Multivector Fields on Quaternionic Kähler Manifolds

by

Takayuki MORIYAMA and Takashi NITTA

Abstract

In this paper we define a differential operator as a modified Dirac operator. Using the operator, we introduce a quaternionic k-vector field on a quaternionic Kähler manifold and show that any quaternionic k-vector field corresponds to a holomorphic k-vector field on the twistor space.

Mathematics Subject Classification 2020: 53C28 (primary); 53C26 (secondary). Keywords: quaternionic Kähler manifolds, twistor methods.

§1. Introduction

Deformation quantization is constructed on any symplectic manifold [7, 8, 17]. Kontsevich generalized the construction to Poisson manifolds [13]. A Poisson structure is given by a 2-vector field whose Schouten bracket vanishes. In complex geometry, Hitchin studied holomorphic Poisson structures [10]. He showed that a holomorphic Poisson structure is deeply related to generalized Kähler manifolds. We constructed a family of real Poisson structures on S^4 from holomorphic Poisson structures on $\mathbb{C}P^3$ [15], where S^4 is a typical example of quaternionic Kähler manifolds and $\mathbb{C}P^3$ is the twistor space.

Let (M, g) be a quaternionic Kähler manifold, that is, a 4*n*-dimensional Riemannian manifold whose holonomy group is reduced to a subgroup of $\operatorname{Sp}(n) \cdot \operatorname{Sp}(1)$. Let E and H denote the associated bundles with the canonical representations of $\operatorname{Sp}(n)$ and $\operatorname{Sp}(1)$ on \mathbb{C}^{2n} and \mathbb{C}^2 , respectively. Then $TM \otimes \mathbb{C} = E \otimes_{\mathbb{C}} H$. Levi-Civita connection induces the covariant derivative $\nabla \colon \Gamma(\wedge^k E \otimes S^m H) \to$

Communicated by K. Ono. Received September 1, 2022. Revised February 7, 2023.

T. Moriyama: Department of Mathematics, Mie University, Kurimamachiya 1577, Tsu 514-8507, Japan;

e-mail: takayuki@edu.mie-u.ac.jp

T. Nitta: Department of Mathematics, Mie University, Kurimamachiya 1577, Tsu 514-8507, Japan;

e-mail: nitta@edu.mie-u.ac.jp

 $[\]textcircled{O}$ 2024 Research Institute for Mathematical Sciences, Kyoto University.

This work is licensed under a CC BY 4.0 license.

 $\Gamma(\wedge^k E \otimes S^m H \otimes E^* \otimes H^*)$. By the Clebsch–Gordan formula, the Dirac operator $\mathfrak{D}_{\wedge^k E}$ is defined as the $\wedge^k E \otimes E^* \otimes S^{m+1}H$ -part of ∇ . Baston considered a complex associated with the operator $\mathfrak{D}_{\wedge^0 E}$ (he used the notation D instead) and another operator F on a quaternionic manifold [4]. He proved that the cohomology corresponds to Dolbeault cohomology on the twistor space Z. Nagatomo and the second author provided a vanishing theorem of the cohomology on quaternionic Kähler manifolds [16]. A k-vector field contained in the kernel of $\mathfrak{D}_{\wedge^k E}$ is lifted to a holomorphic k-vector field on Z. However, any holomorphic k-vector field on Z does not correspond to such a k-vector field on M. We consider the trace map tr: $\wedge^k E \otimes E^* \to \wedge^{k-1} E$ and define an operator $\mathfrak{D}^0_{\wedge^k E}$ as the traceless part of $\mathfrak{D}_{\wedge^k E}$. We remark that, in the case of k = 2n, the operator $\mathfrak{D}^0_{\wedge^{2n} E}$ vanishes.

Definition 1.1. A section X of $\wedge^k E \otimes S^k H$ is a quaternionic k-vector field on M if $\mathfrak{D}^0_{\wedge^k E}(X) = 0$ for $1 \le k \le 2n - 1$ and $\mathfrak{D}_{\wedge^{2n-1}E} \circ \operatorname{tr} \circ \mathfrak{D}_{\wedge^{2n}E}(X) = 0$ for k = 2n.

A quaternionic 1-vector field is a vector field preserving the quaternionic structure. In [2, 6, 14], the authors studied quaternionic 1-vector fields and provided characterizations of $\mathbb{H}P^n$. A quaternionic k-vector field is a sort of generalization of such a vector field. In the case of positive scalar curvature, there are many quaternionic Kähler orbifolds [5, 9]. For this reason, we consider a sheaf of quaternionic k-vector fields. Let $\mathcal{Q}(\wedge^k E \otimes S^k H)$ be the sheaf of quaternionic k-vector fields on M and $\widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$ that of holomorphic (k, 0)-vector fields defined in the pull-back of open sets by the projection from Z to M. The main theorem is the following:

Theorem 1.2. The sheaf $\mathcal{Q}(\wedge^k E \otimes S^k H)$ is isomorphic to $\widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$. In particular, any global quaternionic k-vector field on M corresponds to a global holomorphic (k, 0)-vector field on Z.

The Schouten–Nijenhuis bracket induces graded Lie algebra structures on $\bigoplus_k \mathcal{Q}(\wedge^k E \otimes S^k H)$ and $\bigoplus_k \widehat{\mathcal{O}}(\wedge^k T^{1,0} Z)$.

Theorem 1.3. The isomorphism $\mathcal{Q}(\wedge^k E \otimes S^k H) \cong \widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$ preserves the structures of graded Lie algebras. In particular, the space of global quaternionic k-vector fields on M is isomorphic to that of global holomorphic (k, 0)-vector fields on Z as graded Lie algebras.

The space $\mathcal{Q}(\wedge^k E \otimes S^k H)$ admits a real structure τ . A τ -invariant element of $\mathcal{Q}(\wedge^k E \otimes S^k H)$ is a real k-vector field on M. We also have a real structure $\hat{\tau}$ on $\widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$. Let $\mathcal{Q}(\wedge^k E \otimes S^k H)^{\tau}$ be the sheaf of quaternionic real k-vector fields and $\widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)^{\hat{\tau}}$ that of $\hat{\tau}$ -invariant elements of $\widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$. Graded Lie algebra structures are induced in those sheaves. **Theorem 1.4.** The sheaf $\mathcal{Q}(\wedge^k E \otimes S^k H)^{\tau}$ is isomorphic to $\widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)^{\hat{\tau}}$. The isomorphism preserves the structures of graded Lie algebras. In particular, the space of global quaternionic real k-vector fields on M is isomorphic to that of global holomorphic and $\hat{\tau}$ -invariant (k, 0)-vector fields on Z as graded Lie algebras.

§2. Preliminaries

§2.1. Quaternionic Kähler manifolds

Let (M, g) be a Riemannian manifold of dimension 4n. A subbundle Q of End(TM) is called an *almost quaternionic structure* if there exists a local basis I, J, K of Q such that $I^2 = J^2 = K^2 = -$ id and K = IJ. A pair (Q, g) is an *almost quaternionic Hermitian structure* if any section φ of Q satisfies $g(\varphi X, Y) + g(X, \varphi Y) = 0$ for $X, Y \in TM$. For $n \geq 2$, if the Levi-Civita connection ∇ preserves Q, then (Q, g) is called a *quaternionic Kähler structure*, and (M, Q, g) a *quaternionic Kähler manifold*. A Riemannian manifold is a quaternionic Kähler manifold if and only if the holonomy group is reduced to a subgroup of $\operatorname{Sp}(n) \cdot \operatorname{Sp}(1)$. Alekseevskii [1] shows that a quaternionic Kähler manifold is Einstein and the curvature of Q is described by the scalar curvature (we also refer to [11, 18]). For n = 1, since $\operatorname{Sp}(1) \cdot \operatorname{Sp}(1)$ is SO(4), a manifold satisfying the above condition is just an oriented Riemannian manifold. A 4-dimensional oriented Riemannian manifold M is said to be a *quaternionic Kähler manifold* if it is Einstein and self-dual.

The symplectic group $\operatorname{Sp}(n)$ acts on the right \mathbb{H} -module \mathbb{H}^n by $A\xi$ for $A \in \operatorname{Sp}(n)$ and $\xi \in \mathbb{H}^n$. On the other hand, $\operatorname{Sp}(1)$ has an action on the left \mathbb{H} -module \mathbb{H} by $\xi \bar{q}$ for $q \in \operatorname{Sp}(1)$ and $\xi \in \mathbb{H}$. Let E, H denote the associated bundles with the representations $\operatorname{Sp}(n)$, $\operatorname{Sp}(1)$ on \mathbb{H}^n , \mathbb{H} , respectively. Then E is the right \mathbb{H} -module bundle and H is the left \mathbb{H} -module bundle. The dual representations of $\operatorname{Sp}(n)$ and $\operatorname{Sp}(1)$ induce the left \mathbb{H} -module bundle E^* and the right \mathbb{H} -module bundle H^* . Then $TM = E \otimes_{\mathbb{H}} H$ and $T^*M = H^* \otimes_{\mathbb{H}} E^*$. The \mathbb{H} -bundles E, H are regarded as the \mathbb{C} -vector bundles with anti \mathbb{C} -linear maps J_E , J_H satisfying $J_E^2 = -\operatorname{id}_E$, $J_H^2 = -\operatorname{id}_H$. Then there exist symplectic structures ω_E , ω_H on E, H which are compatible with J_E , J_H , respectively. The correspondences $e \mapsto \omega_E(\cdot, e)$, $h \mapsto \omega_H(\cdot, h)$ provide the \mathbb{C} -isomorphisms $E \cong E^*$, $H \cong H^*$, which are denoted by ω_E^{\sharp} , ω_H^{\sharp} . The tangent space TM is the real form of $E \otimes_{\mathbb{C}} H$ with respect to the real structure $J_E \otimes J_H$:

$$TM \otimes \mathbb{C} = E \otimes_{\mathbb{C}} H.$$

The tensor product $\omega_E \otimes \omega_H$ is the complexification of the Riemannian metric g. The technique is called *EH-formalism* and was introduced by Salamon [18]. T. Moriyama and T. Nitta

§2.2. The twistor space

The quaternionic structure Q is considered as a subbundle of the real vector bundle $\operatorname{End}_{\mathbb{H}}(H)$. We identify $\operatorname{End}_{\mathbb{H}}(H)$ with the real form of $\operatorname{End}_{\mathbb{C}}(H) = H \otimes_{\mathbb{C}} H^*$. Let ube an \mathbb{H} -frame of H. We define local sections I, J, K of $\operatorname{End}_{\mathbb{H}}(H)$ as I(hu) = hiu, J(hu) = hju, K(hu) = hku for any $h \in \mathbb{H}$. Then $\{I, J, K\}$ is a local basis of Qand represented by elements

$$(1) I = i(u \otimes u^* - ju \otimes (ju)^*), \quad J = ju \otimes u^* - u \otimes (ju)^*, \quad K = i(ju \otimes u^* + u \otimes (ju)^*)$$

of $\operatorname{End}_{\mathbb{C}}(H)$ for the \mathbb{C} -frame $\{u, ju\}$ of H. Let Z be a sphere bundle

$$Z = \{aI + bJ + cK \in Q \mid a^2 + b^2 + c^2 = 1\}$$

over M. Let $f: Z \to M$ denote the projection. The bundle Z is called a *twistor* space of the quaternionic Kähler manifold M.

§2.3. The principal bundle $P(H^*)$

Let $p: P(H^*) \to M$ be a frame bundle of H^* , whose fiber consists of right \mathbb{H} -bases of H^* . Then $P(H^*)$ is a principal $\operatorname{GL}(1, \mathbb{H})$ -bundle by the right action. An element u^* of $P(H^*)$ induces the complex structure I in (1) by

$$\wedge^{1,0}T_x^*M = E_x^* \otimes \langle u^* \rangle_{\mathbb{C}}, \quad \wedge^{0,1}T_x^*M = E_x^* \otimes \langle u^*j \rangle_{\mathbb{C}}.$$

We identify each fiber of p with $\mathbb{C}^2 \setminus \{0\}$ by $\mathbb{H} = \mathbb{C} + j\mathbb{C} \cong \mathbb{C}^2$. Thus we have an almost complex structure \tilde{I} on $P(H^*)$. Then \tilde{I} is integrable (cf. [3, Thm. 4.1], [18, Thm. 4.1]). The twistor space Z is regarded as the quotient space $P(H^*)/\operatorname{GL}(1,\mathbb{C})$. We denote by $\pi: P(H^*) \to Z$ the quotient map. By the definition, the twistor space Z is a $\mathbb{C}P^1$ -bundle over M. A complex structure \hat{I} on Z is induced by \tilde{I} .

