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A Hodge filtration of logarithmic vector fields for
well-generated complex reflection groups

Takuro Abe, Gerhard Röhrle, Christian Stump, and Masahiko Yoshinaga

Abstract. Given an irreducible well-generated complex reflection group, we construct an exp-
licit basis for the module of vector fields with logarithmic poles along its reflection arrangement.
This construction yields in particular a Hodge filtration of that module. Our approach is based
on a detailed analysis of a flat connection applied to the primitive vector field. This generalizes
and unifies analogous results for real reflection groups.

1. Introduction

The study of vector fields with logarithmic poles along the reflection arrangement of
a finite Coxeter group inside a real vector space has been a particularly active and
fruitful area of recent research. Most importantly, Abe–Terao use Saito’s primitive
derivation to construct an explicit basis of this vector field in [1], thereby extending
Saito’s Hodge filtration of invariant polynomial derivations to a Hodge filtration of the
module of invariant vector fields with logarithmic poles. Also, Wakamiko identified
the concept of a universal vector field as a crucial ingredient in his construction of an
explicit basis in [15, Section 2].

Based on a recent extension of Saito’s primitive derivation and Hodge filtration to
well-generated unitary reflection groups in [6], we establish analogues of the above
constructions in this more general setting. Specifically, we provide a framework to
extend [1, Theorems 1.1 and 1.2] to well-generated unitary reflection groups (Theo-
rem 4.2 and Corollary 4.3), and derive universality results generalizing [15, Section 2]
(Theorems 4.17, 4.19 and 4.22). Because of the new explicit form of the flat connec-
tion in [6], the approach we provide here has not appeared in the literature even in the
real case, simplifying several arguments.

We give a brief comment on the terminology of a “Hodge filtration” in our con-
text. This was introduced by K. Saito in [11]. The primitive form is a special element
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in the relative de Rham cohomology group for the deformation of an isolated hyper-
surface singularity, which satisfies lots of nice properties. For simple singularities of
type ADE, the parameter space of the deformation is identified with the quotient of
the Cartan subalgebra by the Weyl group. For a given logarithmic vector field, we
can differentiate (Gauss–Manin connection) the primitive form by the vector field,
which gives an identification between the module of logarithmic vector fields and the
relative de Rham cohomology group. The primitive derivation defines a natural filtra-
tion on which the primitive derivation acts by degree shift by one. This structure is
very similar to the behavior of Hodge filtrations on the cohomology of the fiber with
respect to the Gauss–Manin connection of a proper smooth holomorphic map (the so-
called Griffith transversality). This is the reason why the filtration on the module of
logarithmic vector fields is called the Hodge filtration.

The paper is organized as follows. Section 2 contains preliminaries about complex
hyperplane arrangements with Z-valued multiplicities, and recalls the needed back-
ground on unitary reflection groups and the necessary properties of flat connections
for well-generated unitary reflection groups. In Section 3 we provide an analogue
of Saito’s criterion for Z-valued multiplicities, introduce universal vector fields and
derive several of their properties. Section 4 contains the main results of this paper as
presented above.

For the benefit of the reader, in our proofs we have separated the properties that
follow directly from the existence of a universal vector field from those that only hold
in the case of well-generated complex reflection groups (where we do have such a
universal vector field); see Sections 3.2 and 4.2.

Recall that a complex reflection group W is called “well-generated” provided it
is generated by ` reflections, where ` is the dimension of its reflection representa-
tion. See Section 2.2 for an equivalent definition used throughout the paper; here the
exponents and coexponents of W add up to the Coxeter number of W in a particular
fashion (see (2.6)).

We finish this introduction with a brief discussion of the crucial differences and
similarities of the situations for real and complex reflection arrangements; for def-
initions we refer to the sections below. Denote by �WA ! Z a general Z-valued
multiplicity function on the reflection arrangement A of a well-generated irreducible
unitary reflection group W , and by !WA! Z the multiplicity function assigning to a
reflecting hyperplane H the order of its pointwise stabilizer, !.H/ D eH D jWH j.

(1) IfW is real, then!�2. In particular, for the module of derivations D.A;��1/

of A with multiplicity � � 1, we have

D.A; � � 1/ DD.A; � � ! C 1/:

It turns out that the counterpart of the module of derivations D.A; � � 1/ that is used
in the literature in the real case is the module D.A; � �!C 1/ in the general complex
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case. One crucial instance, where a .�1/-multiplicity in the real case is replaced by a
.�! C 1/-multiplicity in the complex case, is demonstrated in Theorem 4.19, which
generalizes the analogous result from the real case in [15, Theorem 2.7].

(2) It is well known that in the real case there is an isomorphism of graded mod-
ules

D.A;�1/ DD.A;�! C 1/ Š �.A; 1/;

where �.A; 1/ is the module of differential 1-forms. As explained in Remark 4.5, by
degree comparison, this isomorphism does not extend to complex reflection arrange-
ments that are not the complexification of a real arrangement.

(3) The explicit form of the flat connection that was exhibited in [6], see Propo-
sition 2.17, is the crucial ingredient in the construction of the bases in Theorem 4.2
and of the Hodge filtration in Corollary 4.3. Using this explicit form and a system
of flat invariants and of flat derivations has the additional benefit of simplifying the
arguments for real reflection arrangements. We remark that, while the existence of flat
derivations has been known for some time (see [4]), the existence of flat invariants for
well-generated complex reflection groups was only discovered quite recently in [8].

(4) This paper does not deal with equivariant multiplicities (multiplicities that are
constant along hyperplane orbits) as provided in the real case in [2]. That construction
is based on a case-by-case analysis of primitive vector fields along reflection sub-
groups generated by orbits of reflections. We hope for a general conceptual approach
to such equivariant multiplicities.

2. Preliminaries

2.1. Multi-arrangements of hyperplanes and their derivations

Let V be a finite-dimensional complex vector space of dimension ` and fix a Hermit-
ian form

I WV � V ! C

on V . Let S D Sym.V �/ denote the ring of polynomial functions on V and let F
denote its quotient field of rational functions. If x1; : : : ; x` is a basis of V �, we iden-
tify S with the polynomial ring CŒx1; : : : ;x`� andF with the field of rational functions
C.x1; : : : ; x`/. Letting Sp denote the C-subspace of S consisting of the homogeneous
polynomials of degree p (along with 0), S is naturally Z-graded by S D

L
p2Z Sp ,

where we set Sp D 0 for p < 0. Denote by DerS the S -module of C-derivations of S ,
and by DerF the F -module of C-derivations of F . Then @x1 ; : : : ; @x` is an S -basis of
DerS and an F -basis of DerF . We say that � 2 DerF is homogeneous of polynomial
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degree p � q provided that

� D
X fi

gi
@xi ;

where fi 2 Sp and gi 2 Sq n ¹0º for each 1 � i � `. In this case, we write

pdeg � D p � q:

Recall that, for � 2 DerF , we have � D �.x1/@x1 C � � � C �.x`/@x` . The Saito matrix
of �1; : : : ; �` 2 DerF is given by

M.�1; : : : ; �`/ WD

264�1.x1/ � � � �1.x`/
:::

: : :
:::

�`.x1/ � � � �`.x`/

375 ;
see [10, Definition 4.11]. That is, the Saito matrix collects in the i -th row the coeffi-
cients of �i in the F -basis ¹@x1 ; : : : ; @x`º of DerF .

