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On compact extensions of tracial W �-dynamical systems

Asgar Jamneshan and Pieter Spaas

Abstract. We establish several classification results for compact extensions of tracial W �-dynam-
ical systems and for relatively independent joinings thereof for actions of arbitrary discrete groups.
We use these results to answer a question of Austin, Eisner, and Tao and some questions raised by
Duvenhage and King. Moreover, combining our results with an earlier classification of weakly mix-
ing extensions by Popa, we can derive non-commutative Furstenberg–Zimmer type dichotomies on
the L2-level. Although in general an adequate generalization of the Furstenberg–Zimmer tower of
intermediate compact extensions does not seem possible in the von Neumann algebraic framework,
we show that there always exists a non-commutative analogue of the finer Host–Kra–Ziegler tower
for any ergodic action of a countable abelian group.

1. Introduction and statement of the main results

Throughout we fix a discrete group � unless mentioned otherwise. A tracial von Neumann
algebra dynamical system or tracial W �-dynamical system is a tuple .N; �; �/ where
.N; �/ is a tracial von Neumann algebra and � W � Õ N is a trace-preserving action of �
onN . In this paper, we do not assume groups to be countable nor von Neumann algebras to
be separable unless stated otherwise. IfQ � N is a �-invariant von Neumann subalgebra,
then we say that N is an extension of Q, and denote this dynamical inclusion by � Õ
.Q � N/.

For example, consider a commutative tracial von Neumann algebra .L1.X; �/;
R
/

where L1.X; �/ is the algebra of essentially bounded complex functions on a probabil-
ity space .X;�/ and the trace is given by integration

R
. In this context, a trace-preserving

action � W� ÕL1.X;�/ is equivalently described by a measure-preserving action of � on
the probability algebra associated with the probability space .X; �/, and �-invariant von
Neumann subalgebras of L1.X; �/ uniquely correspond to �-invariant sub-� -algebras
of the associated probability algebra (e.g., see [46, Section 7]), where a probability alge-
bra is a measure algebra with total mass equal to 1. Structural ergodic theory studies
the behavior of measure-preserving group actions on probability algebras relative to �-
invariant subalgebras. The aim of this paper is to study the extent to which certain results
in structural ergodic theory can be established for general tracial W �-dynamical sys-
tems. More precisely, we are interested in non-commutative analogues of results in the
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Furstenberg–Zimmer structure theory and an important refinement of the Furstenberg–
Zimmer structure theory in the case that � is abelian, known as the Host–Kra–Ziegler
structure theory.1

Roughly speaking, the Furstenberg–Zimmer structure theorem states that any proba-
bility algebra dynamical system can be decomposed into a chain of subsystems of a more
algebraic nature, called the distal part, which are either structured compact extensions of
earlier subsystems or inverse limits of such extensions, and a final chaotic weakly mixing
extension of the distal part. In terms of orbital behavior, functions in the distal part of the
system have in some precise sense predictable or controlled orbits, while orbits of func-
tions in the weakly mixing part exhibit a strong form of randomness. In the commutative
world of probability algebra dynamical systems, the Furstenberg–Zimmer structure theo-
rem is “universally” applicable. Indeed, it was originally established for any action of a
second countable locally compact group on a countably generated probability algebra by
the work of Furstenberg and Zimmer, and it has recently been shown to hold for arbitrary
actions of a (discrete) group on a probability algebra, independently by Edeko, Haase,
and Kreidler in [25] and the first author in [43]. Furstenberg [33] originally developed
this structure theorem to prove a multiple recurrence theorem for Z-actions, strengthening
Poincaré’s single recurrence theorem, which he famously used to give an ergodic-theoretic
proof of Szemerédi’s theorem [61]. By analogy with the averages in the classical mean
ergodic theorem of von Neumann used for single recurrence, non-conventional ergodic
averages correspond to multiple recurrence. In general, it is a difficult problem to prove
the convergence of non-conventional ergodic averages and to determine the limit. In a
breakthrough, Host and Kra [39] and independently Ziegler [64] proved L2-convergence
for ergodic Z-actions by classifying the subsystems which govern the limiting behavior.
These subsystems are special types of compact extensions, and their deep insight is that
these compact extensions can be classified as inverse limits of rotations on nilmanifolds;
see [40] for a comprehensive exposition. This refinement of the Furstenberg–Zimmer
structure theory is known as the Host–Kra–Ziegler structure theory and has been influ-
ential in areas such as combinatorics and number theory; e.g., see [36, 37].

In recent decades, there has been a surge of interest in non-commutative analogues of
results in the Furstenberg–Zimmer structure theory, character theory, and related topics
such as multiple recurrence and convergence of non-conventional ergodic averages. The
motivation seems to have been diverse, for example, stemming from the structure theory of
von Neumann algebras (see, e.g., [11,41,42,57]), Lie theory and higher-rank lattices (see,
e.g., [3, 10]), non-commutative analogues of results in the Furstenberg–Zimmer structure
theory and the theory of joinings (see, e.g., [4–7,16–18,20–24,49,51,53,59,63]), and non-
commutative multiple recurrence and convergence of non-conventional ergodic averages
(see, e.g., [2, 9, 15, 19, 27, 29–32, 52]).

1Furstenberg–Zimmer structure theory was originally developed in the articles [33, 65, 66]. The inter-
ested reader is referred to [26, 34, 35, 49, 62] for textbook expositions. The Host–Kra–Ziegler structure
theory was initiated in [39, 64]; see also the textbook exposition [40].
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This paper contributes to this development by providing a comprehensive treatment
of compact extensions within the framework of tracial W �-dynamical systems. We now
state and discuss our main results and their relation to the existing literature.

Main results

Let � Õ .N; �/ be a tracial W �-dynamical system, and let Q � N be a �-invariant von
Neumann subalgebra. We say thatN is a compact extension ofQ if every element ofN is
almost periodic relative toQ, that is, its orbit is conditionally precompact, which roughly
means that for every " > 0, it is contained within the "-neighborhood of a finitely gen-
erated Q-module zonotope of L2.N / (see Section 3 for the precise definition). Our first
main result establishes equivalent characterizations of a compact extension, by analogy
with such characterizations in the measure-theoretic framework (cf. [34, Section 6.3], [43,
Theorem 4.1]). It connects the above definition using relatively almost periodic elements
with conditional Hilbert–Schmidt operators (item (2) below, where K �Q .�/ is defined in
Section 2.4), and finitely generated modules (item (3) below).

Theorem A. Let � Õ .N; �/ be a tracial W �-dynamical system, and let Q � N be a
�-invariant von Neumann subalgebra. Then, the following are equivalent.

(1) N is a compact extension of Q.

(2) span¹K �Q � jK2L2.N /˝QL2.N /�-invariant; �2L2.N /º is dense inL2.N /.

(3) L2.N / is the closure of the union of the Q-finitely generated �-invariant right
(or left) Q-submodules.

Different notions of relatively almost periodic elements and of compact extensions
for W �-dynamical systems have appeared in the literature. For example, our definition
of relatively almost periodic elements (Definition 3.2) is used in this form in [11], where
it is used to establish classification results for intermediate von Neumann subalgebras,
and it was already indicated in [49, Remark 3.16] (which in turn was inspired by the
operator-theoretic conceptualization in the commutative case in [62, Section 2.13]). The
relation with conditional Hilbert–Schmidt operators is written out for commutative von
Neumann algebras in [49, Appendix C] (see also Section 2.4 below), and it is remarked
there that a similar relation should hold for general von Neumann algebras. A definition
of compact extensions in terms of finitely generated submodules (see item (iii) above)
appears in [2, Section 4] and a similar definition is given in [23, Section 3]. Nevertheless,
even though parts of Theorem A were probably known to experts, a more comprehensive
treatment of relative compactness similar to the commutative case, including establishing
the equivalence of these definitions, seems to be missing in the literature to the best of our
knowledge.

In previous functional-analytic approaches to Furstenberg–Zimmer structure theory,
in particular the part of the theory dealing with compact extensions, an important role is
usually played by the so-called “conditional L2-spaces”; see [25, 43, 49, 62] where these
spaces also go by the names of “conditional Hilbert modules” or “Hilbert–Kaplansky
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modules”. The proof of Theorem A in Section 3 shows that one can avoid introducing
such conditional spaces, and we work directly on the usual L2-spaces. Finally, we also
note that Theorem A is established for arbitrary discrete groups acting on general von
Neumann algebras, and hence our results add to most known partial results by removing
commutativity and countability/separability assumptions.

We use our classification of compact extensions from Theorem A to answer [2, Ques-
tion 4.3] by Austin, Eisner, and Tao about finite-dimensional approximations of Q-sub-
modules of finite lifted trace; see Lemma 3.7. We also answer two questions raised by
Duvenhage and King in [23, Section 6] about the classification of intermediate subsys-
tems of compact extensions and characterizations of “generalized eigenfunctions”; see
Remark 3.6.

Addendum

After the first version of our paper appeared on the arXiv, the authors learned2 of the
unpublished preprint [47], in which Question 4.3 by Austin, Eisner, and Tao from [2] is
also answered with a direct hands-on proof. Our proof is different, and our answer to the
question follows immediately from a more general classification result, which we believe
puts it in an appropriate framework.

Having characterized compact extensions, a next natural step, as in the classical
Furstenberg–Zimmer theory, is to try to study the maximal compact extension inside an
arbitrary extension. It is easy to verify that the space of conditionally almost periodic
elements in L2.N / is always a closed Hilbert subspace. Thus, a natural candidate for
the maximal compact extension of Q inside N is the intersection of this closed Hilbert
subspace with N . In the commutative ergodic theory, this intersection corresponds to a
�-invariant von Neumann subalgebra of L1.X;�/. However, for general W �-dynamical
systems, this intersection is only a strong operator topology closed linear subspace of N
that may not be closed under multiplication and/or involution; that is, it may not be a von
Neumann subalgebra. This was observed by Austin, Eisner, and Tao in [2, Example 4.2],
and we recall their example in Section 3. Given this obstruction, one could instead try to
consider the von Neumann algebra generated by the relatively almost periodic elements
as suggested in [49, Remark 3.16]; see also [12]. However, the example of Austin, Eisner,
and Tao shows that this von Neumann subalgebra can contain all relatively weakly mixing
elements. It thus seems that this is not a satisfactory solution in general.

Nevertheless, under additional hypotheses on the inclusion Q � N , it is possible to
identify the space of relatively almost periodic elements with a von Neumann subalgebra.
A natural such hypothesis is the quasi-regularity of the inclusion which has been put for-
ward by Chifan and Peterson in [12]. We recall its definition and provide a proof as to its
effect in Section 3 for the convenience of the reader.

Quasi-normalizers had been connected to the Furstenberg–Zimmer structure theory
before in [41, Section 6], where Ioana shows that for an ergodic action � Õ .X; �/ of a

2We thank Terry Tao for bringing this preprint to our attention.
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countable discrete group on a standard probability space .X; �/, the quasi-normalizer of
L.�/ inside L1.X/ Ì � is exactly L1.Y / Ì � , where Y is the maximal compact sub-
system of X . This can be used to give a purely von Neumann algebraic description of
the Furstenberg–Zimmer tower in the commutative setting (see [12]; see also [11, Theo-
rem 2.3]). Further connections with the quasi-normalizers of the involved algebras in the
W �-dynamical setting are also explored in [12].

Alternatively, if one does not insist on the maximality of the compact extension, one
could ask if there are other natural intermediate compact extensions which correspond to
von Neumann subalgebras. In the commutative context, a prominent and useful example
of a tower of intermediate compact extensions is formed by the Host–Kra–Ziegler factors
[39,64], when one considers the actions of abelian groups. We will show in Section 6 that
there is a natural non-commutative analogue of these factors for abelian group actions,
leading to a tower of von Neumann subalgebras corresponding to intermediate compact
extensions (without additional hypotheses on the subalgebras).

Before that, we study relatively independent joinings of tracialW �-dynamical systems
in Section 4. In particular, we classify the invariant elements of relatively independent
joinings (see Proposition 4.7). Moreover, we extend an important theorem of Furstenberg
[33, Theorem 7.1] on relatively independent joinings of compact extensions over a com-
mon factor (see also [35, Theorem 9.21]) to W �-dynamical central extensions as follows.

Theorem B. Let .N1; �1;�1/ and .N2; �2;�2/ beW �-dynamical �-systems and letQ be a
common �-invariant von Neumann subalgebra contained in their respective centers where
the actions on Q agree. For i D 1; 2, denote by Pi � Ni the maximal compact extension
of Q inside Ni . Consider the extension � Õ .Q � N1 x̋Q N

op
2 /, where N1 x̋Q N

op
2

denotes the relatively independent product of N1; N2 over Q; see Definition 4.10. Then,
the maximal compact extension P of Q inside N1 x̋Q N

op
2 is given by P D P1 x̋Q P

op
2 .

