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Multivector Fields on Quaternionic Kahler
Manifolds

by

Takayuki MORIYAMA and Takashi N1TTA

Abstract

In this paper we define a differential operator as a modified Dirac operator. Using the
operator, we introduce a quaternionic k-vector field on a quaternionic Kéhler manifold
and show that any quaternionic k-vector field corresponds to a holomorphic k-vector field
on the twistor space.
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§1. Introduction

Deformation quantization is constructed on any symplectic manifold [7, 8, 17].
Kontsevich generalized the construction to Poisson manifolds [13]. A Poisson struc-
ture is given by a 2-vector field whose Schouten bracket vanishes. In complex
geometry, Hitchin studied holomorphic Poisson structures [10]. He showed that a
holomorphic Poisson structure is deeply related to generalized Kéhler manifolds.
We constructed a family of real Poisson structures on S* from holomorphic Pois-
son structures on CP3 [15], where S* is a typical example of quaternionic Kihler
manifolds and CP? is the twistor space.

Let (M, g) be a quaternionic Kahler manifold, that is, a 4n-dimensional Rie-
mannian manifold whose holonomy group is reduced to a subgroup of Sp(n)-Sp(1).
Let E and H denote the associated bundles with the canonical representations
of Sp(n) and Sp(1) on C?" and C2, respectively. Then TM @ C = E ®¢ H.
Levi-Civita connection induces the covariant derivative V: [(A*E @ S™H) —
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I'A*E ® S"H ® E* @ H*). By the Clebsch-Gordan formula, the Dirac opera-
tor D rp is defined as the AFE @ E* @ S™+! H-part of V. Baston considered a
complex associated with the operator D por (he used the notation D instead) and
another operator F on a quaternionic manifold [4]. He proved that the cohomology
corresponds to Dolbeault cohomology on the twistor space Z. Nagatomo and the
second author provided a vanishing theorem of the cohomology on quaternionic
Kéhler manifolds [16]. A k-vector field contained in the kernel of D x g is lifted
to a holomorphic k-vector field on Z. However, any holomorphic k-vector field on
Z does not correspond to such a k-vector field on M. We consider the trace map
tr: AF E® E* — AF1E and define an operator C‘D%kE as the traceless part of
D xp. We remark that, in the case of kK = 2n, the operator ’D%,,E vanishes.

Definition 1.1. A section X of AYE® S*H is a quaternionic k-vector field on M
if D0, (X)=0for 1 <k<2n—1and Dpzn-1po0troDrzmp(X) =0 for k =2n.

AE

A quaternionic 1-vector field is a vector field preserving the quaternionic struc-
ture. In [2, 6, 14], the authors studied quaternionic 1-vector fields and provided
characterizations of HP™. A quaternionic k-vector field is a sort of generalization
of such a vector field. In the case of positive scalar curvature, there are many
quaternionic Kéhler orbifolds [5, 9]. For this reason, we consider a sheaf of quater-
nionic k-vector fields. Let Q(A*E @ S*H) be the sheaf of quaternionic k-vector
fields on M and O(AFT0Z) that of holomorphic (k, 0)-vector fields defined in the
pull-back of open sets by the projection from Z to M. The main theorem is the
following:

Theorem 1.2. The sheaf QAFE @ S¥H) is isomorphic to O(AFT0Z). In par-
ticular, any global quaternionic k-vector field on M corresponds to a global holo-
morphic (k,0)-vector field on Z.

The Schouten—Nijenhuis bracket induces graded Lie algebra structures on
@, QN'E @ S*H) and @, O(A*TH0Z).

Theorem 1.3. The isomorphism Q(A\*E @ SFH) = @(Ale’OZ) preserves the
structures of graded Lie algebras. In particular, the space of global quaternionic
k-vector fields on M is isomorphic to that of global holomorphic (k,0)-vector fields
on Z as graded Lie algebras.

The space Q(A*E ® S¥H) admits a real structure 7. A 7-invariant element
of Q(NFE ® S¥H) is a real k-vector field on M. We also have a real structure #
on O(AFT10Z). Let Q(A*E ® S¥H)™ be the sheaf of quaternionic real k-vector
fields and O(AFT'0Z)" that of #-invariant elements of O(AFT0Z). Graded Lie
algebra structures are induced in those sheaves.
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Theorem 1.4. The sheaf Q(A\E @ S*H)™ is isomorphic to O(AFT0Z)". The
isomorphism preserves the structures of graded Lie algebras. In particular, the
space of global quaternionic real k-vector fields on M is isomorphic to that of global
holomorphic and 7-invariant (k,0)-vector fields on Z as graded Lie algebras.

§2. Preliminaries
§2.1. Quaternionic Kéahler manifolds

Let (M, g) be a Riemannian manifold of dimension 4n. A subbundle @ of End(T'M)
is called an almost quaternionic structure if there exists a local basis I, J, K of Q
such that I? = J? = K? = —id and K = I.J. A pair (Q,g) is an almost quater-
nionic Hermitian structure if any section ¢ of Q satisfies g(pX,Y)+g(X, oY) =0
for X, Y € TM. For n > 2, if the Levi-Civita connection V preserves @, then (Q, g)
is called a quaternionic Kahler structure, and (M, Q, g) a quaternionic Kdihler man-
ifold. A Riemannian manifold is a quaternionic Kéhler manifold if and only if the
holonomy group is reduced to a subgroup of Sp(n) - Sp(1). Alekseevskii [1] shows
that a quaternionic Kéahler manifold is Einstein and the curvature of () is described
by the scalar curvature (we also refer to [11, 18]). For n = 1, since Sp(1) - Sp(1)
is SO(4), a manifold satisfying the above condition is just an oriented Riemann-
ian manifold. A 4-dimensional oriented Riemannian manifold M is said to be a
quaternionic Kahler manifold if it is Einstein and self-dual.