Extending Ziegler’s concept of an N-valued multiplicity function from [17], a
multi-arrangement .A; �/ is an arrangement A together with a multiplicity function
�WA! Z assigning to each hyperplane H 2 A a multiplicity �.H/ 2 Z. We use the
term multi-arrangement even though we allow hyperplanes to have negative multiplic-
ities, while disregarding hyperplanes of multiplicity zero. We only consider central
multi-arrangements .A; �/, i.e., 0 2H for everyH 2 A. In this case, we fix ˛H 2 V �

withH D ker.˛H / forH 2 A, which we scale so that I �.˛H ; ˛H /D 1. The defining
rational function Q.A; �/ is

Q.A; �/ WD
Y
H2A

˛
�.H/
H ;

which we sometimes abbreviate asQ� WDQ.A; �/. We set j�j WD
P
H2A �.H/ to be

the degree of Q� and separate Q� via Q� D QC=Q� with

QC WD
Y
H2A
�.H/>0

˛
�.H/
H ; Q� WD

Y
H2A
�.H/<0

˛
��.H/
H : (2.1)

To deal with general multiplicity functions on the arrangement A, we also set

QA WD Q.A; 1/ D
Y
H2A

˛H

to be the defining polynomial of the simple arrangement A, which we later abbreviate
as Q D QA when A is clear from the context.



Logarithmic vector fields on reflection arrangements 255

Definition 2.2. Let Sh˛H i be the localization of the ring S at the prime ideal h˛H i.
Setting S 0 WD SŒQ�1A �, the S -module of logarithmic vector fields on A is defined by

D.A;�1/ WD
®
� 2 DerS 0 j �.ˇ/ 2 Sh˛H i for H 2 A and ˇ 2 V �

with I �.˛H ; ˇ/ D 0
¯
:

Given a multiplicity function �WA! Z, define the S -module of .A; �/-derivations
by

D.A; �/ WD
®
� 2D.A;�1/ j �.˛H / 2 ˛

�.H/
H Sh˛H i for H 2 A

¯
:

Observe that in general this definition depends on the chosen Hermitian form,
while D.A; 0/ D DerS . We remark also that the given definition is an equivalent
reformulation of the definitions given in [1, 15].

We record the following basic containment property for multiplicities � � �,
i.e., �.H/ � �.H/ for all H 2 A.

Lemma 2.3. We have � > � if and only if D.A; �/ ¤ D.A; �/. In particular, we
have D.A; �/ � DerS if and only if � � 0.

Proof. The reverse implication of the asserted equivalence, as well as the fact that
� � � implies D.A; �/ �D.A; �/ are immediate from the definition. For � > �, let
H 2 A with �.H/ > �.H/. If �.H/ � 0, then QC@˛H 2 D.A; �/ nD.A; �/, and
if �.H/ < 0, then ˛�.H/H QC@˛H 2D.A; �/ nD.A; �/, where QC is as in (2.1).

The multi-arrangement .A; �/ is free if D.A; �/ is a free S -module. In this case,
D.A; �/ admits a basis ¹�1; : : : ; �`º of homogeneous derivations; see [10, Theo-
rem A.20]. While the �i ’s are not unique, their polynomial degrees pdeg�i are; see [10,
Proposition A.24]. The multiset of these polynomial degrees is the multiset of expo-
nents of the free multi-arrangement .A; �/. It is denoted by

exp.A; �/ WD
®
pdeg.�1/; : : : ; pdeg.�`/

¯
:

2.2. Unitary reflection groups and their reflection arrangements

Let W be an irreducible unitary reflection group with reflection representation V Š
C`, and let I be the associated W -invariant Hermitian inner form. We refer to [6]
and the references therein for all necessary background material on reflection groups.
Denote the set of reflections of W by R D R.W /, and the associated reflection
arrangement in V by ADA.W /. ForH 2A, let eH denote the order of the pointwise
stabilizer of H in W . The Coxeter number of W is given by

h D hW WD
1

`

X
H2A

eH D
1

`

�
jRj C jAj

�
; (2.4)
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generalizing the usual Coxeter number of a real reflection group to irreducible unitary
reflection groups.

Before proceeding, we record, without proof, the following well-known property
of the W -action on polynomial functions.

Lemma 2.5. Let g 2 S and let H 2 A with corresponding reflection s 2 R with
Fix.s/ D H of order eH . Let " be a primitive eH -th root of unity such that

s.˛H / D "˛H :

For 1 � k < eH , we have

s.g/ D "kg H) g 2 ˛kH � S:

Results of Shephard and Todd [13] and of Chevalley [5] distinguish unitary reflec-
tion groups as those finite subgroups of GL.V / for which the invariant subalgebra of
the action on the symmetric algebra S D Sym.V �/ Š CŒx1; : : : ; x`� yields again a
polynomial algebra,

SW Š CŒf1; : : : ; f`�

for homogeneous polynomials f1; : : : ; f` of degrees di D degfi with d1 � � � � � d`.
Let exp.W / D ¹e1 � � � � � e`º be the exponents of W , where ei D di � 1 and let
coexp.W / D ¹e�1 � � � � � e

�
`
º be the coexponents ofW , cf. [10, Definition 6.50]. The

groupW is called well-generated if it is generated by ` reflections, or, equivalently, if

ei C e
�
`C1�i D h for 1 � i � `I (2.6)

see [9]. Terao showed in [14] that the reflection arrangement ADA.W / ofW is free,
and that the exponents coincide with the coexponents of W (cf. [10, Theorem 6.60]),

expA D coexp.W /: (2.7)

This shows that e�1 D 1 (coming from the Euler derivation, see below), implying that
e` D h � 1 in the case of well-generated groups.