Several of the results developed so far are used in the proof of Theorem B, in particu-
lar the characterization using conditional Hilbert–Schmidt operators from Theorem A (2).
Although our proof is inspired by Furstenberg’s original proof, we provide a purely alge-
braic and streamlined version of the proof. In particular, our proof also works without any
additional countability/separability assumptions.

Combining our results on relatively independent joinings and compact extensions
with Popa’s classification of weakly mixing extensions [57, Section 2], we analyze the
dichotomy between relatively weakly mixing and relatively compact W �-dynamical sys-
tems in Section 5. We prove a relative dichotomy on the L2-level for the arbitrary exten-
sions of W �-dynamical systems which can be reduced to the von Neumann algebra level
if the inclusion is quasi-regular. By the previously mentioned example of Austin, Eisner,
and Tao, we cannot expect a relative dichotomy to hold on the von Neumann algebra level
without further assumptions on the inclusion. Moreover, quasi-regularity is not necessar-
ily preserved under taking the maximal compact extension (see Remark 3.13). These are
therefore serious obstructions to establishing a complete analogue of the Furstenberg–
Zimmer structure theorem for general W �-dynamical systems, beyond the aforemen-
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tioned dichotomies. Nevertheless, as mentioned earlier, some alternative results in this
direction, exploiting the quasi-normalizers of the involved algebras, are established in [12].

We continue Section 5 by extending a classical characterization of weakly mixing
extensions in terms of joinings to the von Neumann algebraic framework. Namely, under
the assumption of quasi-regularity, we characterize weakly mixing extensions of W �-
dynamical systems as being those that are disjoint from compact extensions; see Proposi-
tion 5.6. We point out that our positive results in this section generalize, refine, and provide
new proofs of related results in [4, 7, 20, 53].

Finally, assuming now that � is countable and abelian, we develop a non-commutative
version of the Host–Kra cubic systems and the Gowers–Host–Kra seminorms for ergodic
W �-dynamical systems in Section 6. Using our previous results on joinings, we establish
the following non-commutative Host–Kra–Ziegler tower of compact extensions.

Theorem C. Let � be a countable discrete abelian group, .N; �/ a tracial von Neumann
algebra with separable predual, and let .N; �; �/ be an ergodic W �-dynamical �-system.
Then, there exists an increasing sequenceZ1�Z2� � � � �N of inclusions ofW �-systems
with the following properties.

(i) Z1 is the maximal compact W �-subsystem of N .

(ii) For each n � 1, ZnC1 is a compact extension of Zn.

(iii) For each n � 1, x 2 Zn if and only if jjjxjjjnC1 D 0, where jjj � jjjnC1 denotes the
non-commutative version of the Gowers–Host–Kra uniformity seminorms; see
Definition 6.10.

We believe this non-commutative generalization of the Host–Kra–Ziegler hierarchy to
be a promising new direction in the study of W �-dynamical systems, and we plan to fur-
ther investigate the compact extensions arising in Theorem C in future work. In particular,
we plan to establish finer algebraic and geometric descriptions of them by analogy with
the commutative theory for Z-actions and relate them with non-commutative multiple
recurrence and non-commutative non-conventional ergodic averages.

Organization of the paper

Besides the introduction, this paper has five other sections. In the Preliminaries, we recall
some definitions, constructions, and tools needed in the remainder of the paper, and we
prove some useful lemmas. In Section 3, we give a precise definition of a compact exten-
sion of W �-dynamical systems. We then prove our first main classification Theorem A,
derive some corollaries, answer the previously mentioned questions from the literature,
and discuss a few related results. We continue in Section 4 with the study of the joinings
of W �-dynamical systems, including a proof of Theorem B. In Section 5, we investigate
the dichotomy between weakly mixing and compact extensions. Finally, in Section 6, we
extend the notions of Host–Kra–Ziegler factors and Gowers–Host–Kra uniformity semi-
norms to the von Neumann algebraic framework and prove Theorem C.
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2. Preliminaries

2.1. von Neumann algebras

In this section, we fix some general notations for tracial von Neumann algebras. For basic
results and any undefined concepts in the theory of tracial von Neumann algebras, we refer
the interested reader to [1].

Let H be a Hilbert space. von Neumann algebras are unital �-subalgebras of the �-
algebra B.H / of bounded operators on H that are closed in the weak (or equivalently
strong) operator topology. von Neumann’s bi-commutant theorem tells us that von Neu-
mann algebras are exactly the �-subalgebras M that are equal to their double commutant
M 00. This equivalence gives rise to a useful interplay between the algebraic and analytic
aspects of these objects.

Unless explicitly stated otherwise, all von Neumann algebras we will consider are
tracial von Neumann algebras: von Neumann algebras M equipped with a faithful nor-
mal tracial state � , that is, a positive linear functional � W M ! C satisfying �.1/ D 1,
�.xy/ D �.yx/ for all x; y 2 M , �.x�x/ D 0 iff x D 0 for all x 2 M , and � is contin-
uous with respect to the weak operator topology when restricted to the unit ball of M .
When necessary, we also write �M to emphasize the von Neumann algebra M on which
the trace is defined. We denote by kxk2 WD

p
�.x�x/ the 2-norm of x 2M and denote by

L2.M/ the completion ofM with respect to this norm. When identifyingM with a dense
subspace of L2.M/, we will also denote it by yM , and we will write Ox 2 L2.M/ when
x 2M .

Let P �M be an inclusion of von Neumann algebras, which unless stated otherwise
is assumed to be unital (that is, 1P D 1M ). We denote by EP W M ! P the unique � -
preserving conditional expectation from M onto P , which arises as the restriction to M
of the orthogonal projection from L2.M/ onto L2.P /. We denote by

P 0 \M WD ¹x 2M j 8y 2 P W xy D yxº

the relative commutant of P in M , and by

NM .P / WD
®
u 2 U.M/ j uPu� D P

¯
the (set-wise) normalizer of P in M . We say that P is regular in M if NM .P /

00 D M ;
that is, NM .P / generatesM as a von Neumann algebra. We will further denote by U.M/

the unitary group of M and by P .M/ the set of projections in M .

2.2. Hilbert modules and conditional orthonormal bases

For the reader’s convenience, we will recount here some of the basic properties and con-
structions which we will need later on. A von Neumann algebraist may want to skip this
section and refer back to the notation if necessary.

Definition 2.1. Let M be a von Neumann algebra. A left M -module is a Hilbert space H

together with a normal �-homomorphism � W M ! B.H /. Similarly, a right M -module
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comes with a normal �-homomorphism � WM op ! B.H /, where M op denotes the oppo-
site von Neumann algebra, that is, M equipped with reversed multiplication operation
x � y WD yx.

We will mostly work with right modules, though we note that this is just a choice, and
we could as well interchange the roles of left and right throughout the paper.

Example 2.2. The most basic example of a right M -module is L2.M/, where M acts
by right multiplication. Similarly, given any Hilbert space H , we can let M act by right
multiplication on L2.M/˝H (i.e., right multiplication on L2.M/, and trivially on H ).
Given a projection p 2 B.L2.M/ ˝ H / which is invariant under right multiplication
by M , we also obtain in this way a right M -module of the form p.L2.M/ ˝ H /. In
fact, every right M -module is isomorphic to a module of this form; see for instance [1,
Proposition 8.2.3].

Definition 2.3. Let .M; �/ be a tracial von Neumann algebra and H a right Hilbert M -
module. We say that a vector � 2 H is left (M -)bounded if there exists c > 0 such that
k�xk � ckxk2 for every x 2 M ; that is, the map Ox 7! �x extends to a bounded operator
L� from L2.M/ to H . We denote by H0 the subspace of left bounded vectors in H .

It is known (see for instance [1, Proposition 8.4.4]) that H0 is always dense in H .
Observe that given �; � 2 H0, the operator L�

�
L� commutes with the right M -action

on L2.M/ and thus equals left multiplication by an element from M (see for instance
[1, Theorem 7.1.1]). Upon identifying L�

�
L� with this element, we thus get L�

�
L� 2 M .

We can thus define an M -valued inner product on H0 by

h�; �iM WD L
�
�L� 2M:

The following straightforward lemma shows that this M -valued inner product indeed
behaves like an inner product with values in M (see also [1, Lemma 8.4.5]).

Lemma 2.4. Let .M; �/ be a tracial von Neumann algebra and H a right Hilbert M -
module. For all x 2M and �; � 2 H0, the following properties hold.

(1) h�; �iM � 0 and h�; �iM D 0 if and only if � D 0.

(2) .h�; �iM /� D h�; �iM .

(3) h�; �xiM D h�; �iMx and h�x; �iM D x�h�; �iM .

(4) �.h�; �iM / D h�; �iH .

Example 2.5. When given an inclusion of tracial von Neumann algebras P � M , we
can naturally view L2.M/ as a right (or left) P -module. In this case, the P -valued inner
product is determined by

hx; yiP D EP .x
�y/

for x; y 2M .
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One of the features of this M -valued inner product is that it gives us a notion of
orthogonality (relative to M ), and therefore a notion of orthonormal basis.

Definition 2.6. Let .M; �/ be a tracial von Neumann algebra and H a right Hilbert M -
module. An M -orthonormal basis, or a Pimsner–Popa basis, for H is a family .�i /i2I of
non-zero left bounded vectors such that

(i)
P
i �iM D H , and

(ii) for all i; j 2 I : h�i ; �j iM D ıi;jpi for some projections pi 2 P .M/.

If .�i /i2I satisfies (ii), but not necessarily (i), we call the family .�i /i2I conditionally
orthonormal. If H has a finite orthonormal basis as a module over M , then we also say
that H is finitely generated.

We refer the interested reader to [1, Section 8.4.3] for more details and properties of
orthonormal bases and M -modules.

2.3. Bimodules

Definition 2.7. Let .M1; �1/ and .M2; �2/ be two tracial von Neumann algebras. An M1-
M2-bimodule is a Hilbert space H endowed with two normal, commuting �-homomor-
phisms

�1 WM1 ! B.H / and �2 WM
op
2 ! B.H /:

In this case, we define a �-homomorphism �H WM1 ˝M
op
2 ! B.H / by �H .x ˝ y

op/D

�1.x/�2.y
op/ and write x�y D �1.x/�2.yop/�, for all x 2M1, y 2M2, and � 2 H . We

also write M1HM2 to indicate that H is an M1-M2-bimodule.

Examples of bimodules include the trivialM1-bimoduleM1L
2.M1/M1 and the coarse

M1-M2-bimodule M1L
2.M1/˝ L

2.M2/M2 .
Next, we recall an important construction for bimodules. If H is anM1-M2-bimodule

and K is an M2-M3-bimodule, then the Connes’ fusion tensor product of H and K is
an M1-M3-bimodule denoted by H ˝M2 K . In order to define this tensor product, one
checks (see for instance [1, Proposition 13.2.1]) that the formula

h�1 ˝ �1; �2 ˝ �2i WD
˝
�1; h�1; �2iM2�2

˛
K

yields a positive sesquilinear form on the algebraic tensor product H0 ˇK . We then
define H ˝M2 K as the separation and completion of H0 ˇ K with respect to this
sesquilinear form. It is straightforward to check that this Hilbert space becomes an M1-
M3-bimodule for the canonical actions given by

x.� ˝M2 �/ D .x�/˝M2 �; and .� ˝M2 �/y D � ˝M2 .�y/;

for x 2 M1, y 2 M3, � 2 H0, � 2 K. Moreover, the resulting tensor product operation
on bimodules is easily seen to be associative. For further details, we refer the interested
reader to e.g. [14, Appendix B (ı) of Chapter 5] or [1, Chapter 13].
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Next, fix two von Neumann algebras M and N . An M -N -bimodule H together with
a fixed vector � 2 H is also called a pointed M -N -bimodule. It is well known (see, e.g.,
[1, Section 13.1.2]) that there is a one-to-one correspondence between normal completely
positive maps ˆ WM ! N and pointed M -N -bimodules .H ; �/ with � a left N -bounded
and cyclic vector in H ; that is, span¹M�N º D H . We briefly recall the construction here
for later reference.

First, let ˆ W M ! N be a normal completely positive map. On the algebraic tensor
product M ˇN op, we consider the positive sesquilinear functional

hx1 ˝ y1; x2 ˝ y2iˆ D �N
�
y�1ˆ.x

�
1x2/y2

�
;

where x1; x2 2 M , y1; y2 2 N . Let Hˆ denote the completion of the quotient of M ˇ
N op by the kernel of this functional, which becomes an M -N -bimodule for the canonical
actions by left, resp. right, multiplication. Note that H comes equipped with a special
vector, namely (the class of) 1M ˝ 1N DW �ˆ, which is easily seen to be cyclic and left
N -bounded.

