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Translation lengths in crossing and contact graphs
of quasi-median graphs

Anthony Genevois

Abstract. Given a quasi-median graph X , the crossing graph �X and the contact graph �X are
natural hyperbolic models of X . In this article, we show that the asymptotic translation length in
�X or �X of an isometry ofX is always rational. Moreover, ifX is hyperbolic, these rational num-
bers can be written with denominators bounded above uniformly; this is not true in full generality.
Finally, we show that, if the quasi-median graph X is constructible in some sense, then there exists
an algorithm computing the translation length of every computable isometry. Our results encompass
contact graphs in CAT(0) cube complexes and extension graphs of right-angled Artin groups.
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1. Introduction

Given a groupG and a finite generating set S , the translation number of an element g 2G
is the limit

�S .g/ WD lim
n!C1

kgkS

n
;

where k�kS denotes the word length associated with S . The limit exists by subadditivity,
and it depends heavily on the chosen generating set. Introduced in [27] with the purpose
of studying subgroups in biautomatic groups, the structure of the translation spectrum
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TSpecS .G/ WD ¹�S .g/ j g 2 G infinite orderº has been investigated for many famil-
ies of groups, including hyperbolic and CAT(0) groups [12, 14, 29, 44, 45, 50], solv-
able groups [9–11], small cancellation groups [3, 34], Artin groups [6], mapping class
groups [16], outer automorphism groups of free groups [2], Garside groups [38–40],
Coxeter groups [43], and hierarchically hyperbolic groups [1].

Some of these results can be better understood in a more geometric framework.
Namely, given a metric space .X; d/ and an isometry g, the (asymptotic or stable)
translation length of g is the limit:

�.g/ WD lim
n!C1

d.o; gn � o/

n
;

where o 2 X is a basepoint. The limit exists (by subadditivity) and does not depend on
the chosen basepoint (by triangular inequality). Given a finitely generated group acting
on one of its Cayley graphs by left-multiplication, the translation length of an element
coincides with the corresponding translation number. Now, the question becomes: Given
our metric space X , what is the structure of the spectrum TSpect.X/ WD ¹�.g/ j g 2
Isom.X/ unbounded orbitsº?

In several families of graphs, there exists a dichotomy in the possible behaviour of
an isometry: Either it has bounded orbits or one of its powers acts as a translation on
a bi-infinite geodesic. One consequence is that the translation spectrum is contained
in the rational numbers Q, or even in 1

N
Z for some integer N � 1 if one has a uni-

form control on the powers previously mentioned. Examples include locally finite hyper-
bolic graphs [14, 29, 45, 50]; median graphs, or equivalently one-skeleta of CAT(0) cube
complexes [32]; quasi-median graphs with finite cliques (see Proposition 2.15); bridged
graphs, or equivalently one-skeleta of systolic complexes [15]; and Helly graphs of finite
combinatorial dimension [30].

Instead of considering all the isometries of a metric space, one can focus on a specific
subgroup of isometries. One case of interest, which received a lot of attention, is given by
mapping class groups acting on their curve graphs. Among the results available in the vast
literature on the subject, let us mention that having a positive translation length charac-
terises pseudo-Anosov elements [41]; the translation length is always a rational number,
with a uniform control on the denominator [7,52]; and translation lengths can be computed
algorithmically [37, 48, 52].

In order to emphasise the similarity between the extension graph introduced in [35] for
right-angled Artin groups and the curve graph for mapping class groups, already motivated
in [36], the recent work [4] initiates the study of translation spectra of right-angled Artin
groups acting on their extension graphs. Their main result shows that, given a finite con-
nected graph � , the translation length of an element of the right-angled Artin group A.�/
on the extension graph �e is always rational. Moreover, if � has girth �6, then there is a
uniform bound on the denominator.

In this article, our goal is to propose a more geometric and more general perspective
on this result.



Translation lengths in crossing and contact graphs of quasi-median graphs 3

Our geometric framework is given by quasi-median graphs. Originated from the
investigation in metric graph theory of graphs similar to median graphs (also known as
one-skeleta of CAT(0) cube complexes), quasi-median graphs can be thought of as the
“most median-like” family of graphs including median graphs and products of com-
plete graphs. More formally, in the same way that median graphs can be defined as
retracts of hypercubes, quasi-median graphs can be defined as retracts of Hamming
graphs, (i.e., products of complete graphs). Quasi-median graphs have been introduced
in geometric group theory by [17], and turn out to have applications in graph products
of groups [17, 22, 23, 51] and their automorphism groups [21, 24], in Thompson’s
groups [17, 18], and in wreath products of groups [17, 25, 26].

As noticed in [17], the Cayley graph QM.�/ WD Cayl.A.�/;
S
v2�hvi/ of a right-

angled Artin group A.�/ turns out to be a quasi-median graph. As such, its geometry
is encoded in the combinatorics of its hyperplanes. Interestingly, the extension graph
�e , defined algebraically in [35], coincides with the crossing graph of QM.�/, namely
the graph whose vertices are the hyperplanes of QM.�/ and whose edges connect two
hyperplanes whenever they are transverse. Thus, right-angled Artin groups acting on their
extension graphs can be thought of as a particular case of the more general study of
crossing graphs of quasi-median graphs.

Crossing graphs have been initially introduced for median graphs (also known as one-
skeleta of CAT(0) cube complexes) independently in [31, 46]. A related graph introduced
in [31] is the contact graph. Given a (quasi-)median graph X , its contact graph is defined
as the graph whose vertices are the hyperplanes ofX and whose edges connect two hyper-
planes whenever they are in contact (i.e., transverse or tangent). In the article, we denote
by �X the crossing graph and by �X the contact graph.

Quasi-median graphs and their crossing and contact graphs provide our general geo-
metric framework. Thus, the main question we are interested in is: Given an isometry of
a quasi-median graph, what can be said about its translation length in the corresponding
crossing and contact graphs? Our first main result is the following axis theorem.

Theorem 1.1. Let X be a quasi-median graph, and let �X be the crossing or contact
graph of X . In the former case, we assume that X has no cut-vertex, and, in any case,
we assume that a vertex of X belongs to �N cliques for some fixed N � 1. For every
g 2 Isom.X/ with unbounded orbits in �X , there exists some k � 1 such that gk admits
an axis, that is it acts as a translation on some bi-infinite geodesic in �X .

As already mentioned, such a dichotomy implies immediately that translation lengths
must be rational numbers.

Corollary 1.2. Let X be a quasi-median graph, and let �X be the crossing or contact
graph of X . In the former case, we assume that X has no cut-vertex, and, in any case,
we assume that a vertex of X belongs to �N cliques for some fixed N � 1. For every
g 2 Isom.X/, the translation length of g in �X is rational.
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Regarding Theorem 1.1, it is natural to ask whether there is a uniform upper bound
on powers we can take, which would imply that the rational numbers from Corollary 1.2
can be written with uniformly bounded denominators. This turns out to be true when the
underlying quasi-median graph is hyperbolic (see Corollary 4.3). However, this is not true
in full generality. In Section 4.3, we show that [49] provides the example of a group acting
geometrically on a median graph that contains elements with arbitrarily small translation
lengths in the crossing graph.

As another natural question, are the translation lengths in crossing and contact graphs
algorithmically computable? In order to answer this question, we introduce constructible
quasi-median graphs and computable isometries (see Section 5), and we prove the second
main result of this article.

