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Multivector Fields on Quaternionic Kähler
Manifolds

by

Takayuki Moriyama and Takashi Nitta

Abstract

In this paper we define a differential operator as a modified Dirac operator. Using the
operator, we introduce a quaternionic k-vector field on a quaternionic Kähler manifold
and show that any quaternionic k-vector field corresponds to a holomorphic k-vector field
on the twistor space.
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§1. Introduction

Deformation quantization is constructed on any symplectic manifold [7, 8, 17].

Kontsevich generalized the construction to Poisson manifolds [13]. A Poisson struc-

ture is given by a 2-vector field whose Schouten bracket vanishes. In complex

geometry, Hitchin studied holomorphic Poisson structures [10]. He showed that a

holomorphic Poisson structure is deeply related to generalized Kähler manifolds.

We constructed a family of real Poisson structures on S4 from holomorphic Pois-

son structures on CP 3 [15], where S4 is a typical example of quaternionic Kähler

manifolds and CP 3 is the twistor space.

Let (M, g) be a quaternionic Kähler manifold, that is, a 4n-dimensional Rie-

mannian manifold whose holonomy group is reduced to a subgroup of Sp(n)·Sp(1).
Let E and H denote the associated bundles with the canonical representations

of Sp(n) and Sp(1) on C2n and C2, respectively. Then TM ⊗ C = E ⊗C H.

Levi-Civita connection induces the covariant derivative ∇ : Γ(∧kE ⊗ SmH) →
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Γ(∧kE ⊗ SmH ⊗ E∗ ⊗ H∗). By the Clebsch–Gordan formula, the Dirac opera-

tor D∧kE is defined as the ∧kE ⊗ E∗ ⊗ Sm+1H-part of ∇. Baston considered a

complex associated with the operator D∧0E (he used the notation D instead) and

another operator F on a quaternionic manifold [4]. He proved that the cohomology

corresponds to Dolbeault cohomology on the twistor space Z. Nagatomo and the

second author provided a vanishing theorem of the cohomology on quaternionic

Kähler manifolds [16]. A k-vector field contained in the kernel of D∧kE is lifted

to a holomorphic k-vector field on Z. However, any holomorphic k-vector field on

Z does not correspond to such a k-vector field on M . We consider the trace map

tr : ∧k E ⊗ E∗ → ∧k−1E and define an operator D0
∧kE as the traceless part of

D∧kE . We remark that, in the case of k = 2n, the operator D0
∧2nE vanishes.

Definition 1.1. A section X of ∧kE⊗SkH is a quaternionic k-vector field on M

if D0
∧kE(X) = 0 for 1 ≤ k ≤ 2n− 1 and D∧2n−1E ◦ tr ◦D∧2nE(X) = 0 for k = 2n.

A quaternionic 1-vector field is a vector field preserving the quaternionic struc-

ture. In [2, 6, 14], the authors studied quaternionic 1-vector fields and provided

characterizations of HPn. A quaternionic k-vector field is a sort of generalization

of such a vector field. In the case of positive scalar curvature, there are many

quaternionic Kähler orbifolds [5, 9]. For this reason, we consider a sheaf of quater-

nionic k-vector fields. Let Q(∧kE ⊗ SkH) be the sheaf of quaternionic k-vector

fields on M and Ô(∧kT 1,0Z) that of holomorphic (k, 0)-vector fields defined in the

pull-back of open sets by the projection from Z to M . The main theorem is the

following:

Theorem 1.2. The sheaf Q(∧kE ⊗ SkH) is isomorphic to Ô(∧kT 1,0Z). In par-

ticular, any global quaternionic k-vector field on M corresponds to a global holo-

morphic (k, 0)-vector field on Z.

The Schouten–Nijenhuis bracket induces graded Lie algebra structures on⊕
k Q(∧kE ⊗ SkH) and

⊕
k Ô(∧kT 1,0Z).

Theorem 1.3. The isomorphism Q(∧kE ⊗ SkH) ∼= Ô(∧kT 1,0Z) preserves the

structures of graded Lie algebras. In particular, the space of global quaternionic

k-vector fields on M is isomorphic to that of global holomorphic (k, 0)-vector fields

on Z as graded Lie algebras.

The space Q(∧kE ⊗ SkH) admits a real structure τ . A τ -invariant element

of Q(∧kE ⊗ SkH) is a real k-vector field on M . We also have a real structure τ̂

on Ô(∧kT 1,0Z). Let Q(∧kE ⊗ SkH)τ be the sheaf of quaternionic real k-vector

fields and Ô(∧kT 1,0Z)τ̂ that of τ̂ -invariant elements of Ô(∧kT 1,0Z). Graded Lie

algebra structures are induced in those sheaves.
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Theorem 1.4. The sheaf Q(∧kE ⊗ SkH)τ is isomorphic to Ô(∧kT 1,0Z)τ̂ . The

isomorphism preserves the structures of graded Lie algebras. In particular, the

space of global quaternionic real k-vector fields on M is isomorphic to that of global

holomorphic and τ̂ -invariant (k, 0)-vector fields on Z as graded Lie algebras.

§2. Preliminaries

§2.1. Quaternionic Kähler manifolds

Let (M, g) be a Riemannian manifold of dimension 4n. A subbundleQ of End(TM)

is called an almost quaternionic structure if there exists a local basis I, J , K of Q

such that I2 = J2 = K2 = − id and K = IJ . A pair (Q, g) is an almost quater-

nionic Hermitian structure if any section φ of Q satisfies g(φX, Y )+g(X,φY ) = 0

forX,Y ∈ TM . For n ≥ 2, if the Levi-Civita connection∇ preserves Q, then (Q, g)

is called a quaternionic Kähler structure, and (M,Q, g) a quaternionic Kähler man-

ifold. A Riemannian manifold is a quaternionic Kähler manifold if and only if the

holonomy group is reduced to a subgroup of Sp(n) · Sp(1). Alekseevskii [1] shows

that a quaternionic Kähler manifold is Einstein and the curvature of Q is described

by the scalar curvature (we also refer to [11, 18]). For n = 1, since Sp(1) · Sp(1)
is SO(4), a manifold satisfying the above condition is just an oriented Riemann-

ian manifold. A 4-dimensional oriented Riemannian manifold M is said to be a

quaternionic Kähler manifold if it is Einstein and self-dual.

The symplectic group Sp(n) acts on the right H-module Hn by Aξ for A ∈
Sp(n) and ξ ∈ Hn. On the other hand, Sp(1) has an action on the left H-module

H by ξq̄ for q ∈ Sp(1) and ξ ∈ H. Let E, H denote the associated bundles with

the representations Sp(n), Sp(1) on Hn, H, respectively. Then E is the right H-

module bundle and H is the left H-module bundle. The dual representations of

Sp(n) and Sp(1) induce the left H-module bundle E∗ and the right H-module

bundle H∗. Then TM = E ⊗H H and T ∗M = H∗ ⊗H E∗. The H-bundles E, H

are regarded as the C-vector bundles with anti C-linear maps JE , JH satisfying

J2
E = − idE , J

2
H = − idH . Then there exist symplectic structures ωE , ωH on E, H

which are compatible with JE , JH , respectively. The correspondences e 7→ ωE(·, e),
h 7→ ωH(·, h) provide the C-isomorphisms E ∼= E∗, H ∼= H∗, which are denoted

by ω♯
E , ω

♯
H . The tangent space TM is the real form of E⊗C H with respect to the

real structure JE ⊗ JH :

TM ⊗ C = E ⊗C H.

The tensor product ωE ⊗ ωH is the complexification of the Riemannian metric g.

The technique is called EH-formalism and was introduced by Salamon [18].
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§2.2. The twistor space

The quaternionic structure Q is considered as a subbundle of the real vector bundle

EndH(H). We identify EndH(H) with the real form of EndC(H) = H⊗CH
∗. Let u

be an H-frame of H. We define local sections I, J , K of EndH(H) as I(hu) = hiu,

J(hu) = hju, K(hu) = hku for any h ∈ H. Then {I, J,K} is a local basis of Q

and represented by elements

(1) I = i(u⊗u∗−ju⊗(ju)∗), J = ju⊗u∗−u⊗(ju)∗, K = i(ju⊗u∗+u⊗(ju)∗)

of EndC(H) for the C-frame {u, ju} of H. Let Z be a sphere bundle

Z =
{
aI + bJ + cK ∈ Q

∣∣ a2 + b2 + c2 = 1
}

over M . Let f : Z → M denote the projection. The bundle Z is called a twistor

space of the quaternionic Kähler manifold M .