§3. Lifts of sections of $\wedge^k E \otimes S^m H$ to $P(H^*)$ and Z

We denote by \mathcal{A}^q , $\mathcal{A}^q_{P(H^*)}$ and \mathcal{A}^q_Z the sheaves of smooth q-forms on M, $P(H^*)$ and Z, respectively.

§3.1. Lift of $\mathcal{A}^q(\wedge^k E\otimes S^m H)$ to $P(H^*)$

The bundles H and H^* are regarded as bundles of the left \mathbb{C} -module and the right \mathbb{C} -module, respectively. We denote the complex representation ρ of $\mathrm{GL}(1,\mathbb{H})$ on \mathbb{H} by $\rho(a)h = ah$ for $a \in \mathrm{GL}(1,\mathbb{H})$ and $h \in \mathbb{H}$. Then $S^m H$ is the associated bundle $P(H^*) \times_{\rho^*} S^m \mathbb{H}$ with the dual representation ρ^* . The point $u^* \in P(H^*)$ corresponds to a point u of P(H) by the \mathbb{H} -dual. The \mathbb{H} -basis u provides the \mathbb{C} basis $\{u, ju\}$ of the \mathbb{C} -vector bundle H. Thus, any element u of P(H) is regarded as a \mathbb{C} -isomorphism $u: \mathbb{H} \to H_{p(u)}$. An element $\xi \in \mathcal{A}^q(\wedge^k E \otimes S^m H)$ induces $\tilde{\xi} \in \mathcal{A}^q_{P(H^*)}(\wedge^k E \otimes S^m \mathbb{H})$ by $\tilde{\xi}_{u^*} = u^{-1}(p^*\xi)_{u^*}$ at each point $u^* \in P(H^*)$. Then $(R_a)^* \tilde{\xi} = \rho^*(a^{-1})\tilde{\xi}$ for any $a \in \mathrm{GL}(1, \mathbb{H})$. We define a sheaf $\tilde{\mathcal{A}}^q(\wedge^k E \otimes S^m \mathbb{H})$ by

$$\tilde{\mathcal{A}}^{q}(\wedge^{k} E \otimes S^{m} \mathbb{H}) = \left\{ \tilde{\xi} \in p^{-1} p_{*}(p^{*} \mathcal{A}^{q}(\wedge^{k} E \otimes S^{m} \mathbb{H})) \mid (R_{a})^{*} \tilde{\xi} = \rho^{*}(a^{-1}) \tilde{\xi}, \\ \forall a \in \mathrm{GL}(1, \mathbb{H}) \right\},$$

where $p^{-1}p_*$ means the inverse image of the direct image of a sheaf by p. By the definition, $\tilde{\mathcal{A}}^q = \tilde{\mathcal{A}}^q(\wedge^0 E \otimes S^0 \mathbb{H})$ is the sheaf of pull-backs of smooth q-forms on M by p. In particular, $\tilde{\mathcal{A}}^0$ is the sheaf of smooth functions on $P(H^*)$ which are constant along each fiber. Then

$$ilde{\mathcal{A}}^q(\wedge^k E\otimes S^m\mathbb{H})= ilde{\mathcal{A}}^q(\wedge^k E)\otimes_{ ilde{\mathcal{A}}^0} ilde{\mathcal{A}}^0(S^m\mathbb{H}).$$

The sheaf $\mathcal{A}^q(\wedge^k E \otimes S^m H)$ is isomorphic to $\tilde{\mathcal{A}}^q(\wedge^k E \otimes S^m \mathbb{H})$ by the correspondence $\xi \mapsto \tilde{\xi}$ (cf. [12, Chap. II, §5]). The Levi-Civita connection induces connections of E, H and the covariant exterior derivative $d^{\nabla} : \mathcal{A}^q(\wedge^k E \otimes S^m H) \to \mathcal{A}^{q+1}(\wedge^k E \otimes S^m H)$. Let $\widetilde{\mathcal{H}}$ be the horizontal subbundle of $TP(H^*)$. We define $d_{\widetilde{\mathcal{H}}} : \tilde{\mathcal{A}}^q(\wedge^k E \otimes S^m \mathbb{H}) \to \tilde{\mathcal{A}}^{q+1}(\wedge^k E \otimes S^m \mathbb{H})$ by the exterior derivative restricted to $\widetilde{\mathcal{H}}$. Then $d\widetilde{\nabla}\xi = d_{\widetilde{\mathfrak{U}}} \tilde{\xi}$.

We fix a point u_0^* of $P(H^*)$. The complex coordinate (z, w) of the fiber is given by $u_0^*(z + jw)$. A function f on $P(H^*)$ is a polynomial of degree (m - i, i)along the fiber if $f(u_0^*(z + jw))$ is a polynomial of z, w, \bar{z}, \bar{w} of degree m such that $(R_c)^*f = c^{m-i}\bar{c}^i f$ for $c \in \text{GL}(1, \mathbb{C})$. We denote by $\tilde{\mathcal{A}}^0_{(m-i,i)}$ the sheaf of elements of $p^{-1}p_*\mathcal{A}^0_{P(H^*)}(\mathbb{C})$ which are polynomials of degree (m - i, i) along the fiber on $P(H^*)$. We also define a sheaf $\tilde{\mathcal{A}}^q_{(m-i,i)}(\wedge^k E)$ as

$$\tilde{\mathcal{A}}^{q}_{(m-i,i)}(\wedge^{k}E) = \tilde{\mathcal{A}}^{q}(\wedge^{k}E) \otimes_{\tilde{\mathcal{A}}^{0}} \tilde{\mathcal{A}}^{0}_{(m-i,i)}.$$

Let $a_1 a_2 \cdots a_m$ denote the symmetrization $\frac{1}{m!} \sum_{\sigma \in S_m} a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(m)}$ of $a_1 \otimes \cdots \otimes a_m \in \otimes^m \mathbb{H}$, where S_m is the symmetric group of degree m. The set $\{1^m, 1^{m-1}j, 1^{m-2}j^2, \ldots, j^m\}$ is a \mathbb{C} -basis of $S^m \mathbb{H}$. Any element $\tilde{\xi}$ of $\tilde{\mathcal{A}}^q(\wedge^k E \otimes S^m \mathbb{H})$ is written as

(2)
$$\tilde{\xi} = \tilde{\xi}_0 1^m + \tilde{\xi}_1 1^{m-1} j + \tilde{\xi}_2 1^{m-2} j^2 + \dots + \tilde{\xi}_m j^m$$

for $p^{-1}(\wedge^k E)$ -valued 1-forms $\tilde{\xi}_0, \ldots, \tilde{\xi}_m$. Each $\tilde{\xi}_i$ is in $\tilde{\mathcal{A}}^q_{(m-i,i)}(\wedge^k E)$. We obtain the following proposition:

Proposition 3.1. There exist two isomorphisms:

(i) $\tilde{\mathcal{A}}^q(\wedge^k E \otimes S^m \mathbb{H}) \cong \tilde{\mathcal{A}}^q_{(m,0)}(\wedge^k E)$ by $\tilde{\xi} \mapsto \tilde{\xi}_0$. Moreover, $(d_{\widetilde{\mathcal{H}}}\tilde{\xi})_0 = d_{\widetilde{\mathcal{H}}}\tilde{\xi}_0$ for any $\tilde{\xi} \in \tilde{\mathcal{A}}^q(\wedge^k E \otimes S^m \mathbb{H})$. (ii) $\mathcal{A}^q(\wedge^k E \otimes S^m H) \cong \tilde{\mathcal{A}}^q_{(m,0)}(\wedge^k E)$ by $\xi \mapsto \tilde{\xi}_0$. Moreover, $(\widetilde{d^{\nabla}\xi})_0 = d_{\widetilde{\mathcal{H}}}\tilde{\xi}_0$ for any $\xi \in \mathcal{A}^q(\wedge^k E \otimes S^m H)$.

For $\xi \in \mathcal{A}^q(\wedge^k E \otimes S^m H)$, the element $\tilde{\xi}_0 \in \tilde{\mathcal{A}}^q_{(m,0)}(\wedge^k E)$ is said to be a *lift to* $P(H^*)$.

§3.2. Lift of $\mathcal{A}^q(\wedge^k E\otimes S^m H)$ to Z

We denote by l a line bundle over Z which is the hyperplane bundle on each fiber $\mathbb{C}P^1$ of f. We define a sheaf $\hat{\mathcal{A}}^0(l^m)$ by

$$\hat{\mathcal{A}}^{0}(l^{m}) = \left\{ \zeta \in f^{-1}f_{*}(\mathcal{A}^{0}_{Z}(l^{m})) \mid \zeta : \text{holomorphic along each fiber of } f \right\}.$$

We denote by $\hat{\mathcal{A}}^0$ the sheaf $\hat{\mathcal{A}}^0(l^0)$ of functions on Z which are constant along each fiber of f. Let $\hat{\mathcal{A}}^q(\wedge^k E)$ denote the sheaf of pull-backs of $\wedge^k E$ -valued q-forms on M by f. We define a sheaf $\hat{\mathcal{A}}^q(\wedge^k E \otimes l^m)$ as

$$\hat{\mathcal{A}}^q(\wedge^k E \otimes l^m) = \hat{\mathcal{A}}^q(\wedge^k E) \otimes_{\hat{\mathcal{A}}^0} \hat{\mathcal{A}}^0(l^m).$$

Any element $\tilde{\xi}_0$ of $\tilde{\mathcal{A}}^q_{(m,0)}$ defines an element of $\hat{\mathcal{A}}^q(l^m)$, which we denote by $\hat{\xi}$. Such an element $\hat{\xi}$ is called a *lift of* ξ *to* Z. The correspondence $\tilde{\xi}_0 \mapsto \hat{\xi}$ provides the isomorphism $\tilde{\mathcal{A}}^q_{(m,0)}(\wedge^k E) \cong \hat{\mathcal{A}}^q(\wedge^k E \otimes l^m)$. Proposition 3.1 implies the following proposition:

Proposition 3.2. We have $\mathcal{A}^q(\wedge^k E \otimes S^m H) \cong \hat{\mathcal{A}}^q(\wedge^k E \otimes l^m)$ by $\xi \mapsto \hat{\xi}$. \Box

§3.3. Real structures

We define an anti- \mathbb{C} -linear map $\tau \colon \mathcal{A}^q(\wedge^k E \otimes S^m H) \to \mathcal{A}^q(\wedge^k E \otimes S^m H)$ by

$$\tau(\xi) = \sum_{i} (J_E^k \otimes J_H^m)(v_i) \otimes \overline{\alpha^i}$$

for $\xi = \sum_i v_i \otimes \alpha^i$, where $\{v_i\}$ is a frame of $\wedge^k E \otimes S^m H$ and α^i is a *q*-form. We denote by $\mathcal{A}^q (\wedge^k E \otimes S^m H)^{\tau}$ the sheaf of τ -invariant elements of $\mathcal{A}^q (\wedge^k E \otimes S^m H)$. We define an anti- \mathbb{C} -linear endomorphism $\tilde{\tau}$ of $\tilde{\mathcal{A}}^q (\wedge^k E \otimes S^m \mathbb{H})$ by

$$\tilde{\tau}(\beta \otimes 1^{m-i}j^i) = J_E^k \overline{R_j^*\beta} \otimes 1^{m-i}j^i$$

for $\beta \in \tilde{\mathcal{A}}^q(\wedge^k E)$. It induces an endomorphism of $\tilde{\mathcal{A}}^q_{(m-i,i)}(\wedge^k E)$ such that $\tilde{\tau}(\tilde{\xi}) = \tilde{\tau}(\tilde{\xi})$ and $\tilde{\tau}(\tilde{\xi}_i) = \tilde{\tau}(\tilde{\xi})_i$ for $\xi \in \mathcal{A}^q(\wedge^k E \otimes S^m H)$. Under the representation (2), $\tilde{\xi}$ is $\tilde{\tau}$ -invariant if and only if $\tilde{\xi}_i$ is $\tilde{\tau}$ -invariant for each i, and $\tilde{\xi}_i = (-1)^{m-i} J_E \tilde{\xi}_{m-i}$. Let $\tilde{\mathcal{A}}^q(\wedge^k E \otimes S^m \mathbb{H})^{\tilde{\tau}}$ and $\tilde{\mathcal{A}}^q_{(m,0)}(\wedge^k E)^{\tilde{\tau}}$ denote the sheaves of $\tilde{\tau}$ -invariant elements of $\tilde{\mathcal{A}}^q(\wedge^k E \otimes S^m \mathbb{H})$ and $\tilde{\mathcal{A}}^q_{(m,0)}(\wedge^k E)$, respectively. Then we have the following proposition:

634

Proposition 3.3. We have $\mathcal{A}^q(\wedge^k E \otimes S^m H)^{\tau} \cong \tilde{\mathcal{A}}^q(\wedge^k E \otimes S^m \mathbb{H})^{\tilde{\tau}} \cong \tilde{\mathcal{A}}^q_{(m,0)}(\wedge^k E)^{\tilde{\tau}}$ by $\xi \mapsto \tilde{\xi} \mapsto \tilde{\xi}_0$.