Theorem 1.3. Let X be a constructible quasi-median graph. There exists an algorithm
that computes, given a computable isometry g 2 Isom.X/, the asymptotic translation
length of g in �X .

Theorems 1.1 and 1.3 are already new for median graphs (a.k.a. one-skeleta of CAT(0)
cube complexes), providing a vast range of applications. As already mentioned, includ-
ing quasi-median graphs also allows us to deduce information about right-angled Artin
groups and their extension graphs. In fact, it is more natural to deal with graph products
of groups. Given a graph � and a collection of groups G WD ¹Gu j u 2 V.�/º indexed by
its vertex-set V.�/, the graph product �G is

hGu .u 2 V.�// j ŒGu; Gv� D 1 .¹u; vº 2 E.�//i;

whereE.�/ denotes the edge-set of � and where ŒGu;Gv�D 1 is a shorthand for Œg;h�D 1
for all g 2 Gu, h 2 Gv . Usually, one says that graph products interpolate between free
products (when � has no edge) and direct sums (when � is a complete graph). For
instance, right-angled Artin groups coincide with graph products of infinite cyclic groups
and right-angled Coxeter groups coincide with graph products of cyclic groups of order
two. As shown in [17], the Cayley graph

QM.�;G / WD Cayl
�
�G ;

[
u2V.�/

Gu

�
is a median graph. We denote by �.�; G / its crossing graph. This is the natural general-
isation of extension graphs for right-angled Artin groups. Algebraically, it can be defined
as the graph whose vertices are the conjugates of vertex-groups and whose edges connect
two subgroups whenever they commute (in the sense that every element of one subgroup
commutes with every element of the other).

As an application of our general study of crossing graphs in quasi-median graphs, we
get the following statement.

Theorem 1.4. Let � be a finite connected graph and G a collection of groups indexed by
V.�/. The following statements hold.
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• For every g 2 �G , the translation length of g in �.�;G / is rational.

• Moreover, if � has no induced 4-cycle, then this rational number can be written with
a denominator �jV.�/j40�clique.�/.

• If the groups in G have solvable word problems, then there exists an algorithm that
computes, given a g 2 �G , the translation length of g in �.�;G /.

Theorem 1.4 improves the main result of [4] in several ways. First, it does not only
apply to right-angled Artin groups but to arbitrary graph products, including for instance
right-angled Coxeter groups. Next, even when restricted to right-angled Artin groups,
Theorem 1.4 weakens the conditions required to control the denominators of the rational
translation lengths: We replace the condition of having girth�6 with the condition of hav-
ing no induced 4-cycle. Finally, the (explicit) algorithm we describe offers the possibility
to investigate computably the structure of translation spectra of right-angled Artin groups
acting on their extension graphs, which remains poorly understood. For instance, we do
not if such a spectrum can contain a value less than 2, or when only integer values are
taken.

However, it is worth mentioning that the upper bound given by the second item of The-
orem 1.4 is far from being optimal in general (which is not surprising since it is obtained
from an argument applying to arbitrary quasi-median graphs). For instance, it is proved
in [4] that the upper bound for a right-angled Artin group defined by a graph � of girth
�6 can be taken as the maximal degree of a vertex in � , which is optimal in some cases.
This upper bound can be reproved geometrically in our framework, but the global picture
remains unclear.

2. Quasi-median geometry

2.1. Generalities

There exist several equivalent definitions of quasi-median graphs; see, for instance, [5]. As
mentioned in the introduction, quasi-median graphs can be defined as retracts of Hamming
graphs (i.e., products of complete graphs). However, this definition, despite being concep-
tually simple, is difficult to use in practice. Below is the definition used in [17]. It sounds
more technical, but it is easier to use in practice.

K�4 K3;2
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Recall that the graph K3;2 is the bipartite complete graph, corresponding to two
squares glued along two adjacent edges, and K�4 is the complete graph on four vertices
minus an edge, corresponding to two triangles glued along an edge.

Definition 2.1. A connected graph X is quasi-median if it does not contain K�4 and K3;2
as induced subgraphs, and if it satisfies the following two conditions:

(Triangle condition) For every vertex a; x; y 2 X , if x and y are adjacent and if
d.a; x/ D d.a; y/, then there exists a vertex z 2 X which is adjacent to both x and y
and which satisfies d.a; z/ D d.a; x/ � 1;

(Quadrangle condition) For every vertex a;x;y; z 2X , if z is adjacent to both x and y
and if d.a; x/ D d.a; y/ D d.a; z/ � 1, then there exists a vertex w 2 X which is
adjacent to both x and y and which satisfies d.a;w/ D d.a; z/ � 2.

The triangle and quadrangle conditions are illustrated by Figure 1.
Recall that a clique is a maximal complete subgraph. According to [5], cliques in

quasi-median graphs satisfy a strong convexity condition; namely, they are gated in the
following sense.

Definition 2.2. Let X be a graph and Y � X a subgraph. A vertex y 2 Y is a gate of an
other vertex x 2 X if, for every z 2 Y , there exists a geodesic between x and z passing
through y. If every vertex of X admits a gate in Y , then Y is gated.

The fact quasi-median graphs do not contain induced copy of K�4 implies that the
intersection between two distinct cliques is always either empty or reduced to a single
vertex; in particular, an edge belongs to a unique clique.

A prism is a subgraph which is a product of cliques. For instance, in the quasi-median
graph given by Figure 2, there are nine maximal prisms: one edge, five “squares” (i.e., 4-
cycles K22 ), one “3-cube” (i.e., a product K32 ), and two products K3 �K2. We emphasise
that, despite the fact that a square in our 3-cube also yields a prism (but no longer max-
imal), a 4-cycle K2 � K2 in one of our K3 � K2 cannot be a prism because it has a
factor that is not a clique. In the same way that median graphs can be naturally thought
of as made of cubes, quasi-median graphs can be thought of as made of prisms. In a
quasi-median graph, the maximal number of factors of a prism is referred to as its cubical
dimension.

a z

x

y

a
w

x

z

y

Figure 1. Triangle and quadrangle conditions.
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Figure 2. A quasi-median graph and some of its hyperplanes. The orange hyperplane is transverse
to the red and blue hyperplanes. The green and orange hyperplanes are tangent. The red and blue
hyperplanes are neither transverse nor tangent.

Hyperplanes. A fundamental tool in the study of quasi-median graphs is given by
hyperplanes.

Definition 2.3. Let X be a graph. A hyperplane J is an equivalence class of edges
with respect to the transitive closure of the relation saying that two edges are equival-
ent whenever they belong to a common triangle or are opposite sides of a square. We
denote by XnnJ the graph obtained from X by removing the interiors of all the edges
of J . A connected component of XnnJ is a sector. The carrier of J , denoted byN.J /, is
the subgraph generated by all the edges of J . Two hyperplanes J1 and J2 are transverse if
there exist two edges e1 � J1 and e2 � J2 spanning a 4-cycle in X , and they are tangent
if they are not transverse but N.J1/ \N.J2/ ¤ ;.

See Figure 2 for examples of hyperplanes in a quasi-median graph.
The key point is that the geometry of a quasi-median graph reduces to the combinat-

orics of its hyperplanes. This idea is motivated by the following statement.

Theorem 2.4 ([17]). Let X be a quasi-median graph.