§2.3. The principal bundle P (H∗)

Let p : P (H∗) → M be a frame bundle of H∗, whose fiber consists of right H-bases

of H∗. Then P (H∗) is a principal GL(1,H)-bundle by the right action. An element

u∗ of P (H∗) induces the complex structure I in (1) by

∧1,0T ∗
xM = E∗

x ⊗ ⟨u∗⟩C, ∧0,1T ∗
xM = E∗

x ⊗ ⟨u∗j⟩C.

We identify each fiber of p with C2\{0} by H = C + jC ∼= C2. Thus we have an

almost complex structure Ĩ on P (H∗). Then Ĩ is integrable (cf. [3, Thm. 4.1], [18,

Thm. 4.1]). The twistor space Z is regarded as the quotient space P (H∗)/GL(1,C).
We denote by π : P (H∗) → Z the quotient map. By the definition, the twistor space

Z is a CP 1-bundle over M . A complex structure Î on Z is induced by Ĩ.

§3. Lifts of sections of ∧kE ⊗ SmH to P (H∗) and Z

We denote by Aq, Aq
P (H∗) and Aq

Z the sheaves of smooth q-forms on M , P (H∗)

and Z, respectively.

§3.1. Lift of Aq(∧kE ⊗ SmH) to P (H∗)

The bundles H and H∗ are regarded as bundles of the left C-module and the

right C-module, respectively. We denote the complex representation ρ of GL(1,H)

on H by ρ(a)h = ah for a ∈ GL(1,H) and h ∈ H. Then SmH is the associated

bundle P (H∗) ×ρ∗ SmH with the dual representation ρ∗. The point u∗ ∈ P (H∗)

corresponds to a point u of P (H) by the H-dual. The H-basis u provides the C-
basis {u, ju} of the C-vector bundle H. Thus, any element u of P (H) is regarded
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as a C-isomorphism u : H → Hp(u). An element ξ ∈ Aq(∧kE ⊗ SmH) induces

ξ̃ ∈ Aq
P (H∗)(∧

kE ⊗ SmH) by ξ̃u∗ = u−1(p∗ξ)u∗ at each point u∗ ∈ P (H∗). Then

(Ra)
∗ξ̃ = ρ∗(a−1)ξ̃ for any a ∈ GL(1,H). We define a sheaf Ãq(∧kE ⊗ SmH) by

Ãq(∧kE ⊗ SmH) =
{
ξ̃ ∈ p−1p∗(p

∗Aq(∧kE ⊗ SmH))
∣∣ (Ra)

∗ξ̃ = ρ∗(a−1)ξ̃,

∀ a ∈ GL(1,H)
}
,

where p−1p∗ means the inverse image of the direct image of a sheaf by p. By the

definition, Ãq = Ãq(∧0E ⊗ S0H) is the sheaf of pull-backs of smooth q-forms on

M by p. In particular, Ã0 is the sheaf of smooth functions on P (H∗) which are

constant along each fiber. Then

Ãq(∧kE ⊗ SmH) = Ãq(∧kE)⊗Ã0 Ã0(SmH).

The sheafAq(∧kE⊗SmH) is isomorphic to Ãq(∧kE⊗SmH) by the correspondence

ξ 7→ ξ̃ (cf. [12, Chap. II, §5]). The Levi-Civita connection induces connections of

E, H and the covariant exterior derivative d∇ : Aq(∧kE ⊗ SmH) → Aq+1(∧kE ⊗
SmH). Let H̃ be the horizontal subbundle of TP (H∗). We define dH̃ : Ãq(∧kE ⊗
SmH) → Ãq+1(∧kE ⊗ SmH) by the exterior derivative restricted to H̃. Then

d̃∇ξ = dH̃ξ̃.

We fix a point u∗
0 of P (H∗). The complex coordinate (z, w) of the fiber is

given by u∗
0(z + jw). A function f on P (H∗) is a polynomial of degree (m − i, i)

along the fiber if f(u∗
0(z+ jw)) is a polynomial of z, w, z̄, w of degree m such that

(Rc)
∗f = cm−ic̄if for c ∈ GL(1,C). We denote by Ã0

(m−i,i) the sheaf of elements

of p−1p∗A0
P (H∗)(C) which are polynomials of degree (m − i, i) along the fiber on

P (H∗). We also define a sheaf Ãq
(m−i,i)(∧

kE) as

Ãq
(m−i,i)(∧

kE) = Ãq(∧kE)⊗Ã0 Ã0
(m−i,i).

Let a1a2 · · · am denote the symmetrization 1
m!

∑
σ∈Sm

aσ(1) ⊗ · · · ⊗ aσ(m) of

a1 ⊗ · · · ⊗ am ∈ ⊗mH, where Sm is the symmetric group of degree m. The set

{1m, 1m−1j, 1m−2j2, . . . , jm} is a C-basis of SmH. Any element ξ̃ of Ãq(∧kE ⊗
SmH) is written as

(2) ξ̃ = ξ̃01
m + ξ̃11

m−1j + ξ̃21
m−2j2 + · · ·+ ξ̃mjm

for p−1(∧kE)-valued 1-forms ξ̃0, . . . , ξ̃m. Each ξ̃i is in Ãq
(m−i,i)(∧

kE). We obtain

the following proposition:

Proposition 3.1. There exist two isomorphisms:

(i) Ãq(∧kE ⊗ SmH) ∼= Ãq
(m,0)(∧

kE) by ξ̃ 7→ ξ̃0. Moreover, (dH̃ξ̃)0 = dH̃ξ̃0 for

any ξ̃ ∈ Ãq(∧kE ⊗ SmH).
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(ii) Aq(∧kE ⊗ SmH) ∼= Ãq
(m,0)(∧

kE) by ξ 7→ ξ̃0. Moreover, (d̃∇ξ)0 = dH̃ξ̃0 for

any ξ ∈ Aq(∧kE ⊗ SmH).

For ξ ∈ Aq(∧kE⊗SmH), the element ξ̃0 ∈ Ãq
(m,0)(∧

kE) is said to be a lift to

P (H∗).

§3.2. Lift of Aq(∧kE ⊗ SmH) to Z

We denote by l a line bundle over Z which is the hyperplane bundle on each fiber

CP 1 of f . We define a sheaf Â0(lm) by

Â0(lm) =
{
ζ ∈ f−1f∗(A0

Z(l
m))

∣∣ ζ : holomorphic along each fiber of f
}
.

We denote by Â0 the sheaf Â0(l0) of functions on Z which are constant along each

fiber of f . Let Âq(∧kE) denote the sheaf of pull-backs of ∧kE-valued q-forms on

M by f . We define a sheaf Âq(∧kE ⊗ lm) as

Âq(∧kE ⊗ lm) = Âq(∧kE)⊗Â0 Â0(lm).

Any element ξ̃0 of Ãq
(m,0) defines an element of Âq(lm), which we denote by ξ̂. Such

an element ξ̂ is called a lift of ξ to Z. The correspondence ξ̃0 7→ ξ̂ provides the

isomorphism Ãq
(m,0)(∧

kE) ∼= Âq(∧kE ⊗ lm). Proposition 3.1 implies the following

proposition:

Proposition 3.2. We have Aq(∧kE ⊗ SmH) ∼= Âq(∧kE ⊗ lm) by ξ 7→ ξ̂.

§3.3. Real structures

We define an anti-C-linear map τ : Aq(∧kE ⊗ SmH) → Aq(∧kE ⊗ SmH) by

τ(ξ) =
∑
i

(Jk
E ⊗ Jm

H )(vi)⊗ αi

for ξ =
∑

i vi ⊗ αi, where {vi} is a frame of ∧kE ⊗ SmH and αi is a q-form. We

denote by Aq(∧kE⊗SmH)τ the sheaf of τ -invariant elements of Aq(∧kE⊗SmH).