The action R_j on $P(H^*)$ induces an anti-holomorphic involution of Z, and we denote it by $R_{[j]}: Z \to Z$. An anti- \mathbb{C} linear endomorphism $\hat{\tau}$ of $\hat{\mathcal{A}}^q(\wedge^k E \otimes l^m)$ is defined by

$$\hat{\tau}(\beta_Z) = J_E^k \overline{R_{[j]}^* \beta_Z}$$

for $\beta_Z \in \hat{\mathcal{A}}^q(\wedge^k E \otimes l^m)$. Let $\hat{\mathcal{A}}^q(\wedge^k E \otimes l^m)^{\hat{\tau}}$ denote the sheaf of $\hat{\tau}$ -invariant elements of $\hat{\mathcal{A}}^q(\wedge^k E \otimes l^m)$.

Proposition 3.4. We have $\mathcal{A}^q(\wedge^k E \otimes S^m H)^{\tau} \cong \hat{\mathcal{A}}^q(\wedge^k E \otimes l^m)^{\hat{\tau}}$ by $\xi \mapsto \hat{\xi}$. \Box

If k + m is even, then τ and $\hat{\tau}$ are real structures.

§4. Canonical 1-forms on $P(H^*)$ and Z

§4.1. Canonical 1-form on $P(H^*)$

We define a $p^{-1}(E) \otimes \mathbb{H}$ -valued 1-form $\tilde{\theta}$ on $P(H^*)$ as

$$\tilde{\theta}_{u^*}(v) = u^{-1}(p_*(v))$$

for $v \in T_{u^*}P(H^*)$ at u^* . The 1-form $\tilde{\theta}$ is called the canonical 1-form on $P(H^*)$. We define $p^{-1}(E)$ -valued 1-forms $\tilde{\theta}_0$ and $\tilde{\theta}_1$ on $P(H^*)$ as $\tilde{\theta} = \tilde{\theta}_0 + \tilde{\theta}_1 j$. Then $\tilde{\theta}_0 \in \tilde{\mathcal{A}}^1_{(1,0)}(E)$ and $\tilde{\theta}_1 \in \tilde{\mathcal{A}}^1_{(0,1)}(E)$ are (1,0)- and (0,1)-forms, respectively. Moreover, they are $\tilde{\tau}$ -invariant, and $\tilde{\theta}_1 = J_E \tilde{\theta}_0$. Let A denote the connection form of $P(H^*)$. Then A is written as $A = \eta_0 + j\eta_1$ for complex-valued 1-forms η_0, η_1 on $P(H^*)$. Then η_0 and η_1 are $\tilde{\tau}$ -invariant (1,0)-forms. We have

(3)
$$d^{E}\tilde{\theta}_{0} = -\tilde{\theta}_{0} \wedge \eta_{0} - \eta_{1} \wedge \tilde{\theta}_{1}, \quad d^{E}\tilde{\theta}_{1} = -\tilde{\theta}_{0} \wedge \bar{\eta}_{1} - \tilde{\theta}_{1} \wedge \bar{\eta}_{0}.$$

Let s_H^2 denote the symmetrization $\otimes^2 H \to S^2 H$. We define an $S^2 H$ -valued 2form ω on M as $\omega = \omega_E \otimes s_H^2$. The lift $\widetilde{\omega} \in \tilde{\mathcal{A}}_2^2(S^2 \mathbb{H})$ is decomposed as $\widetilde{\omega} = \widetilde{\omega}_0 \mathbf{1} \cdot \mathbf{1} + \widetilde{\omega}_1 \mathbf{1} \cdot j + \widetilde{\omega}_2 j \cdot j$ for $\widetilde{\omega}_0 \in \tilde{\mathcal{A}}_{(2,0)}^2$, $\widetilde{\omega}_1 \in \tilde{\mathcal{A}}_{(1,1)}^2$ and $\widetilde{\omega}_2 \in \tilde{\mathcal{A}}_{(0,2)}^2$. Then $\widetilde{\omega}_0$, $\widetilde{\omega}_1$ and $\widetilde{\omega}_2$ are $\tilde{\tau}$ -invariant, $\widetilde{\omega}_2 = \widetilde{\omega}_0$ and $\widetilde{\omega}_1 = -\widetilde{\omega}_1$. Moreover,

$$\widetilde{\omega}_0 = \omega_E(\widetilde{\theta}_0, \widetilde{\theta}_0), \quad \widetilde{\omega}_1 = \omega_E(\widetilde{\theta}_0, \widetilde{\theta}_1) + \omega_E(\widetilde{\theta}_1, \widetilde{\theta}_0), \quad \widetilde{\omega}_2 = \omega_E(\widetilde{\theta}_1, \widetilde{\theta}_1).$$

The endomorphisms I, J, K in (1) induce almost complex structures on M, locally. We define local 2-forms ω_I, ω_J and ω_K on M by $\omega_I(X,Y) = g(IX,Y)$, $\omega_J(X,Y) = g(JX,Y)$ and $\omega_K(X,Y) = g(KX,Y)$ for $X,Y \in TM$. We define a function r on $P(H^*)$ by $r(u^*) = |u^*|$ for $u^* \in P(H^*)$, where $|\cdot|$ means the norm of H^* . Then $i\omega_I = -r^{-2}\widetilde{\omega}_1$ and $\omega_J - i\omega_K = -2r^{-2}\widetilde{\omega}_0$ on $P(H^*)$. We denote by t the scalar curvature of M. The curvature Ω of $P(H^*)$ is given by $\Omega = 2c_n t(i \otimes \omega_I + j \otimes \omega_J + k \otimes \omega_K)$ for a positive number c_n depending on n (cf. [1, 18]). Hence $\Omega = -2c_n tr^{-2}(\widetilde{\omega}_1 + 2j\widetilde{\omega}_0)$. From now on, we set $c = 2c_n t$. Then

(4)
$$d\eta_0 = -cr^{-2}\widetilde{\omega}_1 - \eta_1 \wedge \bar{\eta}_1, \quad d\eta_1 = -2cr^{-2}\widetilde{\omega}_0 + \eta_0 \wedge \eta_1 + \eta_1 \wedge \bar{\eta}_0.$$

Equations (3) and (4) induce the integrability of \tilde{I} . It follows from $d(r^2\eta_1) = 2(-c\tilde{\omega}_0 + r^2\eta_0 \wedge \eta_1)$ that $r^2\eta_1$ is a holomorphic (1,0)-form on $P(H^*)$. If the scalar curvature t is not zero, then $d(r^2\eta_1)$ is a holomorphic symplectic form on $P(H^*)$. Complex structures \tilde{J} , \tilde{K} are provided by definitions similar to that of \tilde{I} . Then $(\tilde{I}, \tilde{J}, -\tilde{K})$ is a hypercomplex structure on $P(H^*)$. If t > 0, then $\tilde{g} = r^2(cp^*g + \eta_0 \otimes \bar{\eta}_0 + \bar{\eta}_0 \otimes \eta_0 + \eta_1 \otimes \bar{\eta}_1 + \bar{\eta}_1 \otimes \eta_1)$ is a hyperkähler metric. Then $-id(r^2\eta_0)$, $d(r^2\eta_1^{\text{Re}})$, $d(r^2\eta_1^{\text{Im}})$ are Kähler forms with respect to \tilde{I} , \tilde{J} , $-\tilde{K}$, respectively. The hyperkähler structure $(\tilde{g}, \tilde{I}, \tilde{J}, -\tilde{K})$ induces that on $P(H^*)/\mathbb{Z}_2$. This coincides with the hyperkähler structure constructed by Swann [19].

§4.2. Derivatives of canonical forms

We take a torsion-free connection ∇ of $TP(H^*)$ preserving \tilde{I} . Let F be a holomorphic vector bundle on $P(H^*)$ and ∇_F a (1,0)-connection $\nabla_F \colon F \to F \otimes T^*$ of F. We consider the connection $\nabla_{F \otimes \wedge^q}$ of $F \otimes \wedge^q$ as the map $F \otimes \wedge^q \to F \otimes \wedge^q \otimes T^*$. Then the covariant exterior derivative d^{∇_F} is given by $(-1)^q \wedge \circ \nabla_{F \otimes \wedge^q}$. We remark that the operator $\bar{\partial}_F \colon F \otimes \wedge^{q,0} \to F \otimes \wedge^{q,1}$ satisfies $\bar{\partial}_F = (-1)^q \wedge \circ \nabla_{F \otimes \wedge^q}^{0,1}$. It follows from (3) and (4) that $\nabla_{E \otimes \wedge^1}^{0,1} \tilde{\theta}_0 = \eta_1 \otimes \tilde{\theta}_1, \nabla^{0,1} \eta_0 = cr^{-2} \omega_E(\tilde{\theta}_0, \tilde{\theta}_1) + \eta_1 \otimes \bar{\eta}_1$ and $\nabla^{0,1} \eta_1 = -\eta_1 \otimes \bar{\eta}_0$. We define a $p^{-1}(\wedge^k E)$ -valued (k, 0)-form $\tilde{\theta}_0^k$ by the kth wedge $\sum_{i_1,\dots,i_k=1}^{2n} e_{i_1} \wedge \cdots \wedge e_{i_k} \otimes \alpha_{i_1} \wedge \cdots \wedge \alpha_{i_k}$ of $\tilde{\theta}_0 = \sum_{i=1}^{2n} e_i \otimes \alpha_i$. It implies the following:

Proposition 4.1. We have

$$\nabla^{0,1}\tilde{\theta}_0^k = k\tilde{\theta}_0^{k-1} \wedge \eta_1 \wedge_E \tilde{\theta}_1,$$

$$\nabla^{0,1}(\tilde{\theta}_0^{k-1} \wedge \eta_0) = -(k-1)\tilde{\theta}_0^{k-2} \wedge \eta_0 \wedge \eta_1 \wedge_E \tilde{\theta}_1 + \tilde{\theta}_0^{k-1} \\ \wedge (cr^{-2}\omega_E(\tilde{\theta}_0, \tilde{\theta}_1) + \eta_1 \otimes \bar{\eta}_1),$$

$$\nabla^{0,1}(\tilde{\theta}_0^{k-1} \wedge \eta_1) = -\tilde{\theta}_0^{k-1} \wedge \eta_1 \otimes \bar{\eta}_0,$$

$$\nabla^{0,1}(\tilde{\theta}_0^{k-2} \wedge \eta_0 \wedge \eta_1) = -\tilde{\theta}_0^{k-2} \wedge \eta_1 \wedge (cr^{-2}\omega_E(\tilde{\theta}_0, \tilde{\theta}_1) - \eta_0 \otimes \bar{\eta}_0).$$

§4.3. Canonical 1-form on Z

The principal GL(1, \mathbb{C})-bundle $\pi: P(H^*) \to Z$ is regarded as the frame bundle of l^* . We define $\hat{\theta}_0$ and $\hat{\theta}_1$ as the $f^{-1}(E) \otimes l$ -valued (1,0)-form and the $f^{-1}(E) \otimes l^{-1}$ -valued (0,1)-form on Z induced by $\tilde{\theta}_0$ and $r^{-2}\tilde{\theta}_1$, respectively. Let η and $\hat{\omega}$ be the

 l^2 -valued (1,0)-form and the l^2 -valued (2,0)-form on Z induced by $r^2\eta_1$ and $\tilde{\omega}_0$, respectively. The forms $\hat{\theta}_0$, $\hat{\theta}_1$, η and $\hat{\omega}$ are $\hat{\tau}$ -invariant.