(i) Every hyperplane J separates X , that is, XnnJ contains at least two connected
components.

(ii) Carriers and sectors are gated subgraphs.

(iii) A path in X is geodesic if and only if it crosses every hyperplane at most once,
that is, it contains at most once edge from each hyperplane.

(iv) The distance between two vertices coincides with the number of vertices separat-
ing them.

We emphasise that two vertices, and more generally two sets of vertices, are separated
by a hyperplane whenever they lie in two distinct sectors. In Section 2.2, we will introduce
a weaker notion of separation.
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Projections. As usual, a subgraph is convex if it contains every geodesic between any
two of its vertices. A gated subgraph Y , as defined above, is for instance convex. It is
worth noticing that the gate in Y of a vertex x, when it exists, is unique and minimises the
distance to x in Y . As a consequence, it may be referred to as the projection of x onto Y .
Because an intersection of gated subgraphs is gated, we can define the gated hull of a
subset as the intersection of all the gated subgraphs containing in.

Our next result, which can be found in [17, Lemma 2.34], describes how projections
and hyperplanes interact.

Proposition 2.5. Let X be a quasi-median graph, x 2 X a vertex, and Y � X a gated
subgraph. Every hyperplane separating x from its projection on Y separates x from Y .

Let us record the following consequence, which will be useful later.

Lemma 2.6. Let X be a quasi-median graph and Y; Z � X two gated subgraphs. For
every y 2 Y , projZ.y/ and projY .projZ.y// minimise the distance between Y and Z.
Moreover, a hyperplane separates these two vertices if and only if separates Y and Z.

Proof. Let p denote the projection of y on Z, and q the projection of p on Z. According
to Proposition 2.5, a hyperplane J separating p and q separates p from Y . A fortiori,
it separates y and p. Applying Proposition 2.5 again, it follows that J also separates y
from Z. Thus, every hyperplane separating p and q separates Y and Z. Conversely, every
hyperplane separating Y and Z has to separate p and q. Clearly, the distance between Y
and Z is bounded below by the number of hyperplanes separating them, so d.p; q/ must
be equal to d.Y;Z/.

Median triangles. Given a graph X and a triple of vertices .x1; x2; x3/, the triple
.a1; a2; a3/ is a median triangle if it satisfies

d.xi ; xj / D d.xi ; ai /C d.ai ; aj /C d.aj ; xj / for all i ¤ j

and if it minimises the quantity d.a1; a2/C d.a2; a3/C d.a1; a3/ under this condition.
In median graphs, median triangles coincide with median points.

Proposition 2.7. In a quasi-median graph, every triple of vertices admits one and only
one median triangle. Moreover, a hyperplane crossing this median triangle pairwise
separates its vertices, which implies that the gated hull of the median triangle is a prism.

See [17, Proposition 2.84 and Fact 2.90].

2.2. Convex subgraphs

Recall that a subgroup is convex if it contains all the geodesics between any two of its
vertices. Because an intersection of convex subgraphs is again convex, we can define the
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convex hull of a subset as the intersection of all the convex subgraphs containing it. The
convex hull of two vertices a and b is referred to as the interval between a and b, denoted
by I.a;b/. Alternatively, it is the union of all the geodesics connecting a and b. According
to [17, Corollary 2.107], the convex hull of a finite subset is always finite, so as a particular
case.

Lemma 2.8. In a quasi-median graph, the interval between two vertices is always finite.

In a quasi-median graph, a multisector is the subgraph induced by a union of sectors
delimited by a given hyperplane. For instance, the complement of a single sector, referred
to as a cosector, is a multisector. According to [17, Proposition 2.104], convex hulls can
be characterised in terms of multisectors.

Proposition 2.9. Let X be a quasi-median graph. The convex hull of a subset S � X
coincides with the intersection of all the multisectors containing S .

Corollary 2.10. LetX be a quasi-median graph and S �X a set of vertices. Every sector
intersecting the convex hull of S intersects S itself.

Proof. If a sector does not intersect S , then its complement contains the convex hull of S
according to Proposition 2.9, proving that our sector actually did not intersect the convex
hull of S .

It follows from Lemma 2.6 that, in a quasi-median graph, two disjoint gated subgraphs
are separated by at least one hyperplane, in the sense that the two subgraphs lie into two
distinct sectors. This is no longer true for convex subgraphs, but a weaker version of this
property still holds. One says that two subsets in a quasi-median graph are weakly sep-
arated by a hyperplane if they lie in two disjoint multisectors. Then the following holds
true.

Proposition 2.11. Let X be a quasi-median graph and A;B � X two convex subgraphs.
If A \ B D ; then there exists a hyperplane weakly separating A and B .

As a first observation towards the proof of the proposition, notice that, even though
gated subgraphs are known to satisfy the Helly property (see, for instance, [17, Pro-
positon 2.8]), it clearly fails for convex subgraphs. (For instance, the three edges of a
3-cycle pairwise intersect but they do not globally intersect.) Nevertheless, the following
holds true.

Lemma 2.12. Let X be a quasi-median graph, let Y � X be a convex subgraph, and let
Z1; : : : ; Zn � X be gated subgraphs. If Y;Z1; : : : ; Zn pairwise intersect, then their total
intersect is non-empty.
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Proof. It suffices to prove the lemma for n D 2, the general case following easily by
induction or by the Helly property for gated subgraphs. Fix three vertices a 2 Y \ Z1,
b 2 Y \ Z2, and c 2 Z1 \ Z2. Let .x; y; z/ be the median triangle of .a; b; c/. Because
Z1 is gated, we have a; x; y; z; c 2 Z1; because Z2 is gated, we have b; x; y; z; c 2 Z2;
and because Y is convex, we have a; x; z; c 2 Y . Thus, x; y 2 Y \Z1 \Z2 proving that
Y \Z1 \Z2 is non-empty.

Our next preliminary lemma is a weakened version of Proposition 2.5 satisfied by
convex subgraphs.

Lemma 2.13. Let X be a quasi-median graph, Y � X a convex subgraph, x 2 X a ver-
tex, andM � Y the set of the vertices of Y minimising the distance to x. For every z 2M ,
a hyperplane separating x from z either separates x from Y or crossesM . Moreover, any
two hyperplanes crossing M are transverse.

Proof. Let J be a hyperplane separating x from some z 2M . If J does not cross Y , there
is nothing to prove, so we assume that J does cross Y . Consequently, there exists some
y 2 Y such that J separates z and y. Let .a; b; c/ be the median triangle of .x; y; z/.
Because Y is convex, we have y; b; c; z 2 Y . Necessarily z D c. Because J separates
both z from y and z from x, necessarily J crosses the median triangle. A fortiori, it sep-
arates c D z and b. But d.x; b/ D d.x; c/ D d.x; Y /, so b belongs to M . We conclude
that J crosses M , as desired.

Let J andH be any two hyperplanes crossingM . Fix two vertices y; z 2M separated
by both J and H . Let .a; b; c/ be the median triangle of .x; y; z/. Because Y is convex,
we have y; b; c; z 2 Y . Necessarily, y D b and z D c. Thus, J and H cross the median
triangle, which implies that they must be transverse according to Proposition 2.7.