Conversely, given a pointed M -N -bimodule .H ; �/, where � is cyclic and left N -
bounded, we can build a completely positive map as follows. Consider the bounded oper-
atorL� WL2.N /!H from Definition 2.3, and for x 2M defineˆH .x/ WDL

�
�
�M .x/L� .

It is then easily checked that ˆH takes values in N , being completely positive, and that
ˆ 7! .Hˆ; �ˆ/ and .H ; �/ 7! ˆH are inverse to each other.

2.4. Relatively independent products and conditional Hilbert–Schmidt operators

In this final preliminary section, we recall some facts about conditional Hilbert–Schmidt
operators and a relevant example of such operators coming from conditional convolution
operators on relatively independent products. We start with the commutative situation, and
explain how the usual constructions there can be carried out on a purely von Neumann
algebraic level. This will then serve as motivation for some of the definitions in the von
Neumann algebraic framework. These concepts will be considered further in Section 4.

We recall the constructions in the case of standard probability spaces where a classi-
cal disintegration is available. Similar constructions are available for general probability
algebras by working with canonical disintegrations (e.g., see [43, Section 2,3] and the
references therein).

Suppose .X; �/ and .Y; �/ are standard probability spaces, and let � W X ! Y be a
factor map. We then have a classical disintegration

� D

Z
Y

d�y d�.y/

where �y is a probability measure supported on ��1.¹yº/. We can now construct a rela-
tively independent product X �Y X as follows. As a set, take

X �Y X D
®
.x1; x2/ 2 X �X j �.x1/ D �.x2/

¯
;
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and equip it with the measure

� �Y � D

Z
Y

.�y � �y/ d�.y/:

It is then easy to verify that this relatively independent product fits in the commutative
diagram

X �Y X

…1

{{

…2

##
X

�
$$

X

�
zz

Y

for the coordinate projection maps …1 W X �Y X ! X and …2 W X �Y X ! X onto the
first and second copy of X , respectively. Note that we haveZ

X�YX

f1.x/f2.x
0/ d.� �Y �/.x; x

0/

D

Z
Y

�Z
X�X

f1.x/f2.x
0/ d

�
�y � �y.x; x

0/
��
d�.y/:

From the pointless view on the level of the L2-spaces, the above gives the commutative
diagram of inclusions

L2.X �Y X/

L2.X/

�1

88

L2.X/

�2

ff

L2.Y /

��

ff

��

88

Note that all the above L2-spaces are canonically (left and right) L1.Y /-modules. More-
over, it is not hard to see that

L2.X �Y X/ Š L
2.X/˝L1.Y / L

2.X/; (2.1)

where the right-hand side denotes Connes’ fusion tensor product of L2.X/ as a right
L1.Y /-module with L2.X/ as a left L1.Y /-module. Note that in this commutative sit-
uation, L2.X/˝L1.Y / L2.X/ is still canonically an L1.Y /-module.

To check (2.1), we observe that the L1.Y /-valued inner product on L1.X/ is given
by

h�; �iL1.Y / D EL1.Y /.��/ 2 L
1.Y /;
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for �; � 2 L1.X/ (cf. Example 2.5). One can then establish an isomorphism

L2.X/˝L1.Y / L
2.X/

Š
�! L2.X �Y X/

by
� ˝L1.Y / � 7! �.x1; x2/ D �.x1/�.x2/:

This map is obviously surjective, and the following calculation implies that it is well
defined and injective:

h� ˝L1.Y / �; � ˝L1.Y / �iL2.X/˝L1.Y /L2.X/

D
˝
�; h�; �iL1.Y /�

˛
L2.X/

D
˝
�;EL1.Y /

�
j�j2

�
�
˛
L2.X/

D

Z
X

EL1.Y /
�
j�j2

�
.x/j�j2.x/ d�.x/

D

Z
Y

�Z
X

EL1.Y /
�
j�j2

�
.x/j�j2.x/ d�y.x/

�
d�.y/

D

Z
Y

�Z
X

EL1.Y /
�
j�j2

�
.y/j�j2.x/ d�y.x/

�
d�.y/

D

Z
Y

�Z
X

� Z
X

j�j2.x0/ d�y.x
0/

�
j�j2.x/ d�y.x/

�
d�.y/

D

Z
Y

�Z
X�X

j�j2.x0/j�j2.x/ d
�
�y � �y.x; x

0/
��
d�.y/

D

Z
X�YX

j�j2.x0/j�j2.x/ d.� �Y �/.x
0; x/ D h�; �iL2.X�YX/:

For K 2 L2.X �Y X/, we can now consider the conditional convolution operator

K �Y � W L
2.X/! L2.X/

given by

.K �Y f /.x/ WD

Z
X

K.x; x0/f .x0/ d��.x/.x
0/: (2.2)

Considering the inclusion �1 W L2.X/ ,! L2.X/ ˝L1.Y / L
2.X/ in the first coordinate,

we see that the corresponding orthogonal projection on this subspace is given by

p1 D .id˝EL1.Y // W L2.X/˝L1.Y / L2.X/! L2.X/

� ˝L1.Y / � 7! �EL1.Y /.�/

for �; � 2 L1.X/. This is the same for �2 and p2.
We then observe that given K 2 L2.X �Y X/ Š L2.X/ ˝L1.Y / L

2.X/ and f 2
L2.X/, we can write

K �Y f D p1
�
K�2.f /

�
D .id˝EL1.Y //

�
K.1˝L1.Y / f /

�
: (2.3)
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Indeed, if K D � ˝L1.Y / � for �; � 2 L1.X/ and f 2 L1.X/, then by definition we
have �

.id˝EL1.Y //
�
K.1˝L1.Y / f /

��
.x/

D
�
.id˝EL1.Y //.� ˝L1.Y / �f /

�
.x/ D

�
�EL1.Y /.�f /

�
.x/

D �.x/

Z
X

�.x0/f .x0/ d��.x/.x
0/ D

Z
X

�.x/�.x0/f .x0/ d��.x/.x
0/:

By linearity and continuity, we then see from (2.2) that (2.3) indeed holds.
This formalism now readily extends to general von Neumann algebras. LetQ � N be

an inclusion of von Neumann algebras. Then, Connes’ fusion tensor product L2.N /˝Q
L2.N / plays the role of the relatively independent product. Thus, given an element K 2
L2.N /˝Q L

2.N / and f 2 L2.N /, we can define the Q-conditional convolution by

K �Q f WD .id˝EQ/
�
K.1˝Q f /

�
: (2.4)

Note that in this way,K �Q � becomes a bounded linear operator on L2.N /. In fact, it will
be a conditional Hilbert–Schmidt operator as defined below; see Example 2.9.

Our treatment of conditional Hilbert–Schmidt operators follows closely the one given
in [49, Appendix C], though some care has to be taken since theQ-valued inner product is
only defined on the dense subspace of left bounded vectors in general, and it is only on that
dense space where we can make sense of conditional orthonormality. Let Q be a tracial
von Neumann algebra and let H be a right Q-module. Recall that H0 denotes the dense
subspace of left (Q-)bounded vectors equipped with the Q-valued inner product h�; �iQ.
On H0, we associate with h�; �iQ a norm k � kQ;1 defined by kxkQ;1 D khx; xiQk1=2.
The usual Hilbert space norm on H will be denoted by k � k2.

Definition 2.8. Suppose H and K are right Q-modules. A map T W H ! K is said
to be conditionally Hilbert–Schmidt if it is Q-linear and

P
�2� kT �k

2
2 < 1 for every

conditionally orthonormal set � � H0.

We point out that the Hilbert space norm k � k2 is used for the sum in the above def-
inition, whereas the orthogonality of the involved elements is taken with respect to the
conditional inner product h�; �iQ, whose associated norm is only defined on the dense
set of bounded vectors. Also, note that in the unconditional situation where Q D C, we
recover the usual notion of a Hilbert–Schmidt operator.

Example 2.9. Given Q � N , we consider the basic construction hN; eQi � B.L2.N //
generated by N and the projection eQ onto the subspace L2.Q/, which comes equipped
with a canonical semi-finite trace y� (see, e.g., [1, Section 9]). It is well known that the
corresponding L2-space L2.hN; eQi; y�/ is isomorphic to L2.N / ˝Q L2.N / (see, e.g.,
[1, Exercise 13.13]). Now let K 2 L2.N /˝Q L2.N /. Viewing K as an operator

K W L2.N /! L2.N /; K.f / D K �Q f;
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we see that for any conditional orthonormal basis ¹eiºi of L2.N / as aQ-module, we haveX
i

kKeik
2
2 D y�.K

�K/ D kKk2 <1;

where the first equality follows from [1, Proposition 8.4.15]. We thus conclude that K is
a conditional Hilbert–Schmidt operator.

Following closely [49, Appendix C], we will next establish Proposition 2.12 below,
which can be viewed as a spectral decomposition of conditional Hilbert–Schmidt opera-
tors that will be an important ingredient in the proof of Theorem A. As mentioned before,
our approach differs from [49, Appendix C] by the fact that the conditional norm is only
densely defined, but essentially the only novelty is treating this situation carefully and
using the fact that one can always find an orthonormal basis for any right module consist-
ing of left-bounded vectors (cf. [1, Proposition 8.4.11]).

For the remainder of this section, we fix a tracial von Neumann algebra Q and a right
Q-module H .

Lemma 2.10 (cf. [49, Lemma C.10]). Let � 2 H0 and " > 0. Then, there exists � 2 �Q
with k� � �h�; �iQkQ;1 < " and such that h�; �iQ is a projection.

Proof. Consider a WD h�; �iQ. Let p WD 1Œ";1/.a/, and b WD f .a/ where

f .x/ D 1Œ";1/.x/x
�1=2:

Then, a; b; p 2 Q all commute, pb2a D p, and

a.1 � p/ D a 1Œ0;"/.a/ � "Id:

Define � WD �bp. Then, h�;�iQDpbh�;�iQbpDp. Furthermore, we see that �h�;�iD �p
and thus ˝

� � �h�; �iQ; � � �h�; �iQ
˛
Q
D h� � �p; � � �piQ D a.1 � p/ < "Id:

This finishes the proof.

Lemma 2.11 (cf. [49, Lemma C.14]). Suppose T W H ! H is a bounded Q-linear map.
Then, its operator norm (as a bounded linear map between Hilbert spaces) can be com-
puted as

kT k WD sup
®
kT �k2 j � 2 H ; k�k2 � 1

¯
D sup

®
kT �k2 j � 2 H0; h�; �iQ is a projection

¯
:

Proof. Firstly, we observe that by the continuity of T and density of H0 � H , we have

kT k WD sup
®
kT �k2 j � 2 H ; k�k2 � 1

¯
D sup

®
kT �k2 j � 2 H0; k�k2 � 1

¯
:
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Fix " > 0. Let � 2 H0 be an element with k�k2 � 1 and kT �k2 � kT k � "=2. By
Lemma 2.10, given ı > 0, we can find � 2 �Q such that h�; �iQ is a projection and

� � �h�; �iQ

2 � 

� � �h�; �iQ

Q;1 < ı:

Thus: 

T � � T �h�; �iQ

2 � kT k 

� � �h�; �iQ

2 < ıkT k:
Upon taking ı small enough, we can thus ensure that kT �h�; �iQk2 � kT �k2 � "=2. The
module-version of the Cauchy–Schwarz inequality (see for instance [50, Proposition 1.1])
moreover gives

h�; �iQh�; �iQ �


h�; �iQ

 h�; �iQ:

Thus, 

h�; �iQ

22 D ��h�; �iQh�; �iQ� � ��h�; �iQ� 

h�; �iQ

 D k�k22k�k2Q;1:
In other words, we have kh�; �iQk2 � k�k2k�kQ;1 � 1 and therefore

kT �k2 � kT �k2


h�; �iQ

2 � 

T �h�; �iQ

2 � kT �k2 � "=2 � kT k � ";

which finishes the proof of the lemma.

Proposition 2.12 (cf. [49, Proposition C.15]). Suppose T W H ! H is a conditional
Hilbert–Schmidt operator. Then, for every " > 0, there exists a finite Q-orthonormal set
� � H such that kT �k2 � "k�k2 for every � 2 H conditionally orthogonal to �.