A connection of l is induced by $\eta_0.$ Let d^l be the covariant exterior derivative. We obtain

(5)
$$d^{l}\hat{\theta}_{0} = -\eta \wedge \hat{\theta}_{1}, \quad d^{l}\eta = -2c\widehat{\omega}.$$

If $t \neq 0$, then η is a holomorphic contact form on Z such that l^2 is the contact bundle. Let $g_{\widehat{\mathcal{V}}}$ be a real symmetric 2-form on Z such that $\pi^* g_{\widehat{\mathcal{V}}} = \eta_1 \otimes \overline{\eta}_1 + \overline{\eta}_1 \otimes \eta_1$. If t > 0, then $\hat{g} = cf^*g + g_{\widehat{\mathcal{V}}}$ is a Kähler–Einstein metric on Z with positive scalar curvature (cf. [18, Thms. 4.3, 6.1]).

Let ∇ be a torsion-free connection on Z such that $\nabla^{0,1} = \bar{\partial}$. Equation (5) implies that $\nabla^{0,1}\hat{\theta}_0 = \eta \otimes \hat{\theta}_1$ and $\nabla^{0,1}\eta = 0$. We define an $f^{-1}(\wedge^k E) \otimes l^k$ -valued (k, 0)-form $\hat{\theta}_0^k$ as the kth wedge of $\hat{\theta}_0$. Then we have the following proposition:

Proposition 4.2. We have $\nabla^{0,1}\hat{\theta}_0^k = k\hat{\theta}_0^{k-1} \wedge \eta \wedge_E \hat{\theta}_1$, and $\nabla^{0,1}(\hat{\theta}_0^{k-1} \wedge \eta) = 0$. \Box

§5. Holomorphic k-vector fields on $P(H^*)$ and Z

§5.1. Holomorphic k-vector fields on $P(H^*)$

Let $\hat{1}$, \hat{i} , \hat{j} , \hat{k} be fundamental vector fields associated with the elements 1, i, j, k of Lie algebra $gl(1,\mathbb{H}) = \mathbb{H}$, respectively. We define complex vector fields v_0 and v_1 as $v_0 = \frac{1}{2}(\hat{1} - i\hat{i})$ and $v_1 = \frac{1}{2}(\hat{j} + i\hat{k})$. Then $\{v_0, v_1\}$ is the dual basis of $\{\eta_0, \eta_1\}$. Let X' be a (1, 0)-vector field on $P(H^*)$. Then X' is decomposed into

(6)
$$X' = X'_h + f_0 v_0 + f_1 v_1$$

for a horizontal vector field X'_h and functions f_0 , f_1 on $P(H^*)$.

Lemma 5.1. The (1,0)-vector field X' is holomorphic if and only if

$$\begin{split} \text{(i)} \quad & \bar{\partial}(\tilde{\theta}_0(X'_h)) - f_1\tilde{\theta}_1 = 0, \\ \text{(ii)} \quad & \bar{\partial}f_0 = cr^{-2}\omega_E(\tilde{\theta}_0(X'_h),\tilde{\theta}_1) + f_1\bar{\eta}_1 \end{split}$$

under the decomposition (6).

Proof. The vector field X' is holomorphic if and only if $\nabla^{0,1}X' = 0$. The equation is equal to $\tilde{\theta}_0(\nabla^{0,1}X') = 0$, $\eta_0(\nabla^{0,1}X') = 0$ and $\eta_1(\nabla^{0,1}X') = 0$. The first equation induces the third one since $\bar{\partial}^{\nabla}(\tilde{\theta}_0(\nabla^{0,1}X')) = \eta_1(\nabla^{0,1}X') \wedge \tilde{\theta}_1 + \tilde{\theta}_0(\Omega_{TP(H^*)}^{(0,2)}(X')) = \eta_1(\nabla^{0,1}X') \wedge \tilde{\theta}_1$ and the map $\wedge \tilde{\theta}_1 \colon \wedge^{0,1} \to p^{-1}(E) \otimes \wedge^{0,2}$ is injective. Proposition 4.1 implies that $\tilde{\theta}_0(\nabla^{0,1}X') = \bar{\partial}(\tilde{\theta}_0(X'_h)) - f_1\tilde{\theta}_1$ and $\eta_0(\nabla^{0,1}X') = \bar{\partial}f_0 - cr^{-2}\omega_E(\tilde{\theta}_0(X'_h), \tilde{\theta}_1) - f_1\bar{\eta}_1$. It turns out that $\nabla^{0,1}X' = 0$ is equivalent to conditions (i) and (ii).

Let k be an integer which is greater than 1. Any (k, 0)-vector X' is decomposed into

(7)
$$X' = X'_h + Y_0 \wedge v_0 + Y_1 \wedge v_1 + Z_0 \wedge v_0 \wedge v_1$$

for $X'_h \in \wedge^k \widetilde{\mathcal{H}}^{1,0}$ and $Y_0, Y_1 \in \wedge^{k-1} \widetilde{\mathcal{H}}^{1,0}$ and $Z_0 \in \wedge^{k-2} \widetilde{\mathcal{H}}^{1,0}$. By a proof similar to Lemma 5.1, we obtain the following lemma:

Lemma 5.2. For $2 \le k \le 2n$, the (k, 0)-vector field X' is holomorphic if and only if

- (i) $\bar{\partial}(\tilde{\theta}_0^k(X'_h)) k^2 \tilde{\theta}_0^{k-1}(Y_1) \wedge_E \tilde{\theta}_1 = 0,$
- (ii) $k^2 \bar{\partial}(\tilde{\theta}_0^{k-1}(Y_0)) + k^2(k-1)^2 \tilde{\theta}_0^{k-2}(Z_0) \wedge_E \tilde{\theta}_1 cr^{-2} \omega_E(\tilde{\theta}_0^k(X_h'), \tilde{\theta}_1) k^2 \tilde{\theta}_0^{k-1}(Y_1) \otimes \bar{\eta}_1 = 0,$
- (iii) $\bar{\partial}(\tilde{\theta}_0^{k-1}(Y_1)) + \tilde{\theta}_0^{k-1}(Y_1) \otimes \bar{\eta}_0 = 0,$

(iv)
$$(k-1)^2 \bar{\partial}(\tilde{\theta}_0^{k-2}(Z_0)) + (k-1)^2 \tilde{\theta}_0^{k-2}(Z_0) \otimes \bar{\eta}_0 - cr^{-2}\omega_E(\tilde{\theta}_0^{k-1}(Y_1), \tilde{\theta}_1) = 0,$$

under the decomposition (7). In particular, in the case $k \neq 2n$, X' is holomorphic if and only if equations (i), (ii), (iv) hold.

From now on, we extend the decomposition (7) to the case k = 1 as $Z_0 = 0$.

Theorem 5.3. Horizontal k and (k-1)-vector fields X'_h , Y_1 satisfy, for $1 \le k \le 2n-1$,

(i) $\bar{\partial}(\tilde{\theta}_0^k(X'_h)) - k^2 \tilde{\theta}_0^{k-1}(Y_1) \wedge_E \tilde{\theta}_1 = 0,$

and for k = 2n, (i) and

$$\bar{\partial}(\tilde{\theta}_0^{2n-1}(r^2Y_1)) = 0$$

if and only if the (k, 0)-vector field $X'_h + Y_0 \wedge v_0 + Y_1 \wedge v_1 + Z_0 \wedge v_0 \wedge v_1$ is holomorphic for local horizontal (k-1)- and (k-2)-vector fields Y_0 , Z_0 on $P(H^*)$.

Proof. By taking the derivative $\bar{\partial}$ on (i), we obtain $\bar{\partial}(r^2\tilde{\theta}_0^{k-1}(Y_1)) \wedge \tilde{\theta}_1 = 0$. Since $\wedge \tilde{\theta}_1 : p^{-1}(\wedge^{k-1}E) \otimes \wedge^{0,1} \to p^{-1}(\wedge^k E) \otimes \wedge^{0,2}$ is injective for $1 \leq k \leq 2n-1$, $\bar{\partial}(r^2\tilde{\theta}_0^{k-1}(Y_1)) = 0$. The equation is equal to (iii) in Lemma 5.2. It is easy to see that condition (iv) is equivalent to

(8)
$$\bar{\partial}((k-1)^2 r^2 \tilde{\theta}_0^{k-2}(Z_0)) = c \omega_E(r^2 \tilde{\theta}_0^{k-1}(Y_1), r^{-2} \tilde{\theta}_1).$$

The derivative $\bar{\partial}$ on the right-hand side of (8) vanishes. By Dolbeault's lemma, there exists an element $Z_0 \in \mathcal{A}^0_{P(H^*)}(\wedge^{k-2}\widetilde{\mathcal{H}}^{1,0})$ satisfying (8), and (iv). In the case $k \neq 1$, we write (ii) as

(9)
$$\bar{\partial}(\tilde{\theta}_{0}^{k-1}(Y_{0})) = k^{-2} c \omega_{E}(\tilde{\theta}_{0}^{k}(X_{h}'), r^{-2}\tilde{\theta}_{1}) + r^{2}\tilde{\theta}_{0}^{k-1}(Y_{1}) \otimes r^{-2}\bar{\eta}_{1}$$
$$- (k-1)^{2} r^{2}\tilde{\theta}_{0}^{k-2}(Z_{0}) \wedge_{E} r^{-2}\tilde{\theta}_{1}.$$

The derivative $\bar{\partial}$ on the right-hand side of (9) is provided by

$$cr^{-2}\big\{\wedge\big(\omega_E(\tilde{\theta}_0^{k-1}(Y_1)\wedge_E\tilde{\theta}_1,\tilde{\theta}_1)\big)-2\tilde{\theta}_0^{k-1}(Y_1)\otimes\omega_E(\tilde{\theta}_1,\tilde{\theta}_1)-\omega_E(\tilde{\theta}_0^{k-1}(Y_1),\tilde{\theta}_1)\wedge\tilde{\theta}_1\big\}.$$

Then it vanishes. In the case k = 1, by the same argument, the derivative $\bar{\partial}$ on the right-hand side of (ii) in Lemma 5.1 vanishes. Hence, there exists $Y_0 \in \mathcal{A}^0_{P(H^*)}(\wedge^{k-1}\widetilde{\mathcal{H}})$ such that (ii) holds for any $1 \leq k \leq 2n$. It completes the proof. \Box

§5.2. Holomorphic k-vector fields on Z

The horizontal bundle $\widetilde{\mathcal{H}}$ induces a bundle $\widehat{\mathcal{H}}$ over the twistor space Z. We denote by v the l^{-2} -valued (1,0)-vector field on Z induced by the vector field $r^{-2}v_1$ on $P(H^*)$. The vector field v is regarded as the dual of η . A (k, 0)-vector field X' on Z is given by

$$X' = X'_h + Y \wedge v$$

for $X'_h \in \wedge^k \widehat{\mathcal{H}}^{1,0}$ and $Y \in l^2 \otimes \wedge^{k-1} \widehat{\mathcal{H}}^{1,0}$. By the same argument as Theorem 5.3, we have the following theorem:

Theorem 5.4. For $1 \le k \le 2n - 1$, the (k, 0)-vector field X' is holomorphic if and only if

$$\bar{\partial}^l(\hat{\theta}_0^k(X'_h)) - k^2 \hat{\theta}_0^{k-1}(Y) \wedge_E \hat{\theta}_1 = 0.$$

The (2n, 0)-vector field X' is holomorphic if and only if

$$\bar{\partial}^{l}(\hat{\theta}_{0}^{2n}(X_{h}')) - 4n^{2}\hat{\theta}_{0}^{2n-1}(Y) \wedge_{E} \hat{\theta}_{1} = 0,$$

$$\bar{\partial}^{l}(\hat{\theta}_{0}^{2n-1}(Y)) = 0.$$

§6. Quaternionic sections

In this section we provide a definition of a quaternionic section of $\wedge^k E \otimes S^m H$. We show that the lifts of the quaternionic section satisfy some $\bar{\partial}$ -equations on $P(H^*)$ and Z.