We define an anti-C-linear endomorphism τ̃ of Ãq(∧kE ⊗ SmH) by

τ̃(β ⊗ 1m−iji) = Jk
ER

∗
jβ ⊗ 1m−iji

for β ∈ Ãq(∧kE). It induces an endomorphism of Ãq
(m−i,i)(∧

kE) such that τ̃(ξ̃) =

τ̃(ξ) and τ̃(ξ̃i) = τ̃(ξ)i for ξ ∈ Aq(∧kE⊗SmH). Under the representation (2), ξ̃ is

τ̃ -invariant if and only if ξ̃i is τ̃ -invariant for each i, and ξ̃i = (−1)m−iJE ξ̃m−i. Let

Ãq(∧kE ⊗ SmH)τ̃ and Ãq
(m,0)(∧

kE)τ̃ denote the sheaves of τ̃ -invariant elements

of Ãq(∧kE ⊗ SmH) and Ãq
(m,0)(∧

kE), respectively. Then we have the following

proposition:



Multivector Fields on Quaternionic Kähler Manifolds 635

Proposition 3.3. We have Aq(∧kE⊗SmH)τ ∼= Ãq(∧kE⊗SmH)τ̃ ∼= Ãq
(m,0)(∧

kE)τ̃

by ξ 7→ ξ̃ 7→ ξ̃0.

The action Rj on P (H∗) induces an anti-holomorphic involution of Z, and

we denote it by R[j] : Z → Z. An anti-C linear endomorphism τ̂ of Âq(∧kE ⊗ lm)

is defined by

τ̂(βZ) = Jk
ER

∗
[j]βZ

for βZ ∈ Âq(∧kE⊗lm). Let Âq(∧kE⊗lm)τ̂ denote the sheaf of τ̂ -invariant elements

of Âq(∧kE ⊗ lm).

Proposition 3.4. We have Aq(∧kE ⊗ SmH)τ ∼= Âq(∧kE ⊗ lm)τ̂ by ξ 7→ ξ̂.

If k +m is even, then τ and τ̂ are real structures.

§4. Canonical 1-forms on P (H∗) and Z

§4.1. Canonical 1-form on P (H∗)

We define a p−1(E)⊗H-valued 1-form θ̃ on P (H∗) as

θ̃u∗(v) = u−1(p∗(v))

for v ∈ Tu∗P (H∗) at u∗. The 1-form θ̃ is called the canonical 1-form on P (H∗).

We define p−1(E)-valued 1-forms θ̃0 and θ̃1 on P (H∗) as θ̃ = θ̃0 + θ̃1j. Then θ̃0 ∈
Ã1

(1,0)(E) and θ̃1 ∈ Ã1
(0,1)(E) are (1, 0)- and (0, 1)-forms, respectively. Moreover,

they are τ̃ -invariant, and θ̃1 = JE θ̃0. Let A denote the connection form of P (H∗).

Then A is written as A = η0 + jη1 for complex-valued 1-forms η0, η1 on P (H∗).

Then η0 and η1 are τ̃ -invariant (1, 0)-forms. We have

(3) dE θ̃0 = −θ̃0 ∧ η0 − η1 ∧ θ̃1, dE θ̃1 = −θ̃0 ∧ η̄1 − θ̃1 ∧ η̄0.

Let s2H denote the symmetrization ⊗2H → S2H. We define an S2H-valued 2-

form ω on M as ω = ωE ⊗ s2H . The lift ω̃ ∈ Ã2
2(S

2H) is decomposed as ω̃ =

ω̃0 1 · 1 + ω̃1 1 · j + ω̃2 j · j for ω̃0 ∈ Ã2
(2,0), ω̃1 ∈ Ã2

(1,1) and ω̃2 ∈ Ã2
(0,2). Then ω̃0,

ω̃1 and ω̃2 are τ̃ -invariant, ω̃2 = ω̃0 and ω̃1 = −ω̃1. Moreover,

ω̃0 = ωE(θ̃0, θ̃0), ω̃1 = ωE(θ̃0, θ̃1) + ωE(θ̃1, θ̃0), ω̃2 = ωE(θ̃1, θ̃1).

The endomorphisms I, J , K in (1) induce almost complex structures on M ,

locally. We define local 2-forms ωI , ωJ and ωK on M by ωI(X,Y ) = g(IX, Y ),

ωJ(X,Y ) = g(JX, Y ) and ωK(X,Y ) = g(KX,Y ) for X,Y ∈ TM . We define

a function r on P (H∗) by r(u∗) = |u∗| for u∗ ∈ P (H∗), where | · | means the

norm of H∗. Then iωI = −r−2ω̃1 and ωJ − iωK = −2r−2ω̃0 on P (H∗). We
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denote by t the scalar curvature of M . The curvature Ω of P (H∗) is given by

Ω = 2cnt(i⊗ ωI + j ⊗ ωJ + k ⊗ ωK) for a positive number cn depending on n (cf.

[1, 18]). Hence Ω = −2cntr
−2(ω̃1 + 2jω̃0). From now on, we set c = 2cnt. Then

(4) dη0 = −cr−2ω̃1 − η1 ∧ η̄1, dη1 = −2cr−2ω̃0 + η0 ∧ η1 + η1 ∧ η̄0.

Equations (3) and (4) induce the integrability of Ĩ. It follows from d(r2η1) =

2(−cω̃0 + r2η0 ∧ η1) that r
2η1 is a holomorphic (1, 0)-form on P (H∗). If the scalar

curvature t is not zero, then d(r2η1) is a holomorphic symplectic form on P (H∗).

Complex structures J̃ , K̃ are provided by definitions similar to that of Ĩ. Then

(Ĩ , J̃ ,−K̃) is a hypercomplex structure on P (H∗). If t > 0, then g̃ = r2(cp∗g +

η0 ⊗ η̄0 + η̄0 ⊗ η0 + η1 ⊗ η̄1 + η̄1 ⊗ η1) is a hyperkähler metric. Then −id(r2η0),

d(r2ηRe
1 ), d(r2ηIm1 ) are Kähler forms with respect to Ĩ, J̃ , −K̃, respectively. The

hyperkähler structure (g̃, Ĩ , J̃ ,−K̃) induces that on P (H∗)/Z2. This coincides with

the hyperkähler structure constructed by Swann [19].

§4.2. Derivatives of canonical forms

We take a torsion-free connection ∇ of TP (H∗) preserving Ĩ. Let F be a holomor-

phic vector bundle on P (H∗) and ∇F a (1, 0)-connection ∇F : F → F ⊗ T ∗ of F .

We consider the connection ∇F⊗∧q of F ⊗∧q as the map F ⊗∧q → F ⊗∧q ⊗ T ∗.

Then the covariant exterior derivative d∇F is given by (−1)q∧◦∇F⊗∧q . We remark

that the operator ∂̄F : F ⊗∧q,0 → F ⊗∧q,1 satisfies ∂̄F = (−1)q ∧ ◦∇0,1
F⊗∧q . It fol-

lows from (3) and (4) that ∇0,1
E⊗∧1 θ̃0 = η1 ⊗ θ̃1, ∇0,1η0 = cr−2ωE(θ̃0, θ̃1) + η1 ⊗ η̄1

and ∇0,1η1 = −η1 ⊗ η̄0. We define a p−1(∧kE)-valued (k, 0)-form θ̃k0 by the kth

wedge
∑2n

i1,...,ik=1 ei1 ∧ · · · ∧ eik ⊗ αi1 ∧ · · · ∧ αik of θ̃0 =
∑2n

i=1 ei ⊗ αi. It implies

the following:

Proposition 4.1. We have

∇0,1θ̃k0 = kθ̃k−1
0 ∧ η1 ∧E θ̃1,

∇0,1(θ̃k−1
0 ∧ η0) = −(k − 1)θ̃k−2

0 ∧ η0 ∧ η1 ∧E θ̃1 + θ̃k−1
0

∧ (cr−2ωE(θ̃0, θ̃1) + η1 ⊗ η̄1),

∇0,1(θ̃k−1
0 ∧ η1) = −θ̃k−1

0 ∧ η1 ⊗ η̄0,

∇0,1(θ̃k−2
0 ∧ η0 ∧ η1) = −θ̃k−2

0 ∧ η1 ∧ (cr−2ωE(θ̃0, θ̃1)− η0 ⊗ η̄0).