Proof. Fix " > 0. By Lemma 2.11, we can find �1 2 H0 such that kT �1k2 � kT k � "=2
and h�1; �1iQ is a projection. Let H0

1 WD ¹� 2 H0 j h�1; �iQ D 0º and consider

H1 WD H0
1

k�k2
:

Note that H1 is a closedQ-submodule of H , and there is no ambiguity in the notation H0
1 ,

as the bounded vectors in H1 are given by H0 \H1 which equals H0
1 as defined above.

Consider T jH1
. Applying again Lemma 2.11, we find �2 2 H0

1 such that

kT �2k2 � kT jH1k � "=2

and h�2; �2iQ is a projection. Continuing in this way, we construct a Q-orthonormal
sequence ¹�nºn2N such that kT �nC1k2 � kT jHnk � "=2, with

Hn D
®
� 2 H0 j 81 � i � n W h�i ; �iQ D 0

¯k�k2
and �nC1 2 H0

n for every n. Since T is conditionally Hilbert–Schmidt, we can take n
large enough so that kT �nC1k2 � "=2, and thus kT jHnk � ". Taking � D ¹�1; : : : ; �nº
then finishes the proof of the proposition.



A. Jamneshan and P. Spaas 16

3. Compact extensions

In this section, we define conditionally (relative to Q) almost periodic elements by anal-
ogy with the commutative case and prove Theorem A. The following definition is inspired
by the operator-theoretic conceptualizations in the commutative case in [62, Section 2.13]
and is similar to the definitions in [49, Section 3.1, Appendix C].

Definition 3.1. Let Q � N be an inclusion of von Neumann algebras. Suppose H is a
right Q-module.

(i) A subset Z � H is called a finitely generated module zonotope if it is of the
form ¹

P
f 2F f � x j x 2 Q; kxk � 1º for some finite set F � H .

(ii) We call H a normed Q-module if it is equipped with a norm k � k satisfying
k�xk � k�k kxk for all � 2 H , x 2 Q.

(iii) If H is a normedQ-module, a setK �H is called conditionally precompact if
for every " > 0, there exists a finitely generated module zonotope Z such that
K �" Z; that is, infz2Z kk � zk � " for all k 2 K.

We note that working with right modules is just a choice, and one could easily adapt
the definitions and results to left modules.

Definition 3.2. Let � Õ .N; �/ be a tracialW �-dynamical system, and letQ�N be a �-
invariant von Neumann subalgebra. Consider L2.N / a right Q-module in the canonical
way, and equip it with its usual 2-norm k � k2 coming from the trace of N . This turns
L2.N / into a normed Q-module. We call an element � 2 L2.N / almost periodic relative
to Q if its orbit is conditionally precompact. If Q is clear from the context, we will also
call � conditionally almost periodic, or just almost periodic.

We denote by AP 2
Q;N � L

2.N / the set of all elements in L2.N / that are almost
periodic relative toQ, and by APQ;N DAP 2

Q;N \N the set of all elements inN almost
periodic relative to Q. When N is clear from the context, we also write AP 2

Q and APQ.

Unwrapping the definition, one immediately gets the following.

Lemma 3.3. Let � Õ� .N; �/ be a tracial W �-dynamical system, and let Q � N be a
�-invariant von Neumann subalgebra. For any � 2 L2.N /, the following are equivalent.

(1) � is almost periodic relative to Q.

(2) For every " > 0, there exist �1; : : : ; �k 2 L2.N / such that for every 
 2 � , there
exist �i .
/ 2 Q with supi;
 k�i .
/k <1 and



�
 .�/ � kX

iD1

�i�i .
/






2

� ":

Note that we could also pick the �i in item (2) above from N instead of L2.N / by
density. The following properties follow from a straightforward computation which is left
to the interested reader.
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Lemma 3.4. The following statements hold.

(i) AP 2
Q;N � L

2.N / is a �-invariant Hilbert subspace.

(ii) APQ;N � N is a �-invariant linear subspace which is closed in the strong
operator topology.

We can now use the above to formally define compact extensions in the von Neumann
algebra setting.

Definition 3.5 (cf. [11, Definition 3.9]). Let � Õ .N; �/ be a tracial W �-dynamical sys-
tem, and let Q � N be a �-invariant von Neumann subalgebra. We call N a compact
extension of Q if AP 2

Q;N D L
2.N / (or equivalently APQ;N D N ).

We can now give the proof of our first main theorem, which we recall here for conve-
nience.

Theorem A. Let � Õ .N; �/ be a tracial W �-dynamical system, and let Q � N be a
�-invariant von Neumann subalgebra. Then, the following are equivalent.

(1) N is a compact extension of Q.

(2) span¹K �Q � jK2L2.N /˝QL2.N /�-invariant; �2L2.N /º is dense inL2.N /.

(3) L2.N / is the closure of the union of the Q-finitely generated �-invariant right
(or left) Q-submodules.

Proof. (1))(2). Assume (1) holds and suppose that f 2N is orthogonal to every function
of the form K �Q � with K 2 L2.N /˝Q L2.N / �-invariant and � 2 L2.N /. It suffices
to prove that f D 0.

Consider f ˝Q f � 2 L2.N /˝Q L2.N / and letK be the unique element of minimal
norm in the closed convex hull of Orb.f ˝Q f �/ D ¹.�
 � �
 /.f ˝Q f �/ j 
 2 �º.
Then, K is �-invariant, and thus by assumption, f is orthogonal to K �Q f . In other
words, we have

0 D hf;K �Q f iL2.N/

D �
�
f �.id˝EQ/

�
K.1˝Q f /

��
D �

�
.id˝EQ/

�
K.f � ˝Q f /

��
D hK; f ˝Q f

�
iL2.N/˝QL2.N/:

We thus get that f ˝Q f � is orthogonal to K, and since K is �-invariant, we conclude
that .�
 � �
 /.f ˝Q f �/ is orthogonal to K for every 
 2 � . Hence, K is orthogonal to
itself and therefore K D 0.

Fix " > 0. Following Lemma 3.3 (2), take a finite set �1; : : : ; �k 2 N and for every

 2 � , �i .
/ 2 Q, such that supi;
 k�i .
/k <1 and



�
 .f / � kX

iD1

�i�i .
/






2

�
p
":
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By the previous paragraph, we can find a sequence .Kn/n in the convex hull of
Orb.f ˝Q f �/ such that kKnkL2.N/˝QL2.N/ ! 0. In particular, for every 1 � i � k,
we have hKn; �i ˝Q ��i iL2.N/˝QL2.N/ ! 0, and thus

kX
iD1

hKn; �i ˝Q �
�
i iL2.N/˝QL2.N/ ! 0:

For a given n, writing Kn as a convex combination

Kn D

mnX
jD1

�j .�
j � �
j /.f ˝Q f
�/;

we can expand the inner product to get

kX
iD1

hKn; �i ˝Q �
�
i iL2.N/˝QL2.N/

D

kX
iD1

*
mnX
jD1

�j .�
j � �
j /.f ˝Q f
�/; �i ˝Q �

�
i

+
L2.N/˝QL2.N/

D

kX
iD1

mnX
jD1

�j
˝
�
j .f /

�;
˝
�
j .f /; �i

˛
Q
��i
˛
L2.N/

D

kX
iD1

mnX
jD1

�j �
�
�
j .f /EQ

�
�
j .f /

��i
�
��i
�

D

kX
iD1

mnX
jD1

�j �
�
EQ

�
�
j .f /

��i
�
EQ

�
��i �
j .f /

��
D

mnX
jD1

�j

 
kX
iD1



EQ��
j .f /��i�

22
!
:

Since the latter convex combination converges to zero, we conclude that upon taking n
large enough, there exists 
 2 � such that for every 1 � i � k,

EQ��
 .f /��i�

2 < "

k � supi;



�i .
/

 : (3.1)

We can then calculate

EQ��
 .f /��
 .f /�

2
�






EQ��
 .f /��
 .f /�CEQ
  

kX
iD1

�i�i .
/

!� kX
iD1

�i�i .
/

!!





2
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D






EQ
  
�
 .f / �

kX
iD1

�i�i .
/

!� 
�
 .f / �

kX
iD1

�i�i .
/

!!

CEQ

 
�
 .f /

�

 
kX
iD1

�i�i .
/

!!
CEQ

  
kX
iD1

�i�i .
/

!�
�
 .f /

!





2

�






�
 .f / � kX
iD1

�i�i .
/







2

2

C 2

kX
iD1



EQ��
 .f /��i�

2 k�i .
/k
< 3":

Since " was arbitrary, we conclude that f D 0.
(2))(3). LetK 2 L2.N /˝Q L2.N / be �-invariant. Assume w.l.o.g. thatK � 0 and

recall from Example 2.9 that when viewed as a convolution operator, K is conditionally
Hilbert–Schmidt.

Write p" WD 1Œ";1/.K/, where we apply Borel functional calculus to K as an operator
K W L2.N /! L2.N /. Then, p" is �-invariant since it arises as a limit of polynomials
in K, and thus H" WD p"L

2.N / is a �-invariant Q-submodule of L2.N /. Moreover, by
construction, p"K D KjH"

� "idH"
. However, sinceK is conditionally Hilbert–Schmidt,

KjH"
is also conditionally Hilbert–Schmidt. Combining this with Proposition 2.12, we

get that H" is necessarily finitely generated as a Q-module. Letting "! 0, we get that
the union of the finitely generated �-invariant Q-submodules of the range of K is dense
in the range of K. This concludes the proof of (2))(3).

(3))(1). Let H be a closed �-invariant Q-submodule of L2.N /, which is generated
as a Q-module by a finite orthonormal set of vectors F � H . Take f 2 H . Then, the
orbit of f is contained in

P
h2F kf k hBQ, where BQ denotes the unit ball of Q, which

is by definition a Q-finitely generated module zonotope in L2.N /. By assumption, such
modules generate L2.N /, and thus we get that the space of conditionally almost periodic
elements is dense in L2.N /. Since this space is also closed by Lemma 3.4, it follows that
(1) holds.

Remark 3.6. Let � Õ .N; �/ be a W �-dynamical system, and assume Q � P � N are
�-invariant von Neumann subalgebras. We note that it follows immediately from Defi-
nition 3.5 that if � Õ .Q � N/ is a compact extension, then also � Õ .Q � P / and
� Õ .P �N/ are compact extensions. Together with Theorem A (3), this answers a ques-
tion raised in [23, Section 6]. Moreover, one can view relatively almost periodic functions
as defined in Definition 3.2 as “generalized eigenfunctions” (cf. [35, Definition 9.10]). We
thus show that these generalized eigenfunctions arise from conditional Hilbert–Schmidt
operators, and through the equivalence with the characterization in terms of finite-rank
modules in Theorem A (3), this answers the other question raised in [23, Section 6] as
well.

As another corollary of the proof of Theorem A, we can answer a question from
Austin, Eisner, and Tao [2, Question 4.3]. For this, we first introduce some notation and
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explain in more detail the connection between the extensions of W �-dynamical systems
and the basic construction. Suppose .N; �/ is a tracial von Neumann algebra and Q � N
is a subalgebra. As in Example 2.9, we can then look at the basic construction hN; eQi �
B.L2.N; �// generated byN and the conditional expectation eQ WL2.N /!L2.Q/. This
is in general no longer a tracial von Neumann algebra, but it has a so-called semifinite trace
y� W hN; eQi ! Œ0;1�, defined on the dense �-subalgebra span¹xeQy j x; y 2 N º by

y�.xeQy/ D �.xy/:

It is well known (e.g., see [1, 48]) that hN; eQi coincides with Q0right \ B.L
2.N //, where

Qright denotes the right multiplication of Q. In terms of modules, this implies that if V �
L2.N / is a closed right Q-submodule, then the orthogonal projection PV W L2.N /! V

belongs to hN; eQi. One can use this to define the Q-dimension of V, by letting

dimQ.V / WD y�.PV /:

We say that V has finite lifted trace if y�.PV / <1. We note that in general, having finite
lifted trace is not equivalent to being finitely generated; e.g., see [1, Section 8].

Given a tracial W �-dynamical system � Õ .N; �/, and a �-invariant von Neumann
subalgebra Q � N , [2, Question 4.3] asks whether any �-invariant right Q-submodule
V � L2.N / of finite lifted trace can be approximated by �-invariant finitely generated
rightQ-submodules ofL2.N /. [2, Lemma 4.1] gives a partial answer, by establishing this
fact for Z-actions and under the additional (restrictive) condition that Q � N is central.
We next observe that the proof of Theorem A can be used to answer their question in full
generality.

Lemma 3.7. Let � Õ .N; �/ be a tracial W �-dynamical system, and let Q � N be a
�-invariant von Neumann subalgebra. Suppose V � L2.N / is a �-invariant right Q-
submodule of finite lifted trace. Then, for any " > 0, there exists a further �-invariant
right Q-submodule V1 � V such that

• y�.PV � PV1/ < ", and

• V1 is finitely generated.

