1/2µ , ∀u ∈ L2
µ(Ω) (⊂ L2

ξ
1/2
1

(Ω)).

Next, note the identity

v(κ)− v(κ′)− iκR(κ2)A{ϕ(κ)− ϕ(κ′)}
= i(κ− κ′)R(κ2)Aϕ(κ′) + iκ′{R(κ2)−R(κ′2)}Aϕ(κ′)
+ {R(κ2)−R(κ′2)}g.(4.11)

We estimate each term on the right-hand side as follows: Theorem 2 with p = 2

shows

∥{R(κ2)−R(κ′2)}g∥
ξ
1/2
1

≤ C(Γ±)|κ2 − κ′2|δ∥g∥ξ−1
1
.

Similarly, we have from Theorem 2,

|κ′|∥{R(κ2)−R(κ′2)}Aϕ(κ′)∥
ξ
1/2
1

≤ C(Γ±)|κ2 − κ′2|δ∥ϕ(κ′)∥ ≤ C(Γ±)|κ2 − κ′2|δ∥g∥ξ−1 .

By use of (4.10), (4.7) and (4.6),

|κ− κ′|∥R(κ2)Aϕ(κ′)∥
ξ
1/2
1

≤ C|κ|−1/2|κ− κ′|∥ϕ∥ ≤ C(Γ±)|κ− κ′|∥g∥ξ−1 .

As for the remaining term, note that (4.10) implies

|κ|∥R(κ2)A{ϕ(κ)− ϕ(κ′)}∥
ξ
1/2
1

≤ C|κ|1/2∥ϕ(κ)− ϕ(κ′)∥.
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Here, we multiply by A(r) on both sides of (4.11) and take the L2-norm. Then, in

view of Lemma 2, we obtain

∥ϕ(κ)− ϕ(κ′)∥ ≤ |κ− κ′|∥AR(κ2)Aϕ(κ′)∥
+ |κ′|∥A{R(κ2)−R(κ′2)}Aϕ(κ′)∥+ ∥A{R(κ2)−R(κ′2)}g∥.

Since A(r)2 ≤ ξ(r) ≤ ξ1(r)
1/2, the above three estimates are also applicable to

this inequality so that

C|κ|1/2∥ϕ(κ)− ϕ(κ′)∥ ≤ C(Γ±)|κ2 − κ′2|δ∥g∥ξ−1
1
.

Estimate (4.9) is thus concluded.

Proof of Theorem 3. We start from the expression in L2

ξ
1/2
1

(Ω),

w(x, t) =
1

2πi
lim
ρ→∞

∫ −ρ+iτ0

ρ+iτ0

v(x, κ)

κ− ω
e−iκt dκ.

We recall that v(·, κ) is an L2

ξ
1/2
1

(Ω)-valued analytic function of κ = −σ + iτ in

τ = Imκ > 0. So, by use of the Cauchy integral formula,∫ −ρ+iτ0

ρ+iτ0

v(x, κ)

κ− ω
e−iκt dκ

= − lim
ε↓0

∫ ρ

−ρ

v(x, σ + iε)e−i(σ+iε)t

σ − ω + iε
dσ

−
∫ τ0

0

{
v(x, ρ+ iτ)e−i(ρ+iτ)t

τ − i(ρ− ω)
− v(x,−ρ+ iτ)e−i(−ρ+iτ)t

τ + i(ρ+ ω)

}
dτ.

Here, the second term on the right-hand side tends to 0 in L2

ξ
1/2
1

(Ω) as ρ → ∞.

Thus, we have

w(x, t) = − 1

2πi
lim
ε↓0

∫ a+ω

−a+ω

{v(x, σ + iε)− v(x, ω + iε)}e(ε−iσ)t

σ − ω + iε
dσ

− 1

2πi
lim
ε↓0

{
lim
ρ→∞

(∫ ρ

a+ω

+

∫ −a+ω

−ρ

)
v(x, σ + iε)e(ε−iσ)t

σ − ω + iε
dσ

}
− 1

2πi
lim
ε↓0

{
v(x, ω + iε)e(ε−iω)t

∫ a

−a

e−iσt

σ + iε
dσ

}
= I1 + I2 + I3.