§4.3. Canonical 1-form on Z

The principal GL(1,C)-bundle π : P (H∗) → Z is regarded as the frame bundle of

l∗. We define θ̂0 and θ̂1 as the f−1(E)⊗ l-valued (1, 0)-form and the f−1(E)⊗ l−1-

valued (0, 1)-form on Z induced by θ̃0 and r−2θ̃1, respectively. Let η and ω̂ be the
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l2-valued (1, 0)-form and the l2-valued (2, 0)-form on Z induced by r2η1 and ω̃0,

respectively. The forms θ̂0, θ̂1, η and ω̂ are τ̂ -invariant.

A connection of l is induced by η0. Let d
l be the covariant exterior derivative.

We obtain

(5) dlθ̂0 = −η ∧ θ̂1, dlη = −2cω̂.

If t ̸= 0, then η is a holomorphic contact form on Z such that l2 is the contact

bundle. Let gV̂ be a real symmetric 2-form on Z such that π∗gV̂ = η1⊗ η̄1+ η̄1⊗η1.

If t > 0, then ĝ = cf∗g+ gV̂ is a Kähler–Einstein metric on Z with positive scalar

curvature (cf. [18, Thms. 4.3, 6.1]).

Let ∇ be a torsion-free connection on Z such that ∇0,1 = ∂̄. Equation (5)

implies that ∇0,1θ̂0 = η ⊗ θ̂1 and ∇0,1η = 0. We define an f−1(∧kE) ⊗ lk-valued

(k, 0)-form θ̂k0 as the kth wedge of θ̂0. Then we have the following proposition:

Proposition 4.2. We have ∇0,1θ̂k0 = kθ̂k−1
0 ∧ η∧E θ̂1, and ∇0,1(θ̂k−1

0 ∧ η) = 0.

§5. Holomorphic k-vector fields on P (H∗) and Z

§5.1. Holomorphic k-vector fields on P (H∗)

Let 1̂, î, ĵ, k̂ be fundamental vector fields associated with the elements 1, i, j, k

of Lie algebra gl(1,H) = H, respectively. We define complex vector fields v0 and

v1 as v0 = 1
2 (1̂− îi) and v1 = 1

2 (ĵ+ ik̂). Then {v0, v1} is the dual basis of {η0, η1}.
Let X ′ be a (1, 0)-vector field on P (H∗). Then X ′ is decomposed into

(6) X ′ = X ′
h + f0v0 + f1v1

for a horizontal vector field X ′
h and functions f0, f1 on P (H∗).

Lemma 5.1. The (1, 0)-vector field X ′ is holomorphic if and only if

(i) ∂̄(θ̃0(X
′
h))− f1θ̃1 = 0,

(ii) ∂̄f0 = cr−2ωE(θ̃0(X
′
h), θ̃1) + f1η̄1

under the decomposition (6).

Proof. The vector field X ′ is holomorphic if and only if ∇0,1X ′ = 0. The equa-

tion is equal to θ̃0(∇0,1X ′) = 0, η0(∇0,1X ′) = 0 and η1(∇0,1X ′) = 0. The

first equation induces the third one since ∂̄∇(θ̃0(∇0,1X ′)) = η1(∇0,1X ′) ∧ θ̃1 +

θ̃0(Ω
(0,2)
TP (H∗)(X

′)) = η1(∇0,1X ′) ∧ θ̃1 and the map ∧θ̃1 : ∧0,1 → p−1(E) ⊗ ∧0,2

is injective. Proposition 4.1 implies that θ̃0(∇0,1X ′) = ∂̄(θ̃0(X
′
h)) − f1θ̃1 and

η0(∇0,1X ′) = ∂̄f0 − cr−2ωE(θ̃0(X
′
h), θ̃1) − f1η̄1. It turns out that ∇0,1X ′ = 0

is equivalent to conditions (i) and (ii).
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Let k be an integer which is greater than 1. Any (k, 0)-vectorX ′ is decomposed

into

(7) X ′ = X ′
h + Y0 ∧ v0 + Y1 ∧ v1 + Z0 ∧ v0 ∧ v1

for X ′
h ∈ ∧kH̃1,0 and Y0, Y1 ∈ ∧k−1H̃1,0 and Z0 ∈ ∧k−2H̃1,0. By a proof similar to

Lemma 5.1, we obtain the following lemma:

Lemma 5.2. For 2 ≤ k ≤ 2n, the (k, 0)-vector field X ′ is holomorphic if and only

if

(i) ∂̄(θ̃k0 (X
′
h))− k2θ̃k−1

0 (Y1) ∧E θ̃1 = 0,

(ii) k2∂̄(θ̃k−1
0 (Y0))+k2(k−1)2θ̃k−2

0 (Z0)∧E θ̃1−cr−2ωE(θ̃
k
0 (X

′
h), θ̃1)−k2θ̃k−1

0 (Y1)⊗
η̄1 = 0,

(iii) ∂̄(θ̃k−1
0 (Y1)) + θ̃k−1

0 (Y1)⊗ η̄0 = 0,

(iv) (k − 1)2∂̄(θ̃k−2
0 (Z0)) + (k − 1)2θ̃k−2

0 (Z0)⊗ η̄0 − cr−2ωE(θ̃
k−1
0 (Y1), θ̃1) = 0,

under the decomposition (7). In particular, in the case k ̸= 2n, X ′ is holomorphic

if and only if equations (i), (ii), (iv) hold.

From now on, we extend the decomposition (7) to the case k = 1 as Z0 = 0.

Theorem 5.3. Horizontal k and (k− 1)-vector fields X ′
h, Y1 satisfy, for 1 ≤ k ≤

2n− 1,

(i) ∂̄(θ̃k0 (X
′
h))− k2θ̃k−1

0 (Y1) ∧E θ̃1 = 0,

and for k = 2n, (i) and

∂̄(θ̃2n−1
0 (r2Y1)) = 0

if and only if the (k, 0)-vector field X ′
h+Y0∧v0+Y1∧v1+Z0∧v0∧v1 is holomorphic

for local horizontal (k − 1)- and (k − 2)-vector fields Y0, Z0 on P (H∗).

Proof. By taking the derivative ∂̄ on (i), we obtain ∂̄(r2θ̃k−1
0 (Y1)) ∧ θ̃1 = 0. Since

∧θ̃1 : p−1(∧k−1E) ⊗ ∧0,1 → p−1(∧kE) ⊗ ∧0,2 is injective for 1 ≤ k ≤ 2n − 1,

∂̄(r2θ̃k−1
0 (Y1)) = 0. The equation is equal to (iii) in Lemma 5.2. It is easy to see

that condition (iv) is equivalent to

(8) ∂̄((k − 1)2r2θ̃k−2
0 (Z0)) = cωE(r

2θ̃k−1
0 (Y1), r

−2θ̃1).

The derivative ∂̄ on the right-hand side of (8) vanishes. By Dolbeault’s lemma,

there exists an element Z0 ∈ A0
P (H∗)(∧

k−2H̃1,0) satisfying (8), and (iv). In the

case k ̸= 1, we write (ii) as

∂̄(θ̃k−1
0 (Y0)) = k−2cωE(θ̃

k
0 (X

′
h), r

−2θ̃1) + r2θ̃k−1
0 (Y1)⊗ r−2η̄1

− (k − 1)2r2θ̃k−2
0 (Z0) ∧E r−2θ̃1.(9)
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The derivative ∂̄ on the right-hand side of (9) is provided by

cr−2
{
∧
(
ωE(θ̃

k−1
0 (Y1)∧E θ̃1, θ̃1)

)
−2θ̃k−1

0 (Y1)⊗ωE(θ̃1, θ̃1)−ωE(θ̃
k−1
0 (Y1), θ̃1)∧ θ̃1

}
.