Proof. Following Example 2.9 (cf. [1, Section 8]), we see that the condition that V �
L2.N / has finite lifted trace exactly means that PV is a conditional Hilbert–Schmidt oper-
ator. Therefore, if V � L2.N / is a �-invariant right Q-submodule of finite lifted trace,
then PV is a �-invariant conditional Hilbert–Schmidt operator and thus can be identified
with a �-invariant element of L2.N /˝Q L2.N /. The proof of (2))(3) in Theorem A
now immediately implies the result.

We saw in Lemma 3.4 that the set AP 2
Q;N of conditionally almost periodic elements

in L2.N / is always a closed Hilbert subspace. However, its intersection APQ;N with
N is in general only an SOT-closed linear subspace of N that may not be closed under
multiplication and/or involution. We describe below an example of this phenomenon due
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to Austin, Eisner, and Tao (see [2, Example 4.2]). If this happens, one would not be able
to reasonably consider APQ;N as the maximal compact extension of Q inside N within
the framework of actions on von Neumann algebras.

Example 3.8. Consider Q WD L.Z/ D L.hai/ � L.ha; bi/ D L.F2/ DW N . We consider
the action of Z on N determined by the automorphism ˛ of F2 given by ˛.a/ D a and
˛.b/ D ba, which obviously leaves Q invariant. It is then easy to see that b is almost
periodic relative to Q, as it is contained in the Z-invariant Q-module V of rank 1 given
by V WD span¹bban j n 2 Zº D bL2.Q/ � L2.N /. However, b2 is not almost periodic
relative to Q since the elements ˛n.b2/ D banban for n 2 Z are pairwise orthogonal
relative to Q.

Furthermore, one can observe that it is easy to get an ergodic such example, i.e., an
action � Õ N such that the space of fixed points N � is trivial (N � D C1). Indeed, one
can change the above action on Q D L.Z/ Š L1.T / to be associated with any ergodic
action on T , such as irrational rotation. We would still have that b is contained in V as
defined above, and furthermore ˛n.b2/D ba˛n�1.a/ba˛n�1.a/, which is still a sequence
of pairwise orthogonal elements relative to Q.

In a preprint of Chifan and Peterson [12], it is observed that APQ;N is a von Neu-
mann subalgebra under certain additional assumptions. For this, we first introduce the
following definition: We call a von Neumann subalgebra Q � N quasi-regular if the
quasi-normalizer QN N .Q/ WD ¹x 2 N j 9x1; : : : ; xk 2 N W xQ �

Pk
iD1Qxi and Qx �Pk

iD1 xiQº generates N as a von Neumann algebra.
Unwrapping the definitions, it is not too hard to see that under the additional assump-

tion that Q is quasi-regular in N , we do always get that the conditionally almost periodic
elements form a von Neumann subalgebra. This was first observed by Chifan and Peterson
in [12], but we provide a proof for completeness.

Proposition 3.9 ([12]). Let � Õ .N;�/ be a tracialW �-dynamical system, and letQ�N
be a quasi-regular and �-invariant von Neumann subalgebra. Then, APQ;N forms a von
Neumann subalgebra of N .

Proof. We already know from Lemma 3.4 that AP WDAPQ;N is a linear subspace which
is closed in the strong operator topology. We thus only have to argue that it is closed under
multiplication and convolution.

Let �1; �2 2 AP and fix " > 0. By definition, for t D 1; 2 we can find �t1; : : : ; �
t
k
2 N

such that for every 
 2 � , there exists �ti .
/ 2 Q such that

sup
i;
;t



�ti .
/

1 �M <1;



�
 .�1/ � kX
iD1

�1i �
1
i .
/






2

�
"

4 k�2k1
;



�
 .�2/ � kX

iD1

�2i �
2
i .
/






2

�
"

4M
P
i



�1i 

1 :



A. Jamneshan and P. Spaas 22

In particular, we have 



�
 .�1�2/ � kX
i;jD1

�1i �
1
i .
/�

2
j �
2
j .
/






2

�
"

2
:

Since QN N .Q/
00 D N , we can moreover assume that �ti 2 QN N .Q/.

Denote by V �L2.N / theQ-bimodule generated by �21; : : : ;�
2
k

, and byPV WL2.N /!
V the orthogonal projection onto V . Using [28, Lemma 3.5] (cf. [54, Theorem 1.4.2]), we
can find a sequence of projections zn 2 Q0 \ N such that zn ! 1 in the strong operator
topology, together with finitely many mutuallyQ-orthogonal elements xn;1; : : : ; xn;l 2N
for every n, such that for every � 2 N , we have

znPV zn.�/ D
X
m

xn;mEQ.x
�
n;m�/: (3.2)

Since PV � znPV zn ! 0 in the strong operator topology as n!1, there exists n large
enough such that for all j ,

PV .�2j / � znPV zn.�2j /

2 � "

2M 2k2 maxi


�1i 

1 :

Fix such n and denote xm WD xn;m. Since V is a Q-bimodule and zn 2 Q0 \N , we note
that for every a; b 2 Q and � 2 N , we have

PV .a�b/ D aPV .�/b and znPV zn.a�b/ D aznPV zn.�/b:

Hence, using (3.2), we get


X
i;j

�1i .
/�
2
j �
2
j .
/ �

X
i;j;m

xmEQ
�
x�m�

1
i .
/�

2
j �
2
j .
/

�



2

D




X
i;j

�1i .
/�
2
j �
2
j .
/ � znPV zn

�X
i;j

�1i .
/�
2
j �
2
j .
/

�



2

�

X
i;j



PV ��1i .
/�2j �2j .
/� � znPV zn��1i .
/�2j �2j .
/�

2
�

X
i;j

M 2


PV .�2j / � znPV zn.�2j /

2

�
"

2maxi k�1i k1
:

Denoting �i;m.
/ WD
P
j EQ.x

�
m�

1
i .
/�

2
j �
2
j .
// 2Q, it is then a straightforward calcula-

tion to check that

sup
i;m;




�i;m.
/

1 �M 2 max
m
kxmk1max

j
k�2j k1 <1
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and 


�
 .�1�2/ �X
i;m

.�1i xm/�i;m.
/




2

�
"

2
C




X
i

�1i

�X
j

�1i .
/�
2
j �
2
j .
/ �

X
j;m

xmEQ
�
x�m�

1
i .
/�

2
j �
2
j .
/

��



2

�
"

2
Cmax

i
k�1i k1

"

2maxi k�1i k1
D ":

Hence, ¹�1i xmºi;m and �i;m.
/ witness that �1�2 2 AP . The proof that AP is closed
under convolution proceeds similarly and is left to the reader.

This now leads to the following definition.

Definition 3.10. Let � Õ .N; �/ be a tracial W �-dynamical system, and let Q � N be
a �-invariant von Neumann subalgebra. Assume Q � N is quasi-regular. Then, the von
Neumann subalgebra APQ;N � N consisting of all almost periodic elements relative to
Q is called the maximal compact extension of Q inside N .

Remark 3.11. It follows easily from the proof of Theorem A that if the space APQ of
almost periodic elements relative to Q forms a von Neumann subalgebra, it can equiva-
lently be described as

APQ D closure of span
®
K �Q x j K 2 L

2.N /˝Q L
2.N / �-invariant; x 2 N

¯
:

Example 3.12. Let .N; �; �/ be a W �-dynamical �-system. Then, we can consider the
“maximal compact part” of the action, given by AP C � N .

Remark 3.13. Example 3.8 does not only give an example of an action where the almost
periodic elements do not form a von Neumann subalgebra; it also shows that even if Q �
N is quasi-regular, it is not necessarily true that also APQ �N is quasi-regular again, nor
that AP APQ

�N is a von Neumann subalgebra. Indeed, in the aforementioned example,
we see that Q D AP C , but APQ � N is not closed under multiplication.

4. Joinings

Analogous to classical ergodic theory (e.g., see [35, Section 6]), one can consider the
joinings of two W �-dynamical systems. This notion is also considered for general W �-
dynamical systems in [4]. In the tracial setting, the definition can be phrased as follows.

Definition 4.1. Let � Õ .M; �M / and � Õ .N; �N / be tracial W �-dynamical systems,
and suppose Q � M;N is a common �-invariant von Neumann subalgebra. A joining
of M and N over Q is a �-invariant state ' on the algebraic tensor product M ˝alg N

op

such that 'jM˝1D �M , 'j1˝N op D �N and 'jQ˝algQop D�Q, where�Q is the “diagonal”
state on Q˝alg Q

op given by �Q.a˝ b/ D �Q.ab/.
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Remark 4.2. Note that we can only define the joining ' on the algebraic tensor product
M ˝alg N

op since the diagonal state �Q is in general not bounded and not normal, and
thus does not necessarily extend to the von Neumann algebraic tensor product Q x̋ Q.
Indeed, if Q is for instance a separable II1 factor, then by Connes’ theorem [13, Theo-
rem 5.1], �Q is not min-continuous on Q˝alg Q unless Q is hyperfinite. We would like
to thank Cyril Houdayer for kindly pointing out to us that the definition as it appeared in
the first arXiv-version was incorrect. However, we note that all results involving joinings
from that first version remain true with the above corrected definition (where we modified
the proofs accordingly).

Remark 4.3. Through the GNS-construction, one can also formulate joinings in terms
of pointed bimodules and therefore also ucp maps. We refer to Lemma 5.7, where this is
needed and worked out, and to [4] for further results and details.

Example 4.4. GivenM;N;Q as in Definition 4.1, there always exists a canonical joining
' ofM andN overQ defined by '.x˝ y/D�Q.EQ.x/˝EQ.y//D�Q.EQ.x/EQ.y//.
We call this joining the relatively independent joining of M and N over Q and denote it
by �M ˝Q �N .

We will often want to work with the GNS construction (i.e., separation-completion) of
the algebraic tensor productM ˝alg N

op associated with �M ˝Q �N , so we fix its notation
now.

Definition 4.5. Given M; N; Q as in Definition 4.1, we denote by L2.M ˝alg N
op;

�M ˝Q �N / the separation-completion of M ˝alg N
op with respect to the relatively inde-

pendent joining �M ˝Q �N .

We observe next that this GNS representation can be identified with the usual Connes’
fusion tensor product of the standard representations L2.M/ and L2.N / over Q. Never-
theless, it will sometimes be useful to take the joining point of view.

Lemma 4.6. Given M;N;Q as in Definition 4.1, we have a canonical isomorphism of
Hilbert spaces

L2.M ˝alg N
op; �M ˝Q �N / Š L

2.M; �M /˝Q L
2.N op; �N /:

Proof. This is a straightforward computation and is left to the interested reader.

The following proposition is an analogue of a well-known important result in the
Furstenberg–Zimmer structure theory (see, e.g., [34]) in the von Neumann algebraic set-
ting, and it will make use crucially of the identifications in Theorem A. It will for instance
be useful later when discussing the Host–Kra–Ziegler tower of compact extensions com-
ing from cubic systems.

Proposition 4.7. Let � Õ .M; �M / and � Õ .N; �N / be tracial W �-dynamical sys-
tems, and suppose Q � M; N is a common �-invariant von Neumann subalgebra. If
� 2 L2.M/˝Q L

2.N op/ is �-invariant, then � 2 AP 2
Q;M ˝Q AP 2

Q;N .
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Proof. We can view � as a �-invariant conditional Hilbert–Schmidt operator from L2.N /

to L2.M/, and as in the proof of .2/) .3/ in Theorem A, we see that the range of
p" WD 1Œ";1/.�/ W L

2.M/! L2.N / is a Q-finitely generated submodule of L2.M/. This
easily implies (by Theorem A (3)) that

p"� 2 AP 2
Q;M ˝Q AP 2

Q;N :

Since p"� ! � as "! 0, we get that also � 2 AP 2
Q;M ˝Q AP 2

Q;N .

Corollary 4.8. Let � Õ .M; �M / and � Õ .N; �N / be tracial W �-dynamical systems.
Denote by I �M x̋ N the subalgebra of invariant vectors for the diagonal product action
of � on M x̋ N . Then, I � APM x̋ APN .