Here, a is a small constant satisfying 0 < a < |ω|. By Hölder continuity and the

decay and singularity estimates of v(·, κ) in Lemma 4, we can use the Riemann–

Lebesgue theorem to see that I1 and I2 → 0 strongly in L2

ξ
1/2
1

(Ω) as t→ ∞. Thus,
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noting

lim
ε↓0

∫ a

−a

e−iσt

σ + iε
dσ = −2i lim

ε↓0

∫ a

0

σ sin(σt) + ε cos(σt)

σ2 + ε2
dσ

= −2i

{∫ a

0

sin(σt)

σ
dσ +

∫ ∞

0

1

σ2 + 1
dσ

}
→ −2πi

as t→ ∞, we obtain from I3 the desired conclusion.

Remark 2. Theorem 3 is modified to hold in L2
µ1+ε(Ω) with ε = min{1, 3/p−1}.

In fact, since ξ(r) ≤ µ(r) ≤ ξ(r)1/2 leads us to µ1+ε = µ3/p ≤ (ξµ)1/p, it follows

that

∥R(κ2)g∥µ1+ε ≤ ∥R(κ2)g∥ξεµ1−ε ≤ C|κ|−1+ε∥g∥ξ−1 ,(4.12)

∥{R(κ2)−R(κ′2)}g∥µ1+ε ≤ ∥{R(κ2)−R(κ′2)}g∥
ξ
1/p
1

≤ C(Γ±)|κ2 −κ′2|δ∥g∥ξ−1
1

with δ = (3/p− 1)/2.

On the other hand, the conditions on b0(x) and g(x) can be slightly weakened if we

make use of Corollary 2. We choose s = 1/2 there to see α = β = 2/3+(3/p−1)/6.

Assume the following:

(B0)
′ There exists C9 > 0 such that

0 ≤ b0(x) ≤ C9ξ
α
1 in Ω.

We choose g(x) ∈ L2
ξ−α
1

(Ω) and note that 2α − 1 = 1/p. Then ξα1 ≤ ξαµ1−α and

we have

∥R(κ2)g∥ξα1 ≤ ∥R(κ2)g∥ξαµ1−α ≤ C|κ|−1+α∥g∥ξ−1 ,

which takes the role of (4.12) since 2
3 < α < 1. Thus, Theorem 3 holds in L2

ξα1
(Ω)

in this case.

Remark 3. The dissipation condition (B0) or (B0)
′ can be replaced by the fol-

lowing:

(B0)
′′ There exists a small ε1 > 0,

|b0(x)| ≤ ε1ξ1(r) or ≤ ε1ξ
3/4
1 (r) in Ω.

Note that 3/4 is given as α when s = 1/2 and p = 2 in Corollary 2. Let A, B be

multiplication operators Af = |b0(x)|1/2f , Bf = (sign b0(x))Af . Put ϕ = Av for

the solution v of (4.1). Then it satisfies

(4.3)′ ϕ− iκAR(κ2)Bϕ = AR(κ2)g(x).



598 K. Mochizuki and H. Nakazawa

Since ξ
3/4
1 (r) ≤ µ3/2(r), in the account of Corollary 1, we can choose ε1 small

enough to satisfy

sup
κ∈C+

∥iκAR(κ2)A∥ < 1.

Moreover, since ∥AR(κ2)B∥ = ∥AR(κ2)A∥, the Neumann series

{1− iκAR(κ2)B}−1 =

∞∑
j=0

[iκAR(κ2)B]j

converges in the operator topology uniformly in κ ∈ C+. Hence, we are able to

reach Theorem 3 in the case of (B0)
′′ also.

§5. The uniform resolvent estimates

First, remember the vector function θ(x, κ) = ∇bu+ x̃(n−1
2r − iκ)u. By use of this

function we rewrite equation (2.3) as

(5.1) −∇b · θ +
(n− 1

2r
− iκ

)
x̃ · θ +

{
c(x) +

(n− 1)(n− 3)

4r2

}
u = f(x).

Let φ = φ(r) > 0 be a weight function such that φ(r) = O(r) (r → ∞). We

multiply by φ(x̃ · θ̄) on both sides of (5.1). Then the real parts give

Re
[
φ
{
−∇b · θ +

(n− 1

2r
− iκ

)
x̃ · θ +

(
c(x) +

(n− 1)(n− 3)

4r2

)
u
}
(x̃ · θ̄)

]
= Re{φf(x̃ · θ̄)}.(5.2)

Note that

−φ∇b · θ(x̃ · θ̄) = −∇ · [φθ(x̃ · θ̄)] + φ′|x̃ · θ|2 + φθ · ∇b(x̃ · θ),

and substitute the identities

−Re{φ∇ · θ(x̃ · θ̄)} = Re
[
−∇ · {φθ(x̃ · θ̄)}+ φ′|x̃ · θ|2 + 1

2
φ(|θ|2 − |x̃ · θ|2)