Then it vanishes. In the case k = 1, by the same argument, the derivative ∂̄

on the right-hand side of (ii) in Lemma 5.1 vanishes. Hence, there exists Y0 ∈
A0

P (H∗)(∧
k−1H̃) such that (ii) holds for any 1 ≤ k ≤ 2n. It completes the proof.

§5.2. Holomorphic k-vector fields on Z

The horizontal bundle H̃ induces a bundle Ĥ over the twistor space Z. We denote

by v the l−2-valued (1, 0)-vector field on Z induced by the vector field r−2v1 on

P (H∗). The vector field v is regarded as the dual of η. A (k, 0)-vector field X ′ on

Z is given by

X ′ = X ′
h + Y ∧ v

for X ′
h ∈ ∧kĤ1,0 and Y ∈ l2 ⊗ ∧k−1Ĥ1,0. By the same argument as Theorem 5.3,

we have the following theorem:

Theorem 5.4. For 1 ≤ k ≤ 2n − 1, the (k, 0)-vector field X ′ is holomorphic if

and only if

∂̄l(θ̂k0 (X
′
h))− k2θ̂k−1

0 (Y ) ∧E θ̂1 = 0.

The (2n, 0)-vector field X ′ is holomorphic if and only if

∂̄l(θ̂2n0 (X ′
h))− 4n2θ̂2n−1

0 (Y ) ∧E θ̂1 = 0,

∂̄l(θ̂2n−1
0 (Y )) = 0.

§6. Quaternionic sections

In this section we provide a definition of a quaternionic section of ∧kE⊗SmH. We

show that the lifts of the quaternionic section satisfy some ∂̄-equations on P (H∗)

and Z.

§6.1. Definition of quaternionic sections

We identifyH withH∗ by ω♯
H∗ . By the Clebsch–Gordan decomposition, the covari-

ant derivative ∇ is regarded as

∇ : Γ(∧kE ⊗ SmH) → Γ(∧kE ⊗ E∗ ⊗ Sm+1H)⊕ Γ(∧kE ⊗ E∗ ⊗ Sm−1H).

The Dirac operator (cf. [4]) is defined as the ∧kE ⊗ E∗ ⊗ Sm+1H-part of ∇:

D∧kE : Γ(∧kE ⊗ SmH) → Γ(∧kE ⊗ E∗ ⊗ Sm+1H).
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Let k be a positive integer. Let (∧kE ⊗ E∗)0 denote the kernel of the trace map

tr : ∧k E ⊗ E∗ → ∧k−1E. Then ∧kE ⊗ E∗ = (∧kE ⊗ E∗)0 ⊕ (∧k−1E) ∧ idE . We

define an operator

D0
∧kE : Γ(∧kE ⊗ SmH) → Γ((∧kE ⊗ E∗)0 ⊗ Sm+1H)

as the (∧kE⊗E∗)0-part of D∧kE . We rescale the trace map as 1
2n−k+1 tr, and also

denote it using the same notation tr.

Definition 6.1. Let m be a non-negative integer. A section X of ∧kE ⊗ SmH is

quaternionic if D0
∧kE(X) = 0 for 1 ≤ k ≤ 2n− 1 and D∧2n−1E ◦ tr ◦D∧2nE(X) = 0

for k = 2n.

Any section X of ∧2nE⊗SmH satisfies D0
∧2nE(X) = 0 since (∧2nE⊗E∗)0 =

{0}. Definition 6.1 is also valid in quaternionic manifolds. The operators D0
∧kE and

D∧2n−1E ◦ tr ◦D∧2nE are commutative with τ . Let Q(∧kE ⊗ SmH) be the sheaf

of quaternionic sections of ∧kE ⊗ SmH and Q(∧kE ⊗ SmH)τ that of τ -invariant

ones.

§6.2. Lift of quaternionic sections to P (H∗)

A map ω̃♯
H∗ : Ã1

(m,0) → Ã0(E∗)⊗Ã0
(1,0) ⊗Ã0

(m,0) is induced by ω♯
H∗ : A1(SmH) →

A0(E∗ ⊗H ⊗ SmH). By Ã0
(1,0) ⊗ Ã0

(m,0) = Ã0
(m+1,0), we have

(10)

Ã1
(m,0)(∧

kE)
ω̃♯

H∗
// Ã0

(m+1,0)(∧
kE ⊗ E∗)

A1(∧kE ⊗ SmH)

OO

sm+1
H ◦ω♯

H∗
// A0(∧kE ⊗ E∗ ⊗ Sm+1H).

OO

Proposition 6.2. We have (D∧kEξ − ζ ∧E idE)
∼

0 = ω̃♯
H∗(∂̄ξ̃0 − ζ̃0 ∧E r−2θ̃1) for

ξ ∈ A0(∧kE ⊗ SmH) and ζ ∈ A0(∧k−1E ⊗ Sm+1H).

Proof. It follows from D∧kE = sm+1
H ◦ω♯

H∗ ◦∇ and diagram (10) that (D̃∧kEξ)0 =

ω̃♯
H∗(dH̃ξ̃0). Since the kernel of ω̃♯

H∗ is A0
P (H∗)((H̃

∗)1,0 ⊗ ∧kE), ω̃♯
H∗(dH̃ξ̃0) =

ω̃♯
H∗(∂̄ξ̃0). Thus (D̃∧kEξ)0 = ω̃♯

H∗(∂̄ξ̃0). We also have ω̃♯
H∗(ζ̃0 ∧E r−2θ̃1) = ζ̃0 ∧E

ĩdE = ( ˜ζ ∧E idE)0. Hence we finish the proof.

We denote by Õm(∧kE) the kernel of ∂̄ on Ã0
(m,0)(∧

kE). By Proposition 6.2

and the injectivity of ω̃♯
H∗ on A0

P (H∗)((H̃
∗)0,1 ⊗ ∧kE), we obtain an isomorphism

(11) KerD∧kE
∼= Õm(∧kE)

by ξ 7→ ξ̃0.
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Proposition 6.3. Let ξ and ζ be elements of A0(∧kE⊗SmH) and A0(∧k−1E⊗
Sm+1H), respectively. The element ξ is quaternionic and ζ = tr ◦D∧kE(ξ) if and

only if ∂̄ξ̃0 − ζ̃0 ∧E r−2θ̃1 = 0 for 1 ≤ k ≤ 2n − 1, and ∂̄ξ̃0 − ζ̃0 ∧E r−2θ̃1 = 0,

∂̄ζ̃0 = 0 for k = 2n.

Proof. The element ξ is quaternionic and ζ = tr ◦D∧kE(ξ) if and only if D∧kEξ −
ζ∧E idE = 0 and, in addition, D∧k−1Eζ = 0 for k = 2n. By Proposition 6.2 and the

injectivity of ω̃♯
H∗ on (H̃∗)0,1,D∧kEξ−ζ∧E idE = 0 is equal to ∂̄ξ̃0−ζ̃0∧Er

−2θ̃1 = 0.

Furthermore, the isomorphism (11) implies that D∧k−1Eζ = 0 is equivalent to

∂̄ζ̃0 = 0.

§6.3. Lift of quaternionic sections to Z

The map ω̃♯
H∗ induces a map ω̂♯

H∗ : Â1(∧kE⊗ lm) → Â0(∧kE⊗E∗⊗ lm+1). There

exists a commutative diagram

Â0(∧kE ⊗ lm)
dl

Ĥ // Â1(∧kE ⊗ lm)
ω̂♯

H∗
// Â0(∧kE ⊗ E∗ ⊗ lm+1)

Ã0
(m,0)(∧

kE)

OO

dH̃ // Ã1
(m,0)(∧

kE)

OO

ω̃♯
H∗

// Ã0
(m+1,0)(∧

kE ⊗ E∗)

OO

A0(∧kE ⊗ SmH)

OO

∇ // A1(∧kE ⊗ SmH)

OO

sm+1
H ◦ω♯

H∗
// A0(∧kE ⊗ E∗ ⊗ Sm+1H).