For later usage, we recall from [6, Section 3] the diagonal matrix

B1 WD
1

h
diag.ei / � 1`: (2.8)

Next we recall from [6] the order multiplicity ! of the reflection arrangement
A D A.W / defined by !.H/ D eH for H 2 A. In other words, the multiplicities are
chosen so that the defining polynomial Q.A; !/ of the multi-arrangement .A; !/ is
the discriminant of W (cf. [10, Definition 6.44]),

Q.A; !/ D
Y

H2A.W /

˛
eH
H D QJ;

where Q D QA D
Q
H2A ˛H , as before, and J D JA WD

Q
H2A ˛

e.H/�1
H .
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2.3. Flat connections for well-generated unitary reflection groups

Throughout this subsection let W be a well-generated unitary reflection group. Let
rWDerF � DerF ! DerF be the connection defined by

r� .�/ D
X
i

�.pi /@xi (2.9)

for �;� 2DerF with �D
P
pi@xi , or equivalently, an affine connection which has @xi

as a flat section, i.e., r� .@xi / D 0. Recall that r is F -linear in the first parameter and
C-linear in the second, satisfying the Leibniz rule

r� .p�/ D �.p/� C pr� .�/

for �; � 2 DerF and p 2 F . Alternatively, this can be characterized by

r� .�/.˛/ D �
�
�.˛/

�
(2.10)

for all ˛ 2 V �. Observe that for �; � homogeneous, (2.9) implies that the derivation
r� .�/ is again homogeneous with polynomial degree

pdeg
�
r� .�/

�
D pdeg.�/C pdeg.�/ � 1: (2.11)

Let F fl
1 ; : : : ; F

fl
`

be the special homogeneous fundamental invariants in CŒx� with
x D .x1; : : : ; x`/, as given in [8, Theorem 5.5]. Recall that deg.F fl

i / D di and

CŒF fl
1 ; : : : ; F

fl
` � Š S

W :

Consider indeterminates t D .t1; : : : ; t`/ together with the map ti 7! F fl
i giving an

isomorphism
R WD CŒt� Š CŒF fl

1 ; : : : ; F
fl
` �:

By slight abuse of notation, here and in the rest of the paper, the variable ti and
its image F fl

i under this isomorphism are identified. Set, moreover, T WD CŒt0� D
CŒt1; : : : ; t`�1�, the subring of CŒt� generated by t0 D .t1; : : : ; t`�1/.

As usual, set

J@t=@x WD

0B@@x1:::
@x`

1CA .t1; : : : ; t`/ D
264@t1=@x1 � � � @t`=@x1

:::
: : :

:::

@t1=@x` � � � @t`=@x`

375 2 CŒx�`�`

with inverse matrix

J@x=@t WD J
�1
@t=@x D .@t1 ; : : : ; @t`/

tr.x1; : : : ; x`/:
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It is well known that
detJ@t=@x

:
D J D

Y
H2A

˛
eH�1
H I

see [10, Theorem 6.42]. Here and elsewhere the symbol :D denotes, as usual, equality
up to a non-zero complex constant factor.

The primitive vector field D WD @t` 2 DerR is given by

D D detJ@x=@t

ˇ̌̌̌
ˇ̌̌̌ @t1@x1 � � �

@t`�1
@x1

@
@x1

:::
: : :

:::
:::

@t1
@x`

� � �
@t`�1
@x`

@
@x`

ˇ̌̌̌
ˇ̌̌̌ 2 DerF : (2.12)

In particular, D is homogeneous of degree pdeg.D/ D �e` D �.h � 1/, where we
observe that h D d` > d`�1. The primitive vector field D is thus, up to a non-zero
complex constant, independent of the given choice of fundamental invariants.

Consider X WD V
ı
W D Spec.CŒt�/ and let �.t/ 2 R be the discriminant of W

given by
�
�
F fl
1 .x/; : : : ; F

fl
` .x/

�
D

Y
H2A

˛
eH
H

with vanishing locus H WD ¹ xp 2 X j �. xp/ D 0º; cf. [10, Definition 6.44]. Let DerR
be the R-module of logarithmic vector fields, and let

DerR.� log�/ WD
®
� 2 DerR j �� 2 R�

¯
be the module of logarithmic vector fields along H . We have an R-isomorphism
between such logarithmic vector fields and W -invariant S -derivations,

DerR.� log�/ Š DerWS ; (2.13)

and DerR.� log�/ is a free R-module, cf. [10, Corollary 6.58].
Bessis showed in [4, Theorem 2.4] that there exists a system of flat homogeneous

derivations ¹�1; : : : ; �`º of DerR.� log�/ with pdeg �i D e�i being the i -th coexpo-
nent of W . This means, its Saito matrix

M� WDM.�`; : : : ; �1/ D

264�`.t1/ � � � �`.t`/
:::

: : :
:::

�1.t1/ � � � �1.t`/

375 (2.14)

decomposes as

M� D t`1` CM
.0/.t0/ (2.15)

with M .0/.t0/ 2 CŒt0�`�`. As before, we have .�`; : : : ; �1/tr D M�.@t1 ; : : : ; @t`/
tr.
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Moreover, we obtain that�.t/ is a monic polynomial in t` with coefficients in T , i.e.,

�.t/ D t`` C a`�1.t
0/t`�1` C � � � C a1.t0/t` C a0.t0/;

where ai .t0/ 2 T for 1 � i � `. As observed in [8, Lemma 3.8], such a system of flat
homogeneous derivations is unique, and we have that �1 D 1

h

P
di ti@ti 2 DerR is the

Euler vector field mapped to the (scaled) Euler derivation

E WD
1

h

X
xi@xi 2 DerWS (2.16)

under the isomorphism in (2.13); see [8, Lemma 3.5].
We recall from [6, Proposition 3.15] the following proposition which is the key

ingredient in the present considerations. It involves the diagonal matrix B1 given
in (2.8).

Proposition 2.17. We have T -isomorphisms

rDWDerR.� log�/! DerR and r
�1
D WDerR ! DerR.� log�/

given by

rD

0B@@t1:::
@t`

1CA D �M�1� .B1 C 1`/

0B@@t1:::
@t`

1CA ;
r
�1
D

0B@@t1:::
@t`

1CA D �B�11
0B@�`:::
�1

1CA D �B�11 M�

0B@@t1:::
@t`

1CA :
From this explicit description of rD , the following Hodge filtration of DerR was

deduced in [6, Proposition 3.15], generalizing Saito’s construction for Coxeter arr-
angements in [12] to the situation for well-generated unitary reflection groups. Let G0

be the T -submodule of DerR generated by @t1 ; : : : ; @t` and let

Gk WD r
�k
D .G0/ for k 2 Z: (2.18)

Then the Hodge filtration of DerR is given by

H
.k/
0 WD

M
i�k

Gi : (2.19)

3. A general version of Saito’s criterion and universal vector fields

Throughout this section, we consider a general multi-arrangement .A; �/ in V Š C`

with multiplicity function �WA! Z.
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3.1. A general version of Saito’s criterion

For later usage we generalize Ziegler’s version of Saito’s criterion [17, Theorem 8]
for multi-arrangements from N- to Z-valued multiplicities.

Theorem 3.1. For a multiplicity function �WA! Z, let �1; : : : ; �` 2D.A; �/. Then
the following are equivalent:

(i) ¹�1; : : : ; �`º is an S -basis of D.A; �/;

(ii) det
�
M.�1; : : : ; �`/

� :
D Q.A; �/.

Moreover, if each �i is homogeneous, then (i) and (ii) are equivalent to

(iii) �1; : : : ; �` are linearly independent over S and
P

pdeg �i D j�j.

We require two lemmas for the proof of Theorem 3.1. Recall from (2.1) that we
write

Q� D
QC

Q�

with QC;Q� 2 S for the defining rational function Q� D Q.A; �/.