+
1

2
∇ · {x̃φ|θ|2} − n− 1

2r
φ|θ|2 − 1

2
φ′|θ|2

− iφ(x̃× θ)(∇× b)ū+ φ
(n− 1

2r
− iκ

)
{|θ|2 − |x̃ · θ|2}

]
and

Reφ
(
c1(x) +

(n− 1)(n− 3)

4r2

)
u(x̃ · θ̄)

=
1

2
∇ ·

{
x̃φ

(
c1 +

(n− 1)(n− 3)

4r2

)
|u|2

}
+
(
Imκc1 −

∂r(φc1)

2φ

)
|u|2

+
(
Imκ+

1

r
− φ′

2φ

) (n− 1)(n− 3)

4r2
|u|2
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in equation (5.2). Integrate both sides over Ω. Then since φ = O(r), we have

− lim inf
s→∞

∫
Ss

φ
{
|x̃ · θ|2 − 1

2
|θ|2 − 1

2

(
c1 +

(n− 1)(n− 3)

4r2

)
|u|2

}
dS = 0,

and the following proposition holds true.

Proposition 1. The solution u = R(κ2)f satisfies

−
∫
∂Ω

φ(ν · x̃)1
2
|ν · ∇u|2 dS

+

∫
φ
[
−
(1
r
− φ′

φ

)
|x̃ · θ|2 +

(
Imκ+

1

r
− φ′

2φ

){
|θ|2 + (n− 1)(n− 3)

4r2
|u|2

}
+
(
Imκc1 −

∂r(φc1)

2φ

)
|u|2 +Re{−(∇× ib)ux̃× θ + c0ux̃ · θ}

]
dx

= Re

∫
φfx̃ · θ dx.

Lemma 5. Under the additional conditions

(5.3)
φ′(r)

φ(r)
≤ 1

r
and ∂r(φc1)(x) ≤ 0

on φ, the solution u satisfies the inequality∫ {(
Imκφ+

φ′

2

)
|θ|2 +

(
Imκφ+

φ

r
− φ′

2

) (n− 1)(n− 3)

4r2
|u|2

}
dx

≤
∫
φ{|f |+ (|∇ × b|2 + |c0|2)1/2|u|}|θ| dx+

∫
∂Ω

φ

2
(ν · x̃)|ν · ∇u|2 dS.(5.4)

Proof. The lemma is obvious from Proposition 1 if we take note of the inequalities(1
r
− φ′

φ

)
{|θ|2 − |x̃ · θ|2} ≥ 0, Imκφc1 −

∂r(φc1)

2
≥ 0,

| − (∇× ib)ux̃× θ + c0ux̃ · θ| ≤ (|∇ × b|2 + |c0|2)1/2|u| |θ|.

Lemma 6. For any ε > 0,∫ (
Imκr +

1

2
− 2ε

r2

[r]2

){
|θ|2 + (n− 1)(n− 3)

4r2
|u|2

}
dx

≤ 1

4ε

∫
[r]2|f |2 dx+

(ε20
ε

− 2ε(n− 1)(n− 3)
)∫

1

4[r]2
|u|2 dx

+

∫
∂Ω

r

2
(ν · x̃)|ν · ∇u|2 dS.
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Proof. We choose φ = r in the above lemma and use the Schwarz inequality. Then

noting (BC.1), we have∫ (
Imκr +

1

2

){
|θ|2 + (n− 1)(n− 3)

4r2
|u|2

}
dx

≤
∫ { [r]2

4ε
|f |2 + ε20

4ε[r]2
|u|2

}
dx+

∫
2ε

r2

[r]2
|θ|2 dx.

Hence the desired inequality follows.

Next, let H1
b,0 = H1

b,0(Ω) denote the completion of C∞
0 (Ω) with respect to the

norm

(5.5) ∥u∥2H1
b
=

∫
{|u(x)|2 + |∇bu(x)|2} dx.

Proposition 2. Let η = η(r) and ζ = ζ(r) be smooth, positive functions of r > 0,

and let s be chosen large. Then the following identity holds for each u ∈ H1
b,0:∫

Ωs

ζ
{
|x̃ · θ|2 + (n− 1)(n− 3)

4r2
|u|2

}
dx

=

∫
Ωs

ζ|x̃ · ∇bu− iκu− ηu|2 dx

+

∫
Ss

ζ
(n− 1

2r
+ η

)
|u|2 dS −

∫
Ωs

ζ ′
(n− 1

2r
+ η

)
|u|2 dx

+

∫
Ωs

ζ
{
2 Imκ

(n− 1

2r
+ η

)
|u|2 −

(n− 1

r
η + η′ + η2

)
|u|2

}
dx.