OO

By the same proof as Proposition 6.2, we obtain the following proposition:

Proposition 6.4. We have ̂D∧kEξ − ζ ∧E idE = ω̂♯
H∗(∂̄lξ̂ − ζ̂ ∧E θ̂1).

We denote by Ô(∧kE ⊗ lm) the kernel of ∂̄l on Â0(∧kE ⊗ lm). Then

(12) KerD∧kE
∼= Ô(∧kE ⊗ lm)

by ξ 7→ ξ̂. Proposition 6.4 implies the following:

Proposition 6.5. Let ξ and ζ be elements of A0(∧kE⊗SmH) and A0(∧k−1E⊗
Sm+1H), respectively. The element ξ is quaternionic and ζ = tr ◦D∧kE(ξ) if and

only if ∂̄lξ̂ − ζ̂ ∧E θ̂1 = 0 for 1 ≤ k ≤ 2n − 1, ∂̄lξ̂ − ζ̂ ∧E θ̂1 = 0 and ∂̄lζ̂ = 0 for

k = 2n.
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§7. Quaternionic k-vector fields

A quaternionic section of ∧kE ⊗ SkH is called a quaternionic k-vector field on

M . We prove that any quaternionic k-vector field corresponds to a holomorphic

(k, 0)-vector field on Z.

§7.1. Horizontal lift of k-vector fields to P (H∗)

Let X̃h denote the horizontal lift to P (H∗) of a k-vector field X on M . We denote

by Ã0(∧kH̃1,0) the sheaf of horizontal (k, 0)-vector fields which are GL(1,C)-
invariant and holomorphic along each fiber.

Proposition 7.1. The isomorphism A0(∧kE ⊗ SkH) ∼= Ã0(∧kH̃1,0) is given by

X 7→ X̃k,0
h . Moreover, X̃0 = (k!)−2θ̃k0 (X̃

k,0
h ) for X ∈ A0(∧kE ⊗ SkH).

Proof. The lift X̃ of X ∈ A0(∧kE ⊗ SkH) to P (H∗) is related to the horizon-

tal lift X̃h by X̃ = (⊗kθ̃)(X̃h). The ∧kE ⊗ ∧kT ∗P (H∗) ⊗ SkH-part of ⊗kθ̃ is∑k
i=0(k!)

−2
(
k
i

)
θ̃k−i
0 ∧ θ̃i11

k−iji. Hence X̃0 = (k!)−2θ̃k0 (X̃h) = (k!)−2θ̃k0 (X̃
k,0
h ). Then

θ̃k0 (∇0,1
v X̃k,0

h ) = ∇0,1
v (θ̃k0 (X̃

k,0
h )) = 0 for any tangent vector v along the fiber.

By Proposition 4.1, θ̃k−1
0 ∧ η0(∇0,1

v X̃k,0
h ), θ̃k−1

0 ∧ η1(∇0,1
v X̃k,0

h ) and θ̃k−2
0 ∧ η0 ∧

η1(∇0,1
v X̃k,0

h ) also vanish. Hence X̃k,0
h is holomorphic along each fiber. Let X ′ be

a horizontal (k, 0)-vector field on P (H∗). Then

(13) R∗
c(θ̃

k
0 (X

′)) = (R∗
c θ̃

k
0 )((Rc−1)∗X

′) = ckθ̃k0 ((Rc−1)∗X
′)

for any c ∈ GL(1,C). Thus the bundle isomorphism θ̃k0 : ∧k H̃1,0 ∼= p−1(∧kE)

induces Ã0(∧kH̃1,0) ∼= Ã0
(k,0)(∧

kE). It follows from Proposition 3.1 that A0(∧kE⊗
SkH) ∼= Ã0(∧kH̃1,0). We finish the proof.

Under the irreducible decomposition of ∧kTM , the horizontal lift of the com-

ponents except for ∧kE ⊗ SkH vanish by θ̃k0 . Hence, Proposition 7.1 induces the

following:

Corollary 7.2. Let X be an element of A0(∧kTM). The (k, 0)-part X̃k,0
h of X̃h

is GL(1,C)-invariant and holomorphic along each fiber.

§7.2. Holomorphic lift of quaternionic k-vector fields to P (H∗)

A horizontal (k, 0)-vector field X ′ on P (H∗) is called of GL(1,C)-order m if

(Rc−1)∗X
′ = cmX ′ for any c ∈ GL(1,C). We define Ãm(∧kH̃1,0) as the sheaf

of horizontal (k, 0)-vector fields which are of GL(1,C)-order m and holomorphic

along each fiber. By equation (13), we obtain an isomorphism Ãm(∧kH̃1,0) ∼=
Ã0

(k+m,0)(∧
kE) as X ′ 7→ (k!)−2θ̃k0 (X

′). For an element ξ of A0(∧kE ⊗ Sk+mH),
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there exists a unique element Ỹξ of Ãm(∧kH̃1,0) such that

(k!)−2θ̃k0 (Ỹξ) = ξ̃0.

Hence, we have

(14) A0(∧kE ⊗ Sk+mH) ∼= Ãm(∧kH̃1,0)

by ξ 7→ Ỹξ. In the case m = 0, the isomorphism is given by Proposition 7.1.

Proposition 7.3. Let X and ζ be elements of A0(∧kE⊗SkH) and A0(∧k−1E⊗
Sk+1H), respectively. The k-vector field X is quaternionic and ζ = tr ◦D∧kE(X) if

and only if there exist Y0 ∈ A0
P (H∗)(∧

k−1H̃1,0) and Z0 ∈ A0
P (H∗)(∧

k−2H̃1,0) such

that the (k, 0)-vector field X̃k,0
h + Y0 ∧ v0 + Y1 ∧ v1 + Z0 ∧ v0 ∧ v1 is holomorphic

for Y1 = 1
r2 Ỹζ .

Proof. Setting Y1 = 1
r2 Ỹζ , then we obtain ζ̃0 = ((k − 1)!)−2θ̃k−1

0 (r2Y1). It follows

from Proposition 6.3 that X is quaternionic and ζ = tr ◦D∧kE(X) if and only if

∂̄X̃0 − ζ̃0 ∧E r−2θ̃1 = 0 for 1 ≤ k ≤ 2n− 1, ∂̄X̃0 − ζ̃0 ∧E r−2θ̃1 = 0 and ∂̄ζ̃0 = 0 for

k = 2n. The condition is equivalent to ∂̄(θ̃k0 (X̃
k,0
h ))−k2θ̃k−1

0 (Y1)∧E θ̃1 = 0 for 1 ≤
k ≤ 2n−1, ∂̄(θ̃k0 (X̃

k,0
h ))−k2θ̃k−1

0 (Y1)∧E θ̃1 = 0 and ∂̄(θ̃k−1
0 (r2Y1)) = 0 for k = 2n.

It is equivalent that there exist Y0 ∈ A0
P (H∗)(∧

k−1H̃1,0), Z0 ∈ A0
P (H∗)(∧

k−2H̃1,0)

such that X̃k,0
h +Y0∧v0+Y1∧v1+Z0∧v0∧v1 is holomorphic by Theorem 5.3.

§7.3. Horizontal lift of k-vector fields to Z

Let X̂h be the horizontal lift to Z of a k-vector field X on M . The horizontal

vector field X̂h and the (k, 0)-part X̂k,0
h correspond to X̃h and X̃k,0

h , respectively.

We denote by Â(∧kĤ1,0) the sheaf of horizontal (k, 0)-vector fields which are

holomorphic along each fiber of f : Z → M . Proposition 7.1 induces the following:

Proposition 7.4. The isomorphism A0(∧kE ⊗ SkH) ∼= Â(∧kĤ1,0) is given by

X 7→ X̂k,0
h . Moreover, X̂ = (k!)−2θ̂k0 (X̂

k,0
h ) for X ∈ A0(∧kE ⊗ SkH).

Corollary 7.2 implies the following corollary:

Corollary 7.5. Let X be an element of A0(∧kTM). The (k, 0)-part X̂k,0
h of X̂h

is holomorphic along each fiber of f .

We consider the holomorphic bundle ∧kĤ1,0⊗lm for a non-negative integerm.