Lemma 3.2. Let � 2D.A; �/. Then Q�� 2 DerS .

Proof. Fix H 2 A and let ˛H D x1; x2; : : : ; x` be an orthonormal basis of V �. Set
Q WD QA and QH WD Q=˛H . Write

� D
X
i

fi

Qn
@xi

with fi 2 S and n � 0. Then � 2D.A; �/ means that

f1 2 ˛
nC�.H/
H � S; fi 2 ˛

n
H � S for 2 � i � `;

or, equivalently, that � D
P
i .f
0
i =Q

n
H /@xi with

f 01 2 ˛
�.H/
H � S; f 0i 2 S for 2 � i � `: (3.3)

With Q�nH 2 Sh˛H i, we obtain that Q�fi 2 Sh˛H i for all 1 � i � `, and thus � 2
DerSh˛H i . Since this holds for any H 2 A, we conclude that Q�� 2 DerS .

In the subsequent arguments, we use the following abbreviation. Given �1; : : : ;�`2
DerF , we set

�1 ^ � � � ^ �` WD det
�
M.�1; : : : ; �`/

�
D det

�
�i .xj /

�
1�i;j�`

2 F:

Lemma 3.4. Let �WA! Z and let �1; : : : ; �` 2D.A; �/. Then

�1 ^ � � � ^ �` 2 Q� � S:



Logarithmic vector fields on reflection arrangements 261

Proof. Let H 2 A and consider the orthonormal basis ˛H D x1; x2; : : : ; x` of V �.
Since �i 2D.A; �/, we have

�i .˛H / 2 ˛
�.H/
H � Sh˛H i and �i .xj / 2 Sh˛H i for 2 � j � `:

This implies that �1 ^ � � � ^ �` 2 ˛
�.H/
H � Sh˛H i. As this holds for any H 2 A, the

lemma follows.

Proof of Theorem 3.1. First we show that (ii) implies (i). As �1 ^ � � � ^ �` ¤ 0, we
readily see that �1; : : : ; �` are S -independent. So we aim to show that they span
D.A; �/. To this end, let � 2 D.A; �/. Since �i 2 D.A; �/ for 1 � i � `, we have
Q��i 2 DerS by Lemma 3.2. Let M WDM.Q��1; : : : ;Q��`/ and observe that

det.M/ D Q��1 ^ � � � ^Q��`
:
D Q`

�Q� :

Set N DM�1 and zN D det.M/N 2 S`�`. Since

det.M/@xi D
X
j

zNijQ��j ;

we see that Q��1; : : : ;Q��` generate Q`
�Q� � DerS over S . With Q�� 2 DerS , we

obtain

det.M/Q�� D QCQ
`
�� D

X̀
iD1

fiQ��i

for f1; : : : ; f` 2 S , or, equivalently,

QCQ
`�1
� � D

X
fi�i :

It thus remains to show that each fi is divisible by QCQ`�1
� D Q�Q

`
�. We have

fiQC
:
D fiQ�.�1 ^ � � � ^ �`/

D �1 ^ � � � ^ �i�1 ^ fiQ��i ^ �iC1 ^ � � � ^ �`

D QCQ
`
�.�1 ^ � � � ^ �i�1 ^ � ^ �iC1 ^ � � � ^ �`/ D QCQ

`
�giQ�

for some gi 2 S given by Lemma 3.4. This implies fi D Q�Q`
�gi , as desired.

We next show (i) implies (ii). By Lemma 3.4, we may write

�1 ^ � � � ^ �` D fQ� D
fQC

Q�

for some f 2 S . Since �1; : : : ; �` are S -independent, we have f ¤ 0. We thus need
to show that f is constant. Now, let H 2 A and again assume that ˛H D x1; : : : ; x`
are orthonormal coordinates. Set

QC D ˛
mC
H Q0C and Q� D ˛

m�
H Q0�

such that Q0C and Q0� are both not divisible by ˛H .
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First, observe that

QC@˛H ;Q
0
C@x2 ; : : : ;Q

0
C@x` 2D.A; �/;

by definition. This implies

QC.Q
0
C/
`�1
D QC@˛H ^Q

0
C@x2 ^ : : : ^Q

0
C@x`

D det.gij /.�1 ^ � � � ^ �`/

D
gfQC

Q�
;

where .gij / is the matrix with entries in S expressing QC@˛H ; Q
0
C@x2 ; : : : ; Q

0
C@x`

in terms of the basis �1; : : : ; �`, and where we wrote

g D det.gij / 2 S:

This means that f is a factor of Q�.Q0C/
`�1 for the given H 2 A. Repeating this

argument for every hyperplane in A, we obtain that f is a factor of Q�.
Second, we also observe that

QC

˛
m�
H

@˛H ;QC@x2 ; : : : ;QC@x` 2D.A; �/;

and analogously deduce that
Q`
C

˛
m�
H

D
g0fQC

Q�

for some g02S . This now means that f is a factor ofQ0�.QC/
`�1 for the givenH2A.

Once again repeating this for every hyperplane in A, we obtain that f is a factor
of .QC/`�1. As Q� and QC do not have any common non-scalar factors, we thus
deduce that f is constant.

The argument for (iii) is standard. If ¹�1; : : : ; �`º forms a homogeneous S -basis of
D.A; �/, then (iii) is obviously satisfied. Vice versa, (iii) implies that the determinant
of M.�1; : : : ; �`/ equals fQ� for some f 2 S n ¹0º by independence, and that

deg.f / D 0;

because the degrees of det.M.�1; : : : ; �`// and of Q� coincide.

3.2. Properties of universal vector fields on multi-arrangements

In this section, we define universal vector fields for general arrangements and arbi-
trary multiplicity functions and explore properties of logarithmic vector fields that
follow from the existence of universal vector fields. Throughout, we have separated
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the arguments as detailed as possible to clarify their exact interplay. In Section 4.2,
we exhibit natural occurrences and properties of universal vector fields in the case of
reflection arrangements. We start with the definition of universality depending on a
multiplicity �WA! Z which is a slight generalization of the k-universality in the real
case in [15, Definition 2.2].

Recall the definition of the affine connectionr in (2.9) having @xi as a flat section.

Definition 3.5. Let .A; �/ be a multi-arrangement for a multiplicity function

�WA! Z

and let � 2 D.A;�1/ be homogeneous. Then � is called �-universal provided the
map

ˆ� WDerF !D.A; �/; � 7! r� .�/

is an isomorphism of S -modules.

Observe that ˆ� is S -linear by definition. The �-universality of � thus means that
ˆ� WDerS ! D.A; �/ is well defined and bijective. In particular, this implies for a
�-universal � that .A; �/ is free and®

r@xi
.�/ j 1 � i � `

¯
is an S -module basis of D.A; �/.

We begin with the following observation from [15, Example 2.3].

Lemma 3.6. The Euler derivation E defined in (2.16) is 0-universal.

Proof. Since ˆE .ı/ D rı.E/ D ı for any ı 2 DerS , the statement follows.