The symplectic group Sp(n) acts on the right H-module H" by A¢ for A €
Sp(n) and £ € H". On the other hand, Sp(1) has an action on the left H-module
H by &7 for ¢ € Sp(1) and ¢ € H. Let E, H denote the associated bundles with
the representations Sp(n), Sp(1) on H", H, respectively. Then F is the right H-
module bundle and H is the left H-module bundle. The dual representations of
Sp(n) and Sp(1) induce the left H-module bundle EF* and the right H-module
bundle H*. Then TM = F ®y H and T*M = H* @y E*. The H-bundles E, H
are regarded as the C-vector bundles with anti C-linear maps Jg, Jy satisfying
J]%J = —idg, J12{ = —idg. Then there exist symplectic structures wg, wg on E, H
which are compatible with Jg, Jg, respectively. The correspondences e — wg(+, €),
h +— wg(-, h) provide the C-isomorphisms F =~ E*, H = H* which are denoted
by w%, wfq. The tangent space T'M is the real form of E ®c H with respect to the
real structure Jg ® Jy:

TM ®C = E ®c¢ H.

The tensor product wgp ® wy is the complexification of the Riemannian metric g.
The technique is called EH -formalism and was introduced by Salamon [18].
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§2.2. The twistor space

The quaternionic structure @ is considered as a subbundle of the real vector bundle
Endy(H). We identify Endg(H ) with the real form of End¢(H) = H®c H*. Let u
be an H-frame of H. We define local sections I, J, K of Endy(H) as I(hu) = hiu,
J(hu) = hju, K(hu) = hku for any h € H. Then {I,J, K} is a local basis of @
and represented by elements

(1) I = i(usu—jus(in)), J = jusn —us(iu), K = i(judu+ue(ju)’)
of Endc(H) for the C-frame {u, ju} of H. Let Z be a sphere bundle
Z={al+bJ+cKeQ|a®+b+c* =1}

over M. Let f: Z — M denote the projection. The bundle Z is called a twistor
space of the quaternionic K&hler manifold M.

§2.3. The principal bundle P(H*)

Let p: P(H*) — M be a frame bundle of H*, whose fiber consists of right H-bases
of H*. Then P(H*) is a principal GL(1, H)-bundle by the right action. An element
u* of P(H™*) induces the complex structure I in (1) by

ANOTIM = E; @ (u*)e, A™'TrM = E} © (u*j)c.

We identify each fiber of p with C?\{0} by H = C + jC =2 C2. Thus we have an
almost complex structure I on P(H*). Then I is integrable (cf. [3, Thm. 4.1], [18,
Thm. 4.1]). The twistor space Z is regarded as the quotient space P(H*)/GL(1,C).
We denote by 7: P(H*) — Z the quotient map. By the definition, the twistor space
Z is a CP'-bundle over M. A complex structure I on Z is induced by I.

§3. Lifts of sections of AE ® S™H to P(H*) and Z

We denote by A9, A(IID(H*) and A%, the sheaves of smooth g-forms on M, P(H*)
and Z, respectively.

§3.1. Lift of AY(A*E ® S™H) to P(H*)

The bundles H and H* are regarded as bundles of the left C-module and the
right C-module, respectively. We denote the complex representation p of GL(1,H)
on H by p(a)h = ah for a € GL(1,H) and h € H. Then S™H is the associated
bundle P(H*) x,- S™H with the dual representation p*. The point u* € P(H*)
corresponds to a point u of P(H) by the H-dual. The H-basis u provides the C-
basis {u, ju} of the C-vector bundle H. Thus, any element u of P(H) is regarded
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as a C-isomorphism u: H — H,,. An element { € AY(A*E @ S™H) induces
£ e AqP(H*)(/\kE ® S™H) by &, = u (p*€)y~ at each poin‘f u* € P(H*). Then
(R.)*€ = p*(a~1)E for any a € GL(1,H). We define a sheaf A?(AFE @ S™H) by
AUNE @ S™H) = {€ € p~'p.(p* AU A"E @ S™H)) | (Ra)*€ = p*(a™ 1),
Ya € GL(1,H)},

where p~!p, means the inverse image of the direct image of a sheaf by p. By the
definition, A7 = AY(A°E @ S°H) is the sheaf of pull-backs of smooth g-forms on
M by p. In particular, A° is the sheaf of smooth functions on P(H*) which are
constant along each fiber. Then

A1NE @ S"H) = AYAFE) @ 50 A°(S™H).

The sheaf A?(A¥ E©S™ H) is isomorphic to A?(A* E®S™H) by the correspondence
¢+ & (cf. [12, Chap. II, §5]). The Levi-Civita connection induces connections of
E, H and the covariant exterior derivative dV: AY(AFE @ S™H) — AT (AFE @
S™H). Let H be the horizontal subbundle of TP(H*). We define dg: Aq(/\kE ®
S™H) — AT (ARE @ S™H) by the exterior derivative restrlcted to H. Then
dve = dgE.

We fix a point uf of P(H*). The complex coordinate (z,w) of the fiber is
given by uf(z + jw). A function f on P(H*) is a polynomial of degree (m — i,1)
along the fiber if f(uf(z+ jw)) is a polynomial of z, w, Z, W of degree m such that
(R.)*f = ™7t f for ¢ € GL(1,C). We denote by fl?m_i,i) the sheaf of elements
of p_lp*.AO( +y(C) which are polynomials of degree (m — i, i) along the fiber on

P(H*). We also define a sheaf A? (AFE) as

(m—1,7)

Aq

(m—1,1)

( ) Aq(/\ E) ®A0 'A(m i,1)

Let aqas - - - a,, denote the symmetrization m, Y oves, Go(1) @+ @ Ag(m) Of

m

a1 ® - ® ay € ®"H, where S, is the symmetric group of degree m. The set
{1m 1m=1j1m=242 . ™} is a C-basis of S™H. Any element & of AY(AFE @
S™H) is written as

(2) E=E1m+ 61"+ &1 4 4 g™

for p~'(AFE)-valued 1-forms &, ...,&,,. Each &; is in .Aq » 1)(/\’“E). We obtain
the following proposition:

Proposition 3.1. There exist two tsomorphisms:

(i) AY(AFE @ S™H) = Aq (/\kE) by & — &. Moreover, (dg€)o = dz&o for
any & € AYNE ® SmH).
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(i) AYNE @ ST"H) = ./Zlgm,o)(/\kE) by € — &. Moreover, (cje/f)o = dﬁéo for
any £ € AYNE ® S™H). O

For ¢ € AYAFE ® S™H), the element &, € .A (/\ E) is said to be a lift to
P(H*).

