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On the interaction of the Coxeter transformation and the
rowmotion bijection

René Marczinzik, Hugh Thomas, and Emine Yıldırım

Abstract. Let P be a finite poset and L the associated distributive lattice of order ideals of
P . Let � denote the rowmotion bijection of the order ideals of P viewed as a permutation
matrix and C the Coxeter matrix for the incidence algebra kL of L. Then, we show the identity
.��1C/2 D id, as was originally conjectured by Sam Hopkins. Recently, it was noted that the
rowmotion bijection is a special case of the much more general grade bijection R that exists for
any Auslander regular algebra. This motivates to study the interaction of the grade bijection and
the Coxeter matrix for general Auslander regular algebras. For the class of higher Auslander
algebras coming from n-representation finite algebras, we show that .R�1C/2 D id if n is even
and .R�1C C id/2 D 0 when n is odd.

1. Introduction

Let A be a finite dimensional algebra over a field k with finite global dimension. We
will always assume that k is a splitting field for the algebra A, which, for example, is
true if k is algebraically closed or if A is a quiver algebra. We denote the indecompos-
able projective A-modules by Pi for i D 1; : : : ; n. Then, the Cartan matrix M of A
is defined as the n � n-matrix with entries mi;j WD dimk HomA.Pi ; Pj /. The Coxeter
matrix (a.k.a. Coxeter transformation) C of A is then defined as C WD �M�1M T .
Note that this is well defined as the Cartan matrix of an algebra of finite global dimen-
sion has determinant 1 or �1, and thus, M is invertible over Z, see, for example,
[1, Proposition III.3.10]

The Coxeter matrix of a finite dimensional algebra with finite global dimension is
the main object of study in the spectral theory of finite dimensional algebras, we refer,
for example, to the survey article [15]. Of special interest in homological algebra are
algebras with periodic Coxeter matrix, that is, C l D id for some l � 1. Algebras with
periodic Coxeter matrix include, for example, fractionally Calabi–Yau algebras that
arise in geometric and combinatorial contexts; we refer for example to [3, 21].
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When P is a finite poset, then the set of order ideals of P is a distributive lattice L
and every finite distributive lattice arises this way and is uniquely determined by P .
The Coxeter matrix of the incidence algebra kL can be directly read off from element-
ary combinatorial data involving the Möbius function of L. When S is an antichain
of P , then set I.S/ to be the order ideal whose maximal elements are given by S
and set M.S/ to be the order ideal whose minimal non-elements are given by S . The
rowmotion bijection is given on the elements of L by sending I.S/ to M.S/, which
defines a bijection. The rowmotion bijection is one of the main attractions in dynam-
ical algebraic combinatorics, we refer, for example, to the articles [5, 19, 20]. When
L has n elements, we can associate the rowmotion bijection to an n � n-permutation
matrix in a natural way. While the Coxeter matrix and the rowmotion bijection are
well studied objects in representation theory and combinatorics, respectively, it seems
that no relation between them has been shown before.

The following theorem, which is our first main result, was first conjectured by
Sam Hopkins, who noted the identity in several examples.

Theorem 1.1. Let L be a finite distributive lattice with C the Coxeter matrix of the
incidence algebra of kL and � the rowmotion bijection forL viewed as a permutation
matrix. Then, ��1C has order two, that is .��1C/2 D id.

In the article [11] it was noted that the rowmotion bijection for a distributive lattice
L is a special case of a much more general bijection that exists for any Auslander
regular algebra. Recall here that a finite dimensional algebra A is called Auslander
regular if A has finite global dimension and in the minimal injective coresolution

0! A! I0 ! I1 ! � � � In ! 0

we have that the projective dimension of Ii is bounded by i for all i � 0. In [6],
Iyama defined the so-called grade bijection of an Auslander regular algebra A. It is
a permutation of the simple modules of A, whose precise definition we will recall in
the next section. Again, we can associate a permutation matrix to the grade bijection
that we will usually denote by RA, or R for short, for an Auslander regular algebra A.
One of the main results in [11] states that a finite lattice L is distributive if and only if
the incidence algebra kL is Auslander regular. Moreover, when L is distributive, the
grade bijection gives a homological realisation of the rowmotion bijection, when one
identifies the elements of the lattice L with the simple kL-modules in a natural way.
This leads to the natural question, whether for other Auslander regular algebras there
is a simple relation between the Coxeter matrix and the grade bijection.