Lemma 3.7. Let � 2 DerS and � 2D.A;�1/. Then r� .�/ 2D.A;�1/.

Proof. LetH 2A and let ˇ 2 V � such that I �.˛H ;ˇ/D 0. Since � 2D.A;�1/, we
have �.ˇ/ D f=QH for f 2 S and zQH D .Q=˛H /n for some n � 0. Using (2.10),
we obtain

r� .�/.ˇ/ D �
� f

zQH

�
D

1

zQ2
H

�
�.f / zQH � f �. zQH /

�
:

Since � 2 DerS by assumption, we obtain r� .�/.ˇ/ 2 Sh˛H i. This holds for any
H 2 A, and we deduce the statement.

Lemma 3.8. Let �WA! ¹0; 1º and let � 2D.A;�1/. Then � 2D.A; � C 1/ if and
only if

ˆ� WD.A; �/!D.A; � C �/

is well defined.
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Proof. Let � 2D.A; � C 1/. We aim to show that r� .�/ 2D.A; � C �/ for all � 2
D.A;�/. By Lemma 3.7, we have thatr� .�/2D.A;�1/ in this case. The following
argument is analogous to the proof of the previous lemma. Let H 2 A. Since � 2
D.A; � C 1/, we have that

�.˛H / D
˛
�.H/C1
H f

QH

for f 2 S and QH D .Q=˛H /n for some n � 0. Using (2.10), for � 2D.A; �/, we
have

r� .�/.˛H / D �
�˛�.H/C1H f

QH

�
D

1

Q2
H

�
�.˛

�.H/C1
H /fQH C ˛

�.H/C1
H �.f /QH � ˛

�.H/C1
H f �.QH /

�
D
˛
�.H/
H

Q2
H

�
.�.H/C 1/�.˛H /fQH C ˛H�.f /QH � ˛Hf �.QH /

�
: (3.9)

This yieldsr� .�/.˛H / 2 ˛
�.H/
H Sh˛H i. If �.H/D 1, we moreover get �.˛H / 2 ˛H � S

by the defining property of � 2 D.A; �/. In this case, we thus get an additional fac-
tor ˛H in (3.9) and obtain r� .�/.˛H / 2 ˛

�.H/C1
H Sh˛H i. In any event ˆ� .�/ belongs

to D.A; � C �/.
Assume now that ˆ� WD.A; �/ ! D.A; � C �/ is well defined. Let � be the

maximal multiplicity function such that � 2D.A; � C 1/. This is,

�.˛H / D
˛
�.H/C1
H f

QH

for f 2 S and QH D .Q=˛H /n for some n � 0, such that f … ˛H � S . As in (3.9),
for � 2D.A; �/, we obtain

r� .�/.˛H / D
˛
�.H/
H

Q2
H

�
.�.H/C 1/�.˛H /fQH

C ˛H�.f /QH � ˛Hf �.QH /
�
: (3.10)

Observe that � D Q�@˛H 2 D.A; �/. If �.H/ D 0, then for � D Q�@˛H , we have
r� .�/.˛H / 2 ˛

�.H/
H Sh˛H i but r� .�/.˛H / … ˛

�.H/C1
H Sh˛H i, since the first summand

in (3.10) is not divisible by ˛H while the other two are. By the well-definedness ofˆ� ,
we thus have �.H/ � �.H/.

Similarly, if �.H/ D 1, then the first summand (3.10) is divisible by ˛H but not
by ˛2H , while the other two are divisible by ˛2H . Again by the well-definedness of ˆ� ,
we have that �.H/ � �.H/. We conclude that � � � and so by definition, we get

� 2D.A; � C 1/ �D.A; � C 1/:
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The following lemma is the analogue of [15, Proposition 2.6 (3)] in our setting.

Lemma 3.11. Let � be �-universal. Then � …D.A; �C 1/ for any � > �.

Proof. Let � > � and suppose that � 2D.A;�C 1/. Lemmas 3.8 and 2.3 then imply
that

ˆ� .DerS / �D.A; �/ ¤ D.A; �/:

This contradicts the fact thatˆ� .DerS /DD.A; �/ owed to the �-universality of �.

Lemmas 3.8 and 3.11 give the following theorem, generalizing [3, Theorem 2] to
the complex case and to the more general notion of universality above; see also [15,
Proposition 2.7].

Theorem 3.12. Let �WA! ¹0; 1º and let � be �-universal. Then

ˆ� WD.A; �/!D.A; � C �/

is an isomorphism of S -modules.

Observe that in the theorem we do not require any freeness assumption on .A; �/.
Together with Theorem 4.17 below, it thus generalizes [6, Theorem 3.22].

Proof. We already know that ˆ� is S -linear and well defined by Lemma 3.8. More-
over, the universality of � implies thatˆ� is injective on DerS , and thus on D.A;�/�

DerS . It thus remains to show that ˆ� is surjective. To this end, let � 2D.A; � C �/.
Since D.A; � C �/ � D.A; �/, we may write � D r� .�/ for some � 2 DerS . We
aim to show that � 2D.A; �/. As in the proof of Lemma 3.8, we have

�.˛H / D
˛
�.H/C1
H f

QH

for some f 2 S andQH D .Q=˛H /n with n � 0. Since � D r� .�/ 2D.A; � C �/,
we have

� D r� .�/ D
˛
�.H/
H

Q2
H

�
.�.H/C 1/�.˛H /fQH

C ˛H
�
�.f /QH � f �.QH /

��
2 ˛

�.H/C�.H/
H � Sh˛H i: (3.13)

Observe that Lemma 3.11 implies that f … ˛H � S by the �-universality of �.
If �.H/ D 0, there is no condition from (3.13) on � , and so trivially

�.˛H / 2 ˛
0
H � S D S;

and if �.H/D 1, then �.˛H / � f 2 ˛H � S implying that �.˛H / 2 ˛H � S , because f
is not divisible by ˛H , by (3.13). Consequently, � 2D.A; �/, as desired.
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4. A Hodge filtration and universality for reflection arrangements

For the remainder of the paper, we fix W to be a well-generated irreducible complex
reflection group with reflection arrangement A D A.W /, and the order multiplicity
!WA! Z given by !.H/ D eH . Recall from (2.14) the flat system of derivations
�1; : : : ; �`. After having collected all necessary background material in Sections 2.2
and 2.3, we are now able to state and prove our main results. For 1� j � ` and k 2Z,
define

�
.k/
j WD r

k
D.�j /

and set
„.k/ WD

®
�
.k/
1 ; : : : ; �

.k/

`

¯
and „ WD

[
k2Z

„.k/:

Thanks to [6, (3.16)], we make the crucial observation that

�
.1/
j

:
D @t`C1�j for 1 � j � `: (4.1)

Theorem 4.2. Let k 2 Z. Then the following hold:

(1) the S -module D.A;�k! C 1/ is free with basis „.k/;

(2) the R-module D.A;�k! C 1/W is free with basis „.k/;

(3) the T -module D.A;�k! C 1/W is free with basis
S
p�k „

.p/; and

(4) the T -module D.A;�1/W is free with basis „.