Proof of Proposition 2.11. If there exists a hyperplane (strongly) separatingA andB , then
there is nothing to prove, so we assume that no hyperplane (strongly) separates A and B .
Fix two vertices a 2 A and b 2 B minimising the distance between A and B , and let Z0
denote the gated hull of ¹a; bº. The hyperplanes crossing Z0 coincide with the hyper-
planes separating a and b, say J1; : : : ; Jn. For every 1 � i � n, assume that Ji delimits
some sector Zi that intersects both A and B .

Observe that Z1; : : : ; Zn pairwise intersect. Indeed, it follows from Lemma 2.13 that
a hyperplane separating a and b belongs to one of the following families:

• the hyperplanes separating a from B and crossing the set M of the vertices of A
minimising the distance to b;

• the hyperplanes separating b from A and crossing the set N of the vertices of B
minimising the distance to a;

• the hyperplanes crossing both M and N .

Thus, each Zi contains B and separates M , or contains A and separates N , or separates
both M and N . Any two sectors of the first two types intersect every sector of any type.
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And, because we also know from Lemma 2.13 that two hyperplanes crossing both M or
both N are transverse, it follows that two sectors of the third type also intersect.

We are now in good position to apply Lemma 2.12 and conclude that the intersec-
tions A \ Z0 \ Z1 \ � � � \ Zn and B \ Z0 \ Z1 \ � � � \ Zn are both non-empty. But,
because Z1; : : : ; Zn are sectors delimited by the hyperplanes J1; : : : ; Jn, which exhaust
all the hyperplanes of Z0, the intersection Z0 \ Z1 \ � � � \ Zn must be reduced to a
single vertex. This vertex must then belong to both A and B , contradicting the assumption
A \ B D ;.

Thus, we have proved that there exists a hyperplane separating a and b that weakly
separates A and B .

We conclude this subsection with a last easy observation, which we record for future
use.

Lemma 2.14. Let X be a quasi-median graph, Y � X a convex subgraph, and Z � X
a gated subgraph. If Y \ Z ¤ ;, then the projection on Z of a vertex in Y belongs to
Y \Z.

Proof. Fix two vertices y 2 Y and p 2 Y \ Z. Let z denote the projection of y on Z
and let .ab; c/ be the median triangle of .y; z; p/. Because z has to belong to I.y; p/,
necessarily z D a 2 I.y; p/ � Y .

2.3. Loxodromic isometries

As a consequence of [32], an isometry of a median graph, as soon as it has unbounded
orbits and has no power that is an inversion, admits an axis, that is, a bi-infinite geodesic
on which it acts as a translation. This section is dedicated to an analogous statement for
quasi-median graphs. In this broader context, an inversion is an isometry that stabilises a
hyperplane and permutes non-trivially its sectors.

Proposition 2.15. Let X be a quasi-median graph and g 2 Isom.X/ an isometry. If hgi
acts on X without inversions and with unbounded orbits, then g admits an axis in X .
More precisely, for every x 2 Min.g/ and for every geodesic Œx; gx� between x and gx,
the concatenation of the gk Œx; gx�, k 2 Z, defines an axis of g.

Here, Min.g/ WD ¹x 2 X j d.x; gx/ D min¹d.z; gz/ j z 2 Xºº is the minimising set
of g. An isometry admitting an axis is referred to as a loxodromic isometry. In fact, the
second assertion of our proposition follows from the first one according to our next general
observation.

Lemma 2.16. Let X be a graph and g 2 Isom.X/ an isometry. Assume that there exists
a bi-infinite geodesic 
 on which g acts as a translation of length `. Then d.x; gx/ � `
for every x 2 X . Moreover, if x 2 X is vertex satisfying d.x; gx/ D `, then x belongs to
an axis of g.
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Proof. Fix two vertices x 2 X and y 2 
 . Then, for every n � 1, we have

n` � 2d.x; y/ D d.y; gny/ � 2d.x; y/ � d.x; gnx/ � nd.x; gx/;

hence ` � 2d.x; y/=n � d.x; gx/. When n! C1, we find ` � d.x; gx/. This proves
the first assertion of our lemma.

Now, fix a vertex x 2 X satisfying d.x; gx/ D `. In order to show that x belongs to
an axis of g, we need to prove that the hgi-translates of x all lie on a common bi-infinite
geodesic. It suffices to show that d.x; gnx/ D

Pn�1
iD0 d.g

ix; giC1x/ for every n � 1.
Observe that

n` � d.x; gnx/ � nd.x; gx/ D n`;

where the first inequality is obtained by applying our previous assertion to gn. So

d.x; gnx/ D n` D

n�1X
iD0

d.gix; giC1x/;

as desired.

Our strategy to prove Proposition 2.15 differs from [32] (thus providing an alternative
proof of the main result of [32]). The idea is the following. Starting from an arbitrary
vertex x in our quasi-median graph X , the orbit hgi � x under our isometry g has to
stay at bounded distance from the axis we are looking for. Loosely speaking, hgi � x
coincides with this axis up to some noise we have to remove. In order to smoothen
the quasi-line hgi � x, we fix a large integer N � 1, define a reasonable centre ck of
¹gkCix j �N � k � N º for every k 2 Z, and show that the ck all lie on a common
bi-infinite geodesic.

Proof of Proposition 2.15. Given a vertex x 2X , the action of hgi on the gated hull of the
orbit hgix has only finitely many orbits of hyperplanes. Indeed, every hyperplane separat-
ing two vertices in the orbit hgix admits a hgi-translate separating x and d.x; gx/. Fix a
vertex x 2 x such that the action of hgi on the gated hull of hgix has the smallest possible
number of orbits of hyperplanes.

Claim 1. For every hyperplane J , the set ¹k 2 Z j J separates gkx and gkC1xº is finite.
Let J denote the set of the hyperplanes J separating gkx and gkC1x for infinitely

many k 2 Z.
First, observe that J is finite. Indeed, it is clear that J is hgi-invariant. And, because

every hyperplane in J has a hgi-translate separating x and gx while exactly d.x; hx/
hyperplanes separate x and gx, J contains only finitely many hgi-orbits and they all have
sizes �d.x; gx/.

Fix a hyperplane J 2 J and a sector S delimited by J . If the gkS , k 2 Z, pair-
wise intersect, then

T
k2Z g

kS yields a hgi-invariant gated subgraph not crossed by any
translate of J . This contradicts our choice of x. So there exists some h1 2 hgi such that
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h1S \ S D ;. Of course, h1J and J cannot be transverse, but they also have to be dis-
tinct because h1 is not an inversion. Let S 0 denote the sector delimited by J and containing
h1J . Because J is hgi-invariant and finite, we cannot have h1S 0 ¨ S 0, so h1S 0 must be
the sector delimited by h1J containing J . As before, if the gkS , k 2Z, pairwise intersect,
we get a contradiction; so there must exist some h2 2 hgi satisfying h2S 0 \ S 0 D ;. But
then h2S 0 � .S 0/c ¨ h1S

0, hence h�11 h2S
0 ¨ S 0. Again, this contradicts the fact that J is

finite.
Thus, the only possibility is that J is empty, concluding the proof of Claim 1.
From now on, we fix a geodesic Œx; gx� between x and gx, and we denote by


 the concatenation of the hgi-translates of Œx; gx�. We enumerate the edges of 
 as
: : : ; e�1; e0; e1; : : : such that ei and eiC1 have a common endpoint for every i 2Z. Claim 1
allows us to define, for every hyperplane J crossing hgix, the numbers

`.J / WD min¹k 2 Z j ek 2 J º and r.J / WD max¹k 2 Z j ek 2 J º:

In other words, `.J / (resp. r.J /) indicates the leftmost (resp. rightmost) part of hgix
crossed by J . Notice that `.gJ / D `.J /C 1 and r.gJ / D r.J /C 1. As a consequence,
the difference r.J / � `.J / depends only on the hgi-orbit of J . Because there are only
finitely many orbits of hyperplanes crossing hgix, we can fix an integerN � 1 larger than
any of these quantities.