Proof. Note the identity

|x̃ · θ|2 =
∣∣∣x̃ · ∇bu+

n− 1

2r
u− iκu− ηu+ ηu

∣∣∣2
= |x̃ · ∇bu− iκu− ηu|2 +∇ ·

{
x̃
(n− 1

2r
+ η

)
|u|2

}
+ 2 Imκ

(n− 1

2r
+ η

)
|u|2 − (n− 1)(n− 3)

4r2
|u|2 −

(n− 1

r
η + η′ + η2

)
|u|2.

Multiply by ζ(r) on both sides and integrate over Ωs. Then since u|∂Ω = 0, we

conclude the desired identity.

Lemma 7. The following statements hold:

(i) If n ≥ 3, then for any u ∈ H1
b,0(Ω),∫

1

4r2
|u|2 dx ≤

∫
|x̃ · θ|2 dx.
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(ii) If n = 2, then for any u ∈ H1
b,0(Ω) and ε > 0,∫ (

Imκr +
1

2
− 18ε− 8ε2

) 1

4[r]2
|u|2 dx

≤
∫ (

Imκr +
1

2
− 2ε

r2

[r]2

){
|x̃ · θ|2 − 1

4r2
|u|2

}
dx.

Proof. (i) We choose ζ ≡ 1 and η = −n−2
2r in Proposition 2. Then since

n− 1

2r
+ η =

1

2r
,

n− 1

r
η + η′ + η2 = − (n− 2)2

4r2
,

letting s→ ∞, we have the assertion.

(ii) We choose

ζ = Imκr +
1

2
− 2ε

r2

[r]2
and η =

1

2[r]

in Proposition 2. Then, by assumption, ζ(r) > 0 and also

lim inf
s→∞

∫
Ss

ζ
( 1

2r
+ η

)
|u|2 dS = 0.

Moreover, since

1

r
η + η′ + η2 =

−1

4[r]2
=

−1

4r2(1 + log r/r0)2
,

it follows that∫ (
Imκr +

1

2
− 2ε

r2

[r]2

){
|x̃ · θ|2 − 1

4r2
|u|2

}
dx

≥ −
∫ (

Imκ− 2ε
( r2

[r]2

)′)( 1

2r
+ η

)
|u|2 dx

+

∫ (
Imκr +

1

2
− 2ε

r2

[r]2

){
2 Imκ

( 1

2r
+ η

)
|u|2 + 1

4[r]2
|u|2

}
dx.

Thus the inequalities

2(Imκ)2r − 4ε Imκ
r2

[r]2
≥ −2ε2

r

r4

[r]4
,

−
{
2ε2

r

r4

[r]4
+ 2ε

(
r2

[r]2

)′}(
1

2r
+ η

)
≥ −8(ε2 + 2ε)

4[r]2

lead us to the desired conclusion.
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Proof of Theorem 1(i). The case n ≥ 3: In the inequality of Lemma 6 we choose

ε < 1
4 and apply Lemma 7(i). Then∫ (1

2
− 2ε

) 1

4r2
|u|2 dx+

∫
(n− 1)(n− 3)

8r2
|u|2 dx

≤ 1

4ε

∫
r2|f |2 dx+

ε20
ε

∫
1

4r2
|u|2 dx− P∂Ω(u),

where P∂Ω(u) = − 1
2

∫
∂Ω

(ν · x)|ν · ∇u|2 dS. Hence

(n− 2)2ε− 4ε2 − 2ε20
2ε

∫
1

4r2
|u|2 dx ≤ 1

4ε

∫
r2|f |2 dx− P∂Ω(u),

and the desired inequality holds if ε0 in (BC.1) is sufficiently small.

The case n = 2: We combine Lemmas 6 and 7(ii) to obtain∫ (
Imκr +

1

2
− 18ε− 8ε2

) 1

4[r]2
|u|2 dx

≤
∫ (

Imκ+
1

2
− 2ε

r2

[r]2

){
|x̃ · θ|2 − 1

4r2
|u|2

}
dx

≤ 1

4ε

∫
[r]2|f |2 dx+

(ε20
ε

+ 2ε
)∫

1

4[r]2
|u|2 dx− P∂Ω(u)

for any ε < 1
4 , which implies

ε− 40ε2 − 16ε3 − 2ε20
2ε

∫
1

4[r]2
|u|2 dx ≤ 1

4ε

∫
[r]2|f |2 dx− P∂Ω(u).