We prove this theorem in Section 4.1. It allows us to extend the Hodge filtration
of DerR in (2.19) to a Hodge filtration of the W -invariant logarithmic vector fields
D.A;�1/W given by the T -module

H .k/
WD

M
�1<i�k

Gi

for k 2 Z, where Gi D r
�i
D .G0/ is as in (2.18). We record this in the following corol-

lary.

Corollary 4.3. We have

D.A;�k! C 1/W D H .k/ and D.A;�1/W D
M
k2Z

H .k/

as T -modules and rD induces T -linear isomorphisms

rDWH
.k/ �
�! H .kC1/ and rDWD.A;�1/

W �
�!D.A;�1/W :
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Remark 4.4. In the real case, Theorem 4.2 and Corollary 4.3 are the main results
of [1]. See in particular [1, Theorems 1.1 and 1.2] for these statements in the notion
of logarithmic 1-forms, and [1, Theorems 3.7 and 3.9] for the statements in the notion
as given here. For k � 0 the first property was also given in the real case in [16,
Corollary 10].

Remark 4.5. Denote by �.A; �/ the S -dual to D.A; �/ for a given multiplicity
function � induced by the fixed W -invariant Hermitian form. This is, �.A; �/ is the
module of differential 1-forms with poles of order �.H/ along H 2 A, and �.A;1/
is the module of logarithmic 1-forms. If W is a real reflection group, then it is known
that

�.A; 1/ ŠD.A;�! C 1/ DD.A;�1/

as graded S -modules, see [3, Theorem 2]. It turns out that these modules are not iso-
morphic as graded S -modules ifW is not real. This follows from the observation that
both S -modules are free, and the polynomial degrees of their homogeneous genera-
tors are

exp
�
D.A;�! C 1/

�
D ¹e�1 � h; : : : ; e

�
` � hº

D ¹�e1; : : : ;�e`º;

exp
�
�.A; 1/

�
D ¹�e�1 ; : : : ;�e

�
` º;

and the fact that

¹e1; : : : ; e`º D ¹e
�
1 ; : : : ; e

�
` º” W is real:

Armed with the universality properties obtained in Section 3.2, we obtain the free-
ness of D.A; �k!/ from Theorem 4.2 (1) based on the universality of rkD.E/ in
Section 4.2.

Theorem 4.6. Let k 2 Z. The S -module D.A;�k!/ is free with basis®
r@x1

.�
.k/
1 /; : : : ;r@x1 .�

.k/

`
/
¯
:

Observe that this basis is not W -invariant, in contrast to the bases constructed in
Theorem 4.2 (1) and (2). Indeed, one cannot expect aW -invariant basis of D.A;�k!/

as shown in the following theorem which generalizes [2, Proposition 5.2].

Theorem 4.7. Let k 2 Z. Then

D.A;�k!/W DD.A;�k! C 1/W :

In particular, D.A;�k!/ does not have a W -invariant basis.
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Proof. Let � 2D.A;�k!/W . FixH 2A and let ˛H D x1; x2; : : : ; x` be an orthonor-
mal basis of V �. Write

� D
X
i

fi

Qn
H

@xi

with f1 2 ˛
�keH
H � S and fi 2 S for 2 � i � `, as given in (3.3). Then

�.˛H / D
f1

Qn
H

D
˛
�keH
H g

Qn
H

with g 2 S .
We aim to show that g 2 ˛H � S . To this end let r 2 R be the reflection along H

and let " be the eH -th root of unity such that r.˛H / D "˛H .
Observe first that r.QH / D QH . This is because QH D Q=˛H , so

r.QH / D
r.Q/

r.˛H /
D

"Q

"˛H
D QH :

This yields

r
�
�.˛H /

�
D
r.˛
�keH
H /r.g/

r.Qn
H /

D
˛
�keH
H

Qn
H

r.g/:

On the other hand,

r
�
�.˛H /

�
D .r�/

�
r.˛H /

�
D "�.˛H /;

since � is W -invariant and we obtain r.g/ D "g. With Lemma 2.5, we conclude that
g 2 ˛H � S and � 2D.A;�k! C 1/W .

The claim that D.A;�k!/ does not admit a W -invariant basis follows because

D.A;�k! C 1/ ¤ D.A;�k!/;

by Lemma 2.3.

The proof of Theorem 4.7 indeed provides the following stronger result.

Corollary 4.8. Let � be any Z-valued multiplicity function on A D A.W /. For each
H 2 A choose aH 2 Z so that �WA! Z defined by �.H/ WD aH eH C 1 satisfies

� � ! < � � �:

Then
D.A; �/W DD.A; �/W :
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4.1. Construction of the bases

We prove Theorem 4.2 in several steps.

Proposition 4.9. Let k 2 Z. The map

rDWD.A;�k! C 1/
W
!D.A;�.k C 1/! C 1/W

is well defined.

Proof. In symbols, the well-definedness of rD means

� 2D.A;�k! C 1/W H) rD.�/ 2D
�
A;�.k C 1/! C 1

�W
:

This is already known for k < 0 by [6, Theorem 3.22]. So we aim to show this for
k � 0. Recall that

J D
Y

˛
keH�1
H :

Let H 2 A and consider an orthonormal basis ˛H D x1; x2; : : : ; x` of V �. In this
basis, for � to belong to D.A;�k! C 1/W entails that there exist f1; : : : ; f` 2 S
such that

� D
X̀
iD1

fiJ
�1@xi and fi 2 x

keH�1
1 � S for 2 � i � `:

Moreover,

rD.�/ D
X̀
iD1

D.fiJ
�1/@xi :

Since Y
˛
.kC1/eH�1
H D.f1J

�1/ 2 S;

it remains to show that

gi WD
Y

˛
.kC1/eH�1
H D.fiJ

�1/ 2 x
.kC1/eH�1
1 � S

for 2� i � `. First, we see that gi 2 x
keH
1 � S , because fi 2 x

keH�1
1 � S for 2 � i � `.

On the other hand, observe that gi is a relative invariant for det; cf. [10, Section 6.2].
This means in particular that s.gi /D det.s/.gi /, where sD sH is a reflection alongH
generating WH . This is because fiJ�1 is s-invariant by assumption on � , D is W -
invariant, and J is a relative invariant for det; see [10, Section 6.2]. Since

s.˛H / D det�1.s/˛H and det.s/ D det�.eH�1/.s/;

Lemma 2.5 implies that gi 2 x
keH
1 � S is indeed contained in xkeHC.eH�1/1 � S , as

desired.
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Recall the diagonal matrix B1 from (2.8) and the Saito matrix M� of the system
of flat derivations �1; : : : ; �` from (2.14).