We distinguish two types of hyperplanes crossing hgix. Such a hyperplane J is one-
sided if all the ek for k � `.J / and k � r.J / belong to the same sector delimited by J ,
which we denote by S.J /. Otherwise, J is two-sided and we denote byL.J / (resp.R.J /)
the sector delimited by J containing the ek for k � `.J / (resp. k � r.J /).

For every k 2 Z, set Bk WD
S
�N�i�N ekCi . Notice that gBk D BkC1. Given a k 2 Z,

we want to define a centre of Bk . For this purpose, given a hyperplane J , we define the
sector Sk.J / delimited by J as follows:

• if J is one-sided, Sk.J / WD S.J /;

• if J is two-sided and `.J / � k, Sk.J / WD L.J /;

• if J is two-sided and `.J / < k, Sk.J / WD R.J /.

Roughly speaking, Sk.J / represents the sector of J that contains the bigger part of Bk .

Claim 2. The intersection between the gated hull GH.Bk/ of Bk and the Sk.J / for J
crossing Bk is reduced to a single vertex, which we denote by ck .

It suffices to show that GH.Bk/ and the Sk.J / for J crossing Bk pairwise intersect.
Then the Helly property for gated subgraphs assures that the total intersection is non-
empty, and, because we are choosing one sector for each hyperplane crossing Bk , there
cannot be two vertices in the intersection.

If J1 is a one-sided hyperplane, then S.J1/ clearly intersects S.J2/ if J2 is another
one-sided hyperplane and both L.J2/ and R.J2/ if J2 is a two-sided hyperplane.
Moreover, if J1 and J2 are two two-sided hyperplanes, then R.J1/ \R.J2/ and L.J1/ \
L.J2/ are both non-empty. So, given two hyperplanes J1 and J2 crossing Bk , the only
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remaining possibility in order to have Sk.J1/ \ Sk.J2/ D ; is that J1; J2 are two non-
transverse two-sided hyperplanes with Sk.J1/ D L.J1/ and Sk.J2/ D R.J2/ (up to
switching J1 and J2). Necessarily, from Sk.J1/ \ Sk.J2/, it follows that `.J2/ < k �

`.J1/, and because J1 and J2 are not transverse, we know that r.J2/ < `.J1/. Therefore,
Sk.J1/ D L.J1/ and Sk.J2/ D R.J2/ actually intersect.

Next, if J is a one-sided hyperplane crossing Bk , then Bk cannot lie in the com-
plement of S.J / by definition of N , so Sk.J / \ GH.Bk/ ¤ ;. If J is two-sided with
L.J / \ GH.Bk/ D ;, then ¹ei j i � `.J /º \ Bk must be empty, which implies that
k � N > `.J /. We deduce that k > r.J /, gkx 2 R.J /, and Sk.J / D R.J /. Thus, ek
belongs to Sk.J / \ Bk , proving that Sk.J / and GH.Bk/ intersect. This concludes the
proof of Claim 2.

Notice that gck D ckC1 for every k 2 Z. We claim that the ck all belong to a common
bi-infinite geodesic. This proves that, fixing a geodesic Œc0; c1� between c0 and c1 D gc0,
the concatenation of the hgi-translates of Œc0; c1� defines an axis for g. In order to prove
our claim, it suffices to observe that ck belongs to S.J / for every k 2 Z if J is a one-
sided hyperplane, and, if J is two-sided, ck belongs to L.J / for k � `.J / and toR.J / for
k > `.J /. Therefore, no hyperplane can separate a ck from some ci and cj with i < k < j .

So far, we have proved the first assertion of Proposition 2.15. The second assertion
follows from Lemma 2.16.

2.4. Quasiconvex isometries

A loxodromic isometry is quasiconvex if it admits a quasiconvex axis. In order to quantify
this property, we introduce the two following quantities.

Definition 2.17. Let X be a quasi-median graph and 
 a bi-infinite geodesic. Define

• QC.
/ as the largest Hausdorff distance between two bi-infinite geodesics in the
convex hull of 
 .

• HQC.
/ as the maximal n � 0 for which there exist two transverse collections of
hyperplanes of size n crossing 
 .

Thus, 
 is quasiconvex if and only if the quantity QC.
/ is finite. The quantity
HQC.
/ is a more median-friendly version of QC.
/ which coarsely coincides with
QC.
/ if 
 is an axis according to Lemma 2.20. Our first observation is that HQC.�/
does not depend on a particular choice of an axis. Indeed, the following lemma holds true.

Lemma 2.18. Let X be a quasi-median graph and g 2 Isom.X/ a loxodromic isometry.
Any two axes of g cross exactly the same hyperplanes.

Proof. Let 
1; 
2 be two axes of g. First, we want to show that 
1 and 
2 fellow-travel in
the following sense.

Claim 3. There exist C;D � 0 such that, for every t1 2 Z, there exists some t2 2 Z such
that jt1 � t2j � C and d.
1.t1/; 
2.t2// � D.
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Fix two s1; s2 2Z. Set C WD kgk andD WD kgkC d.
1.s1/; 
2.s2//. For every t1 2Z,
there exists some r 2 Z such that d.
1.t1/; gr
1.s1// � kgk. Set t2 WD s1 C rkgk. The
latter inequality implies that

jt1 � t2j D d.
1.t1/; 
1.s1 C rkgk// � kgk D C:

Moreover, we have

d.
1.t1/; 
2.t2// � d.
1.t1/; 
1.s1 C rkgk//C d.
1.s1 C rkgk/; 
2.t2//

� d.
1.t1/; g
r
1.s1//C d.g

r
1.s1/; g
r
2.s2//

� kgk C d.
1.s1/; 
2.s2// D D;

which concludes the proof of Claim 3.
Now, let J be a hyperplane crossing 
1. If J does not cross 
2, then there exists some

k0 2 Z such that J separates 
1.k/ from 
2 for every k � k0. Given an s � 0 larger than
the Hausdorff distance between 
1 and 
2, which is finite as a consequence of Claim 3,
we deduce that J; gJ; : : : ; gsJ separate 
1.k C skgk/ from 
2 for every k � k0, which
is impossible. Thus, every hyperplane crossing 
1 has to cross 
2 as well. Symmetrically,
every hyperplane crossing 
2 has to cross 
1.

Thus, we can safely define the following.

Definition 2.19. LetX be a quasi-median graph and g 2 Isom.X/ a loxodromic isometry.
Define HQC.g/ as HQC.
/ for an arbitrary axis 
 of g.

We conclude this subsection by proving that HQC.g/ coarsely coincides with QC.
/

for any choice of an axis 
 of g.

Lemma 2.20. Let X be a quasi-median graph of finite cubical dimension and 
 an axis
of some isometry g 2 Isom.X/. The inequality

HQC.g/ � QC.
/ � 2 � HQC.g/

holds.