We give a positive answer for an important class of algebras that also appears in
combinatorics. Namely, an algebra A is called n-representation-finite if A has global
dimension at most n and there is an n-cluster tilting object M in modA, which is
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then uniquely given when we assume that M is basic. The notion of n-representation
finite algebras was introduced in [10] and includes many important classes of algebras
such as all path algebras of Dynkin type, higher Auslander algebras of Dynkin type
A that have strong relations to the combinatorics of cyclic polytopes [16] and the 2-
representation finite algebras that have strong relations to quivers with potential and
Jacobian algebras [4]. For an n-representation finite A with n-cluster tilting module
M , the endomorphism algebra B WD EndA.M/ will be an higher Auslander algebra.
Higher Auslander algebras are those algebras B with finite global dimension and a
minimal injective coresolution

0! B ! I0 ! I1 ! � � � In ! 0

such that the projective dimension of Ii is zero for i D 0;1; : : : ; n� 1, when n denotes
the global dimension. Thus, by definition, higher Auslander algebras are always Aus-
lander regular. Our second main result is as follows for such algebras B .

Theorem 1.2. Let A be an n-representation finite algebra with n-cluster tilting mod-
uleM . Let B D EndA.M/ with grade bijection R and Coxeter matrix C . If n is even,
then .R�1C/2 D id and if n is odd, then .R�1C C id/2 D 0.

2. Preliminaries

We assume that algebras are finite dimensional over a field k and that they are non-
semisimple and connected unless stated otherwise. Additionally, we assume that k is
a splitting field, which is, for example, automatic if k is algebraically closed or if A is
a quiver algebra. Here, k being a splitting field for the k-algebra A means that every
simple module A-module S has the property that EndA.S/ Š k; see, for example,
[14, Chapter 7] for more equivalent characterisations and properties of splitting fields.
We assume that modules are right modules unless otherwise stated.D D Homk.�; k/

denotes the duality and J denotes the Jacobson radical of an algebra. We assume that
the reader is familiar with the basics of representation theory and homological algebra
of finite dimensional algebras and we refer, for example, to the textbooks [2, 18].
Let �A WD D HomA.�; A/ denote the Nakayama functor of an algebra A and ��1A D
HomA.D.A/;�/ its inverse. It is well known that �A induces an equivalence between
the category of projective A-modules and the category of injective A-modules with
inverse ��1A . The global dimension of an algebra A is defined as the supremum of all
projective dimensions of A-modules. The dominant dimension of an algebra A with
minimal injective coresolution

0! A! I0 ! I1 ! � � �
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is defined as the smallest n� 0 such that In is not projective or as infinite if there is no
such In. For an A-moduleM , add.M/ will denote the full subcategory of modA con-
sisting of all direct summands of M n for some natural number n. Let K0.A/ denote
the Grothendieck group of an algebra A with finite global dimension with basis given
by the indecomposable projective modules ŒP �. For simplicity, we will often omit the
usual brackets ŒP � for an element in the Grothendieck group K0.A/ when there is
no danger of confusion. When A has finite global dimension, the Coxeter transform-
ation of A is defined as CA.ŒP �/ WD �Œ�A.P /�. When this linear transformation is
expressed as a matrix with respect to the basis of K0.A/ given by the classes of the
indecomposable projective modules, we recover the matrix C from Section 1.

An algebra A is called Auslander regular when A has finite global dimension and
there exists an injective coresolution

0! A! I 0 ! I 1 ! � � � ! I n ! 0

of the regular module such that pdim I i � i for all i � 0. Important classes of Aus-
lander regular algebras are incidence algebras of distributive lattices (see [11]), higher
Auslander algebras (see [7]) and blocks of category O (see [13]). The grade of an A-
module M is defined by

gradeM WD inf
®
i � 0 j ExtiA.M;A/ ¤ 0

¯
:

Dually, the cograde of a module M is defined as inf¹i � 0 j ExtiA.D.A/;M/ ¤ 0º.
For every Auslander regular algebra, there exists a bijection on the simple A-modules
as follows.