§6.1. Definition of quaternionic sections

We identify H with H^* by $\omega_{H^*}^{\sharp}$. By the Clebsch–Gordan decomposition, the covariant derivative ∇ is regarded as

$$\nabla \colon \Gamma(\wedge^k E \otimes S^m H) \to \Gamma(\wedge^k E \otimes E^* \otimes S^{m+1} H) \oplus \Gamma(\wedge^k E \otimes E^* \otimes S^{m-1} H).$$

The Dirac operator (cf. [4]) is defined as the $\wedge^k E \otimes E^* \otimes S^{m+1}H$ -part of ∇ :

$$\mathfrak{D}_{\wedge^k E} \colon \Gamma(\wedge^k E \otimes S^m H) \to \Gamma(\wedge^k E \otimes E^* \otimes S^{m+1} H).$$

Let k be a positive integer. Let $(\wedge^k E \otimes E^*)_0$ denote the kernel of the trace map tr: $\wedge^k E \otimes E^* \to \wedge^{k-1} E$. Then $\wedge^k E \otimes E^* = (\wedge^k E \otimes E^*)_0 \oplus (\wedge^{k-1} E) \wedge \mathrm{id}_E$. We define an operator

$$\mathfrak{D}^0_{\wedge^k E} \colon \Gamma(\wedge^k E \otimes S^m H) \to \Gamma((\wedge^k E \otimes E^*)_0 \otimes S^{m+1} H)$$

as the $(\wedge^k E \otimes E^*)_0$ -part of $\mathfrak{D}_{\wedge^k E}$. We rescale the trace map as $\frac{1}{2n-k+1}$ tr, and also denote it using the same notation tr.

Definition 6.1. Let *m* be a non-negative integer. A section *X* of $\wedge^k E \otimes S^m H$ is *quaternionic* if $\mathfrak{D}^0_{\wedge^k E}(X) = 0$ for $1 \leq k \leq 2n-1$ and $\mathfrak{D}_{\wedge^{2n-1}E} \circ \operatorname{tr} \circ \mathfrak{D}_{\wedge^{2n}E}(X) = 0$ for k = 2n.

Any section X of $\wedge^{2n} E \otimes S^m H$ satisfies $\mathfrak{D}^0_{\wedge^{2n} E}(X) = 0$ since $(\wedge^{2n} E \otimes E^*)_0 = \{0\}$. Definition 6.1 is also valid in quaternionic manifolds. The operators $\mathfrak{D}^0_{\wedge^k E}$ and $\mathfrak{D}_{\wedge^{2n-1}E} \circ \operatorname{tr} \circ \mathfrak{D}_{\wedge^{2n}E}$ are commutative with τ . Let $\mathcal{Q}(\wedge^k E \otimes S^m H)$ be the sheaf of quaternionic sections of $\wedge^k E \otimes S^m H$ and $\mathcal{Q}(\wedge^k E \otimes S^m H)^{\tau}$ that of τ -invariant ones.

§6.2. Lift of quaternionic sections to $P(H^*)$

A map $\widetilde{\omega}_{H^*}^{\sharp}: \widetilde{\mathcal{A}}_{(m,0)}^1 \to \widetilde{\mathcal{A}}^0(E^*) \otimes \widetilde{\mathcal{A}}_{(1,0)}^0 \otimes \widetilde{\mathcal{A}}_{(m,0)}^0$ is induced by $\omega_{H^*}^{\sharp}: \mathcal{A}^1(S^m H) \to \mathcal{A}^0(E^* \otimes H \otimes S^m H)$. By $\widetilde{\mathcal{A}}_{(1,0)}^0 \otimes \widetilde{\mathcal{A}}_{(m,0)}^0 = \widetilde{\mathcal{A}}_{(m+1,0)}^0$, we have

(10)
$$\begin{aligned}
\tilde{\mathcal{A}}^{1}_{(m,0)}(\wedge^{k}E) &\xrightarrow{\widetilde{\omega}^{\sharp}_{H^{*}}} \to \tilde{\mathcal{A}}^{0}_{(m+1,0)}(\wedge^{k}E \otimes E^{*}) \\
& \uparrow & \uparrow \\
\mathcal{A}^{1}(\wedge^{k}E \otimes S^{m}H) \xrightarrow{s^{m+1}_{H} \circ \omega^{\sharp}_{H^{*}}} \mathcal{A}^{0}(\wedge^{k}E \otimes E^{*} \otimes S^{m+1}H).
\end{aligned}$$

position 6.2. We have
$$(\widehat{\mathfrak{D}_{\wedge^k E}\xi - \zeta \wedge_E \operatorname{id}_E})_0 = \widetilde{\omega}_{H^*}^{\sharp} (\overline{\partial} \widetilde{\xi}_0 - \widetilde{\zeta}_0 \wedge_E r^{-2} \widetilde{\theta})$$

Proposition 6.2. We have $(\mathfrak{D}_{\wedge^k E}\xi - \zeta \wedge_E \operatorname{id}_E)_0 = \widetilde{\omega}_{H^*}^{\sharp}(\partial \xi_0 - \zeta_0 \wedge_E r^{-2}\theta_1)$ for $\xi \in \mathcal{A}^0(\wedge^k E \otimes S^m H)$ and $\zeta \in \mathcal{A}^0(\wedge^{k-1} E \otimes S^{m+1} H).$

Proof. It follows from $\mathfrak{D}_{\wedge^k E} = s_H^{m+1} \circ \omega_{H^*}^{\sharp} \circ \nabla$ and diagram (10) that $(\widetilde{\mathfrak{D}}_{\wedge^k E}\xi)_0 = \widetilde{\omega}_{H^*}^{\sharp}(d_{\widetilde{\mathcal{H}}}\widetilde{\xi}_0)$. Since the kernel of $\widetilde{\omega}_{H^*}^{\sharp}$ is $\mathcal{A}_{P(H^*)}^0((\widetilde{\mathcal{H}}^*)^{1,0} \otimes \wedge^k E)$, $\widetilde{\omega}_{H^*}^{\sharp}(d_{\widetilde{\mathcal{H}}}\widetilde{\xi}_0) = \widetilde{\omega}_{H^*}^{\sharp}(\overline{\partial}\widetilde{\xi}_0)$. We also have $\widetilde{\omega}_{H^*}^{\sharp}(\widetilde{\zeta}_0 \wedge_E r^{-2}\widetilde{\theta}_1) = \widetilde{\zeta}_0 \wedge_E$ $\widetilde{\mathrm{id}}_E = (\widetilde{\zeta} \wedge_E \operatorname{id}_E)_0$. Hence we finish the proof.

We denote by $\widetilde{\mathcal{O}}_m(\wedge^k E)$ the kernel of $\overline{\partial}$ on $\widetilde{\mathcal{A}}^0_{(m,0)}(\wedge^k E)$. By Proposition 6.2 and the injectivity of $\widetilde{\omega}^{\sharp}_{H^*}$ on $\mathcal{A}^0_{P(H^*)}((\widetilde{\mathcal{H}}^*)^{0,1} \otimes \wedge^k E)$, we obtain an isomorphism

(11)
$$\operatorname{Ker} \mathfrak{D}_{\wedge^{k} E} \cong \widetilde{\mathcal{O}}_{m}(\wedge^{k} E)$$

by $\xi \mapsto \tilde{\xi}_0$.

640

Proposition 6.3. Let ξ and ζ be elements of $\mathcal{A}^0(\wedge^k E \otimes S^m H)$ and $\mathcal{A}^0(\wedge^{k-1} E \otimes S^{m+1}H)$, respectively. The element ξ is quaternionic and $\zeta = \operatorname{tr} \circ \mathfrak{D}_{\wedge^k E}(\xi)$ if and only if $\bar{\partial}\xi_0 - \tilde{\zeta}_0 \wedge_E r^{-2}\tilde{\theta}_1 = 0$ for $1 \leq k \leq 2n-1$, and $\bar{\partial}\xi_0 - \tilde{\zeta}_0 \wedge_E r^{-2}\tilde{\theta}_1 = 0$, $\bar{\partial}\zeta_0 = 0$ for k = 2n.

Proof. The element ξ is quaternionic and $\zeta = \operatorname{tr} \circ \mathfrak{D}_{\wedge^k E}(\xi)$ if and only if $\mathfrak{D}_{\wedge^k E}\xi - \zeta \wedge_E \operatorname{id}_E = 0$ and, in addition, $\mathfrak{D}_{\wedge^{k-1}E}\zeta = 0$ for k = 2n. By Proposition 6.2 and the injectivity of $\widetilde{\omega}_{H^*}^{\sharp}$ on $(\widetilde{\mathcal{H}}^*)^{0,1}$, $\mathfrak{D}_{\wedge^k E}\xi - \zeta \wedge_E \operatorname{id}_E = 0$ is equal to $\overline{\partial} \xi_0 - \zeta_0 \wedge_E r^{-2} \widetilde{\theta}_1 = 0$. Furthermore, the isomorphism (11) implies that $\mathfrak{D}_{\wedge^{k-1}E}\zeta = 0$ is equivalent to $\overline{\partial} \zeta_0 = 0$.

§6.3. Lift of quaternionic sections to Z

The map $\widetilde{\omega}_{H^*}^{\sharp}$ induces a map $\widehat{\omega}_{H^*}^{\sharp} : \widehat{\mathcal{A}}^1(\wedge^k E \otimes l^m) \to \widehat{\mathcal{A}}^0(\wedge^k E \otimes E^* \otimes l^{m+1})$. There exists a commutative diagram

$$\begin{split} \hat{\mathcal{A}}^{0}(\wedge^{k}E\otimes l^{m}) & \xrightarrow{d_{\widehat{\mathcal{H}}}^{l}} \hat{\mathcal{A}}^{1}(\wedge^{k}E\otimes l^{m}) \xrightarrow{\widehat{\omega}_{H^{*}}^{\sharp}} \hat{\mathcal{A}}^{0}(\wedge^{k}E\otimes E^{*}\otimes l^{m+1}) \\ & \uparrow & \uparrow & \uparrow \\ \tilde{\mathcal{A}}^{0}_{(m,0)}(\wedge^{k}E) & \xrightarrow{d_{\widehat{\mathcal{H}}}} \tilde{\mathcal{A}}^{1}_{(m,0)}(\wedge^{k}E) \xrightarrow{\widetilde{\omega}_{H^{*}}^{\sharp}} \tilde{\mathcal{A}}^{0}_{(m+1,0)}(\wedge^{k}E\otimes E^{*}) \\ & \uparrow & \uparrow & \uparrow \\ \mathcal{A}^{0}(\wedge^{k}E\otimes S^{m}H) \xrightarrow{\nabla} \mathcal{A}^{1}(\wedge^{k}E\otimes S^{m}H) \xrightarrow{s_{H}^{m+1}\circ\omega_{H^{*}}^{\sharp}} \mathcal{A}^{0}(\wedge^{k}E\otimes E^{*}\otimes S^{m+1}H). \end{split}$$

By the same proof as Proposition 6.2, we obtain the following proposition:

Proposition 6.4. We have
$$\mathfrak{D}_{\wedge^k E} \widehat{\xi} - \widehat{\zeta} \wedge_E \operatorname{id}_E = \widehat{\omega}_{H^*}^{\sharp} (\overline{\partial}^l \widehat{\xi} - \widehat{\zeta} \wedge_E \widehat{\theta}_1).$$

We denote by $\widehat{\mathcal{O}}(\wedge^k E \otimes l^m)$ the kernel of $\overline{\partial}^l$ on $\widehat{\mathcal{A}}^0(\wedge^k E \otimes l^m)$. Then

(12)
$$\operatorname{Ker} \mathfrak{D}_{\wedge^{k} E} \cong \widehat{\mathcal{O}}(\wedge^{k} E \otimes l^{m})$$

by $\xi \mapsto \hat{\xi}$. Proposition 6.4 implies the following:

Proposition 6.5. Let ξ and ζ be elements of $\mathcal{A}^0(\wedge^k E \otimes S^m H)$ and $\mathcal{A}^0(\wedge^{k-1} E \otimes S^{m+1}H)$, respectively. The element ξ is quaternionic and $\zeta = \operatorname{tr} \circ \mathfrak{D}_{\wedge^k E}(\xi)$ if and only if $\bar{\partial}^l \hat{\xi} - \hat{\zeta} \wedge_E \hat{\theta}_1 = 0$ for $1 \leq k \leq 2n-1$, $\bar{\partial}^l \hat{\xi} - \hat{\zeta} \wedge_E \hat{\theta}_1 = 0$ and $\bar{\partial}^l \hat{\zeta} = 0$ for k = 2n.