Proof. For short, set M WD HQC.g/. We begin by proving the following observation.

Claim 4. Let ˛; ˇ � QC.
/ be two bi-infinite geodesics. Assume that every hyperplane
crossing 
 also crosses ˇ. Then ˛ lies in the 2M -neighbourhood of ˇ.

Given two vertices p 2 ˛ and q 2 ˇ, fix two vertices q�; qC 2 ˇ such that all the
hyperplanes separating p and q (which must cross 
 , and a fortiori ˇ) cross ˇ between
q� and qC. Observe that p belongs to I.q�; qC/, because a hyperplane separating p from
¹q�; qCº would have to cross ˇ elsewhere than between q� and qC.
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q�

p0

qC
ˇ

W

V
p H

Let p0 denote the vertex of ˇ between q� and qC satisfying d.q�; p/ D d.qC; p0/.
Let H denote the set of the hyperplanes separating ¹p; q�º and ¹p0; qCº, and V the set of
the hyperplanes separating ¹q�; p0º and ¹p; qCº.

If W denotes the set of the hyperplanes separating q� from ¹p; p0; qCº, then

jW j C jH j D d.q�; p0/ D d.q�; p/ D jW j C jV j;

so H and V have the same size. Moreover, H and V are clearly transverse. Observe that
H [ V coincides with the set of the hyperplanes separating p and p0, hence

d.p; ˇ/ � d.p; p0/ D jH j C jV j � 2M:

Thus, we have proved that ˛ lies in the 2M -neighbourhood of ˇ. Claim 4 is proved.
If QC.
/ is infinite, then applying Claim 4 to ˇ D 
 and ˛ arbitrary shows that M

must be infinite as well. A fortiori, the inequality QC.
/ � 2M holds.
Now, assume that QC.
/ is finite, which amounts to saying that 
 is quasi-dense in its

convex hull CH.
/. Given a bi-infinite geodesic � in CH.
/, we know from Corollary 2.10
that every hyperplane crossing � also crosses 
 . It turns out that, because 
 is an axis, the
converse also holds, that is, every hyperplane crossing 
 also crosses �. Indeed, if there
exists some hyperplane J crossing 
 but not �, then J separates � from some infinite
subray 
0 � 
 . Up to replacing g with its inverse, we assume that g
0 � 
0. Because X
has finite cubical dimension, there exists some 1 � d � dim.X/ such that J and gdJ are
not transverse. Then, for every k � 1, the hyperplanes J; gdJ; : : : ; gkdJ separate � from
some infinite subray of 
0. Taking k larger than the Hausdorff distance between 
 and �
yields a contradiction. Thus, we have proved that every bi-infinite geodesic in CH.
/ is
crossed exactly by the hyperplanes crossing 
 .

Consequently, given two bi-infinite geodesics ˛; ˇ in CH.
/, we deduce by applying
Claim 4 twice that the Hausdorff distance between ˛ and ˇ is at most 2M . Therefore,
QC.
/ � 2M .

Finally, let H ; V be two finite transverse collections of hyperplanes of the same
size crossing 
 . Fix two vertices a; b 2 
 such that the hyperplanes in H [ V cross 

between a and b. For every J 2 H [ V , let J� (resp. JC) denote the sector delimited
by J containing a (resp. b). Fix two arbitrary vertices

p 2
\
J2H

J� \
\
J2V

JC DW A and q 2
\
J2H

JC \
\
J2V

J� DW B:

Let .x; y; z/ be the median triangle of .a; b; p/. We deduce from the convexity of sectors
that z belongs to A. For the same reason, we know that no hyperplane in H (resp. in V )
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can separate x and z (resp. y and z). But the hyperplanes separating x and z coincide
with the hyperplanes separating y and z according to Proposition 2.7, so no hyperplane in
H [ V can separate x and z, which implies that x 2 I.a; b/ \D. Thus, we have proved
that there exists a geodesic �0 between a and b passing through A. Let � denote the bi-
infinite geodesic obtained from 
 by replacing the subsegment between a and b with �0.
Similarly, there exists a geodesic �0 between a and b passing through B . Let � denote
the bi-infinite geodesic obtained from 
 by replacing the subsegment between a and b
with �0. The key observation is that a vertex in � \A is separated from a given vertex in �
either by all the hyperplanes in H or by all the hyperplanes in V , so the Hausdorff distance
between ˛ and ˇ must be at least jH j D jV j. Thus, we have proved that QC.
/ �M .

Remark 2.21. It can be proved that, given a loxodromic isometry g of a quasi-median
graph X , the quantity QC.
/ does not depend on the axis 
 we choose. More precisely,
the convex hulls of any two axes turn out to be always isometric. However, this observation
will be useful in the sequel as HQC.g/ will be a quantity easier to compute.

3. Crossing and contact graphs

Recall that, given a quasi-median graphX , the crossing graph�X is the graph whose ver-
tices are the hyperplanes of X and whose edges connect two hyperplanes whenever they
are transverse, and the contact graph �X is the graph whose vertices are the hyperplanes
of X and whose edges connect two hyperplanes whenever they are in contact (i.e., when
their carriers intersect). In this section, we record basic properties of crossing and contact
graphs. These properties are well known for median graphs, and can be found in [19, 31];
crossing graphs of some specific quasi-median graphs are also studied in [17, 21]. The
arguments used in this section are straightforward adaptations.

3.1. Comparison of the two graphs

Even though crossing and contact graphs have similar definitions, there are a few funda-
mental differences. The first one is that the contact graph is always connected when the
crossing graph may be disconnected. However, the connectedness of the crossing graph
can be detected by the existence of cut-vertices. (For median graphs, this observation can
be found in [42].)

Lemma 3.1. The contact graph of a quasi-median graph is always connected.

Proof. Let X be a quasi-median graph and A; B two hyperplanes. Fix an arbitrary path
fromN.A/ toN.B/ and let J1; : : : ; Jn denote the hyperplanes successively crossed. Then
the hyperplanes A; J1; : : : ; Jn; B are successively in contact, producing a path from A

to B in the contact graph.
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Given a quasi-median graph X , its crossing graph�X is the graph whose vertices are
the hyperplanes of X and whose edges link two hyperplanes whenever they are trans-
verse. The crossing graph is not always connected, but we understand the default of
connectedness.

Lemma 3.2. Let X be a quasi-median graph. Its crossing graph is disconnected if and
only if there exists a cut-vertex in X .

Proof. Given a vertex x 2 X , define its clique-link as the graph whose vertices are the
cliques containing x and whose edges connect two vertices if the corresponding cliques
span a prism (or equivalently, if the hyperplanes containing the cliques are transverse). We
can use clique-links in order to characterise cut-vertices.

Claim 5. A vertex x 2 X is a cut-vertex if and only if its clique-link is disconnected.
First, assume that the clique-link of x is connected. Given two vertices a; b 2 X , fix a

path between a and b, say a geodesic Œa; b�. If x does not belong to Œa; b�, then x does not
separate a and b. Otherwise, let e1; : : : ; en be a sequence of edges having x as an endpoint
such that the cliques containing e1; : : : ; en defines a path in the clique-link of x, such that
e1 is the first edge of Œa; b� that belongs to a clique containing x, and such that en is the
last edge of Œa; b� that belongs to a clique containing x. For every 1 � i � n� 1, the edges
ei and eiC1 span a 4-cycle, say ei [ eiC1 [ "iC1 [ "i . Then "1; : : : ; "n defines a path
connecting the endpoints of e1 and en distinct from x that does not pass through x. Thus,
replacing the subsegment of Œa; b� between e1 and en (including e1 and en themselves)
with "1 [ � � � [ "n produces a path between a and b that does not pass through x. This
proves that x is not a cut-vertex.