The desired inequality then holds if ε0 is sufficiently small.

To proceed with the proof of Theorem 1(ii) we need one more proposition.

We multiply by −iκu on both sides of (2.3) to obtain

∇ · {(∇bu)iκu} − iκ{|∇bu|2 + c(x)|u|2 − κ2|u|2} = −fiκu,

Integrate the real part of this equation over Ωt (t > r0). By means of the boundary

condition u|∂Ω = 0, it then follows that

1

2

∫
St

{−|∇bu− iκu|2 + |∇bu|2 + |κu|2} dS

+ Imκ

∫
Ωt

(|∇bu|2 + c|u|2 + |κu|2) dx = −Re

∫
Ωt

fiκu dx.(5.6)
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Here,

|∇bu− iκx̃u|2 =
∣∣∣∇bu+ x̃

(n− 1

2r
− iκ

)
u
∣∣∣2

+
(n− 1)(n− 3)

4r2
|u|2 − Imκ

n− 1

r
|u|2 −∇ ·

{n− 1

2r
x̃|u|2

}
.(5.7)

Then the following proposition is a direct result of (5.6) multiplied by µ(t) and

integrated over (r0,∞).

Proposition 3. Let u = R(κ2)f . Then we have

1

2

∫ {(
µ Imκ

n− 1

r
− µ′n− 1

2r

)
|u|2 + µ(|∇bu|2 + |κu|2)

}
dx

+ Imκ

∫ ∞

r0

µ(t) dt

∫
Ωt

{|∇bu|2 + c(x)|u|2 + |κu|2} dx

=
1

2

∫
µ
{
|θ|2 + (n− 1)(n− 3)

4r2
|u|2

}
dx− Re

∫ ∞

r0

µ(t) dt

∫
Ωt

fiκu dx.

Now we return to the inequality of Lemma 5. The Schwarz inequality then

implies∫ {(
Imκφ+

φ′

2
− 2εφ′

)
|θ|2 +

(
Imκφ+

φ

r
− φ′

2

) (n− 1)(n− 3)

4r2
|u|2

}
dx

≤
∫

φ2

4εφ′ |f |
2 dx+

∫
(|∇ × b|2 + |c0|2)φ2

4εφ′ |u|2 dx(5.8)

for any ε > 0.

Lemma 8. The inequality∫
µ
{
|θ|2 + (n− 1)(n− 3)

4r2
|u|2

}
dx ≤ C

∫
max{[r]2, µ−1}|f |2 dx

holds for some C = C(ε0, ∥µ∥1) > 0.

Proof. In (5.8) we fix ε < 1
8 . In the case n ≥ 3 we choose φ(r) =

∫ r
0
µ(τ) dτ . Since

rµ ≤ φ ≤ ∥µ∥L1 , by use of (BC.1) we have∫ {1− 4ε

2
µ|θ|2 + 1

2
µ
(n− 1)(n− 3)

4r2
|u|2

}
dx

≤ ∥µ∥2L1

{∫ µ−1

4ε
|f |2 dx+

∫
ε20[r]

−2

4ε
|u|2 dx

}
.

Hence, the use of Theorem 1(i) leads to the assertion.
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In the case n = 2 we choose φ = r/(4 + log r/r0)
2 in (5.8). Then since

φ′ =
1

(4 + log r/r0)2
− 2

(4 + log r/r0)3
≥ 1

2(4 + log r/r0)2
,

φ

r
− φ′

2
≤ 3

4(4 + log r/r0)2
and

φ2

φ′ ≤ 2r2

(4 + log r/r0)2
,

it follows that∫
1− 4ε

4(4 + log r/r0)2
|θ|2 dx−

∫ {
Imκr +

3

4

} 1

4r2(4 + log r/r0)2
|u|2 dx

≤
∫

r2

2ε(4 + log r/r0)2
|f |2 dx+

∫
ε20r

2

2ε[r]4(4 + log r/r0)2
|u|2 dx

for any ε > 0. Hence we have∫
1− 4ε

4(4 + log r/r0)2
|θ|2 dx ≤ 1

32ε

∫
[r]2|f |2 dx+

∫ {
Imκr +

3

4
+
ε20
8ε

} |u|2

4[r]2
dx.