§7. Quaternionic k-vector fields

A quaternionic section of $\wedge^k E \otimes S^k H$ is called a *quaternionic k-vector field* on M. We prove that any quaternionic k-vector field corresponds to a holomorphic (k, 0)-vector field on Z.

§7.1. Horizontal lift of k-vector fields to $P(H^*)$

Let \widetilde{X}_h denote the horizontal lift to $P(H^*)$ of a k-vector field X on M. We denote by $\widetilde{\mathcal{A}}_0(\wedge^k \widetilde{\mathcal{H}}^{1,0})$ the sheaf of horizontal (k, 0)-vector fields which are $\mathrm{GL}(1, \mathbb{C})$ invariant and holomorphic along each fiber.

Proposition 7.1. The isomorphism $\mathcal{A}^0(\wedge^k E \otimes S^k H) \cong \tilde{\mathcal{A}}_0(\wedge^k \widetilde{\mathcal{H}}^{1,0})$ is given by $X \mapsto \widetilde{X}_h^{k,0}$. Moreover, $\widetilde{X}_0 = (k!)^{-2} \tilde{\theta}_0^k(\widetilde{X}_h^{k,0})$ for $X \in \mathcal{A}^0(\wedge^k E \otimes S^k H)$.

Proof. The lift \widetilde{X} of $X \in \mathcal{A}^0(\wedge^k E \otimes S^k H)$ to $P(H^*)$ is related to the horizontal lift \widetilde{X}_h by $\widetilde{X} = (\otimes^k \widetilde{\theta})(\widetilde{X}_h)$. The $\wedge^k E \otimes \wedge^k T^* P(H^*) \otimes S^k \mathbb{H}$ -part of $\otimes^k \widetilde{\theta}$ is $\sum_{i=0}^k (k!)^{-2} {k \choose i} \widetilde{\theta}_0^{k-i} \wedge \widetilde{\theta}_1^i 1^{k-i} j^i$. Hence $\widetilde{X}_0 = (k!)^{-2} \widetilde{\theta}_0^k(\widetilde{X}_h) = (k!)^{-2} \widetilde{\theta}_0^k(\widetilde{X}_h^{k,0})$. Then $\widetilde{\theta}_0^k(\nabla_v^{v,1} \widetilde{X}_h^{k,0}) = \nabla_v^{v,1} (\widetilde{\theta}_0^k(\widetilde{X}_h^{k,0})) = 0$ for any tangent vector v along the fiber. By Proposition 4.1, $\widetilde{\theta}_0^{k-1} \wedge \eta_0(\nabla_v^{v,1} \widetilde{X}_h^{k,0})$, $\widetilde{\theta}_0^{k-1} \wedge \eta_1(\nabla_v^{v,1} \widetilde{X}_h^{k,0})$ and $\widetilde{\theta}_0^{k-2} \wedge \eta_0 \wedge \eta_1(\nabla_v^{v,1} \widetilde{X}_h^{k,0})$ also vanish. Hence $\widetilde{X}_h^{k,0}$ is holomorphic along each fiber. Let X' be a horizontal (k, 0)-vector field on $P(H^*)$. Then

(13)
$$R_c^*(\tilde{\theta}_0^k(X')) = (R_c^*\tilde{\theta}_0^k)((R_{c^{-1}})_*X') = c^k\tilde{\theta}_0^k((R_{c^{-1}})_*X')$$

for any $c \in \operatorname{GL}(1,\mathbb{C})$. Thus the bundle isomorphism $\tilde{\theta}_0^k \colon \wedge^k \widetilde{\mathcal{H}}^{1,0} \cong p^{-1}(\wedge^k E)$ induces $\tilde{\mathcal{A}}_0(\wedge^k \widetilde{\mathcal{H}}^{1,0}) \cong \tilde{\mathcal{A}}^0_{(k,0)}(\wedge^k E)$. It follows from Proposition 3.1 that $\mathcal{A}^0(\wedge^k E \otimes S^k H) \cong \tilde{\mathcal{A}}_0(\wedge^k \widetilde{\mathcal{H}}^{1,0})$. We finish the proof.

Under the irreducible decomposition of $\wedge^k TM$, the horizontal lift of the components except for $\wedge^k E \otimes S^k H$ vanish by $\tilde{\theta}_0^k$. Hence, Proposition 7.1 induces the following:

Corollary 7.2. Let X be an element of $\mathcal{A}^0(\wedge^k TM)$. The (k, 0)-part $\widetilde{X}_h^{k, 0}$ of \widetilde{X}_h is $\mathrm{GL}(1, \mathbb{C})$ -invariant and holomorphic along each fiber.

§7.2. Holomorphic lift of quaternionic k-vector fields to $P(H^*)$

A horizontal (k,0)-vector field X' on $P(H^*)$ is called of $\operatorname{GL}(1,\mathbb{C})$ -order m if $(R_{c^{-1}})_*X' = c^m X'$ for any $c \in \operatorname{GL}(1,\mathbb{C})$. We define $\tilde{\mathcal{A}}_m(\wedge^k \tilde{\mathcal{H}}^{1,0})$ as the sheaf of horizontal (k,0)-vector fields which are of $\operatorname{GL}(1,\mathbb{C})$ -order m and holomorphic along each fiber. By equation (13), we obtain an isomorphism $\tilde{\mathcal{A}}_m(\wedge^k \tilde{\mathcal{H}}^{1,0}) \cong \tilde{\mathcal{A}}^0_{(k+m,0)}(\wedge^k E)$ as $X' \mapsto (k!)^{-2} \tilde{\theta}^k_0(X')$. For an element ξ of $\mathcal{A}^0(\wedge^k E \otimes S^{k+m}H)$,

there exists a unique element \widetilde{Y}_{ξ} of $\widetilde{\mathcal{A}}_m(\wedge^k \widetilde{\mathcal{H}}^{1,0})$ such that

$$(k!)^{-2}\tilde{\theta}_0^k(\widetilde{Y}_{\xi}) = \tilde{\xi}_0.$$

Hence, we have

(14)
$$\mathcal{A}^0(\wedge^k E \otimes S^{k+m}H) \cong \tilde{\mathcal{A}}_m(\wedge^k \widetilde{\mathcal{H}}^{1,0})$$

by $\xi \mapsto \widetilde{Y}_{\xi}$. In the case m = 0, the isomorphism is given by Proposition 7.1.

Proposition 7.3. Let X and ζ be elements of $\mathcal{A}^0(\wedge^k E \otimes S^k H)$ and $\mathcal{A}^0(\wedge^{k-1} E \otimes S^{k+1}H)$, respectively. The k-vector field X is quaternionic and $\zeta = \operatorname{tr} \circ \mathfrak{D}_{\wedge^k E}(X)$ if and only if there exist $Y_0 \in \mathcal{A}^0_{P(H^*)}(\wedge^{k-1}\widetilde{\mathcal{H}}^{1,0})$ and $Z_0 \in \mathcal{A}^0_{P(H^*)}(\wedge^{k-2}\widetilde{\mathcal{H}}^{1,0})$ such that the (k, 0)-vector field $\widetilde{X}^{k, 0}_h + Y_0 \wedge v_0 + Y_1 \wedge v_1 + Z_0 \wedge v_0 \wedge v_1$ is holomorphic for $Y_1 = \frac{1}{r^2}\widetilde{Y}_{\zeta}$.

Proof. Setting $Y_1 = \frac{1}{r^2} \widetilde{Y}_{\zeta}$, then we obtain $\tilde{\zeta}_0 = ((k-1)!)^{-2} \tilde{\theta}_0^{k-1}(r^2 Y_1)$. It follows from Proposition 6.3 that X is quaternionic and $\zeta = \operatorname{tr} \circ \mathfrak{D}_{\wedge^k E}(X)$ if and only if $\bar{\partial} \widetilde{X}_0 - \tilde{\zeta}_0 \wedge_E r^{-2} \tilde{\theta}_1 = 0$ for $1 \leq k \leq 2n-1$, $\bar{\partial} \widetilde{X}_0 - \tilde{\zeta}_0 \wedge_E r^{-2} \tilde{\theta}_1 = 0$ and $\bar{\partial} \tilde{\zeta}_0 = 0$ for k = 2n. The condition is equivalent to $\bar{\partial} (\tilde{\theta}_0^k(\widetilde{X}_h^{k,0})) - k^2 \tilde{\theta}_0^{k-1}(Y_1) \wedge_E \tilde{\theta}_1 = 0$ for $1 \leq k \leq 2n-1$, $\bar{\partial} (\tilde{\theta}_0^k(\widetilde{X}_h^{k,0})) - k^2 \tilde{\theta}_0^{k-1}(Y_1) \wedge_E \tilde{\theta}_1 = 0$ for $1 \leq k \leq 2n-1$, $\bar{\partial} (\tilde{\theta}_0^k(\widetilde{X}_h^{k,0})) - k^2 \tilde{\theta}_0^{k-1}(Y_1) \wedge_E \tilde{\theta}_1 = 0$ and $\bar{\partial} (\tilde{\theta}_0^{k-1}(r^2Y_1)) = 0$ for k = 2n. It is equivalent that there exist $Y_0 \in \mathcal{A}_{P(H^*)}^0(\wedge^{k-1} \widetilde{\mathcal{H}}^{1,0})$, $Z_0 \in \mathcal{A}_{P(H^*)}^0(\wedge^{k-2} \widetilde{\mathcal{H}}^{1,0})$ such that $\widetilde{X}_h^{k,0} + Y_0 \wedge v_0 + Y_1 \wedge v_1 + Z_0 \wedge v_0 \wedge v_1$ is holomorphic by Theorem 5.3. □

§7.3. Horizontal lift of k-vector fields to Z

Let \widehat{X}_h be the horizontal lift to Z of a k-vector field X on M. The horizontal vector field \widehat{X}_h and the (k, 0)-part $\widehat{X}_h^{k, 0}$ correspond to \widetilde{X}_h and $\widetilde{X}_h^{k, 0}$, respectively. We denote by $\widehat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1, 0})$ the sheaf of horizontal (k, 0)-vector fields which are holomorphic along each fiber of $f: \mathbb{Z} \to M$. Proposition 7.1 induces the following:

Proposition 7.4. The isomorphism $\mathcal{A}^0(\wedge^k E \otimes S^k H) \cong \hat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1,0})$ is given by $X \mapsto \widehat{X}_h^{k,0}$. Moreover, $\widehat{X} = (k!)^{-2}\widehat{\theta}_0^k(\widehat{X}_h^{k,0})$ for $X \in \mathcal{A}^0(\wedge^k E \otimes S^k H)$.

Corollary 7.2 implies the following corollary:

Corollary 7.5. Let X be an element of $\mathcal{A}^0(\wedge^k TM)$. The (k, 0)-part $\widehat{X}_h^{k, 0}$ of \widehat{X}_h is holomorphic along each fiber of f.