§3.2. Lift of AYAFE ® S™H) to Z

We denote by [ a line bundle over Z which is the hyperplane bundle on each fiber
CP! of f. We define a sheaf A°(I"™) by

A%( ={cef L (A% ™) | ¢: holomorphic along each fiber of f}.

We denote by A° the sheaf A°(1°) of functions on Z which are constant along each
fiber of f. Let AQ(/\’CE) denote the sheaf of pull-backs of AFE-valued g-forms on
M by f. We define a sheaf AY(AFE @ ™) as

AYNE @ 1™) = AYAFE) @ 40 A°(I™).

Any element &, of A( 0) defines an element of flq(lm) which we denote by &. Such
an element & is called a lift of € to Z. The correspondence &y — & provides the
isomorphism .Aq (/\kE) A(AN*E @ I™). Proposition 3.1 implies the following
proposition:

Proposition 3.2. We have AY(A\FE ® S™H) = AYNFE @ 1™) by € — £. O
§3.3. Real structures
We define an anti-C-linear map 7: AY(A*E ® S™H) — AY(A*E ® S™H) by
7€) =) (Jp e Ji) () ®al
for £ =3, v; ® of, where {v;} is a frame of A*E ® S™H and o' is a g-form. We

denote by AY(A*E® S™H)™ the sheaf of T-invariant elements of AY(AFE® S™H).
We define an anti-C-linear endomorphism 7 of AY(A*E @ S™H) by

8@ 1" ) = JERTR @ 17
for g € AI(NFE). It induces an endomorphism of A(m ; Z)(/\"“E) such that 7(€) =
(5) and 7(&;) = T(§) for ¢ € AY(A*E ® S™H). Under the representation (2), £ is

7-invariant if and only if ; is 7-invariant for each i, and & = (—1)""*Jpé,,_;. Let
A1NFE ® STH)T and Aq (/\kE) denote the sheaves of 7-invariant elements

of AY(A*E ® S™H) and .A
proposition:

(m, 0)(/\ E), respectively. Then we have the following
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Proposition 3.3. We have AYNFEQS™H)™ = A1(AN*EQS™H)T %/I‘(vao)(/\kE)%
by & — € — & O

The action R; on P(H*) induces an anti-holomorphic involution of Z, and
we denote it by R;: Z — Z. An anti-C linear endomorphism 7 of AYNFE @ 1)
is defined by
#(Bz) = Jp R Bz
for 7 € AY(A*E®I™). Let AY(A¥ E@I™)7 denote the sheaf of #-invariant elements
of AYANFE @ I™).

Proposition 3.4. We have AYAFE ® S™H)™ = AY(NE@1™) by & — ¢ O

If k + m is even, then 7 and 7 are real structures.

§4. Canonical 1-forms on P(H*) and Z
§4.1. Canonical 1-form on P(H™)
We define a p~!(E) @ H-valued 1-form 6 on P(H*) as

O (v) = u™" (pu(v))

for v € T,- P(H*) at u*. The 1-form @ is called the canonical 1-form on P(H*).
We define p~!(E)-valued 1-forms 6y and 8; on P(H*) as 6 = 6y + 6,j. Then 6§, €
A%LO)(E) and 0, € /QO,I)SE) arei(l,())— and (0, 1)-forms, respectively. Moreover,
they are 7-invariant, and 61 = Jgfy. Let A denote the connection form of P(H*).
Then A is written as A = g + jm for complex-valued 1-forms ng, 7 on P(H*).

Then 19 and 7, are 7-invariant (1, 0)-forms. We have
(3) dP0y = —6y A No—m AN 01, dF0, = —6, A nm — 01 A 70-

Let s, denote the symmetrization ®?H — S?H. We define an S?H-valued 2-
form w on M as w = wg ® s%. The lift @ € A3(S?H) is decomposed as & =
wol-14+wl-j+wej-jforwe A%270), w1 67./4%171) and wy € ‘A%o,z)' Then @y,

@1 and @y are T-invariant, Wy = Wy and &1 = —w;. Moreover,
Wo = wp(fo,00), w1 =wg(b,b01)+wr(f1,00), w2=wg(b1,01).

The endomorphisms I, J, K in (1) induce almost complex structures on M,
locally. We define local 2-forms wy, wy and wx on M by w;(X,Y) = g(IX,Y),
wj(X,Y) = g(JX,Y) and wg(X,Y) = g(KX,Y) for XY € TM. We define
a function r on P(H*) by r(u*) = |u*| for u* € P(H*), where | - | means the

-2

norm of H*. Then iw; = —r2w; and wy — iwg = —2r 20y on P(H*). We
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denote by t the scalar curvature of M. The curvature Q of P(H™*) is given by
Q=2c,t(iQwr+jRwys+kQuwg) for a positive number ¢,, depending on n (cf.
[1, 18]). Hence Q = —2¢,tr 2(@; + 2j@yp). From now on, we set ¢ = 2¢,t. Then

(4) dno = —er 2@ —m AT, dmp = —2er 2@y + 1o Amp +m A To.

Equations (3) and (4) induce the integrability of I. It follows from d(r21n,) =
2(—cwo + r%no Am1) that 721y is a holomorphic (1,0)-form on P(H*). If the scalar
curvature t is not zero, then d(r?n;) is a holomorphic symplectic form on P(H ).
Complex structures J, K are provided by definitions similar to that of I. Then
(I,J, K) is a hypercomplex structure on P(H*). If t > 0, then § = 7?(cp*g +
Mo @ 7o + Mo @ Mo + m1 @ 71 + 71 ® 1) is a hyperkithler metric. Then —id(r?ng),
d(r2nRe), d(r*n™) are Kihler forms with respect to I, J, —K, respectively. The
hyperkéhler structure (§, I, J, —K) induces that on P(H*)/Zs. This coincides with
the hyperkéhler structure constructed by Swann [19].