In the commutative setting, the identification in Lemma 4.6 can be carried over to the
measure space level,3 by observing thatX1 �X2 equipped with the relatively independent
joining measure �1 �Y �2 is isomorphic as a measure algebra to .X1 �Y X2; �1 �Y �2/
as defined in Section 2.4, where .Y;�/ is a common factor of .X1;�1/ and .X2;�2/. In the
von Neumann algebraic setting, however, the “relatively independent product”N1˝Q N2
of Q � N1 and Q � N2 is (usually) not well defined as a tracial von Neumann algebra
if approached the same way. Given a tracial von Neumann algebra Q, a right Q-module
H and a left Q-module K , Connes’ fusion tensor product H ˝Q K is a Hilbert space,
but not necessarily a Q-module. Indeed, one could only act on H (respectively, K) on
the right (respectively, left), which causes problems with the definition of Connes’ fusion
tensor product, since it is easy to see that �q ˝ � D � ˝ q� for any q 2 Q and bounded
vectors � 2 H , � 2 K , but Q is not necessarily abelian. Moreover, if H and K were Q-
bimodules, H ˝Q K would not be a (right or left)Q-module in such a way as to identify
the original (right, respectively, left) actions on H and K used to construct H ˝Q K .

Nevertheless, the above approach works when H D L2.N1/ and K D L2.N2/ for
tracial von Neumann algebras N1, N2 with Q as a common subalgebra of the center. In
this case we have well-defined actions of N1 and N op

2 on L2.N1/˝Q L2.N2/ by

x � .� ˝Q �/ WD x� ˝Q � and .� ˝Q �/ � y WD � ˝Q �y (4.1)

for x 2 N1, y 2 N2, � 2 L2.N1/, � 2 L2.N2/, and the two actions of Q coincide by the
construction of Connes’ fusion tensor product.

Remark 4.9. For general Q � N , we can look at the “doubling” L2.N /˝Q L2.N /. In
this case, it does come from a von Neumann algebra that can be viewed as a canonical
“relatively independent product” of N with itself over the subalgebra Q. This von Neu-
mann algebra is given by the aforementioned basic construction hN; eQi � B.L2.N //
generated by N and the projection eQ onto the subspace L2.Q/. However, as observed
in the explanation preceding Lemma 3.7, hN; eQi is in general not a tracial von Neumann
algebra.

3Similar constructions exist for non-standard spaces and in the category of probability algebras by
working with canonical models and disintegrations; e.g., see [46].
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Definition 4.10. Suppose Q is a common subalgebra of the centers of N1 and N2. We
will call the von Neumann subalgebra of B.L2.N1/˝Q L2.N2// generated by N1 and
N2 for the actions defined by (4.1) the relatively independent product of N1 and N2 over
Q and denote it by N1 x̋Q N2.

Remark 4.11. IfQ is a common subalgebra of the centers of von Neumann algebras N1,
N2, and N3, we observe that we have canonical isomorphisms

.N1 x̋Q N2/ x̋Q N3 Š N1 x̋Q .N2 x̋Q N3/ DW N1 x̋Q N2 x̋Q N3

and
N1 x̋Q N2 Š N2 x̋Q N1:

Assuming the above situation, we will next prove the extension of a classical result
from ergodic theory, characterizing the maximal compact extension inside a relatively
independent product, which we formulated as Theorem B in the introduction. In the first
half of the proof, we follow very closely the original proof of Furstenberg [33, The-
orem 7.1] (see also [35, Theorem 9.21]). However, we provide the proof on a purely
algebraic level, whereas the original proof is “point-based”, and we avoid the use of dis-
integration.

Proof of Theorem B. Note that the maximal compact extensions in the statement of the
theorem indeed exist thanks to Proposition 3.9, by observing that any subalgebra of the
center is quasi-regular. It is easy to see that P1 x̋Q P2 � P , and we proceed with showing
the reverse inclusion.

Assume f 2 P 	 P1 x̋Q P2 is an element such that the �-invariant Q-module V
generated by f is of finite rank, and let f1; : : : ; fr be aQ-orthonormal basis for V . Then,
for every 1 � i � r , fi 2 P 	 P1 x̋Q P2, and if we write 
 � fi D

Pr
jD1 �ij .
/fj , then

.�ij .
//
r
i;jD1 is a unitary matrix over Q for every 
 2 � . We now define the element

 WD .id˝ id˝EQ/

 
rX
iD1

�13.fi /�23.f
�
i /

!
2 L2.N1/˝Q L

2.N1/˝Q L
2.Q/

Š L2.N1/˝Q L
2.N1/;

where �13; �23 W N1 x̋Q N2! N1 x̋Q N1 x̋Q N2 denote the canonical embeddings deter-
mined by �13.x ˝Q y/ D x ˝ 1˝ y and �23.x ˝Q y/ D 1˝ x ˝ y. For every 
 2 � ,
using that .�ij .
//ri;jD1 is a unitary matrix over Q, a straightforward calculation then
gives that 
 �  D  . Therefore, we can view  2 L2.N1/˝Q L

2.N1/ as a �-invariant
conditional Hilbert–Schmidt operator. As in the proof of Theorem A, we get that the image
of is spanned by the -invariant and �-invariantQ-finitely generated submodules. Take
such a submodule W and let �1; : : : ; �s be a Q-orthonormal basis for W . For 1 � i � r ,
1 � j � s, we define the elements

gij WD .EQ ˝ id/
�
fi .�

�
j ˝ 1/

�
2 L2.Q/˝Q L

2.N2/ Š L
2.N2/:
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Writing 
 � �i D
Ps
jD1 �ij .
/�j , a straightforward computation yields


 � gij D

rX
mD1

sX
nD1

�im.
/�jn.
/
�gmn;

for every 
 2 � . Hence, gij 2 L2.P2/. By construction, we then have for every 1 � i � r ,
1 � j; k � s that

�k ˝Q gij 2 L
2.P1/˝Q L

2.P2/;

and thus fi is perpendicular to �k ˝Q gij . Hence, for 1 � j; k � s, we have

0 D .EQ ˝EQ/

 
rX
iD1

fi .�
�
k ˝Q g

�
ij /

!

D .EQ ˝EQ/

 
rX
iD1

fi .�
�
k ˝Q 1/.1˝Q g

�
ij /

!

D .EQ ˝EQ/

 
rX
iD1

fi
�
.��k ˝Q 1/

��
1˝ .EQ ˝ id/

�
f �i .�j ˝ 1/

��!
;

where in the last equality we used the definition of gij considered inside L2.N2/. Inter-
preting the elements between the large brackets as living in L2.N1/ ˝Q L2.Q/ ˝Q
L2.N2/ (Š L2.N1/˝Q L2.N2/), we can write

.EQ ˝EQ/

 
rX
iD1

fi
�
.��k ˝Q 1/

��
1˝ .EQ ˝ id/

�
f �i .�j ˝ 1/

��!

D .EQ ˝ id˝EQ/

 
rX
iD1

�13
�
fi .�

�
k ˝Q 1/

�
�23
�
.EQ ˝ id/

�
f �i .�j ˝ 1/

��!

D .EQ ˝EQ ˝EQ/

 
rX
iD1

�13
�
fi .�

�
k ˝Q 1/

�
�23
�
f �i .�j ˝ 1/

�!
:

Taking together terms appropriately and observing that �13.��k ˝Q 1/D .�
�
k
˝Q 1˝Q 1/

commutes with �23.f �i / yields

.EQ ˝EQ ˝EQ/

 
rX
iD1

�13
�
fi .�

�
k ˝Q 1/

�
�23
�
f �i .�j ˝ 1/

�!

D .EQ ˝EQ ˝EQ/

 "
rX
iD1

.id˝ id˝EQ/
�
�13.fi /�23.f

�
i /
�#
.��k ˝Q �j ˝Q 1/

!
:

Re-interpreting the elements between brackets to be inside

L2.N1/˝Q L
2.N1/

�
Š L2.N1/˝Q L

2.N1/˝Q L
2.Q/

�
;
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and using the definition of  , we get

.EQ ˝EQ ˝EQ/

 "
rX
iD1

.id˝ id˝EQ/
�
�13.fi /�23.f

�
i /
�#
.��k ˝Q �j ˝Q 1/

!
D .EQ ˝EQ/

�
 .��k ˝Q �j /

�
:

Finally, applying the definitions of the conditional convolution (2.4) and theQ-inner prod-
uct, we get

.EQ ˝EQ/
�
 .��k ˝Q �j /

�
D EQ

�
.id˝EQ/

�
 .1˝ �j /

�
��k
�
D h �Q �j ; �kiQ:

Following the above string of equalities, we conclude that for any 1 � j; k � s, we have
h �Q �j ; �kiQ D 0. Hence,  jW D 0, and sinceW was arbitrary, it follows that  D 0.

We next prove that this implies that fi D 0 for every 1� i � r , and hence f D 0, which
will finish the proof. Fix a Q-orthonormal basis ¹ej ºj2J of L2.N2/ as a right Q-module,
and for 1 � i � r , write

fi D
X
j

f
.j /
i ˝Q ej :

Then, we get

 D

rX
iD1

X
j;k

f
.j /
i ˝Q f

.k/�
i EQ.ej e

�
k/ D

rX
iD1

X
j

f
.j /
i ˝Q f

.j /�
i :

As a conditional Hilbert–Schmidt operator, this essentially means that  is written as a
sum of rank 1 operators over Q given by M

f
.j /
i

M �
f
.j /
i

, where

M
f
.j /
i

W L2.Q/! L2.N1/

denotes the Q-linear operator given by multiplication by f .j /i . Following [1, Proposi-
tion 8.4.2], we then get

0 D y�. / D y�

 
rX
iD1

X
j

f
.j /
i ˝Q f

.j /�
i

!

D y�

 
rX
iD1

X
j

M
f
.j /
i

M �
f
.j /
i

!
D �

 
rX
iD1

X
j

M �
f
.j /
i

M
f
.j /
i

!

D

rX
iD1

X
j

�Q
�
EQ.f

.j /�

i f
.j /
i /

�
D

rX
iD1

X
j

�N1.f
.j /�

i f
.j /
i /:

We conclude that for all i; j , f .j /i D 0, and thus every fi D 0, which finished the proof
of Theorem B.
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As a special case of Theorem B, we deduce the well-known result of Furstenberg
([33, Theorem 7.1], see also [35, Theorem 9.21]) by which the proof is inspired, but where
we can remove any countability/separability assumptions.

Theorem 4.12. Let .X1; �1; �1/ and .X2; �2; �2/ be probability algebra dynamical �-
systems with factor maps .X1; �1; �1/! .Y; �/ and .X2; �2; �2/! .Y; �/. Denote by
�i W Zi ! Y the maximal compact extension below Xi . Consider the canonical factor
map � WX1 �Y X2! Y , and denote by � WZ! Y the maximal compact extension below
X1 �Y X2. Then,

Z Š Z1 �Y Z2:

5. Weakly mixing extensions and dichotomies

Weakly mixing extensions are the complementary notion to compact extensions. These
have been well studied in the von Neumann algebraic setting and have for instance been
used extensively in Popa’s deformation/rigidity theory; e.g., see [54–58]. The following
proposition due to Popa (see [57, Lemma 2.1]) lists some equivalent characterizations
of weakly mixing extensions for tracial W �-dynamical systems. Note that item (3) in
Proposition 5.1 complements property (2) in Theorem A, which we will use below to
deduce some dichotomies analogous to the commutative case.

Proposition 5.1. Let � Õ .N; �/ be a tracial W �-dynamical system, and let Q � N be
a �-invariant von Neumann subalgebra. Then, the following properties are equivalent.

(1) For any finite set F � N 	Q and every " > 0, there exists 
 2 � such that

EQ�f�
 .g/�

2 � "
for all f; g 2 F .

(10) For any finite set F � L2.N /	 L2.Q/ with EQ.ff �/ bounded for all f 2 F
and every " > 0, there exists 
 2 � such that

EQ�f�
 .g/�

2 � "
for all f; g 2 F .

(2) There exists a net .
i /i2I in � , with the property that for any finite setƒ�� , there
exists iƒ such that 
i 62 ƒ for all i � iƒ, and an orthonormal basis ¹1º [ ¹fj ºj2J
of L2.N / relative to Q such that

lim
i



EQ�f �j �
i .fj 0/�

2 ! 0

for all j; j 0 2 J .

(3) Any �-invariant K 2 L2.N /˝Q L2.N / lies in L2.Q/.
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Proof. We note that [57, Lemma 2.10] is stated and proved for countable groups acting
on separable tracial von Neumann algebras. The same proof works for arbitrary discrete
groups acting on arbitrary tracial von Neumann algebras by replacing sequences with
nets in (2) and observing that any right Q-module still has a (not necessarily countable)
orthonormal basis (cf. [1]).

Definition 5.2. If any (and thus all) of the properties in Proposition 5.1 is satisfied, then
we say that N is weakly mixing relative to Q, or that N is a weakly mixing extension of
Q.

Given any tracial W �-dynamical inclusion � Õ .Q � N/, we denote

WM2
Q;N WD L

2.N /	AP 2
Q;N ;

and
WMQ;N WD WM2

Q;N \N:

Obviously, WM2
Q;N is a �-invariant Hilbert subspace of L2.N /.