Theorem 2.1 ([6, Theorem 2.10]). LetA be an Auslander regular algebra. Then, there
is a bijection GrA sending a simple A-module S to the simple A-module GrA.S/ D
top.D ExtgS

A .S;A//, where gS WD gradeS . The grade of S is equal to the cograde of
GrA.S/.

We call the bijection GrA as in the previous theorem for Auslander regular algebras
the grade bijection on simple A-modules. We refer to [6, Theorem 2.10] for a more
general statement and proofs. In [11], it was shown that the grade bijection gives a
categorification of the rowmotion map for incidence algebras of distributive lattices.
We define the grade bijection on the Grothendieck group of an Auslander regular
algebra A by

RA.ŒPS �/ D ŒPGrA.S/�;

wherePS denotes the projective cover of a simple module S . We define the rowmotion
Coxeter transformation of an Auslander regular algebra A as R�1A CA. Note that since
RA is a permutation matrix, we have R�1A D R

T
A . We will be mainly interested in the
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minimal polynomial of R�1A CA and the relation .R�1A CA/
2 D id. Note that since

CAR
�1
A D RA.R

�1
A CA/R

�1
A ;

the operators CAR�1A and R�1A CA are similar and thus they have the same minimal
polynomials and we have

.CAR
�1
A /2 D id

if and only if .R�1A CA/
2 D id.

3. The Coxeter transformation and the rowmotion bijection for
distributive lattices

Let P denote a finite poset and L the distributive lattice of order ideals of P . Let S
be an antichain of P and I.S/ the order ideal whose maximal elements are given by
S and M.S/ the order ideal whose minimal non-elements are given by S . Formally,

I.S/ D
®
x 2 P W x � s for some s 2 S

¯
;

M.S/ D P n
®
y 2 P W y � s for some s 2 S

¯
:

The Hasse quiver of a poset P is the finite quiver with points x 2 P and an arrow
x! y if x covers y (note that we use here the opposite convention compared to [11]).
The incidence algebra kP of a poset P over a field k is defined as the quiver algebra
kQ=	 with Q the Hasse quiver of P and the relations 	 such that any two paths that
start and end at the same points get identified.

The rowmotion bijection � for a distributive lattice L given as the set of order
ideals of a poset P is defined as the permutation sending I.S/ toM.S/. As explained
in the preliminaries, the rowmotion bijection is a special case of the more general
grade bijection when viewing the incidence algebra of a distributive lattice as an Aus-
lander regular algebra. We will denote by PO the indecomposable projective module
in the incidence algebra kL of a distributive lattice L corresponding to the order ideal
O and JO WD �A.PO/ (we use J instead of I for the indecomposable injectives in
this section to avoid confusion with I.S/). When A D kL is the incidence algebra of
a distributive lattice, we set

RA.ŒPI.S/�/ D ŒPM.S/�

motivated by the fact that the grade bijection gives a homological realisation of the
rowmotion bijection as explained after Theorem 2.1. We will use the following res-
ult, whose proof can be found in [11, Theorem 3.2] and where one can also find a
description of the differentials. See also [21, Definition 2.3], where this construction
was anticipated, though restricted to a particular case.
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Theorem 3.1. Let L be a distributive lattice given as the set of order ideals of a
poset P . Then, a minimal projective resolution of the indecomposable injective mod-
ule JI.S/ for an antichain S is given as follows in kL:

0! PM.S/ !
M

T�S;jT jDr�1

PM.T / ! � � � !
M

T�S;jT jDi

PM.T / ! � � �

� � � !

M
T�S;jT jD1

PM.T / ! PM.;/ ! JI.S/ ! 0:

Example 3.2. For an example of the previous theorem, consider the case where P
is the poset shown on the left in the diagram below. The lattice L is the distributive
lattice of order ideals of P , shown on the right.

x4

x1 x2 x3

;

¹x1º ¹x2º ¹x3º

¹x1; x2º ¹x1; x3º ¹x2; x3º

¹x1; x2; x3º

¹x1; x2; x3; x4º

Let S D ¹x1; x2º. The projective resolution of JI.S/ given by Theorem 3.1 is as
follows, where we represent kL modules by the corresponding representations of the
Hasse quiver.