Conversely, assume that the clique-link of x is disconnected. Let "1; "2 be two edges
containing x that belong to two cliques lying in distinct connected components of the
clique-link of x. Let a1; a2 denote the endpoints of "1; "2 distinct from x. We claim that
a1 and a2 are separated by x. The key point is that any path between a1 and a2 can be
obtained from "1 [ "2 by some elementary operations. More precisely, given an oriented
path 
 in our graphX , which we decompose as a concatenation of oriented edges e1 � � �en,
one says that 
 0 is obtained from 
 by

• flipping a square, if there exists some 1 � i � n � 1 such that


 0 D e1 � � � ei�1 � a � b � eiC2 � � � en;

where ei ; eiC1; b; a define a 4-cycle in X ;

• shortening a triangle, if there exists some 1 � i � n � 1 such that


 0 D e1 � � � ei�1 � a � eiC2 � � � en;

where ei ; eiC1; a define a 3-cycle in X ;

• removing a backtrack, if there exists some 1 � i � n � 1 such that


 0 D e1 � � � ei�1 � eiC2 � � � en;
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where eiC1 is the inverse of ei .

Then, given two paths with the same endpoints, one can be obtained from the other by flip-
ping squares, shortening triangles, removing backtracks, and inverses of these operations.
(See, for instance, [23, Lemma 2.2].)

Now, given a path from a1 to a2, we colour its edges successively such that the colour
changes exactly when we pass through x from one clique to a second clique that lies in a
distinct connected component in the clique-link of x. The number of colours turns out to
be an invariant: Applying any of our elementary operations to a path does not modify the
number of colours. Because "1 [ "2 has two colours, it turns out that there cannot exist a
path from a1 to a2 that does not pass through x because such a path would have only one
colour. Thus, we have proved that x is a cut-vertex, concluding the proof of Claim 5.

We are finally ready to prove our lemma. If X has a cut-vertex x, then two hyper-
planes lying in distinct components of Xn¹xº cannot be transverse, so the crossing graph
is clearly not connected. Conversely, assume that X has no cut-vertex. Let A; B be two
hyperplanes. We fix an arbitrary path from N.A/ to N.B/, and we denote by J1; : : : ; Jn
the hyperplanes successively crossed. Observe that A; J1; : : : ; Jn; B are successively in
contact. But the fact that the clique-link of every vertex is connected, which follows from
Claim 5, implies that two hyperplanes in contact are connected by a path in the crossing
graph. Therefore, there exists path in �X connecting A and B . This proves that �X is
connected.

Even when a quasi-median graph has no cut-vertex, the crossing and contact graphs
may be quite different. In fact, according to [31, Proposition 2.19], given any graph, it is
possible to construct a median graph whose crossing graph is this particular graph. On
the other hand, the contact graph is always a quasi-tree [31]. Nevertheless, the following
holds true.

Proposition 3.3. Let X be a quasi-median graph. Assume that X has no cut-vertex and
that every vertex in X belongs to �N cliques for some fixed N . Then the canonical map
�X ! �X is a quasi-isometry.

The same statement for median graphs can be found in [19]. Our proposition follows
from Lemmas 3.9 and 3.10, but it will not be used in this paper.

3.2. Hyperbolicity

As already mentioned, the contact graph of a median graph is always a quasi-tree [31].
The same statement, using the same arguments, can be proved for quasi-median graphs.
However, this fact will not be necessary in the rest of the paper. Instead, we show that
crossing and contact graphs are hyperbolic and compute explicit hyperbolicity constants.
We start with the contact graph.
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Lemma 3.4. LetX be a quasi-median graph andA;B two hyperplanes. If d�X .A;B/�2,
then every vertex of every geodesic in �X between A and B lies at distance �2 from a
hyperplane separating A and B .

Proof. Let H1; : : : ; Hm be a maximal collection of pairwise non-transverse hyperplanes
separating A and B; for convenience, we setH0 WD A andHmC1 WD B . Up to re-indexing
our hyperplanes, we assume thatHi separatesHi�1 andHiC1 for every 1� i �m. Notice
thatm � 1 because d�X .A;B/ � 2. Fix a geodesic J1; : : : ; Jn from A to B in �X and an
index 1 � i � n. We claim that Ji lies at distance �2 from Hj for some 1 � j � m.

If Ji is in contact withHj for some 0 � j �mC 1, then there exists some 1 � k �m
such that d�X .Ji ; Hk/ � 2. From now on, we assume that Ji is not in contact with any
Hj . As a consequence, Ji lies between Hj and HjC1 for some 0 � j � m. Let r be the
first index ` < i such that J` is in contact with Hj and let s be the last index ` > i such
that J` is in contact with HjC1. We have

d�X .Jr ; Js/ � 2C d�X .Hj ;HjC1/ D 3:

Consequently, Jk lies at distance �3=2C 1 from Hj or HjC1.

Corollary 3.5. Let X be a quasi-median graph. Its contact graph �X is 3-hyperbolic.

Proof. Let A;B;C be three hyperplanes. Fix three geodesics ŒA;B�, ŒB;C �, ŒA;C � in �X
and a vertexH 2 ŒA;B�. If d�X .A;B/� 1, thenH lies in ŒB;C �[ ŒA;C �. Otherwise, we
know from Lemma 3.4 that d�X .H; J / � 2 for some hyperplane J separating A and B .
If J is transverse to C , then A lies at distance�3 from ŒB;C �[ ŒA;C �. Otherwise, J sep-
arates B and C or A and C (not exclusively). Necessarily, there exists some hyperplane in
ŒB; C � or ŒA; C � equal or transverse to J , so H lies at distance �3 from ŒB; C � [ ŒA; C �.
Thus, we have proved that ŒA; B� lies in the 3-neighbourhood of ŒB; C � [ ŒA; C �.

Next, we turn to the crossing graph. Recall that, in full generality, the crossing graph
may be any graph, and in particular it may not be hyperbolic. Nevertheless, it becomes
hyperbolic (and in fact a quasi-tree) under the good assumptions.

Lemma 3.6. Let X be a quasi-median graph and A; B two hyperplanes. Assume that
every X has no cut-vertex and that every vertex belongs to at most N cliques. If
d�X .A; B/ � N , then every vertex of every geodesic in �X between A and B lies at
distance �2CN=2 from a hyperplane separating A and B .