Let Â(∧kĤ1,0 ⊗ lm) be a sheaf of lm-valued horizontal smooth (k, 0)-vector fields

which are holomorphic along each fiber. Let Ô(∧kĤ1,0 ⊗ lm) denote the subsheaf

of Â(∧kĤ1,0⊗ lm) of holomorphic lm-valued horizontal (k, 0)-vector fields. By the
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definition of l, we obtain the isomorphism

(15) Â(∧kĤ1,0 ⊗ lm) ∼= Ãm(∧kH̃1,0).

The kth wedge θ̂k0 defines a map from ∧kĤ1,0 ⊗ lm to f−1(∧kE)⊗ lk+m. The map

induces isomorphisms Â(∧kĤ1,0 ⊗ lm) ∼= Â0(∧kE ⊗ lk+m) and Ô(∧kĤ1,0 ⊗ lm) ∼=
Ô(∧kE ⊗ lk+m). For an element ξ of A0(∧kE ⊗ Sk+mH), there exists a unique

element Ŷξ of Â(∧kĤ1,0 ⊗ lm) such that

(k!)−2θ̂k0 (Ŷξ) = ξ̂.

The isomorphisms in (14) and (15) yield

(16) A0(∧kE ⊗ Sk+mH) ∼= Â(∧kĤ1,0 ⊗ lm)

by ξ 7→ Ŷξ. The isomorphism (12) implies KerD∧kE
∼= Ô(∧kĤ1,0 ⊗ lm) by the

correspondence.

§7.4. Holomorphic lift of quaternionic k-vector fields to Z

By the same argument as Proposition 7.3, we obtain the following proposition:

Proposition 7.6. Let X and ζ be elements of A0(∧kE⊗SkH) and A0(∧k−1E⊗
Sk+1H), respectively. The k-vector field X is quaternionic and ζ = tr ◦D∧kE(X)

if and only if the (k, 0)-vector field X̂k,0
h + Ŷζ ∧ v is holomorphic.

Let Ô(∧kT 1,0Z) be a sheaf of holomorphic (k, 0)-vector fields defined in the

pull-back of open sets on M by f . Proposition 7.6 induces the following:

Theorem 7.7. An isomorphism Q(∧kE ⊗SkH) ∼= Ô(∧kT 1,0Z) is given by X 7→
X̂k,0

h + Ŷtr ◦D∧kE
(X) ∧ v. In particular, any global quaternionic k-vector field on M

corresponds to a global holomorphic (k, 0)-vector field on Z.

§7.5. Holomorphic lift of quaternionic real k-vector fields to Z

An endomorphism τ̂ of Â(∧kĤ1,0 ⊗ lm) is defined by

τ̂(X ′) = (R[j])∗X ′

for X ′ ∈ Â(∧kĤ1,0 ⊗ lm). Then we obtain an R-isomorphism

A0(∧kE ⊗ Sk+mH)τ ∼= Â(∧kĤ1,0 ⊗ lm)τ̂

by ξ 7→ Ŷξ. Then (KerD∧kE)
τ ∼= Ô(∧kĤ1,0 ⊗ lm)τ̂ under the correspondence.

Theorem 7.8. An R-isomorphism Q(∧kE ⊗ SkH)τ ∼= Ô(∧kT 1,0Z)τ̂ is given by

X 7→ X̂k,0
h + Ŷtr ◦D∧kE

(X) ∧ v. In particular, any global quaternionic real k-vector
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field on M corresponds to a global holomorphic and τ̂ -invariant (k, 0)-vector field

on Z.

§7.6. Example

Let M be the n-dimensional quaternionic projective space HPn. Then P (H∗) =

C2n+2\{0} as a complex manifold. The twistor space Z is CP 2n+1. Let Ṽk denote

the space of GL(1,C)-invariant holomorphic k-vector fields on C2n+2\{0}. Then

Ṽk =
{∑

ai1···ikj1···jkzi1 · · · zik ∂
∂zj1

∧ · · · ∧ ∂
∂zjk

∣∣ aijkl ∈ C
}
.

We regard the coefficient (ai1···ikj1···jk) as an element of ⊗kC2n+2 ⊗ ⊗k(C2n+2)∗.

We define Sk⊗∧k as the projection from ⊗k gl(2n+2,C) ∼= ⊗kC2n+2⊗⊗k(C2n+2)∗

to SkC2n+2⊗∧k(C2n+2)∗. Then Ṽk
∼= Sk⊗∧k(⊗k gl(2n+2,C)). The space of holo-

morphic k-vector fields on CP 2n+1 is identified with the quotient space Ṽk/Ṽk−1∧v0
(cf. [15, §5.1]). Theorems 7.7 and 7.8 imply that the spaces of quaternionic k-vector

fields and real ones are identified with

Sk ⊗ ∧k(⊗k gl(2n+ 2,C))/Sk ⊗ ∧k(⊗k−1 gl(2n+ 2,C)⊗ id)

and

Sk ⊗ ∧k(⊗k gl(n+ 1,H))/Sk ⊗ ∧k(⊗k−1 gl(n+ 1,H)⊗ id),

respectively.

§8. Graded Lie algebra structure on the space of quaternionic

k-vector fields

§8.1. Coefficients of lifts of A0(∧kE ⊗ SmH)

Let ξ be an element of A0(∧kE ⊗ SmH). For each coefficient ξ̃i of ξ̃, r
−2iξ̃i is of

GL(1,C)-order m− 2i. It induces a section of lm−2i on Z, which we denote by ξ̂i.

Then ξ̂0 = ξ̂ by the definition. Since iv1dξ̃i = −(i+ 1)ξ̃i+1 for i = 0, 1, . . . ,m− 1

and iv1dξ̃m = 0, we obtain the following lemma:

Lemma 8.1. We have ivd
lξ̂i = −(i+1)ξ̂i+1 for i = 0, 1, . . . ,m−1 and ivd

lξ̂m = 0.

Let X be an element of A0(∧kE ⊗ SkH). As in the proof of Proposition 7.1,

each coefficient X̃i of X̃ is given by X̃i = (k!)−2
(
k
i

)
(θ̃k−i

0 ∧ θ̃i1)(X̃h). It yields that

(17) X̂i = (k!)−2

(
k

i

)
(θ̂k−i

0 ∧ θ̂i1)(X̂h)

for i = 0, 1, . . . , k. Let X̂k−i,i
h denote the (k − i, i)-part of X̂h. Lemma 8.1 and

equation (17) imply the following:
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Proposition 8.2. If X ∈ A0(∧kE ⊗ SkH), then

ivd
l((θ̂k−i

0 ∧ θ̂i1)(X̂
k−i,i
h )) = −(k − i)(θ̂k−i−1

0 ∧ θ̂i+1
1 )(X̂k−i−1,i+1

h )

for i = 0, 1, . . . , k − 1. In particular, ivd
l(θ̂k0 (X̂

k,0
h )) = −k(θ̂k−1

0 ∧ θ̂1)(X̂
k−1,1
h ).

§8.2. The Schouten–Nijenhuis bracket

The Schouten–Nijenhuis bracket [ , ] is a bilinear mapA0(∧kTM)×A0(∧k′
TM)→

A0(∧k+k′−1TM) such that [X,X ′] = (−1)kk
′
[X ′, X] and

(−1)k(k
′′−1)[X, [X ′, X ′′]] + (−1)k

′(k−1)[X ′, [X ′′, X]]

+ (−1)k
′′(k′−1)[X ′′, [X,X ′]] = 0

for X ∈ A0(∧kTM), X ′ ∈ A0(∧k′
TM) and X ′′ ∈ A0(∧k′

TM). If we take

a torsion-free affine connection ∇ on M , then [X,X ′] is given by ∧k+k′−1(X ·
∇X ′ + (−1)kX ′ · ∇X), where ∧k+k′−1 is the anti-symmetrization of ⊗k+k′−1TM

and the dot · means the contraction of ∧kTM with ∧k′
TM ⊗ T ∗M . The pair

(
⊕

k A0(∧kTM), [ , ]) is a graded Lie algebra. For X ∈ A0(∧kE ⊗ SkH), X ′ ∈
A0(∧k′

E ⊗ Sk′
H), [X,X ′] is not always in A0(∧k+k′−1E ⊗ Sk+k′−1H) except for

the case k = k′ = 1. We define [X,X ′]Q by the ∧k+k′−1E ⊗ Sk+k′−1H-part of

[X,X ′]. Then (
⊕

k A0(∧kE ⊗ SkH), [ , ]Q) is a graded Lie algebra.