By Proposition 5.1 and Theorem A, we can deduce some compact/weak mixing di-
chotomies. The Hilbert space L2.N / splits as an orthogonal sum of its relatively compact
and weakly mixing parts without any further assumption on the inclusion, similarly to the
commutative situation. However, on the von Neumann algebra level, we need to assume
that the inclusion Q � N is quasi-regular.

Proposition 5.3 (L2-dichotomy). Let � Õ .N; �/ be a tracialW �-dynamical system, and
let Q � N be a �-invariant von Neumann subalgebra. Then, WM2

Q;N is weakly mixing
relative to Q, in the sense that property (10) from Proposition 5.1 holds with L2.N / 	
L2.Q/ replaced by WM2

Q;N . In particular, we can decompose L2.N / as

L2.N / D AP 2
Q;N ˚WM2

Q;N

into a relatively compact and a relatively weakly mixing part.

Proof. One can mimic the proof of (3))(10) from [57, Lemma 2.10] with L2.N / 	
L2.Q/ replaced by WM2

Q;N and reach a contradiction with property (2) in Theorem A if
WM2

Q;N would not satisfy property (10). We leave the details to the interested reader.

Corollary 5.4. Let � Õ .N; �/ be a tracial W �-dynamical system, and let Q � N be a
�-invariant von Neumann subalgebra. If the inclusion Q � N is quasi-regular, then the
space of relatively weakly mixing elements WMQ � N is given by

WMQ D .APQ/
?
D
®
x 2 N j EAPQ

.x/ D 0
¯
:

Next we state a version of the notion of disjointedness in the non-commutative setting.
By analogy with the commutative setting, we will then use it together with our Theorem A
to characterize weakly mixing extensions.
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Definition 5.5. Suppose � Õ .M; �M / and � Õ .N; �N / are tracial W �-dynamical sys-
tems and Q � M; N is a common �-invariant subalgebra. We say that M and N are
disjoint over Q if �M ˝Q �N is the only joining of M and N over Q.

In Proposition 5.6, we will characterize weakly mixing extensions as being exactly
those that are disjoint from all compact extensions (under the assumption of quasi-regu-
larity). The special case Q D C1 for general (not necessarily tracial) W �-dynamical
systems was established for abelian groups by Duvenhage in [20] and for general locally
compact groups by Bannon, Cameron, and Mukherjee in [4, Theorem 6.15]. Our approach
offers an efficient proof for this fact in the tracial setting. For example, in [4], it had to be
checked by hand that relatively almost periodic elements form a von Neumann subalgebra,
which is immediate from the characterization in Lemma 3.3 when Q D C1.

Proposition 5.6. Let � Õ .N; �/ be a tracial W �-dynamical system, and let Q � N be
a quasi-regular and �-invariant von Neumann subalgebra. Then, N is a weakly mixing
extension of Q if and only if it is disjoint from every system which is a compact extension
of Q.

We split the proof into two lemmas. The first one is essentially an adaptation of the
argument in [4, Theorem 6.8]. We provide the proof for the sake of completeness, as it
considerably simplifies thanks to being in the tracial setting and the characterization of
almost periodic elements in Lemma 3.3. Note that the condition that the inclusionQ � N
is quasi-regular is not needed for this direction.

Lemma 5.7. Suppose � Õ .Q � N/ is a relatively weakly mixing tracialW �-dynamical
inclusion. Then, it is disjoint from every system which is a compact extension of Q.

Proof. Suppose � Õ .Q � M/ is a relatively compact tracial W �-dynamical system
which is not disjoint from � Õ .Q � N/, and let ' W M ˝alg N

op ! C be a non-
trivial joining. Consider the M -N -bimodule L2.M ˝alg N

op; '/ which is the separation-
completion ofM ˝alg N

op for ', and denote by �' the class of 1M ˝ 1N . Letˆ WM !N

denote the corresponding completely positive map (see Section 2.3), and denote by

Tˆ W L
2.M/! L2.N /

the associated linear operator. Observe that by construction, we have that ˆjQ D idQ.
Denoting by �M W � ! U.L2.M// and �N W � ! U.L2.N // the corresponding Koop-
man representations of the given actions, we see that moreover

Tˆ ı �M D �N ı Tˆ:

It is not difficult to check that Tˆ.L2.M// � L2.Q/ if and only if ' was the relatively
independent joining �M ˝Q �N (since in that case, necessarily Tˆ D EQ as it is a com-
pletely positive projection ontoQ). Since we are assuming this is not the case, we can find
� … L2.Q/ such that Tˆ.�/ … L2.Q/. Since M is a compact extension of Q, this means
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that � is relatively almost periodic; that is, for every " > 0, there exist �1; : : : ; �k 2 L2.M/

such that for every 
 2 � , there exist �i .
/ 2 Q with supi;
 k�i .
/k <1 and




 � � � kX
iD1

�i�i .
/






2

� ":

Using that TˆjL2.Q/ D id, it is then a straightforward calculation to check that for any
given 
 2 � , we have 




 � Tˆ.�/ � kX

iD1

Tˆ.�i /�i .
/






2

� "I

in other words, Tˆ.�/ 2 L2.N / is relatively almost periodic, contradicting the fact thatN
is a weakly mixing extension of Q.

Lemma 5.8. Suppose the tracial W �-dynamical inclusion � Õ .Q � N/, with Q � N
quasi-regular, is disjoint from every system which is a compact extension of Q. Then, N
is a weakly mixing extension of Q.

Proof. Assume N is not a weakly mixing extension of Q, and use Proposition 3.9 to find
a subsystem P � N such that P is a compact extension of Q. Then, it is easily seen that
' W P ˝alg N

op ! C defined by

'.x ˝ y/ D �P
�
x ˝EP .y/

�
is a joining of P and N over Q which is different from �P ˝Q �N .

6. Cubic systems and the Host–Kra–Ziegler tower of compact
extensions

Convention. Throughout this section, � will denote a countable discrete abelian group,
and all von Neumann algebras are assumed to have separable predual.

Following closely the constructions in [39], we will introduce Host–Kra cubic systems
associated with an ergodic W �-dynamical system, which will provide us with a tower of
compact extensions, generally different from, but somewhat finer than, the Furstenberg–
Zimmer tower of maximal compact extensions. Moreover, contrary to the case of maximal
compact extensions, we do not need any additional assumptions on the inclusionsQ � N
to make sure the subsequent extensions are von Neumann subalgebras, thus giving a
complete analogue of the Host–Kra–Ziegler tower of compact extensions from the com-
mutative case.

We will be dealing with 2k-tensor powers of von Neumann algebras, and we start with
introducing some notation. Let k � 0 be an integer. Denote Vk WD ¹0; 1ºk and N Œk� WD

N˝2
k

for a von Neumann algebraN . We will use elements � of Vk to index elements x D
.x�/�2Vk of N Œk�. Given a map f W M ! N between von Neumann algebras, we denote
by f Œk� WM Œk�! N Œk� the componentwise application of f ; that is, .f Œk�.x//� D f .x�/.
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Note that we can identify N ŒkC1� with N Œk� ˝ N Œk�. By convention, we will do this
based on the last coordinate, writing x D .x0; x00/ for x 2 N ŒkC1� where

x0� D x�0 and x00� D x�1:

For the remainder of the section, we fix an ergodic action �Õ� .N; �/. For each k�0,
we can consider the diagonal action � Œk� of � on N Œk�, and we denote by 	Œk� � N Œk� the
subalgebra of �-invariant vectors. We will next define by induction a �-invariant state
� Œk� on N Œk�, which will essentially arise as an iterated joining over the 	Œj �. Before we
do this, we make the following observation.

Lemma 6.1. For every k � 0, 	Œk� is a hyperfinite von Neumann algebra.

Proof. By the well-known theorem of Høegh-Krohn, Landstad, and Størmer [38], we
know that if � admits an ergodic compact action on a von Neumann algebra M , then M
is necessarily hyperfinite. Therefore, the maximal compact part APN � N is hyperfinite.

Since � Õ .N; �/ is ergodic, we firstly have that 	Œ0� is trivial, and therefore hyperfi-
nite. Let k � 1. Then, by Proposition 4.7,

	Œk� � APN Œk�1� ˝APN Œk�1� :

By Theorem B and induction, we moreover have

APN Œk�1� D .APN /
˝2k�1 ;

and hence
	Œk� � .APN /

˝2k :

Since APN is hyperfinite, the same holds for 	Œk�.

Definition 6.2. Let � Œ0� D � . Assuming � Œk� is defined, we define � ŒkC1� on N ŒkC1� Š

N Œk� x̋ N Œk� by
� ŒkC1�.x ˝ y/ WD � Œk�

�
E	Œk�.x/E	Œk�.y/

�
:

Note that � ŒkC1� W N ŒkC1� ! C is well defined since by Lemma 6.1, 	Œk� is hyperfinite,
and hence by Connes’ theorem [13, Theorem 5.1], the map 	Œk� ˝alg .	

Œk�/op ! 	Œk� W

a˝ b 7! ab is min-continuous.

Remark 6.3. Note that the definition essentially states that � ŒkC1� is the relatively inde-
pendent joining of .N Œk�; � Œk�/ with itself over 	Œk�. However, we do not use this termi-
nology here because we have only defined joinings for tracial von Neumann algebras in
this paper.

We note that since the system � Õ� .N; �/ is assumed to be ergodic, 	Œ0� is trivial
and � Œ1� D � ˝ � . Also, if the system is weakly mixing, then each 	Œk� is trivial and
� Œk� D �˝2

k
for every k � 0. On the other hand, if the system is not weakly mixing, then

the 	Œk� are not trivial for k � 1 and reveal some information about the “compact parts”
of the system.
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Before continuing, we introduce the so-called side transformations. For this, note that
we can view Vk as indexing the vertices of the k-cube, and so we can talk about its faces.
More precisely, for 0 � l � k, J � ¹1; : : : ; kº with jJ j D k � l , and � 2 ¹0; 1ºJ , we call
the subset

˛ WD ¹� 2 Vk j �j D �j for every j 2 J º

a face of dimension l of Vk , or an l-face. We also call the faces of dimension k � 1 the
sides of Vk .

Let ˛ be a face of Vk and for every 
 2 � , denote by � Œk�
;˛ WN Œk�!N Œk� the map given
by

.� Œk�
;˛x/� D

´
�
 .x�/ if � 2 ˛;

x� otherwise:

We call � Œk�
;˛ a face transformation. If ˛ is a side, we also call it a side transformation. We
denote by T

Œk�

k�1
the group generated by all side transformations; that is,

T
Œk�

k�1
WD h�
;˛ j 
 2 �; ˛ a side of Vki:

The subgroup generated by those side transformations �
;˛ where ˛ is a side not contain-
ing 0 will be denoted by T

Œk�
� .

Lemma 6.4. For every k � 1, the state � Œk� is invariant for the action of T
Œk�

k�1
on N Œk�.

Proof. The proof from [39, Lemma 3.3] applies mutatis mutandis. Note that we need the
commutativity of � here.

Let JŒk� � N Œk� denote the subalgebra of invariant vectors under the action of T
Œk�
� ,

and denote by L2.N Œk�; � Œk�/ the GNS-construction of N Œk� with respect to the state � Œk�.

Proposition 6.5. Inside L2.N Œk�; � Œk�/, we have that

L2
�
JŒk�; � Œk�

�
D L2.N; �/˝ 1˝2

k�1;

where the first factor corresponds to the coordinate 0 2 Vk .

Proof. Clearly, any element from L2.N /˝ 1˝2
k�1 is invariant under the action of T

Œk�
� .

We proceed to prove the reverse inclusion by induction. For kD 1, we haveN Œ1�DN x̋ N

and T
Œk�
� contains id � �
 for 
 2 � , which easily implies the result. Now let k � 1 and

suppose x 2 JŒkC1�. Write x D
P
i x1;i ˝ x2;i where for each i , x1;i ; x2;i 2 N Œk�. Let ˛

be the face ¹0; 1ºk � ¹1º of VkC1. Hence, for any 
 2 � , we have

� ŒkC1�
;˛ D idN Œk� � �
Œk�

 :

Denote by I˛ � JŒkC1� the subalgebra of invariant vectors under the action of � ŒkC1�
;˛ ,

 2 � . From the above, we observe that we have I˛ D N Œk� ˝ 	Œk�. We can then compute

EI˛ .x/ D
X
i

EI˛ .x1;i ˝ x2;i / D
X
i

x1;i ˝E	Œk�.x2;i /:
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By the definition of � ŒkC1�, the latter is equal to
P
i x1;iE	Œk�.x2;i / ˝ 1 in the GNS-

construction of N ŒkC1� with respect to � ŒkC1�. Since x 2 JŒkC1� � I˛ and hence x D
EI˛ .x/, we deduce that

x D x0 ˝ 1

for some x0 2 L2.N Œk�/. It is then easy to see that x0 2 L2.JŒk�/, and by induction, it thus
follows that x0 2 L2.N /˝ 1˝2

k�1, which finishes the proof.