0!

k

0 0 k

0 0 0

0

0

!

k

k 0 k

0 k 0

0

0

˚

k

0 k k

0 0 k

0

0

!

k

k k k

k k k

k

k

!

0

0 0 0

k 0 0

k

k

! 0

Corollary 3.3. Let L be a distributive lattice given as the set of order ideals of a
poset P . Let S denote an antichain of P . Then, the Coxeter transformation CA for
A D kL is given by

CA.ŒPI.S/�/ D �
X
T�S

.�1/jT jŒPM.T /�:
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Theorem 3.4. Let A D kL be the incidence algebra of a distributive lattice L given
as the set of order ideals of a poset P . Then, .R�1A CA/

2 D id.

Proof. We first look at CAR�1A CA and determine the values on a basis:

CAR
�1
A CA.ŒPI.S/�/ D CAR

�1
A

�
�

X
T�S

.�1/jT jŒPM.T /�

�
D CA

�
�

X
T�S

.�1/jT jŒPI.T /�

�
D

X
T�S

X
R�T

.�1/jT j.�1/jRjŒPM.R/�

D

X
R�S

X
R�T�S

.�1/jT j�jRjŒPM.R/�

D

X
R�S

ŒPM.R/�
X

R�T�S

.�1/jT j�jRj:

If R is properly contained in S , the inner sum is over the 2jS j�jRj choices for T , half
with jT j � jRj even and half with jT j � jRj odd. The inner sum is therefore zero in
this case. The only surviving term of the outer sum is R D S , in which case we also
have T D S . The result is that CAR�1A CA.ŒPI.S/�/ D ŒPM.S/� and if we now apply
R�1A to both sides, we get that R�1A CAR

�1
A CA.ŒPI.S/�/ D ŒPI.S/�, as desired.

The next example shows that the identity .R�1A CA/
2 D id, which is true when A

is the incidence algebra of a distributive lattices, does not hold for Auslander regular
incidence algebras of posets that are not lattices.

Example 3.5. The following poset with incidence algebra A is Auslander regular:

6

4 5

2 3

1

Let Pi denote the indecomposable projective A-modules and Ii the indecomposable
injective A-modules. A computer program such as the GAP-package [17] can be used
to show thatA is Auslander regular and to find the grade bijection and Coxeter matrix.
We just give a sketch for the calculations without all details in the following. One
finds the injective resolution of each indecomposable projective, and then checks the
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projective dimension of the injectives that appear. The minimal injective resolutions
of indecomposable projectives are given by

0! P1 ! I6 ! 0;

0! P2 ! I6 ! I3 ! 0;

0! P3 ! I6 ! I2 ! 0;

0! P4 ! I6 ! I5 ! 0;

0! P5 ! I6 ! I4 ! 0;

0! P6 ! I6 ! I4 ˚ I5 ! I2 ˚ I3 ! I1 ! 0:

Since the algebra is isomorphic to its opposite algebra, one can dually obtain the
minimal projective resolution of the indecomposable injectives and from that the pro-
jective dimensions of the indecomposable injectives to see that A is indeed Auslander
regular.

We emphasise that RA here is given by the grade bijection. Currently, no purely
combinatorial description of this bijection is available for Auslander regular incidence
algebras of posets except in the case that the poset is a distributive lattice. Such a com-
binatorial description would be a generalisation of rowmotion on distributive lattices
and would be very interesting to have. In forthcoming work [12], we show that the
grade bijection RA of a general Auslander regular algebra A is given by sending Pi
to the last term in the minimal projective resolution of �A.Pi / D Ii , which allows to
calculate the grade bijection directly from the minimal projective resolutions of the Ii
as above.