§4.2. Derivatives of canonical forms

We take a torsion-free connection V of TP(H*) preserving I. Let F be a holomor-
phic vector bundle on P(H*) and Vg a (1,0)-connection Vp: F — FQT* of F.
We consider the connection Vpgae of FF®@ A? as the map FQ AT — FQ AT Q T*.
Then the covariant exterior derivative dV is given by (—1)? AoV pgaq. We remark
that the operator Op: F @ A®0 — F @ AL satisfies Op = (—1)7 A OVOF(gAq It fol-
lows from (3) and (4) that V%;@/\ﬂo =me 91, Voling = er~ wE(GO,Ql) +m &M
and V% 1771 = —1 @ 7o. We define a p~'(AFE)-valued (k,0)-form 65 by the kth
wedge ZZ i1 € AN Aei @ gy A A ey, of 0y = Zf:l e; ® a;. It implies
the followmg

Proposition 4.1. We have

VOL0E = k0K Aoy AR 6y,
VOO Amg) = —(k = 1052 Ao Ay A 61 + 081
A (crfsz(éo,él) +m M),
VOO Am) = =051 Am @ 7o,
VOO Ao Amy) = =662 Ay A (er~*wi(fo,61) — 10 ® o). [

§4.3. Canonical 1-form on Z

The principal GL(1,C)-bundle 7: P(H*) — Z is regarded as the frame bundle of
I*. We define g and 0; as the f~1(E) ®I-valued (1,0)-form and the f~*(E) @1~ '-
valued (0, 1)-form on Z induced by 6y and r 26, respectively. Let  and @ be the
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[2-valued (1,0)-form and the [?>-valued (2,0)-form on Z induced by r?n; and &y,
respectively. The forms 90, 91, n and & are 7-invariant.

A connection of [ is induced by ng. Let d’ be the covariant exterior derivative.
We obtain

(5) d'y = —n Aby, d'n=—20.

If t # 0, then 5 is a holomorphic contact form on Z such that [? is the contact
bundle. Let g;; be a real symmetric 2-form on Z such that 7*gy = m @1+ @1
If £ > 0, then g = cf*g + gy is a Kahler-Einstein metric on Z with positive scalar
curvature (cf. [18, Thms. 4.3, 6.1]).

Let V be a torsion-free connection on Z such that V%! = 9. Equation (5)
implies that V910, = n ® 6; and V%'y) = 0. We define an f~'(AFE) @ [¥-valued
(k,0)-form é’g as the kth wedge of fy. Then we have the following proposition:

Proposition 4.2. We have Vo’lélg = kélg*l AnAg 6y, and Vo’l(é’g*l An)=0.0

§5. Holomorphic k-vector fields on P(H*) and Z
§5.1. Holomorphic k-vector fields on P(H™)

Let 1, 17, }', k be fundamental vector fields associated with the elements 1,4, 5, k
of Lie algebra gl(1,H) = H, respectively. We define complex vector fields vy and
v1 as vg = 5(1 —41) and vy = 3(j +ik). Then {vo, v1} is the dual basis of {1, 7}
Let X’ be a (1,0)-vector field on P(H*). Then X’ is decomposed into

(6) X' =X}, + fovo + frvr

for a horizontal vector field X and functions fy, f1 on P(H*).

Lemma 5.1. The (1,0)-vector field X' is holomorphic if and only if
(i) O(Bo(X})) — F101 =0,

(il) 9fo = er2wp(0o(X}),01) + fimn

under the decomposition (6).

Proof. The vector field X’ is holomorphic if and only if V%! X’ = 0. The equa-
tion is equal to 6o(VO!1X") = 0, no(V>'X’) = 0 and 7 (V>'X’) = 0. The
first equation induces the third one since 8V (6o(VO1X")) = n (VO X') A 6; +
Oo( Q) (X)) = m(VOIX') A fy and the map Afy: AL — p~}(E) @ A0
is injective. Proposition 4.1 implies that f(VO'X") = 9(6y(X})) — f16: and
o (V01X = 0fy — cr‘sz(éo(X,’l),él) — f1im. It turns out that V@1 X' = 0
is equivalent to conditions (i) and (ii). O
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Let k be an integer which is greater than 1. Any (k, 0)-vector X’ is decomposed
into

(7) X'=X; +YoAvo+ Y1 Avy + Zog Avg A vy

for X} € AR and Yo, Y1 € AF=19{1.0 and Zy € AE=24{1,0, By a proof similar to
Lemma 5.1, we obtain the following lemma:

Lemma 5.2. For2 < k < 2n, the (k,0)-vector field X' is holomorphic if and only
if

(66(X})) — k265~ (Y1) A 61 =0,

20(0F 1 (Yo)) + k2 (k—1)208"%(Zo) Ap by —cr2wp(05 (X}), 0,) — k2051 (Y1) ®

1
(iii) O(fp~ ( D) +0 (V1) @i =0,
(iv) (k—1)*0(05%(Zo)) + (k = 1)*652(Zo) @ 70 — erwi (85" (Y1),61) = 0,
under the decomposition (7). In particular, in the case k # 2n, X' is holomorphic
if and only if equations (i), (ii), (iv) hold. O

From now on, we extend the decomposition (7) to the case k =1 as Zy = 0.
Theorem 5.3. Horizontal k and (k — 1)-vector fields X;,, Y1 satisfy, for 1 <k <
2n —1,
(i) DO§(X}) — k05 (Y1) Ap 6L =0,
and for k =2n, (i) and

o0 (r*11)) = 0

if and only if the (k,0)-vector field X; +Yo Avo+Y1 Avi+ZyAvgAvy is holomorphic
for local horizontal (k — 1)- and (k — 2)-vector fields Yo, Zo on P(H*).
Proof. By taking the derivative 8 on (i), we obtain d(r265~1(Y1)) A 6, = 0. Since
A0y : p H(AFTIE) @ A pmY(ARE) @ A% s injective for 1 < k < 2n — 1,
d(r?65~1(Y1)) = 0. The equation is equal to (iii) in Lemma 5.2. It is easy to see
that condition (iv) is equivalent to

(8) A((k — 12208 2(Zy)) = cwr (2051 (Y1), 7726,).