6.1. Construction of the compact extensions arising from cubic systems

First, we establish some additional notation, mostly following [39, Section 4]. We write

V �k WD Vk n ¹0º; N Œk��
WD ˝�2V �

k
N;

and � Œk�
�

the restriction of � Œk� to N Œk�� . We represent a point x 2 N Œk� as x D .x0; Qx/,
where x0 2 N and Qx 2 N Œk�� , and also write N Œk� D N0 ˝ N

Œk�� , where N0 Š N is the
copy of N at coordinate 0 2 V Œk�. Next, we note that we can restrict the actions of T

Œk�

k�1

and its subgroup T
Œk�
� to N0 and N Œk�� . It thus makes sense to define the sets

	Œk�
�

WD Inv
�
T
Œk�

k�1
jN Œk��

�
� N Œk�� ;

JŒk�
�

WD Inv
�
T Œk�
� jN Œk��

�
� N Œk�� :

By construction, if x 2 JŒk�
�

, then 1 ˝ x 2 JŒk�. Using Proposition 6.5, we can thus
find x0 2 N such that k1˝ x � x0 ˝ 1˝2

k�1k� Œk� D 0. This observation leads us to the
following definition.

Definition 6.6. Given an integer k � 1, we define Zk�1 � N as

Zk�1 WD
®
x0 2 N j 9x 2 N

Œk�� such that k1˝ x � x0 ˝ 1˝2
k�1
k� Œk� D 0

¯
:

We note that Zk�1 � N is a von Neumann subalgebra which can be identified with
JŒk�

�

� N Œk�� . Also, it is easy to see that Zk�1 is �-invariant and therefore provides us
with a subsystem of the original action � Õ N . A first easy observation is that these
subsystems form an increasing sequence.

Lemma 6.7. For every k � 1, Zk�1 � Zk; that is, the Zk form an increasing sequence
of subsystems.

Proof. If x0 2 Zk�1, then there exists x 2 N Œk�� such that

k1˝ x � x0 ˝ 1
˝2k�1

k� Œk� D 0:

Using the definition of � ŒkC1�, it is then a straightforward calculation to check that with
Qx WD x ˝ 1˝2

k
2 N ŒkC1�� ,

k1˝ Qx � x0 ˝ 1
˝2kC1�1

k� ŒkC1� D 0:

Hence, x0 2 Zk .
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We proceed with the following observation.

Lemma 6.8 ([39, Lemma 4.2]). Fix k � 1. Then, for every x 2N and y 2N Œk�� , we have

� Œk�.x ˝ y/ D �
�
EZk�1.x/EJŒk�

� .y/
�
;

where we view EJŒk�
� .y/ 2 JŒk�

�

Š Zk�1 � N .

Remark 6.9. Intuitively, we can view this result as stating that .N Œk�; � Œk�/ is the rel-
atively independent joining of .N; �/ and .N Œk�� ; � Œk�

�

/ over Zk�1 (which is identified
with JŒk�

�

� N Œk�� ).

Proof. The proof is essentially an adaptation of the proof of [39, Lemma 4.2]. Let x 2 N ,
and y 2 N Œk�� . By Lemma 6.4,

� Œk�.x ˝ y/ D � Œk�
�
x ˝ �.y/

�
for every � 2 T

Œk�
� . Therefore,

� Œk�.x ˝ y/ D � Œk�
�
x ˝EJŒk�

� .y/
�

since EJŒk�
� .y/ is the unique element of minimal norm in the closure of the convex hull

of ®
�.y/ j � 2 T Œk�

�

¯
� L2

�
N Œk�� ; � Œk�

��
:

Since Zk�1 and JŒk�
�

are identified, � Œk�j
N˝1˝2

k�1 D � ˝ 1
˝2k�1, and � Œk�j

1˝N˝2
k�1 D

1˝ � Œk�
�

, we thus get

� Œk�.x ˝ y/ D � Œk�
�
x ˝EJŒk�

� .y/
�

D � Œk�
�
xEJŒk�

� .y/˝ 1˝2
k�1

�
D �

�
xEJŒk�

� .y/
�

D �
�
EZk�1.x/EJŒk�

� .y/
�
:

Similar to the commutative setting in [39], we will next characterize the subsystem
Zk in terms of a Gowers–Host–Kra seminorm, which we first extend to the von Neumann
algebraic framework. For � 2 Vk , we write j�j WD �1 C �2 C � � � C �k .

Definition 6.10. Fix k � 1, and x 2 N . We define

jjjxjjjk WD �
Œk�
�O
�2Vk

C j�j.x/
�1=2k

;

where C.x/D x� is the adjoint operator; that is, C n.x/D x if n is even and C n.x/D x�

if n is odd.
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First of all, we note that by the definition of � Œk�,

� Œk�
�O
�2Vk

C j�j.x/
�
D � Œk�1�

�
E	Œk�1�

� O
�2Vk�1

C j�j.x/
�
E	Œk�1�

� O
�2Vk�1

C j�j.x/�
��
� 0;

and thus jjjxjjjk is well defined.

Lemma 6.11 ([39, Lemma 3.9]). Fix k � 1. The following hold.

(i) When for each � 2 Vk , we have x� 2 N , thenˇ̌̌
� Œk�

�O
�2Vk

x�

�ˇ̌̌
�

Y
�2Vk

jjjx�jjjk :

(ii) jjj � jjjk is a seminorm on .N; �/.

(iii) For any x 2 N , jjjxjjjk � jjjxjjjkC1.

Proof. The proof of [39, Lemma 3.9] applies mutatis mutandis.

We will now establish the following characterization of Zk�1 in terms of the seminorm
jjj � jjjk .

Lemma 6.12 ([39, Lemma 4.3]). Fix x 2 N . Then, the following are equivalent.

(1) EZk�1.x/ D 0.

(2) jjjxjjjk D 0.

Proof. The proof proceeds essentially as in [39, Lemma 4.3], but we provide the details
for the reader’s convenience.

(1))(2). Assume EZk�1.x/ D 0. Using Lemma 6.8 together with the definition of
jjjxjjjk , we immediately get that jjjxjjjk D 0.

(2))(1). Assume jjjxjjjk D 0. By Lemma 6.11 (a), given any x� 2 N for � 2 V �
k

,ˇ̌̌
� Œk�

�
x ˝

O
�2V �

k

x�

�ˇ̌̌
� jjjxjjjk �

Y
�2V �

k

jjjx�jjjk D 0:

By density, it follows that ˇ̌
� Œk�.x ˝ y/

ˇ̌
D 0;

for every y 2 N Œk�� , and in particular for every y 2 JŒk�
�

. Through the identification of
JŒk�

�

and Zk�1, this implies that

�.xw/ D 0 for every w 2 Zk�1

and hence EZk�1.x/ D 0.

Theorem 6.13. For every k � 1, Zk is a compact extension of Zk�1.
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Proof. We will work on the level of the L2-spaces. Consider AP 2
WD AP 2

Zk�1;N
, the

subspace of relatively almost periodic functions relative to Zk�1. We need to show thatcZk � AP 2.
Fix x 2 N and assume EAP 2. Ox/ D 0. Consider y WD

N
�2Vk

C j�j.x/ 2 N Œk�. Then,

EAP 2
˝L2.N Œk�� /. Oy/ D 0;

and hence by Proposition 4.7, also

E	Œk�.y/ D 0:

Hence, by the definition of the seminorm jjjxjjjkC1 and of � ŒkC1�, we get

jjjxjjj2
kC1

kC1 D �
ŒkC1�

� O
�2VkC1

C j�j.x/
�
D � Œk�

�
E	Œk�.y/E	Œk�.y/

�
�
D 0:

Applying Lemma 6.12, we thus get

EZk .x/ D 0;

which finishes the proof of the theorem.

We finish this section by noting that in general, Zk is not the maximal compact exten-
sion of Zk�1 since this is already the case in the commutative setting (see [39]). However,
it is always true that Z1 is the maximal compact subsystem of the original system. The
above therefore gives an alternative construction of this maximal compact subsystem.

Proposition 6.14. Z1 is the maximal compact subsystem of the ergodic action � Õ�

.N; �/.

Proof. Denote by Z � N the maximal compact subsystem of � Õ .N; �/, which exists
by Proposition 3.9. Theorem 6.13 implies that Z1 � Z. For the converse, take 0¤ x 2 Z.
It then suffices to show that EZ1.x/ ¤ 0. We can compute

jjjxjjj2 D �
Œ2�
�O
�2V2

C j�j.x/
�

D � Œ1�
�
E	Œ1�.x ˝ x

�/E	Œ1�.x ˝ x
�/�
�

D .� ˝ �/
�
E	Œ1�.x ˝ x

�/E	Œ1�.x ˝ x
�/�
�
: (6.1)

We have that K WD E	Œ1�.x ˝ x
�/ is the unique element of minimal norm in the closed

convex hull of ¹.�
 � �
 /.x˝ x�/ j 
 2 �º � L2.N /˝L2.N /. Now ifK D 0, we could
repeat the second half of the proof of .1/) .2/ in Theorem A to conclude that x D 0,
which would contradict our assumption. Hence, K ¤ 0, and therefore by equation (6.1),
also jjjxjjj2 ¤ 0. Applying Lemma 6.12, we conclude that EZ1.x/ ¤ 0, which finishes the
proof.
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Finally, we observe that we have now completed the proof of Theorem C from the
Introduction.

Proof of Theorem C. The theorem follows from a combination of Lemmas 6.7 and 6.12,
Theorem 6.13, and Proposition 6.14.

Remark 6.15. Suppose � D Z and N D L1.X; �/ for a standard Borel probability
space .X; �/. A deep structure theorem, independently obtained by Host and Kra [39]
and Ziegler [64], states that the commutative von Neumann algebra system Zk is iso-
morphic to a direct limit of commutative von Neumann algebra systems Mn associated
with translations on nilmanifolds Gn=ƒn, where Gn is a nilpotent Lie group of nilpo-
tency class k and ƒn � Gn is a cocompact lattice. An important step in the proof of the
Host–Kra–Ziegler structure theorem is to identify the system Zk as an iterated tower of
skew-products

U1 Ì�1 U2 Ì�2 � � � Ì�k�1 Uk
for some compact abelian groups U1; : : : ; Uk and Ui -valued cocycles �i of type4 iC1,
where the skew-product operation Ì is performed from left to right, and U1 has the struc-
ture of a Kronecker system, i.e., an ergodic rotation on the compact abelian group U1.

Host–Kra–Ziegler type structure theorems have been studied for other countable
abelian groups � as well, for example, when � D F!p (the direct sum of infinitely many
copies of a finite field of prime order p) by Bergelson, Tao, and Ziegler in [8], when
� D

L
p2P Fp for a multiset of primes P by Shalom in [60], and when � has bounded

torsion by the first author, Shalom, and Tao in [44]. A satisfactory structure theorem for
arbitrary countable abelian groups in the case of systems Z2 of order 2 was established by
the first author, Shalom, and Tao in [45]. Currently, we do not have a satisfactory Host–
Kra–Ziegler type structure theorem for the actions of arbitrary countable abelian groups
for the systems of higher order in the commutative setting.

Remark 6.16. Generalizing the above geometric representation theory of Host–Kra–
Ziegler subsystems Zk to the non-commutative setting necessarily has to start with the
maximal compact part of the system Z1, which in the commutative setting corresponds
to the Kronecker factor, that is, the subsystem generated by the eigenfunctions. In [53],
Olesen, Pedersen, and Takesaki study the ergodic actions of compact abelian groups on
von Neumann algebras and obtain a classification of the corresponding systems in terms
of 2-cocycles on the dual group. After interpreting the results of [53] for Z1 for a discrete
group action, one possible direction to explore the geometric representation theory of the
higher-order subsystems Zk could be to study relative versions of the results in [53] such
as von Neumann algebra valued 2-cocycles which could encode the higher-order eigen-
functions. We hope to report tangible findings in future work.

4The type of a cocycle is a cohomological property, roughly meaning that it lifts to a coboundary on the
corresponding cubic system, e.g., for type i C 1 to the cubic system .N ŒiC1�; � ŒiC1�/, see [40, Chapter 18,
Section 3] for a precise definition.
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