Proposition 4.10. For k � 1, we have

r
k
D

0B@@t1:::
@t`

1CA D �M�1� .B1 C k1`/r
k�1
D

0B@@t1:::
@t`

1CA : (4.11)

Proof. We have already seen this to be true for k D 1 in Proposition 2.17. We assume
equation (4.11) holds for a given k. Multiplying both sides of this equation by �M�

and applying rD gives

.B1 C k1`/r
k
D

0B@@t1:::
@t`

1CA D �rD
0B@M�r

k
D

0B@@t1:::
@t`

1CA
1CA

D �

0B@rkD
0B@@t1:::
@t`

1CACM�r
kC1
D

0B@@t1:::
@t`

1CA
1CA

by the Leibniz rule and the fact that D.M�/ D 1` in (2.15). This yields

r
kC1
D

0B@@t1:::
@t`

1CA D �M�1� �
B1 C .k C 1/1`

�
r
k
D

0B@@t1:::
@t`

1CA ;
as desired.

Corollary 4.12. Let k 2 Z. The set®
r
k
D.@t1/; : : : ;r

k
D.@t`/

¯
is linearly independent over S .

Proof. This is already known for k < 0 from [6, Proposition 3.18] and is trivially true
for k D 0. The case k > 0 follows inductively from the previous proposition since
�M�1� .B1 C k1`/ is non-singular for all k. Finally, the base change between R
and S given by J@x=@t is non-singular.

Proof of Theorem 4.2 (1) and (2). Proposition 4.9 and Corollary 4.12 allow us to apply
our version of Saito’s criterion (Theorem 3.1). For this, it only remains to check thatX

i

pdeg
�
r
k
D.�i /

�
D j � k! C 1j:
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This follows fromX̀
iD1

pdeg
�
r
k
D.�i /

�
D

X̀
iD1

�
k pdeg.D/ � k C pdeg.�i /

�
D

X̀
iD1

.�khC e�i / D �k`hC jAj D j � k! C 1j;

by (2.4), (2.7), and [10, Theorem 4.23].

In order to prove Theorem 4.2 (3) and (4), it remains to show that the set given byS
p�k „

.p/ is T -independent and generates D.A;�k! C 1/W as a T -module.

Proposition 4.13. The set „ D ¹�.k/j j k 2 Z; 1 � j � `º is T -independent.

Proof. Suppose„ is not T -independent. This means that there exist d � e and akj2T
with adj ; aek not equal to zero for some 1 � j; k � `, so that

eX
kDd

X̀
iD1

aki�
.k/
i D

eX
kDd

.ak1; : : : ; ak`/
�
�
.k/
1 ; : : : ; �

.k/

`

�tr
D 0: (4.14)

It follows from (4.11) that there is a non-singular matrix Ne so that0BB@�
.e/
1
:::

�
.e/

`

1CCA D reD
0B@@t1:::
@t`

1CA D Ne
0B@@t1:::
@t`

1CA :
Moreover, setting BkC1 D �.B1 C .k C 1/1`/, we obtain

B�1kC1M�r
kC1
D

0B@@t1:::
@t`

1CA D rkD
0B@@t1:::
@t`

1CA :
Recall from (2.14) that DŒM�� D 1` and DŒBk� D 0 for all k 2 Z, where the appli-
cation of D to a matrix means its application to every entry of the matrix. Thus, the
non-singular matrixHk D B�1kC1M� � � �B

�1
e�1M�B

�1
e M� for d � k � e (with the con-

vention that He D 1`) yields 0BB@�
.k/
1
:::

�
.k/

`

1CCA D HkNe
0B@@t1:::
@t`

1CA :
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Given this description, (4.14) is equivalent to
eX

kDd

.ak1; : : : ; ak`/Hk D 0;

where we used that Ne is non-singular. Apply De�d and use that De�kC1.Hk/ D 0
to obtain

.ae1; : : : ; ae`/B
�1
dC1DŒM��B

�1
dC2DŒM�� � � �B

�1
e DŒM�� D 0:

Since DŒM�� D 1`, this implies .ae1; : : : ; ae`/ D 0, a contradiction.

Proposition 4.15. With the notation as above, viewed as T -modules,

D.A;�k! C 1/W D
M
p�k

M̀
iD1

T � �
.p/
i : (4.16)

Proof. We know that the right-hand side of (4.16) is a direct T -module summand
of the space on the left by Proposition 4.13. It thus remains to show that the right-
hand side generates the left hand side. Owing to Theorem 4.2 (2), we know that
�
.k/
1 ; : : : ; �

.k/

`
form anR-basis for D.A;�kwC 1/W . Thus it suffices to show that the

right-hand side is an R-module. We know this is true if k � 0 by [6, Theorem 3.22]
and proceed by induction on k � 0. From

rD

�
t` �
�
�
.k/
1 ; : : : ; �

.k/

`

��
D D.t`/ �

�
�
.k/
1 ; : : : ; �

.k/

`

�
C t` �

�
�
.kC1/
1 ; : : : ; �

.kC1/

`

�
;

we obtain

t` �
�
�
.kC1/
1 ; : : : ; �

.kC1/

`

�
D rD

�
t` �
�
�
.k/
1 ; : : : ; �

.k/

`

��
�
�
�
.k/
1 ; : : : ; �

.k/

`

�
:

By induction hypothesis, we have

t`�
.k/
j 2

M
p�k

M̀
iD1

T � �
.p/
i

for 1 � j � `, and thus

rD.t`�
.k/
j / 2 rD

�M
p�k

M̀
iD1

T � �
.p/
i

�
D

M
p�k

M̀
iD1

T � rD.�
.p/
i / D

M
p�kC1

M̀
iD1

T � �
.p/
i :

We deduce that for every 1 � j � `, we get

t`�
.kC1/
j 2

M
p�kC1

M̀
iD1

T � �
.p/
i

to complete the proof.
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Proof of Theorem 4.2 (3) and (4). Propositions 4.13 and 4.15 immediately give state-
ment (3). Finally, (4) follows, because every element in D.A;�1/W is contained in
D.A;�k! C 1/W for some k 2 Z.

4.2. Universal vector fields for reflection arrangements

In this final section, we conclude the universality properties for reflection arrange-
ments.

Our first result generalizes [15, Proposition 2.5] to the complex case, and in par-
ticular, it implies Theorem 4.6. Recall the Euler derivation E from (2.16).

Theorem 4.17. With the notation as above,rkD.E/ is .�k!/-universal for any k 2Z.

Proof. For k � 0, this is the special case of [6, Theorem 3.20] for �i D @xi . It remains
to consider the case k � 0. Set Ek WD rkD.E/. By Proposition 4.9, we have that Ek 2
D.A;�k!C 1/, which in turn implies thatˆEk WDerS!D.A;�k!/ is well defined,
by Lemma 3.8. Moreover, the S -independence of

¹r@xi
.Ek/ j 1 � i � `º

follows from the R-independence of

¹r@ti
.Ek/º D

°1
h
r
k
D.@ti /

±
proven in Theorem 4.2 (2) and (4.1). Here, we have used that r@tir@tj D r@tj r@ti
and that r@ti .E/D

1
h
@ti . Finally, we deduce that ¹r@xi .Ek/ j 1� i � `º is an S -basis

of D.A;�k!/ from the version of the Saito criterion given in Theorem 3.1 (iii). In
the later, we remark that indeed r@xi .Ek/ is homogeneous, since Ek is homogeneous
(cf. (2.11)), and so we obtainX

pdeg
�
r@xi

.Ek/
�
D

X�
�khC pdeg.@xi /

�
D �k`h D j � k!j;

again by (2.4), (2.7), and [10, Theorem 4.23].