The derivative  on the right-hand side of (8) vanishes. By Dolbeault’s lemma,
there exists an element Z; € A(},(H*)(/\k_Q/Hl’O) satisfying (8), and (iv). In the
case k # 1, we write (ii) as

005 (Yo)) = b~ 2ewp (05 (X3),r=20:) +r°05 ' (V1) @ v
(9) — (k‘ - 1)2T2é§72(Z0) NE ’I"_2t§1.



MULTIVECTOR FIELDS ON QUATERNIONIC KAHLER MANIFOLDS 639

The derivative 0 on the right-hand side of (9) is provided by
A (wp(0F (Y1) Ap01,01)) — 208 (Y1) @wr (01, 01) —wr (01 (Y1), 61) A 61 }.

Then it vanishes. In the case k = 1, by the same argument, the derivative 0
on the right-hand side of (ii) in Lemma 5.1 vanishes. Hence, there exists Yy €
A%(H*)(/\k_lH) such that (ii) holds for any 1 < k < 2n. It completes the proof. [

§5.2. Holomorphic k-vector fields on Z

The horizontal bundle 7 induces a bundle 7 over the twistor space Z. We denote
by v the [~2-valued (1,0)-vector field on Z induced by the vector field r~2v; on
P(H™). The vector field v is regarded as the dual of n. A (k,0)-vector field X’ on
Z is given by

X' =X, 4+Y Av
for X} € ARHLO0 and YV € 12 @ AR—17{10, By the same argument as Theorem 5.3,

we have the following theorem:

Theorem 5.4. For 1 < k < 2n — 1, the (k,0)-vector field X' is holomorphic if
and only if
' BE (X)) — k(YY) Ag 6y = 0.
The (2n,0)-vector field X' is holomorphic if and only if
B2 (X)) — 4n262"H(Y) Ag 6, = 0,
O L(y)) =o. O

§6. Quaternionic sections

In this section we provide a definition of a quaternionic section of A¥E® S™H. We
show that the lifts of the quaternionic section satisfy some d-equations on P(H*)
and Z.

§6.1. Definition of quaternionic sections

We identify H with H* by w%* . By the Clebsch—Gordan decomposition, the covari-
ant derivative V is regarded as

V:I(A"E® S™H) - T(NE® E* @ S"MH)e T(WE® E* @ S™ ' H).
The Dirac operator (cf. [4]) is defined as the A*E ® E* @ S™*+! H-part of V:

Dprp: DINFE® S™H) — T(A\*"E® E* @ S™ T H).



640 T. MORIYAMA AND T. NITTA

Let k be a positive integer. Let (A¥E ® E*)y denote the kernel of the trace map
tr: A¥ E® E* — A*"1E. Then AFE ® E* = (NFE ® E*)g ® (AF71E) Aidg. We
define an operator

DY TIWE® S"H) - T(N'E® E*)y @ ST H)

as the (AFE ® E*)g-part of D sk ;. We rescale the trace map as 2n+

T o and also

denote it using the same notation tr.

Definition 6.1. Let m be a non-negative integer. A section X of AE ® S™H is
quaternionic if D9, ,(X) =0for 1 <k <2n—1and Dpzn-1potroDpznp(X) =0
for k = 2n.

Any section X of A*"E® S™H satisfies D92, p(X) = 0 since (\*"E®@ E*) =
{0}. Definition 6.1 is also valid in quaternionic manifolds. The operators D9 arp and
D p2n-1p 0 troD enp are commutative with 7. Let Q(A¥E @ S™H) be the sheaf
of quaternionic sections of A¥E ® S™H and Q(A*E ® S™H)™ that of T-invariant
ones.

§6.2. Lift of quaternionic sections to P(H™)

A map (Dﬁq : .A( 0~ AO(E*) ®A(1 0) ®A(m 0y 1s induced by wH* c AYS™H) —
AO(E* ® H ® SmH) By ./4(1 0) ® A(m O) A(m+170)7 we haVe

&,
A o (NEE) — s 10 (NE © )

v | s

AYNE @ S"H) ——5 A9ANFE ® E* @ S™TVH).
Proposition 6.2. We have mo = G%*(égo — o Ap T20y) for
¢ € AANE®S™H) and ¢ € A°(NF"1E @ S™TLH).

Proof. Tt follows from © ,r g = SEH owH* oV and diagram (10) that (33//‘\;5) =
w%( 7€0). Since the kernel of @ OJH* is A% P(H )((’H*)IO ® NFE), wH*( 780) =
wH*(ago) Thus (@AkEf)o = wH* (0€0). We also have wH*(CO AET 291) = (o Ag
1dE =(CAg 1dE) Hence we finish the proof. O

We denote by O, (/\kE) the kernel of 0 on AO (/\kE) By Proposition 6.2

and the injectivity of @ wH* on AP(H* (7)1 /\kE), we obtain an isomorphism
(11) Ker® i = O,,(AFE)

b}’€'—>go~
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Proposition 6.3. Let & and ¢ be elements of A°(ANFE® S™H) and A°(NF'E®
S™TLH), respectively. The element £ is quaternionic and ¢ = tr o® nx(€) if and
only if 550 — 50 AE 7”291 =0forl <k<2n-1, and 5%0 — 50 AE 7‘7251 =0,
550 =0 for k = 2n.