We consider the holomorphic bundle $\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m$ for a non-negative integer m. Let $\widehat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m)$ be a sheaf of l^m -valued horizontal smooth (k, 0)-vector fields which are holomorphic along each fiber. Let $\widehat{\mathcal{O}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m)$ denote the subsheaf of $\widehat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m)$ of holomorphic l^m -valued horizontal (k, 0)-vector fields. By the definition of l, we obtain the isomorphism

(15)
$$\hat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m) \cong \tilde{\mathcal{A}}_m(\wedge^k \widetilde{\mathcal{H}}^{1,0})$$

The kth wedge $\hat{\theta}_0^k$ defines a map from $\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m$ to $f^{-1}(\wedge^k E) \otimes l^{k+m}$. The map induces isomorphisms $\hat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m) \cong \widehat{\mathcal{A}}^0(\wedge^k E \otimes l^{k+m})$ and $\widehat{\mathcal{O}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m) \cong \widehat{\mathcal{O}}(\wedge^k E \otimes l^{k+m})$. For an element ξ of $\mathcal{A}^0(\wedge^k E \otimes S^{k+m}H)$, there exists a unique element \widehat{Y}_{ξ} of $\widehat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m)$ such that

$$(k!)^{-2}\hat{\theta}_0^k(\widehat{Y}_{\xi}) = \hat{\xi}.$$

The isomorphisms in (14) and (15) yield

(16)
$$\mathcal{A}^0(\wedge^k E \otimes S^{k+m}H) \cong \hat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m)$$

by $\xi \mapsto \widehat{Y}_{\xi}$. The isomorphism (12) implies $\operatorname{Ker} \mathfrak{D}_{\wedge^k E} \cong \widehat{\mathcal{O}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m)$ by the correspondence.

§7.4. Holomorphic lift of quaternionic k-vector fields to Z

By the same argument as Proposition 7.3, we obtain the following proposition:

Proposition 7.6. Let X and ζ be elements of $\mathcal{A}^0(\wedge^k E \otimes S^k H)$ and $\mathcal{A}^0(\wedge^{k-1} E \otimes S^{k+1}H)$, respectively. The k-vector field X is quaternionic and $\zeta = \operatorname{tr} \circ \mathfrak{D}_{\wedge^k E}(X)$ if and only if the (k, 0)-vector field $\widehat{X}_h^{k, 0} + \widehat{Y}_{\zeta} \wedge v$ is holomorphic.

Let $\widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$ be a sheaf of holomorphic (k, 0)-vector fields defined in the pull-back of open sets on M by f. Proposition 7.6 induces the following:

Theorem 7.7. An isomorphism $\mathcal{Q}(\wedge^k E \otimes S^k H) \cong \widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$ is given by $X \mapsto \widehat{X}_h^{k,0} + \widehat{Y}_{\mathrm{tr} \circ \mathfrak{D}_{\wedge^k E}(X)} \wedge v$. In particular, any global quaternionic k-vector field on M corresponds to a global holomorphic (k, 0)-vector field on Z.

§7.5. Holomorphic lift of quaternionic real k-vector fields to Z

An endomorphism $\hat{\tau}$ of $\hat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m)$ is defined by

$$\hat{\tau}(X') = \overline{(R_{[j]})_* X'}$$

for $X' \in \hat{\mathcal{A}}(\wedge^k \hat{\mathcal{H}}^{1,0} \otimes l^m)$. Then we obtain an \mathbb{R} -isomorphism

$$\mathcal{A}^0(\wedge^k E \otimes S^{k+m}H)^{\tau} \cong \hat{\mathcal{A}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m)^{\hat{\tau}}$$

by $\xi \mapsto \widehat{Y}_{\xi}$. Then $(\operatorname{Ker} \mathfrak{D}_{\wedge^k E})^{\tau} \cong \widehat{\mathcal{O}}(\wedge^k \widehat{\mathcal{H}}^{1,0} \otimes l^m)^{\hat{\tau}}$ under the correspondence.

Theorem 7.8. An \mathbb{R} -isomorphism $\mathcal{Q}(\wedge^k E \otimes S^k H)^{\tau} \cong \widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)^{\hat{\tau}}$ is given by $X \mapsto \widehat{X}_h^{k,0} + \widehat{Y}_{\operatorname{tr} \circ \mathfrak{D}_{\wedge^k E}(X)} \wedge v$. In particular, any global quaternionic real k-vector

field on M corresponds to a global holomorphic and $\hat{\tau}$ -invariant (k, 0)-vector field on Z.

§7.6. Example

Let M be the *n*-dimensional quaternionic projective space $\mathbb{H}P^n$. Then $P(H^*) = \mathbb{C}^{2n+2} \setminus \{0\}$ as a complex manifold. The twistor space Z is $\mathbb{C}P^{2n+1}$. Let \widetilde{V}_k denote the space of $\mathrm{GL}(1,\mathbb{C})$ -invariant holomorphic k-vector fields on $\mathbb{C}^{2n+2} \setminus \{0\}$. Then

$$\widetilde{V}_k = \left\{ \sum a_{i_1 \cdots i_k j_1 \cdots j_k} z_{i_1} \cdots z_{i_k} \frac{\partial}{\partial z_{j_1}} \wedge \cdots \wedge \frac{\partial}{\partial z_{j_k}} \mid a_{ijkl} \in \mathbb{C} \right\}.$$

We regard the coefficient $(a_{i_1\cdots i_k j_1\cdots j_k})$ as an element of $\otimes^k \mathbb{C}^{2n+2} \otimes \otimes^k (\mathbb{C}^{2n+2})^*$. We define $S^k \otimes \wedge^k$ as the projection from $\otimes^k \operatorname{gl}(2n+2,\mathbb{C}) \cong \otimes^k \mathbb{C}^{2n+2} \otimes \otimes^k (\mathbb{C}^{2n+2})^*$ to $S^k \mathbb{C}^{2n+2} \otimes \wedge^k (\mathbb{C}^{2n+2})^*$. Then $\widetilde{V}_k \cong S^k \otimes \wedge^k (\otimes^k \operatorname{gl}(2n+2,\mathbb{C}))$. The space of holomorphic k-vector fields on $\mathbb{C}P^{2n+1}$ is identified with the quotient space $\widetilde{V}_k/\widetilde{V}_{k-1}\wedge v_0$ (cf. [15, §5.1]). Theorems 7.7 and 7.8 imply that the spaces of quaternionic k-vector fields and real ones are identified with

$$S^k \otimes \wedge^k (\otimes^k \operatorname{gl}(2n+2,\mathbb{C}))/S^k \otimes \wedge^k (\otimes^{k-1} \operatorname{gl}(2n+2,\mathbb{C}) \otimes \operatorname{id})$$

and

$$S^k \otimes \wedge^k (\otimes^k \operatorname{gl}(n+1, \mathbb{H})) / S^k \otimes \wedge^k (\otimes^{k-1} \operatorname{gl}(n+1, \mathbb{H}) \otimes \operatorname{id}),$$

respectively.

§8. Graded Lie algebra structure on the space of quaternionic k-vector fields

§8.1. Coefficients of lifts of $\mathcal{A}^0(\wedge^k E\otimes S^m H)$

Let ξ be an element of $\mathcal{A}^0(\wedge^k E \otimes S^m H)$. For each coefficient $\tilde{\xi}_i$ of $\tilde{\xi}$, $r^{-2i}\tilde{\xi}_i$ is of $\mathrm{GL}(1,\mathbb{C})$ -order m-2i. It induces a section of l^{m-2i} on Z, which we denote by $\hat{\xi}_i$. Then $\hat{\xi}_0 = \hat{\xi}$ by the definition. Since $i_{v_1}d\tilde{\xi}_i = -(i+1)\tilde{\xi}_{i+1}$ for $i = 0, 1, \ldots, m-1$ and $i_{v_1}d\tilde{\xi}_m = 0$, we obtain the following lemma:

Lemma 8.1. We have
$$i_v d^l \hat{\xi}_i = -(i+1)\hat{\xi}_{i+1}$$
 for $i = 0, 1, ..., m-1$ and $i_v d^l \hat{\xi}_m = 0$.

Let X be an element of $\mathcal{A}^0(\wedge^k E \otimes S^k H)$. As in the proof of Proposition 7.1, each coefficient \widetilde{X}_i of \widetilde{X} is given by $\widetilde{X}_i = (k!)^{-2} {k \choose i} (\widetilde{\theta}_0^{k-i} \wedge \widetilde{\theta}_1^i) (\widetilde{X}_h)$. It yields that

(17)
$$\widehat{X}_i = (k!)^{-2} \binom{k}{i} (\widehat{\theta}_0^{k-i} \wedge \widehat{\theta}_1^i) (\widehat{X}_h)$$

for i = 0, 1, ..., k. Let $\widehat{X}_h^{k-i,i}$ denote the (k - i, i)-part of \widehat{X}_h . Lemma 8.1 and equation (17) imply the following:

Proposition 8.2. If $X \in \mathcal{A}^0(\wedge^k E \otimes S^k H)$, then

$$i_v d^l((\hat{\theta}_0^{k-i} \wedge \hat{\theta}_1^i)(\hat{X}_h^{k-i,i})) = -(k-i)(\hat{\theta}_0^{k-i-1} \wedge \hat{\theta}_1^{i+1})(\hat{X}_h^{k-i-1,i+1})$$

for i = 0, 1, ..., k - 1. In particular, $i_v d^l(\hat{\theta}_0^k(\widehat{X}_h^{k,0})) = -k(\hat{\theta}_0^{k-1} \wedge \hat{\theta}_1)(\widehat{X}_h^{k-1,1})$. \Box

§8.2. The Schouten–Nijenhuis bracket

The Schouten–Nijenhuis bracket [,] is a bilinear map $\mathcal{A}^0(\wedge^k TM) \times \mathcal{A}^0(\wedge^{k'}TM) \rightarrow \mathcal{A}^0(\wedge^{k+k'-1}TM)$ such that $[X, X'] = (-1)^{kk'}[X', X]$ and

$$(-1)^{k(k''-1)}[X, [X', X'']] + (-1)^{k'(k-1)}[X', [X'', X]] + (-1)^{k''(k'-1)}[X'', [X, X']] = 0$$

for $X \in \mathcal{A}^0(\wedge^k TM)$, $X' \in \mathcal{A}^0(\wedge^{k'}TM)$ and $X'' \in \mathcal{A}^0(\wedge^{k'}TM)$. If we take a torsion-free affine connection ∇ on M, then [X, X'] is given by $\wedge^{k+k'-1}(X \cdot \nabla X' + (-1)^k X' \cdot \nabla X)$, where $\wedge^{k+k'-1}$ is the anti-symmetrization of $\otimes^{k+k'-1}TM$ and the dot \cdot means the contraction of $\wedge^k TM$ with $\wedge^{k'}TM \otimes T^*M$. The pair $(\bigoplus_k \mathcal{A}^0(\wedge^k TM), [,])$ is a graded Lie algebra. For $X \in \mathcal{A}^0(\wedge^k E \otimes S^k H), X' \in \mathcal{A}^0(\wedge^{k'}E \otimes S^{k'}H), [X, X']$ is not always in $\mathcal{A}^0(\wedge^{k+k'-1}E \otimes S^{k+k'-1}H)$ except for the case k = k' = 1. We define $[X, X']_Q$ by the $\wedge^{k+k'-1}E \otimes S^{k+k'-1}H$ -part of [X, X']. Then $(\bigoplus_k \mathcal{A}^0(\wedge^k E \otimes S^k H), [,]_Q)$ is a graded Lie algebra.

Let F be a vector bundle on M and ∇^F a connection of F. If α is an F-valued differential (k + k' - 1)-form on M, then

(18)
$$i_{[X,X']}\alpha = (-1)^{k'(k+1)}i_Xd^F i_{X'}\alpha + (-1)^k i_{X'}d^F i_X\alpha - i_{X\wedge X'}d^F\alpha$$

for $X \in \mathcal{A}^0(\wedge^k TM), X' \in \mathcal{A}^0(\wedge^{k'}TM).$

§8.3. Bracket for quaternionic k-vector fields

The Schouten–Nijenhuis bracket [,] is defined for holomorphic multi-vector fields. The pair $(\bigoplus_k \mathcal{O}(\wedge^k T^{1,0}Z), [,])$ is a graded Lie algebra. Since [W, W'] is in $\widehat{\mathcal{O}}(\wedge^{k+k'-1}T^{1,0}Z)$ for $W \in \widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$, $W' \in \widehat{\mathcal{O}}(\wedge^{k'}T^{1,0}Z)$, we have that $(\bigoplus_k \widehat{\mathcal{O}}(\wedge^k T^{1,0}Z), [,])$ is also a graded Lie algebra.