The matrix for RA is given as follows:0BBBBBBB@

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

1 0 0 0 0 0

1CCCCCCCA ;

and the Coxeter matrix CA is given as follows:0BBBBBBB@

�1 �1 �1 �1 �1 �1

1 0 1 0 0 0

1 1 0 0 0 0

�1 0 0 0 1 0

�1 0 0 1 0 0

1 0 0 0 0 0

1CCCCCCCA :
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The matrix R�1A CA has minimal polynomial x3 � x2 � x C 1, and thus, the iden-
tity .R�1A CA/

2 D id is not true for this poset.

4. n-representation finite algebras

We recall some basics on cluster tilting modules and higher Auslander algebras. AnA-
module M is called n-cluster-tilting when M is a generator-cogenerator and M?n D
add.M/D?nM , whereM?nD ¹N 2modA j ExtiA.M;N /D 0 for all 1� i < nº and
?nM D ¹N 2 modA j ExtiA.N;M/D 0 for all 1 � i < nº. A 1-cluster tilting module
M exists if and only if A is representation finite; in this case, add.M/ D modA.
By the higher Auslander correspondence, see, for example, [7], M is n-cluster tilting
if and only if the algebra B WD EndA.M/ is a higher Auslander algebra of global
dimension nC 1; that is, it has global dimension and dominant dimension equal to
nC 1. We denote by

�n WD ��
n�1 for n � 1

the n-Auslander–Reiten translate and by ��1n WD�
�.n�1/��1 the inverse n-Auslander–

Reiten translate. Let A be an algebra, and letM be a generator-cogenerator of modA
and B WD EndA.M/. In the following, we will summarise several properties of B in
this situation and refer, for example, to [2, Chapter VI.5] for more information. There
is an equivalence of categories add.M/ Š projB , given by HomA.M;�/. We denote
the indecomposable projective B-module associated an indecomposable A-module
N 2 add.M/ by LN WD HomA.M; N /. Note that �B.LN / D D HomB.LN ; B/ D
DHomB.HomA.M;N /;HomA.M;M// Š DHomA.N;M/, and thus, the indecom-
posable injectiveB-modules are given by TN WDDHomA.N;M/ for an indecompos-
able module N 2 add.M/. We denote by SN the simple B-module with projective
cover LN . In this section, the modules Pi will refer to terms in a minimal project-
ive resolution of a module and not to the indecomposable projective modules of an
algebra corresponding.

An algebra A is called n-representation-finite for some n � 1 if gldimA � n and
there is an n-cluster tilting module M in modA, see, for example [10], where such
algebras were studied systematically for the first time. Note that an n-cluster tilting
module M in a n-representation-finite algebra is unique when we assume that M
is basic. Note also that M necessarily contains the indecomposable projective and
injective modules as direct summands. 1-representation-finite algebras are exactly the
representation finite hereditary algebras. They are classified by Dynkin diagrams, see
[2, Chapter VIII].

We collect several results that we will need. For a survey on n-cluster tilting cat-
egories and higher Auslander algebras, we refer to Section 2 of [9]. For the definition
of n-almost split sequences and their basic properties, we refer to Section 2.3 in [9],
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which also contains the next lemma. We recall that the length of an n-almost split
sequence is equal to nC 2.

Lemma 4.1. LetA be an algebra withn-cluster-tilting moduleM andB WDEndA.M/.

(1) Let N be an indecomposable non-projective summand of M . There is an n-
almost split sequence

0! �n.N /! � � � ! N ! 0:

Applying HomA.M;�/ to it yields a minimal projective resolution of SN :

0! L�n.N/ ! � � � ! LN ! SN ! 0: (4.1)

(2) Let N be an indecomposable non-injective summand of M . There is an n-
almost split sequence

0! N ! � � � ! ��1n .N /! 0:

Applying DHomA.�;M/, we obtain a minimal injective coresolution of SN :

0! SN ! TN ! � � � ! T��1
n .N/ ! 0: (4.2)

As an immediate consequence of this lemma, we deduce that if N is an indecom-
posable summand of M which is not projective, then the projective dimension of SN
is nC 1; similarly, if N is not injective, then the injective dimension of SN is nC 1.

Lemma 4.2. LetA be an n-representation-finite algebra with n-cluster tilting module
M . Let X; Y 2 add.M/.

(1) HomA.��1n .Y /; X/ D D ExtnA.X; Y /.

(2) HomA.Y; �n.X// D D ExtnA.X; Y /.