Proof. The element ¢ is quaternionic and ¢ = tro® \xg(€) if and only if D x g€ —
(Agidg = 0 and, in addition, ® rx-1 5 = 0 for £ = 2n. By Proposition 6.2 and the
injectivity of fufq* on (7—7*)0’1, D v pE—CApidp = 0is equal to Oy —CoApr—26; = 0.
Furthermore, the isomorphism (11) implies that D x-15¢ = 0 is equivalent to
0¢o = 0. O

§6.3. Lift of quaternionic sections to Z

The map & induces a map &% : A(AWFE®I™) — A (AFE® E* @1™+1). There
exists a commutative diagram

1 L

“ d— ~ AL N
ANE@Im) —F s AANE M) ——— AXNE @ E* @ 1mHY)

I R T

A N B) —— s A (ARE) —— A0 (VB © BT

T [

AYNE @ S"H) —Y— A NE @ S"H) 5 A9(NE @ E* @ S™HUH).
By the same proof as Proposition 6.2, we obtain the following proposition:
Proposition 6.4. We have @AkE§/—(\/\E idg = @%*(5@ —(Ap él) O

We denote by O(AFE © ™) the kernel of 8' on A°(AFE @ I™). Then
(12) Ker® ipp = O(N'E ®1™)

by & — £. Proposition 6.4 implies the following:

Proposition 6.5. Let ¢ and ¢ be elements of A°(ANFE® S™H) and A°(A*"1E®
S™HLH), respectively. The element € is quaternionic and ¢ = tro® x5 (€) if and
only ifélé—é/\Eél =0for1<k<2n-1, 555—6/\Eé1 =0 andélszfor
k= 2n. O
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§7. Quaternionic k-vector fields

A quaternionic section of AE ® S¥H is called a quaternionic k-vector field on
M. We prove that any quaternionic k-vector field corresponds to a holomorphic
(k,0)-vector field on Z.

§7.1. Horizontal lift of k-vector fields to P(H™)

Let X, denote the horizontal lift to P(H *) of a k-vector field X on M. We denote
by Ao(A*H'?) the sheaf of horizontal (k,0)-vector fields which are GL(1,C)-
invariant and holomorphic along each fiber.

Proposition 7.1. The isomorphism AYNFE @ SKH) = Ay(ANFH0) is given by
X — X0 Moreover, Xo = (k!)205(XF°) for X € A°(\YE @ S¥H).

Proof. The lift X of X € A°(A\*E @ S¥H) to P(H*) is related to the horizon-
tal lift X, by X = (®%0)(X,). The AFE @ AFT*P(H*) ® SFH-part of ®*6 is
S (kD 72(M)05T AGi1E 1 Hence Xo = (k1) 7205 (X)) = (k!)205(X;"°). Then
OF (VO XF0) = VO (GE(XF0)) = 0 for any tangent vector v along the fiber.
By Proposition 4.1, 95! /\ Mo (VO 1Xk ), gk A nl(VS’lf(:’O) and 6572 Ao A
m (V% 1X #0) also vanish. Hence X is holomorphic along each fiber. Let X’ be
a horizontal (k,0)-vector field on P(H*) Then

(13) Ry (05(X")) = (Re05) ((Re-1)u X') = 05 (Re-1). X')

for any ¢ € GL(1,C). Thus the bundle isomorphism é’g: AR HLO pL(AFE)
induces Ag(AFH0) = fl(()k 0)(AkE). It follows from Proposition 3.1 that A°(AFE®
SKHY) =2 Ay(AFH0). We finish the proof. O

Under the irreducible decomposition of A*T'M, the horizontal lift of the com-
ponents except for A*E ® S¥H vanish by 6. Hence, Proposition 7.1 induces the
following:

Corollary 7.2. Let X be an element of A°(A*TM). The (k,0)-part )Z',’f’o of X,
is GL(1, C)-invariant and holomorphic along each fiber. O

§7.2. Holomorphic lift of quaternionic k-vector fields to P(H™)

A horizontal (k,0)-vector field X’ on P(H*) is called of GL(1,C)-order m if
(Ro-1)x X" = ¢™X’ for any ¢ € GL(1,C). We define A,,(A*H'0) as the sheaf
of horizontal (k,0)-vector fields which are of GL(1,C)-order m and holomorphic

along each fiber. By equation (13), we obtain an isomorphism fim(/\kﬁw)
A(()ker’O)(/\kE) as X'+ (kI)720k(X"). For an element ¢ of A°(AFE @ S¥+™mH),



MULTIVECTOR FIELDS ON QUATERNIONIC KAHLER MANIFOLDS 643

there exists a unique element }75 of Am(Akﬁl’O) such that
(k)20 (Ye) = &o.
Hence, we have
(14) AYNFE @ SETTH) = A, (AFHM0)
by & — }75 In the case m = 0, the isomorphism is given by Proposition 7.1.

Proposition 7.3. Let X and ¢ be elements of A°(A\*E® S¥H) and A°(NF1E®
Sk, respectively. The k-vector field X is quaternionic and ¢ = tr o® a» (X)) if
and only if there exist Yy GNA?D(H*)(/\’“*I’;QLO) and Zy € A%(H*)(/\k*27ﬂ~[1’0) such
that the (k,0)-vector field X}’f’o 4+ Yy Avg+ Yy Avy + Zg Avg A vy is holomorphic
for Y, = r%?ﬁ

Proof. Setting Y7 = %2}70 then we obtain ¢y = ((k — 1)!)20871(r2Y7). Tt follows
from Proposition 6.3 that X is quaternionic and ¢ = tro® ,xg(X) if and only if
55(;0 fCNO Apr20; =0for 1 <k <2n— 1, 5)?0 750 Ag7r 20, =0 and 550 =0 for
k = 2n. The condition is equivalent to d(% (X'Z(])) —k20F (Y1) A6y =0 for 1 <
k<2n—1,005(X7°) - k2651 (Y1) Ap 6y = 0 and D61 (r2Y1)) = O for k = 2n.
It is equivalent that there exist Yy € A(}D(H*)(/\k’lﬁl’o), Zy € A?D(H*)(/\k”ﬁl’o)
such that X,lf’o + Yo Avg+ Y7 Avy + Zg Avg Avy is holomorphic by Theorem 5.3. [

§7.3. Horizontal lift of k-vector fields to Z

Let )A(h be the horizontal lift to Z of a k-vector field X on M. The horizontal
vector field )A(h and the (k, 0)-part )A(,’f’o correspond to )Zh and )?;:’0, respectively.
We denote by fi(/\k?:zl’o) the sheaf of horizontal (k,0)-vector fields which are
holomorphic along each fiber of f: Z — M. Proposition 7.1 induces the following:

Proposition 7.4. The isomorphism A°(A\FE @ SFH) = A(NMHIO) is given by
X — X;f’o. Moreover, X = (k!)_QHS(X,]f’O) for X € A°%(N\FE ® SFH). O

Corollary 7.2 implies the following corollary:

Corollary 7.5. Let X be an element of A°(AKTM). The (k,0)-part )?;f’o of X,
is holomorphic along each fiber of f. O

We consider the holomorphic bundle A¥H1-0®1™ for a non-negative integer m.
Let A(A*H10 @ I™) be a sheaf of I™-valued horizontal smooth (k,0)-vector fields
which are holomorphic along each fiber. Let O(A*H @ I™) denote the subsheaf
of A(ANFHL0 &™) of holomorphic [™-valued horizontal (k, 0)-vector fields. By the
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definition of [, we obtain the isomorphism
(15) ANFHYO @ 1m) 22 A, (NFHO).