Let F be a vector bundle on M and ∇F a connection of F . If α is an F -valued

differential (k + k′ − 1)-form on M , then

(18) i[X,X′]α = (−1)k
′(k+1)iXdF iX′α+ (−1)kiX′dF iXα− iX∧X′dFα

for X ∈ A0(∧kTM), X ′ ∈ A0(∧k′
TM).

§8.3. Bracket for quaternionic k-vector fields

The Schouten–Nijenhuis bracket [ , ] is defined for holomorphic multi-vector

fields. The pair (
⊕

k O(∧kT 1,0Z), [ , ]) is a graded Lie algebra. Since [W,W ′]

is in Ô(∧k+k′−1T 1,0Z) for W ∈ Ô(∧kT 1,0Z), W ′ ∈ Ô(∧k′
T 1,0Z), we have that

(
⊕

k Ô(∧kT 1,0Z), [ , ]) is also a graded Lie algebra.

For X ∈ Q(∧kE⊗SkH), there exists a holomorphic (k, 0)-vector field X̂k,0
h +

Y ∧ v ∈ Ô(∧kT 1,0Z) by Theorem 7.7.

Lemma 8.3. If X ∈ Q(∧kE ⊗ SkH) and X ′ ∈ Q(∧k′
E ⊗ Sk′

H), then

̂([X,X ′]Q)
k+k′−1,0

h = [X̂k,0
h + Y ∧ v, X̂ ′k

′,0

h + Y ′ ∧ v]h.
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Proof. Let k′′ denote the integer k+k′−1. The horizontal (k′′, 0)-part ̂([X,X ′]Q)
k′′,0

h

of ̂([X,X ′]Q) is

̂[X,X ′]
k′′,0

h = [X̂h, X̂ ′
h]

k′′,0
h .

Hence, it suffices to show

θ̂k
′′

0 ([X̂h, X̂ ′
h]) = θ̂k

′′

0

([
X̂k,0

h + Y ∧ v, X̂ ′k
′,0

h + Y ′ ∧ v
])
.

We remark that θ̂k
′′

0 (X̂h) =
(
k′′

k

)
θ̂k0 (X̂h) ∧E θ̂k

′−1
0 . It follows from equation (18)

and dlθ̂k0 = kθ̂k−1
0 ∧ θ̂1 ∧ η that

θ̂k
′′

0 ([X̂h, X̂ ′
h]) = (−1)k

′(k+1)

(
k′′

k′

)
iX̂h

dl(θ̂k
′

0 (X̂ ′
h)) ∧ θ̂k−1

0

+ (−1)k
(
k′′

k

)
i
X̂′

h
dl(θ̂k0 (X̂h)) ∧ θ̂k

′−1
0 .

It turns out that

θ̂k
′′

0 ([X̂k,0
h , X̂ ′k

′,0

h ]) = (−1)k
′(k+1)

(
k′′

k′

)
iX̂k,0

h
dl(θ̂k

′

0 (X̂ ′k
′,0

h )) ∧ θ̂k−1
0

+ (−1)k
(
k′′

k

)
i
X̂′k

′,0
h

dl(θ̂k0 (X̂
k,0
h )) ∧ θ̂k

′−1
0 .

Then

θ̂k
′′

0 ([X̂h, X̂ ′
h]) = θ̂k

′′

0 ([X̂k,0
h , X̂ ′k

′,0

h ])

+ (−1)k
′(k+1)

(
k′′

k′

)
(k′)2θ̂k

′−1
0 (Y ′) ∧E (θ̂k−1

0 ∧ θ̂1)(X̂
k−1,1
h )

+ (−1)k
(
k′′

k

)
k2θ̂k−1

0 (Y ) ∧E (θ̂k
′−1

0 ∧ θ̂1)(X̂ ′k
′−1,1

h ).(19)

On the other hand,

θ̂k
′′

0 ([X̂k,0
h + Y ∧ v, X̂ ′k

′,0

h + Y ′ ∧ v])

= (−1)k
′(k+1)

(
k′′

k′

)
iX̂k,0

h +Y ∧vd
l(θ̂k

′

0 (X̂ ′k
′,0

h )) ∧ θ̂k−1
0

+ (−1)k
(
k′′

k

)
i
X̂′k

′,0
h +Y ′∧v

dl(θ̂k0 (X̂
k,0
h )) ∧ θ̂k

′−1
0 .

Using Proposition 8.2, then we obtain that θ̂k
′′

0 ([X̂k,0
h + Y ∧ v, X̂ ′k

′,0

h + Y ′ ∧ v]) is

equal to (19). Hence we finish the proof.

Proposition 8.4. If X ∈ Q(∧kE ⊗ SkH) and X ′ ∈ Q(∧k′
E ⊗ Sk′

H), then

[X,X ′]Q is quaternionic.
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Proof. Lemma 8.3 implies that ̂([X,X ′]Q)
k′′,0

h is the horizontal (k′′, 0)-part of the

holomorphic k′′-vector field[
X̂k,0

h + Y ∧ v, X̂ ′k
′,0

h + Y ′ ∧ v
]
.

Then [X,X ′]Q is quaternionic by Proposition 7.6.

It yields that (
⊕2n

k=1 Q(∧kE ⊗ SkH), [ , ]Q) is a graded Lie algebra. Proposi-

tion 7.6 and Lemma 8.3 imply the following theorem:

Theorem 8.5. The isomorphism Q(∧kE ⊗ SkH) ∼= Ô(∧kT 1,0Z) as in Theo-

rem 7.7 preserves the structures of graded Lie algebras. In particular, the space of

global quaternionic k-vector fields on M is isomorphic to that of global holomorphic

(k, 0)-vector fields on Z as graded Lie algebras.

§8.4. Bracket for quaternionic real k-vector fields

The real structure τ on Q(∧kE ⊗ SkH) is the complex conjugate for k-vector

fields on M . It implies that τ([X,X ′]Q) = [τ(X), τ(X ′)]Q for X ∈ Q(∧kE⊗SkH)

and X ′ ∈ Q(∧k′
E ⊗ Sk′

H). If X and X ′ are real, then [X,X ′]Q is real. Hence,

(
⊕2n

k=1 Q(∧kE ⊗ SkH)τ , [ , ]Q) admits a structure of a graded Lie algebra.

Proposition 8.6. If W ∈ Ô(∧kT 1,0Z) and W ′ ∈ Ô(∧k′
T 1,0Z), then τ̂([W,W ′]) =

[τ̂(W ), τ̂(W ′)]. Moreover, if W and W ′ are τ̂ -invariant, then [W,W ′] is also τ̂ -

invariant.

Proof. Equation (18) implies that τ̂(α([W,W ′])) = τ̂(α)([τ̂(W ), τ̂(W ′)]) for any

k′′-form α on Z. It yields that τ̂(α)(τ̂([W,W ′])) = τ̂(α)([τ̂(W ), τ̂(W ′)]). Since τ̂ is

a real structure, α(τ̂([W,W ′])) = α([τ̂(W ), τ̂(W ′)]) for any α. Hence, τ̂([W,W ′]) =

[τ̂(W ), τ̂(W ′)].

It induces that (
⊕2n+1

k=1 Ô(∧kT 1,0Z)τ̂ , [ , ]) is a graded Lie algebra. By the

same argument as Theorem 8.5, we obtain the following theorem:

Theorem 8.7. The isomorphism Q(∧kE ⊗ SkH)τ ∼= Ô(∧kT 1,0Z)τ̂ as in Theo-

rem 7.8 preserves the structures of graded Lie algebras. In particular, the space

of global quaternionic real k-vector fields on M is isomorphic to that of global

holomorphic and τ̂ -invariant (k, 0)-vector fields on Z as graded Lie algebras.
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