For $X \in \mathcal{Q}(\wedge^k E \otimes S^k H)$, there exists a holomorphic (k, 0)-vector field $\widehat{X}_h^{k, 0} + Y \wedge v \in \widehat{\mathcal{O}}(\wedge^k T^{1, 0}Z)$ by Theorem 7.7.

Lemma 8.3. If $X \in \mathcal{Q}(\wedge^k E \otimes S^k H)$ and $X' \in \mathcal{Q}(\wedge^{k'} E \otimes S^{k'} H)$, then

$$(\widehat{[X,X']_Q})_h^{k+k'-1,0} = [\widehat{X}_h^{k,0} + Y \wedge v, \widehat{X'}_h^{k',0} + Y' \wedge v]_h.$$

Proof. Let k'' denote the integer k+k'-1. The horizontal (k'', 0)-part $(\widehat{[X, X']}_Q)_h^{k'', 0}$ of $(\widehat{[X, X']}_Q)$ is

$$\widehat{[X,X']}_h^{k'',0} = [\widehat{X}_h, \widehat{X'}_h]_h^{k'',0}$$

Hence, it suffices to show

$$\hat{\theta}_0^{k''}([\widehat{X}_h, \widehat{X'}_h]) = \hat{\theta}_0^{k''}([\widehat{X}_h^{k,0} + Y \wedge v, \widehat{X'}_h^{k',0} + Y' \wedge v]).$$

We remark that $\hat{\theta}_0^{k''}(\widehat{X}_h) = {\binom{k''}{k}} \hat{\theta}_0^k(\widehat{X}_h) \wedge_E \hat{\theta}_0^{k'-1}$. It follows from equation (18) and $d^l \hat{\theta}_0^k = k \hat{\theta}_0^{k-1} \wedge \hat{\theta}_1 \wedge \eta$ that

$$\hat{\theta}_{0}^{k''}([\widehat{X}_{h},\widehat{X'}_{h}]) = (-1)^{k'(k+1)} \binom{k''}{k'} i_{\widehat{X}_{h}} d^{l}(\hat{\theta}_{0}^{k'}(\widehat{X'}_{h})) \wedge \hat{\theta}_{0}^{k-1}$$

$$+ (-1)^{k} \binom{k''}{k} i_{\widehat{X'}_{h}} d^{l}(\hat{\theta}_{0}^{k}(\widehat{X}_{h})) \wedge \hat{\theta}_{0}^{k'-1}.$$

It turns out that

$$\begin{split} \hat{\theta}_{0}^{k''}([\widehat{X}_{h}^{k,0},\widehat{X'}_{h}^{k',0}]) &= (-1)^{k'(k+1)} \binom{k''}{k'} i_{\widehat{X}_{h}^{k,0}} d^{l}(\hat{\theta}_{0}^{k'}(\widehat{X'}_{h}^{k',0})) \wedge \hat{\theta}_{0}^{k-1} \\ &+ (-1)^{k} \binom{k''}{k} i_{\widehat{X'}_{h}^{k',0}} d^{l}(\hat{\theta}_{0}^{k}(\widehat{X}_{h}^{k,0})) \wedge \hat{\theta}_{0}^{k'-1}. \end{split}$$

Then

$$\hat{\theta}_{0}^{k''}([\widehat{X}_{h},\widehat{X'}_{h}]) = \hat{\theta}_{0}^{k''}([\widehat{X}_{h}^{k,0},\widehat{X'}_{h}^{k',0}]) + (-1)^{k'(k+1)} \binom{k''}{k'} (k')^{2} \hat{\theta}_{0}^{k'-1}(Y') \wedge_{E} (\hat{\theta}_{0}^{k-1} \wedge \hat{\theta}_{1}) (\widehat{X}_{h}^{k-1,1}) + (-1)^{k} \binom{k''}{k} k^{2} \hat{\theta}_{0}^{k-1}(Y) \wedge_{E} (\hat{\theta}_{0}^{k'-1} \wedge \hat{\theta}_{1}) (\widehat{X'}_{h}^{k'-1,1}).$$
(19)

On the other hand,

$$\begin{split} \hat{\theta}_{0}^{k''}([\widehat{X}_{h}^{k,0}+Y\wedge v,\widehat{X'}_{h}^{k',0}+Y'\wedge v]) \\ &= (-1)^{k'(k+1)} \binom{k''}{k'} i_{\widehat{X}_{h}^{k,0}+Y\wedge v} d^{l}(\hat{\theta}_{0}^{k'}(\widehat{X'}_{h}^{k',0})) \wedge \hat{\theta}_{0}^{k-1} \\ &+ (-1)^{k} \binom{k''}{k} i_{\widehat{X'}_{h}^{k',0}+Y'\wedge v} d^{l}(\hat{\theta}_{0}^{k}(\widehat{X}_{h}^{k,0})) \wedge \hat{\theta}_{0}^{k'-1}. \end{split}$$

Using Proposition 8.2, then we obtain that $\hat{\theta}_0^{k''}([\widehat{X}_h^{k,0} + Y \wedge v, \widehat{X'}_h^{k',0} + Y' \wedge v])$ is equal to (19). Hence we finish the proof.

Proposition 8.4. If $X \in \mathcal{Q}(\wedge^k E \otimes S^k H)$ and $X' \in \mathcal{Q}(\wedge^{k'} E \otimes S^{k'} H)$, then $[X, X']_Q$ is quaternionic.

Proof. Lemma 8.3 implies that $(\widehat{[X,X']_Q})_h^{k'',0}$ is the horizontal (k'',0)-part of the holomorphic k''-vector field

$$\big[\widehat{X}_h^{k,0}+Y\wedge v, \widehat{X'}_h^{k',0}+Y'\wedge v\big].$$

Then $[X, X']_Q$ is quaternionic by Proposition 7.6.

It yields that $(\bigoplus_{k=1}^{2n} \mathcal{Q}(\wedge^k E \otimes S^k H), [,]_Q)$ is a graded Lie algebra. Proposition 7.6 and Lemma 8.3 imply the following theorem:

Theorem 8.5. The isomorphism $\mathcal{Q}(\wedge^k E \otimes S^k H) \cong \widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$ as in Theorem 7.7 preserves the structures of graded Lie algebras. In particular, the space of global quaternionic k-vector fields on M is isomorphic to that of global holomorphic (k, 0)-vector fields on Z as graded Lie algebras. \Box

§8.4. Bracket for quaternionic real k-vector fields

The real structure τ on $\mathcal{Q}(\wedge^k E \otimes S^k H)$ is the complex conjugate for k-vector fields on M. It implies that $\tau([X, X']_Q) = [\tau(X), \tau(X')]_Q$ for $X \in \mathcal{Q}(\wedge^k E \otimes S^k H)$ and $X' \in \mathcal{Q}(\wedge^{k'} E \otimes S^{k'} H)$. If X and X' are real, then $[X, X']_Q$ is real. Hence, $(\bigoplus_{k=1}^{2n} \mathcal{Q}(\wedge^k E \otimes S^k H)^{\tau}, [,]_Q)$ admits a structure of a graded Lie algebra.

Proposition 8.6. If $W \in \widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)$ and $W' \in \widehat{\mathcal{O}}(\wedge^{k'}T^{1,0}Z)$, then $\widehat{\tau}([W,W']) = [\widehat{\tau}(W), \widehat{\tau}(W')]$. Moreover, if W and W' are $\widehat{\tau}$ -invariant, then [W,W'] is also $\widehat{\tau}$ -invariant.

Proof. Equation (18) implies that $\hat{\tau}(\alpha([W, W'])) = \hat{\tau}(\alpha)([\hat{\tau}(W), \hat{\tau}(W')])$ for any k''-form α on Z. It yields that $\hat{\tau}(\alpha)(\hat{\tau}([W, W'])) = \hat{\tau}(\alpha)([\hat{\tau}(W), \hat{\tau}(W')])$. Since $\hat{\tau}$ is a real structure, $\alpha(\hat{\tau}([W, W'])) = \alpha([\hat{\tau}(W), \hat{\tau}(W')])$ for any α . Hence, $\hat{\tau}([W, W']) = [\hat{\tau}(W), \hat{\tau}(W')]$.

It induces that $(\bigoplus_{k=1}^{2n+1} \widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)^{\hat{\tau}}, [,])$ is a graded Lie algebra. By the same argument as Theorem 8.5, we obtain the following theorem:

Theorem 8.7. The isomorphism $\mathcal{Q}(\wedge^k E \otimes S^k H)^{\tau} \cong \widehat{\mathcal{O}}(\wedge^k T^{1,0}Z)^{\hat{\tau}}$ as in Theorem 7.8 preserves the structures of graded Lie algebras. In particular, the space of global quaternionic real k-vector fields on M is isomorphic to that of global holomorphic and $\hat{\tau}$ -invariant (k, 0)-vector fields on Z as graded Lie algebras. \Box

Acknowledgments

The authors would like to thank the referee for their valuable comments. The first-named author is supported by a Grant-in-Aid for Young Scientists (B) #17K14187 from JSPS.

References

- D. V. Alekseevskii, Riemannian spaces with exceptional holonomy groups, Funct. Anal. Appl. 2 (1968), 97–105. MR 0231313
- [2] D. V. Alekseevsky and S. Marchiafava, Gradient quaternionic vector fields and a characterization of the quaternionic projective space, Vienna Preprint ESI, Vol. 138, 1994.
- [3] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425–461. Zbl 0389.53011 MR 0506229
- [4] R. J. Baston, Quaternionic complexes, J. Geom. Phys. 8 (1992), 29–52. Zbl 0764.53022
 MR 1165872
- [5] C. P. Boyer, K. Galicki and B. M. Mann, Quaternionic reduction and Einstein manifolds, Comm. Anal. Geom. 1 (1993), 229–279. Zbl 0856.53038 MR 1243524
- [6] L. David and M. Pontecorvo, A characterization of quaternionic projective space by the conformal-Killing equation, J. Lond. Math. Soc. (2) 80 (2009), 326–340. Zbl 1175.53061 MR 2545255
- [7] M. De Wilde and P. B. A. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487–496. Zbl 0526.58023 MR 0728644
- [8] B. Fedosov, Deformation quantization and index theory, Mathematical Topics 9, Akademie, Berlin, 1996. Zbl 0867.58061 MR 1376365
- K. Galicki and T. Nitta, Nonzero scalar curvature generalizations of the ALE hyper-Kähler metrics, J. Math. Phys. 33 (1992), 1765–1771. Zbl 0757.53007 MR 1158996
- [10] N. Hitchin, Instantons, Poisson structures and generalized Kähler geometry, Comm. Math. Phys. 265 (2006), 131–164. Zbl 1110.53056 MR 2217300
- S. Ishihara, Quaternion Kählerian manifolds, J. Differential Geometry 9 (1974), 483–500.
 Zbl 0297.53014 MR 0348687
- [12] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. I, Interscience Tracts in Pure and Applied Mathematics 15, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1963. Zbl 0119.37502 MR 0152974
- M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157–216. Zbl 1058.53065 MR 2062626
- [14] C. LeBrun, Fano manifolds, contact structures, and quaternionic geometry, Internat. J. Math. 6 (1995), 419–437. Zbl 0835.53055 MR 1327157
- [15] T. Moriyama and T. Nitta, Some examples of global Poisson structures on S⁴, Kodai Math. J. 42 (2019), 223–246. Zbl 1432.53119 MR 3981305
- [16] Y. Nagatomo and T. Nitta, Vanishing theorems for quaternionic complexes, Bull. London Math. Soc. 29 (1997), 359–366. Zbl 0901.58059 MR 1435574
- H. Omori, Y. Maeda and A. Yoshioka, Weyl manifolds and deformation quantization, Adv. Math. 85 (1991), 224–255. Zbl 0734.58011 MR 1093007
- [18] S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143–171.
 Zbl 0486.53048 MR 0664330
- [19] A. Swann, Hyper-Kähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421–450. Zbl 0711.53051 MR 1096180