The kth wedge 6% defines a map from ARHLO @™ to f~1(AFE)®k+™. The map
induces isomorphisms A(AFHM0 @ ™) = AY(AFE @ IFF™) and O(AFHL @ 1m) =
O(N*E @ [¥+m). For an element ¢ of A°(AFE @ S¥*™H), there exists a unique
element 375 of A(AFHM0 @ ™) such that

(k1) 265 (Ye) = &
The isomorphisms in (14) and (15) yield
(16) .AO(/\kE ® Sk—f—mH) o A(/\kﬁl,o ® lm)

by £ — }A’g The isomorphism (12) implies Ker D \x = @(Akﬁl’o ® ™) by the
correspondence.

§7.4. Holomorphic lift of quaternionic k-vector fields to Z

By the same argument as Proposition 7.3, we obtain the following proposition:

Proposition 7.6. Let X and ( be elements of A°(A\*E® S*H) and A°(AN*1E®
SkH1H), respectively. The k-vector field X is quaternionic and ¢ = tr oD px g(X)
if and only if the (k,0)-vector field X,’f’o + Y: A v is holomorphic. O

Let O(A*T10Z) be a sheaf of holomorphic (k, 0)-vector fields defined in the
pull-back of open sets on M by f. Proposition 7.6 induces the following:

Theorem 7.7. An isomorphism Q(A\*E ® S¥H) = O(AFT10Z) is given by X —
X,’f’o +Yi, 0D 5 (X) AN V- In particular, any global quaternionic k-vector field on M
corresponds to a global holomorphic (k,0)-vector field on Z. O

§7.5. Holomorphic lift of quaternionic real k-vector fields to Z

An endomorphism 7 of A(AFH0 @ I™) is defined by
#HX') = By X
for X’ € A(A*H10 @ I™). Then we obtain an R-isomorphism
AYNFE @ SFT )T 2 ANHY @ 1)
by £ — ?5 Then (Ker D prg)™ = (5(/\’“72170 ® I™)7 under the correspondence.

Theorem 7.8. An R-isomorphism Q(AN*E @ SFH)T = O(NFTYOZ) is given by
X = X}’fvo +Y;, oDk p(X) AV In particular, any global quaternionic real k-vector
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field on M corresponds to a global holomorphic and T-invariant (k,0)-vector field
on Z. O

§7.6. Example

Let M be the n-dimensional quaternionic projective space HP™. Then P(H*) =
C2"+2\{0} as a complex manifold. The twistor space Z is CP?"*!. Let V}, denote
the space of GL(1, C)-invariant holomorphic k-vector fields on C2"*+2\{0}. Then

v d 0

Vk = {Z ail...ikjl...jkzil . szﬁ VANEERWAN @ | aijkl € (C}
We regard the coefficient (a;,...i, j,..j,) as an element of @*C?"+2 @ @F(C2+2)*.
We define S¥@AF as the projection from ®* gl(2n+2, C) = @*C* 2@k (C?+2)*
to SFC? 2@ AF(C?"+2)*. Then Vj, = S*@AF(@F gl(2n+2, C)). The space of holo-
morphic k-vector fields on CP?"*+! is identified with the quotient space Vi /Vi_1Avg

(cf. [15, §5.1]). Theorems 7.7 and 7.8 imply that the spaces of quaternionic k-vector
fields and real ones are identified with

S* @ AF(@Fgl(2n +2,C))/S* @ AF(@" 1 gl(2n + 2,C) ® id)
and
S* @ AF(@F gl(n + 1,H))/S* @ A¥(@F L gl(n + 1,H) @ id),

respectively.

§8. Graded Lie algebra structure on the space of quaternionic
k-vector fields

§8.1. Coefficients of lifts of A°(A*E @ S™H)

Let & be an element of A°(AFE ® S™H). For each coefficient &; of &, r~2'¢; is of
GL(1,C)-order m — 2i. It induces a section of I"™~2* on Z, which we denote by ;.
Then &y = £ by the definition. Since 4,,d€; = —(i + 1)€;41 for i = 0,1,...,m — 1
and ivldgm = 0, we obtain the following lemma:

Lemma 8.1. We have i,d'¢; = —(i—l—l)éiH fori=0,1,...,m—1 andi,d',, = 0.
O

Let X be an element of A°(A*E @ S¥H). As in the proof of Proposition 7.1,
each coefficient X; of X is given by X; = (k!)_z(’;)(élgﬂ' A01)(Xp). Tt yields that
N I PR

(17) K= w2 (F) @ nanw

for s = 0,1,...,k. Let )?Zf_” denote the (k — 4,4)-part of X). Lemma 8.1 and
equation (17) imply the following:
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Proposition 8.2. If X € A°%(A\*E ® S*H), then
i (B N B (RE)) = —(k — (B A BT (RET1
fori=0,1,....k—1. In particular, ivdl(é(’g(f(}’f’o)) = _k(ééﬂﬂ A él)()?;f_l’l). O

§8.2. The Schouten—Nijenhuis bracket

The Schouten-Nijenhuis bracket | , | is a bilinear map A°(A*TM) x A (AF T M) —
AO(AFHK' =T M) such that [X, X'] = (—1)** [X’, X] and

(_l)k(k”fl)[)(7 [X/,X”]] + (_l)k’(k—l)[)(/7 [X”,XH
+ (DM VX X X =0

for X € A°AFTM), X' € AYAFTM) and X" € AYAFTM). If we take
a torsion-free affine connection V on M, then [X, X'] is given by AFHF'~1(X .
VX' + (—1)kX"- VX), where A\FT+ =1 is the anti-symmetrization of @**+* =17
and the dot - means the contraction of AKTM with A¥ TM ® T*M. The pair
(D, A°(N*TM),[ , ]) is a graded Lie algebra. For X € A°(A\*E @ S*H), X' €
AY(ANF E @ S¥ H), [X, X'] is not always in A°(AF+HF'~1E @ S+ =1 ) except for
the case k = k' = 1. We define [X, X']g by the AMF~1E @ S¥F -1 H_part of
[X, X']. Then (@, A°(A\*E @ S¥H),[, ]g) is a graded Lie algebra.