The use of Theorem 1(i) leads to the assertion if we note

µ ≤ 1

(4 + log r/r0)2
and

(n− 1)(n− 3)

4r2
=

−1

4r2
≤ 0

in this case.

Lemma 9. For each u ∈ H1
b,0 and s > r0 we have∫

Ωs

[n− 2]2

4[r]2
|u|2 dx ≤

∫
Ωs

|x̃ · ∇bu|2 dx.

Proof. In the identity

|x̃ · ∇bu|2 =
∣∣∣x̃ · ∇bu+

[n− 2]u

2[r]

∣∣∣2 − [n− 2]2|u|2

4[r]2
− 2Re

{
x̃ · ∇bu

[n− 2]ū

2[r]

}
,

the last term on the right-hand side is rewritten as

−∇ ·
{
x̃
[n− 2]|u|2

2[r]

}
+

[n− 2]2|u|2

2[r]2
.

Integrate this equation over Ωt. Then the assertion follows from the identity∫
Ωs

|x̃ · ∇bu|2 dx =

∫
Ωs

∣∣∣x̃ · ∇bu− [n− 2]u

2[r]

∣∣∣2 dx+

∫
Ss

[n− 2]|u|2

2[r]
dS

+

∫
Ωs

[n− 2]2|u|2

4[r]2
dx.
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Proof of Theorem 1(ii). We start from the identity of Proposition 3. By (BC.1),

c(x) ≥ − [n− 2]2

4[r]2
.

Then we have from Lemma 9,∫
Ωr

{|∇bu|2 + c(x)|u|2 + |κu|2} dx ≥ 0,

and the following inequality holds:

1

2

∫ {(
µ Imκ

n− 1

r
− µ′n− 1

2r

)
|u|2 + µ(|∇bu|2 + |κu|2)

}
dx

≤ 1

2

∫
µ
{
|θ|2 + (n− 1)(n− 3)

4r2
|u|2

}
dx+

∫ ∞

0

µ(t) dt

∫
Ωt

|f(x)| |iκu| dx.(5.9)

Here µ′ ≤ 0 by assumption and we have from the Schwarz inequality,

∥µ∥L1

∫
|f | |iκu| dx ≤ ∥µ∥2L1

∫
µ−1|f |2 dx+

1

4

∫
µ|κu|2 dx.

Thus, the assertion is concluded from (5.9) and Lemma 8.
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[16] B. R. Văınberg, Principles of radiation, limiting absorption and limiting amplitude in the
general theory of partial differential equations, Uspehi Mat. Nauk 21 (1966), 115–194.
Zbl 0172.13703 MR 0213701

https://doi.org/10.2977/prims/1195194632
https://doi.org/10.2977/prims/1195194632
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0206.11001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0437954
https://doi.org/10.1142/9789812835635_0049
https://doi.org/10.1142/9789812835635_0049
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1183.35090&format=complete
https://doi.org/10.2977/PRIMS/24
https://doi.org/10.2977/PRIMS/24
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1203.35194&format=complete
http://www.ams.org/mathscinet-getitem?mr=2791005
https://doi.org/10.1201/9781315152905
https://doi.org/10.1201/9781315152905
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1377.35003&format=complete
http://www.ams.org/mathscinet-getitem?mr=3676925
https://doi.org/10.4171/PRIMS/157
https://doi.org/10.4171/PRIMS/157
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1405.35176&format=complete
http://www.ams.org/mathscinet-getitem?mr=3348112
https://doi.org/10.1007/978-3-319-48812-7_66
https://doi.org/10.1007/978-3-319-48812-7_66
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1383.35061&format=complete
http://www.ams.org/mathscinet-getitem?mr=3695683
https://doi.org/10.1002/cpa.3160150303
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0196.41202&format=complete
http://www.ams.org/mathscinet-getitem?mr=0151712
https://doi.org/10.1017/S0305004100070882
https://doi.org/10.1017/S0305004100070882
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0841.35060&format=complete
http://www.ams.org/mathscinet-getitem?mr=1162945
https://doi.org/10.2969/jmsj/04140549
https://doi.org/10.2969/jmsj/04140549
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0722.35060&format=complete
http://www.ams.org/mathscinet-getitem?mr=1013067
https://doi.org/10.1070/rm1966v021n03abeh004157
https://doi.org/10.1070/rm1966v021n03abeh004157
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0172.13703&format=complete
http://www.ams.org/mathscinet-getitem?mr=0213701

	Introduction
	Preliminaries
	Local Hölder continuity of R(z)f
	The principle of limiting amplitude
	The uniform resolvent estimates
	References