The following properties are the complex counterparts of the results in [15, Sec-
tion 2], where we remark that the arguments are similar. Recall the order multiplicity
!WA! Z on the reflection arrangement A given by !.H/ D eH . Our aim here is to
generalize Theorem 3.12 to multiplicity functions �WA! Z with �! C 1 � � � 1.

Proposition 4.18. Let � be any Z-valued multiplicity on A and let � 2D.A;�1/W

be �-universal. Then

ˆ� WD.A;�! C 1/!D.A; � � ! C 1/

is an isomorphism of S -modules.
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Proof. We saw in Theorem 4.2 (1) that ¹@t1 ; : : : ; @t`º is an S -basis of D.A;�! C 1/.
We thus aim to show that ¹r@t1 �; : : : ;r@t` �º is an S -basis of D.A; � � ! C 1/.

It is immediate from (2.12) that J@tj 2 DerS . This implies Jr@tj � 2D.A; �/ by
the linearity of r in the first parameter and the �-universality of �. Thus we have that
J.r@tj �/.˛H / 2 ˛

�.H/
H Sh˛H i or, equivalently,�

r@tj
�
�
.˛H / 2 ˛

�.H/�.eH�1/
H Sh˛H i

for a given H 2 A. Now let ˛H D x1; x2; : : : ; x` be an orthonormal basis of V � and
for 2 � i � ` set

gi D Q
N
HJ

�
r@tj

�
�
.xi / 2 S;

for some N � 0, where QH D Q=˛H . Analogous to the argument in the proof of
Proposition 4.9, we obtain that gi 2 ˛

eH�1
H S , and so�

r@tj
�
�
.xi / D Q

�N
H giJ

�1
2 Sh˛H i;

for 2 � i � `. We thus have r@tj � 2D.A; � � ! C 1/. Computing

det
��
r@tj

�
�
.xi /

� :
D J�1 det

��
r@xj

�
�
.xi /

� :
D J�1Q� D Q��!C1

yields the statement, thanks to Theorem 3.1.

Theorem 4.19. Let � 2D.A;�1/W be �-universal for a Z-valued multiplicity func-
tion � on A. Let �WA! Z be a multiplicity with �! C 1 � � � 1. Then

ˆ� WD.A; �/!D.A; � C �/

is an isomorphism of S -modules, and in particular D.A; �/ is free if and only if
D.A; � C �/ is free.

Before proving Theorem 4.19, we use the fact that �Dr�mD .E/ is .m!/-universal
for any m 2 Z, by Theorem 4.17 to obtain the special case of the generalized Ziegler
multiplicity on a reflection arrangement A given by m! � 1 for m 2 Z. For m D 1,
this multiplicity was originally considered by Ziegler [17] (assigning the number of
reflections along H to any reflecting hyperplane), and shown to be free in general
in [17] and [7].

Corollary 4.20. Let ¹e1; : : : ; e`º be the set of exponents of .A;! � 1/. For anym 2Z,
the multi-arrangement .A; m! � 1/ is free and its exponents are given by®

e1 C .m � 1/h; : : : ; e` C .m � 1/h
¯
:
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Proof of Theorem 4.19. Since

D.A; �/ �D.A;�! C 1/ and D.A; � C �/ �D.A; � � ! C 1/;

Proposition 4.18 implies thatˆ� is injective on D.A; �/. It thus remains to show that

ˆ�
�
D.A; �/

�
DD.A; � C �/: (4.21)

Fix H 2 A and let ˛H D x1; x2; : : : ; x` be an orthonormal basis of V �. The element
g D ˛

��.H/�1
H �.˛H / 2 Sh˛H i is a unit in Sh˛H i, by Lemma 3.11. For � 2D.A;�1/,

compute�
ˆ� .�/

�
.˛H / D �

�
˛
�.H/C1
H g

�
D ˛

�.H/C1
H �.g/C

�
�.H/C 1

�
˛
�.H/
H �.˛H /g

D ˛
�.H/
H �.˛H /

�
˛H

@g

@˛H
C
�
�.H/C 1

�
g
�
C ˛

�.H/C1
H

X̀
iD2

�.xi /
@g

@xi

D ˛
�.H/
H �.˛H /U C ˛

�.H/C1
H C;

where U D ˛H @g
@˛H
C .�.H/C 1/g is again a unit in Sh˛H i and

C D
X̀
iD2

�.xi /
@g

@xi
:

Note that C 2 Sh˛H i, since � 2D.A;�1/, and so is ˛1��.H/H C . We thus obtain

˛
��.H/��.H/
H

�
ˆ� .�/

�
.˛H / D ˛

��.H/
H �.˛H /U C ˛

1��.H/
H C;

implying that�
ˆ� .�/

�
.˛H / 2 ˛

�.H/C�.H/
H Sh˛H i” �.˛H / 2 ˛

�.H/
H Sh˛H i:

Since this holds for any H 2 A, the reverse implication shows the containment “�”
in (4.21) and the forward implication the containment “�”.

We finally conclude the extension of [15, Theorem 2.8] to the unitary setting.

Theorem 4.22. Let � 2D.A;�1/ and let k 2 Z. Then

� is .k!/-universal H) r�1D � is ..k C 1/!/-universal:

Proof. We set � D k! in the proof for better readability. Let �1; : : : ; �` 2D.A; 1/W

be an S -basis. Due to the universality of �, we also have that

r�1�; : : : ;r�`� 2D.A; � C 1/W
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form an S -basis. Since � is a multiple of !, we also have that

rDr�j � 2D.A; � C 1 � !/W :

Because the @tj 2D.A;�! C 1/W form an S -basis as well, we obtain

rDr�j � D
X
i

fijr@ti �

for W -invariant polynomials fij . Comparing polynomial degrees yields

degfij D ei C e�j � h < h

(or, respectively, fij D 0 for ei C e�j < h), which shows that fij 2 T . Moreover,

degfi;`C1�i D ei C e�`C1�i � h D 0

for all 1 � i � `, and it follows that detfij 2 C. Applying r�1D gives

r�j � D
X
i

fijr@tir
�1
D �:

Because the vector fields on the left form an S -basis of D.A; � C 1/, we readily
see that det fij ¤ 0 and the r@tir

�1
D � 2 D.A; � C 1/W form an S -basis. Again,

because � is a multiple of !, we have r�1D � 2 D.A; � C 1 � !/W , and we see that
the derivations

r@xj
r
�1
D � D

X
i

J@t=@xr@tj
r
�1
D �

form an S -basis of D.A; � C !/ by Saito’s criterion.
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