Proof. We show (1); the proof of (2) is dual. It holds in general (without the assump-
tion that A has global dimension at most n) that HomA.�

�1
n .Y /;X/ D D ExtnA.X; Y /

for any X; Y 2 add.M/ for a cluster tilting module M , by [8, Theorem 2.3.1]. Now,
using the assumption that A has global dimension at most n, we can additionally
conclude that HomA.�

�1
n .Y /; X/ D HomA.��1n .Y /; X/ by [10, Lemma 2.4 (d)].

Lemma 4.3. Let N be an A-module of finite projective dimension. Then, pdimN D

sup¹i � 0 j ExtiA.N;A/ ¤ 0º.

Proof. See, for example, [2, Lemma VI.5.5].

Given this lemma, it follows from the definition of n-representation finite algebra
that the summands of M are either projective or of projective dimension n.
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Lemma 4.4. LetA be an n-representation finite algebra with n-cluster-tilting module
M and B WD EndA.M/.

(1) Let N be an indecomposable projective summand of M . We have TN Š
L�A.N/, and thus, TN is projective as a B-module.

(2) Let N be an indecomposable non-projective summand of M . Suppose that its
minimal projective resolution is

0! Pn ! � � � ! P1 ! P0 ! N ! 0:

Then, the projective resolution as a B-module of TN is given by

0! L�n.N/ ! L�A.Pn/ ! � � � ! L�A.P0/ ! TN ! 0: (4.3)

This then also gives an injective coresolution

0! L�n.N/ ! TPn
! � � � ! TP0

! TN ! 0

of L�n.N/ with TPi
Š L�A.Pi /.

(3) Let N 0 be an injective indecomposable direct summand of M . Then, LN 0 is
itself injective, so it is its own injective resolution.

(4) There is a bijection between the indecomposable projective B-modules of
injective dimension n C 1 and the indecomposable injective B-modules of
projective dimension nC 1 given by ��.nC1/ with inverse �nC1.

Proof. (1) Since N is projective,

TN D DHomA.N;M/ Š HomA.M; �A.N // D L�A.N/

by [18, Chapter III, Corollary 6.2], so TN is itself projective.
(2) Since N is non-projective, we have already established that pdimN D n. In

order to calculate Exti .N;M/, we would apply Hom.�;M/ to the projective resolu-
tion of N , and since Exti .N;M/ D 0 except for i D 0 and i D n, we obtain an exact
sequence

0! HomA.N;M/! HomA.P0;M/! HomA.P1;M/! � � �

� � � ! HomA.Pn;M/! ExtnA.N;M/! 0:
(4.4)

Now, by the higher Auslander–Reiten formulas from Lemma 4.2, we have that

ExtnA.N;M/ Š DHomA.M; �n.N //:

Note that D HomA.N;M/ DW TN . Thus, applying the duality D to equation (4.4),
we obtain the exactness of equation (4.3). It is a projective resolution since the terms
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DHomA.Pi ;M/Š L�A.Pi / are projective-injective by (1), which also shows that the
second exact sequence is an injective coresolution of L�n.N/.

(3) This is dual to (1).
(4) The indecomposable projective B-modules which are not injective are the

modules LN for N an indecomposable direct summand of M which is not inject-
ive. By (4.3), we see that ��.nC1/LN D T�n.N/. The modules of the form T�n.N/ are
exactly the indecomposable injective B-modules which are not projective, and (4.3)
shows that

�nC1T�n.N/ D LN :

In the next theorem, we calculate the Coxeter transformation of higher Auslander
algebras coming from n-cluster tilting modules in n-representation-finite algebras.

Theorem 4.5. Let A be an n-representation-finite algebra with n-cluster-tilting mod-
ule M , let B D EndA.M/ and let N be an indecomposable A-module in add.M/.

(1) If N is projective, CB.ŒLN �/ D �ŒL�A.N/�.

(2) IfN is non-projective, let 0! Pn! � � � ! P1! P0!N ! 0 be a minimal
projective resolution of N . Then,

CB.ŒLN �/ D

nX
iD0

.�1/iC1ŒL�A.Pi /�C .�1/
nŒL�n.N/�:

Proof. By definition,CB.ŒLN �/D�ŒTN �. To express ŒTN �with respect to the basis of
indecomposable projective B-modules, it suffices to calculate a projective resolution
of TN and take the alternating sum. We have found these projective resolutions in
Lemma 4.4, and the claim follows.