Let F be a vector bundle on M and V" a connection of F. If o is an F-valued
differential (k + &’ — 1)-form on M, then

(18) ix.xno = (D) EDi P a4+ (1) PixdTixa —ixaxdt o
for X € A2(AFTM), X' € A°(AY'TM).
§8.3. Bracket for quaternionic k-vector fields

The Schouten—Nijenhuis bracket [ , | is defined for holomorphic multi-vector
fields. The pair (), O(A*T10Z),[ , ]) is a graded Lie algebra. Since [W,W’]
is in O(AFHF =1TL0Z) for W € O(ANFTH0Z), W' € O(A¥TH0Z), we have that
(D, O(NFTLOZ), [, ]) is also a graded Lie algebra.

For X € Q(AFE® S¥H), there exists a holomorphic (k, 0)-vector field )?}13,0 +
Y Av e O(A*TH0Z) by Theorem 7.7.

Lemma 8.3. If X € Q(AFE ® S¥H) and X' € QA E @ S¥ H), then

kK -10 —k'0 ,
(X, XTq),, = XMy A0, X7, Y A
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k"0
Proof. Let k" denote the integer k+k’—1. The horizontal (k”, 0)-part ([X X'lQ),

of ([X, X']g) is
— k”,O ~ = k"0
[Xa X/]h = [thX/h]h e
Hence, it suffices to show

k'
,0

éoﬁ([)?h,)/(\'h])* ([XkOJrY/\’u X’ +Y' Av]).

We remark that 65" (X,) = (kk )Glg(X ) Ag é’g ~1. Tt follows from equation (18)

and d'05 = kO~ A ) A that
SR ~ — ’ ]{f// ay )~ ~
08 (R ) = (-1 40 (3, i, 0O (D) A 85
( ) 2, d' (05 (Xn) A B .
It turns out that

A s k0 K" k',0 Al
08 (%5057 ) = (- ’“’“*”(k,)z pod (05 (%7, ) A5

( >zﬂ/odl (BE(XFO)) A GE 1.
Then
05 (R0, X7a)) = 08 (RE°. 57, 1))
+ (~)F D (Z/,/>(k’)2é’5"1(Y)AE (B5 A bR

—~k'—1,1

k// o _
(19) +(—1)k<k)k29§ YY) Ap (05 TP AB)XT, ).
On the other hand,
o~ —~K',0
O ((X7° +Y Av, X7, + Y Al)
_ (e (K (6 (X7 %)) A gk
=(=1) X ZXE=°+YAU (0 (X7, ) A 0
k”
—1)*
w0 ('

N2 = /\k}/,o
Using Proposition 8.2, then we obtain that 0§ ([X,lf’o +Y Av, X', +Y Av))is
equal to (19). Hence we finish the proof. O

. L(pk (k.0 nk'—1
)Zfﬁ/’o+y/Avd (90 (Xh )) A 90 .

Proposition 8.4. If X € QA*E ® S*H) and X' € Q(A\¥E © S H), then
[X, X'|q is quaternionic.



648 T. MORIYAMA AND T. NITTA

_—— K0
Proof. Lemma 8.3 implies that ([X, X’]g),  is the horizontal (k”,0)-part of the
holomorphic k”-vector field

~ —~k'0
[XFP+Y Av, X7, + Y A
Then [X, X']g is quaternionic by Proposition 7.6. O

It yields that ( iil ON*E® S*H),[, ]o) is a graded Lie algebra. Proposi-
tion 7.6 and Lemma 8.3 imply the following theorem:

Theorem 8.5. The isomorphism Q(A\*E @ SFH) = @(Ale’OZ) as in Theo-
rem 7.7 preserves the structures of graded Lie algebras. In particular, the space of
global quaternionic k-vector fields on M is isomorphic to that of global holomorphic
(k,0)-vector fields on Z as graded Lie algebras. O

§8.4. Bracket for quaternionic real k-vector fields

The real structure 7 on Q(A*E ® S*H) is the complex conjugate for k-vector
fields on M. It implies that 7([X, X']g) = [7(X), 7(X")]q for X € Q(ANFE® S*H)
and X' € QAWM E ® S¥ H). If X and X’ are real, then [X, X']¢ is real. Hence,
( iil QINFE® SKH)™, [, ]o) admits a structure of a graded Lie algebra.

Proposition 8.6. If W € O(A*T0Z) and W' € O(AF' T Z), then F((W,W']) =
[7(W),7(W")]. Moreover, if W and W' are 7-invariant, then [W,W'] is also 7-
movariant.

Proof. Equation (18) implies that 7(a([W,W'])) = 7(a)([7(W),7(W")]) for any
k"-form « on Z. It yields that 7(a)(7([W, W'])) = 7(a)([7(W), 7(W")]). Since 7 is
a real structure, a(7([W, W'])) = a([7(W), 7(W")]) for any a. Hence, 7([W, W']) =
[F(W),7(W")]. O
It induces that ( iiﬁl O(NFT™0Z)7 [, ]) is a graded Lie algebra. By the
same argument as Theorem 8.5, we obtain the following theorem:
Theorem 8.7. The isomorphism Q(A\*E @ S¥H)™ = O(AFTY0Z)* as in Theo-
rem 7.8 preserves the structures of graded Lie algebras. In particular, the space

of global quaternionic real k-vector fields on M is isomorphic to that of global
holomorphic and 7-invariant (k,0)-vector fields on Z as graded Lie algebras. [
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