Recall that we defined the grade bijection in the Grothendieck group of an Aus-
lander regular algebraB on the indecomposable projectiveA-modules byRB.ŒPS �/D
ŒPGrB .S/�, where PS denotes the projective cover of a simple module S and GrB the
grade bijection on simple modules. We now calculate the grade bijection for higher
Auslander algebras that are endomorphism rings of an n-cluster tilting module.

Theorem 4.6. Let A be an algebra with n-cluster tilting moduleM having endomor-
phism algebra B WD EndA.M/ and let N be an indecomposable module in add.M/.
Then, the grade bijection RB for B is given by

RB.ŒLN �/ D ŒL�A.N/�

when N is projective and RB.ŒLN �/ D ŒL�n.N/� else.

Proof. Assume first thatN is projective. The simple B-module SN injects into TN Š
L�A.N/, which is a summand ofB; hence, HomB.SN ;B/¤ 0 and thus gradeSN D 0.
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ApplyingDHomB.�;B/ onLN ! SN ! 0, one gets TN !DHomB.SN ;B/! 0,
and since TN is projective and the middle term does not vanish, we have

top.DHomB.SN ; B// D top.TN / D top.L�A.N// D S�A.N/:

Thus,
RB.ŒLN �/ D ŒL�A.N/�:

Assume now thatN is not projective. We will show thatDExtiB.SN ;B/DS�n.N/,
if i D nC 1 and D ExtiB.SN ; B/ D 0, else. This will show that grade SN D nC 1
andRB.ŒLN �/D ŒL�n.N/�. By the projective resolution of SN given in (4.1), we know
that D ExtiB.SN ; B/ is the i th homology of the complex obtained from

0! L�n.N/ ! � � �LN ! 0

by applying DHomB.�; B/. This complex equals

0! T�n.N/ ! � � � ! TN ! 0;

which by (4.2) for �n.N / is exact except at the .nC 1/th degree, where the homology
equals S�n.N/.

The last theorem tells us how to calculate the grade bijection. In the next the-
orem, we will also use the inverse of the grade bijection, which is then given by
R�1B .ŒLN �/ D ŒL��1

A
.N/� if N is injective and R�1B .ŒLN �/ D ŒL��1

n .N/� otherwise.

Theorem 4.7. Let A be an n-representation-finite algebra with n-cluster-tilting mod-
uleM andB WD EndA.M/. Then, we have .CBR�1B /2D id if n is even and .CBR�1B C
id/2 D 0 when n is odd.

Proof. Supposing that N is an injective indecomposable summand of M , it follows
that

CBR
�1
B .ŒLN �/ D CB.ŒL��1

A
.N/�/ D �ŒLN �;

since ��1A .N / is projective. IfN is an indecomposable and non-injective summand of
M , we have

CBR
�1
B .ŒLN �/ D CB.ŒL��1

n .N/�/ D

nX
iD0

.�1/iC1ŒL�A.Pi /�C .�1/
nŒLN �;

where
0! Pn ! � � � ! P1 ! P0 ! ��1n .N /! 0

denotes a minimal projective resolution of ��1n .N /.
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It follows that with respect to the basis of the ŒLN �, ordered such that the elements
corresponding to the injective modulesN precede all the others, the matrix of CBR�1B
has the block form  

�Is E

0 .�1/nIt

!
for some matrix E, where Ir denotes the r � r identity matrix, s is the number of
injective indecomposable modules N in add.M/, and t is the number of the non-
injective such modules. If n is even, then the square of such a matrix is the identity
IsCt , whereas if n is odd, then by adding the identity IsCt one gets the matrix 

0 E

0 0

!
whose square is zero.

Specialising to path algebras of Dynkin type gives the following special case.

Example 4.8. Let A D KQ be a path algebra of Dynkin type and M the direct
sum of all indecomposable A-modules, which is a 1-cluster tilting module. Let B WD
EndA.M/, which is the Auslander algebra ofA. By Theorem 4.7, we have .CBR�1B C
id/2 D 0.
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