Proof. Let H1; : : : ; Hm be a maximal collection of pairwise non-transverse hyperplanes
separating A and B; for convenience, we setH0 WD A andHmC1 WD B . Up to re-indexing
our hyperplanes, we assume thatHi separatesHi�1 andHiC1 for every 1� i �m. Notice
that m � 1 because d�X .A;B/ � N . (Indeed, two hyperplanes in contact lies at distance
�N in �X .) Fix a geodesic J1; : : : ; Jn from A to B in �X and an index 1 � i � n. We
claim that Ji lies at distance �2 from Hj for some 1 � j � m.
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If Ji is equal or transverse to Hj for some 0 � j � m C 1, then there exists some
1 � k � m such that d�X .Ji ; Hk/ � 2. From now on, we assume that Ji is distinct and
not transverse to any Hj . As a consequence, Ji lies between Hj and HjC1 for some
0 � j � m. Let r be the first index ` < i such that J` is transverse to Hj and let s be the
last index ` > i such that J` is transverse to HjC1. We have

d�X .Jr ; Js/ � 2C d�X .Hj ;HjC1/ � 2CN:

Consequently, Jk lies at distance �.2CN/=2C 1 from Hj or HjC1.

Corollary 3.7. Let X be a quasi-median graph. Assume that every X has no cut-
vertex and that every vertex belongs to at most N cliques. The crossing graph �X is
.3CN=2/-hyperbolic.

Proof. LetA;B;C be three hyperplanes. Fix three geodesics ŒA;B�, ŒB;C �, ŒA;C � in�X
and a vertexH 2 ŒA;B�. If d�X .A;B/ <N , thenH lies in the .N � 1/=2-neighbourhood
of ŒB;C �[ ŒA;C �. Otherwise, we know from Lemma 3.6 that d�X .H; J / � 2CN=2 for
some hyperplane J separating A and B . If J is transverse to C , then A lies at distance
�3CN=2 from ŒB;C �[ ŒA;C �. Otherwise, J separatesB and C orA and C (not exclus-
ively). Necessarily, there exists some hyperplane in ŒB; C � or ŒA; C � equal or transverse
to J , so H lies at distance �3C N=2 from ŒB; C � [ ŒA; C �. Thus, we have proved that
ŒA; B� lies in the .3CN=2/-neighbourhood of ŒB; C � [ ŒA; C �.

3.3. Strongly contracting isometries

Finally, we turn to the question of when a given isometry of a quasi-median graph induces
an isometry with unbounded orbits in the corresponding crossing or contact graph. We
refer to these isometries as strongly contracting.

Proposition 3.8. LetX be a quasi-median graph and g 2 Isom.X/ an isometry admitting
an axis 
 . Let �X denote the crossing or contact graph of X . In the former case, assume
that X has no cut-vertex and that every vertex belongs to �N cliques. The following
assertions are equivalent.

• g has unbounded orbits in �X .

• g is a loxodromic isometry of �X .

• There exist a power r � 1 and a hyperplane J crossing 
 such that ¹grkJ j k 2 Zº is
a collection of pairwise strongly separated hyperplanes.

When these conditions are satisfied, we say that g is strongly separated.

Recall that two hyperplanes are strongly separated if no hyperplane can be transverse
to both of them. Given two hyperplanes A and B , we denote by ss.A; B/ the maximal
number of pairwise strongly separated hyperplanes separating A and B .

Our proposition will be a straightforward consequence of the following estimates of
distances in crossing and contact graphs.
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Lemma 3.9. Let X be a quasi-median graph. The inequalities

ss.A;B/ � d�X .A;B/ � 3.1C ss.A;B//

hold for all hyperplanes A;B .

Lemma 3.10. LetX be a quasi-median graph with no cut-vertex and all of whose vertices
belong to �N cliques. The inequalities

ss.A;B/ � d�X .A;B/ � .2CN/.1C ss.A;B//

hold for all hyperplanes A;B .

Proof of Lemmas 3.9 and 3.10. Let J1; : : : ; Jn be a maximal collection of pairwise
strongly separated hyperplanes separating A and B . For convenience, set J0 WD A and
JnC1 WD B . Given an 0 � i � n, observe that the last hyperplane in a maximal collec-
tion of pairwise non-transverse hyperplanes separating Ji from JiC1 cannot be strongly
separated together with Ji (by maximality of our collection J1; : : : ; Jn), and it must be
in contact with JiC1. Hence, d�X .Ji ; JiC1/ � 2C 1 D 3 and d�X .Ji ; JiC1/ � 2C N .
Therefore,

d�X .A;B/ �

nX
iD0

d�X .Ji ; JiC1/ � 3.nC 1/ D 3.1C ss.A;B//

and

d�X .A;B/ �

nX
iD0

d�X .Ji ; JiC1/ � .2CN/.nC 1/ D .2CN/.1C ss.A;B//:

Next, let H1; : : : ; Hm be a geodesic in �X (D �X or �X ) between A and B . For every
1 � i � n, there must exist some 1 � j � m such that Hj is equal or transverse to Ji .
Because the Ji are pairwise strongly separated, an Hj cannot appear twice, hence m � n.
We conclude that d�X .A;B/ � ss.A;B/.

Proof of Proposition 3.8. Let J be a hyperplane crossing 
 . If g has unbounded orbits,
then there exists some r � 1 such that d�X .J; grJ / � 3. Necessarily, J and grJ are
strongly separated, which implies that ¹grkJ j k 2 Zº is a collection of pairwise strongly
separated hyperplanes. We deduce easily from Lemmas 3.9 and 3.10 that k 7! grkJ

defines a quasi-isometric embedding Z!�X , so g is loxodromic in�X . Of course, this
implies that g has unbounded orbits in �X , concluding the proof of our proposition.

4. Axes and rational translation lengths

4.1. General case

We are now ready to prove the first main theorem of this article, namely that isomet-
ries of quasi-median graphs induce isometries of the crossing / contact graph with rational
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(asymptotic) translation lengths. Our next statement proves Theorem 1.1 and Corollary 1.2
from the introduction.

Theorem 4.1. Let X be a quasi-median graph, and let �X be either the crossing graph
or the contact graph ofX . In the latter case, we assume thatX has no cut-vertices, and, in
any case, we assume that a vertex of X always belongs to �N cliques. For every isometry
g 2 Isom.X/ with unbounded orbits in �X , there exists a positive k � N 2QC.g/C3 such
that gk admits an axis in�X . Moreover, there exists such an axis containing a hyperplane
in contact with B.o; 2QC.
/C 1/\ CH.
/ where o is an arbitrary vertex of an arbitrary
axis 
 of g in X .

Our proof is based on the next criterion, which essentially originates from [14] and
which can be extracted from [4]. It is also an immediate consequence of the criterion
given by Theorem A.2 which we record in the appendix.

Proposition 4.2. Let Y be a graph and g 2 Isom.Y / an isometry. Assume that there exists
an isometrically embedded subgraph A� Y on which hgi acts geometrically. Then g cyc-
lically permutes �width.A/ pairwise disjoint geodesics in A. Consequently, there exists
some k � width.A/ such that gk has an axis in Y and the translation length of g is a
rational number with k as a denominator.

Here, the width of a two-ended graph refers to the minimal size of a set of vertices
separating the two ends of the graph.

Proof of Theorem 4.1. According to Proposition 2.15, g admits an axis 
 in X .

Claim 6. The convex hull CH.
/ of 
 is locally finite and hgi acts cocompactly on it.
Assume for contradiction that CH.
/ is not locally finite, that is, there exists a ver-

tex x 2 CH.
/ with infinitely many neighbours in CH.
/. As a consequence, since every
vertex in X belongs to only finitely many cliques, we can find two distinct neighbours
y; z 2 CH.
/ of x such that x; y; z all belong to a common clique C . Let J denote
the hyperplane containing C . Because x; y; z belong to three pairwise distinct sectors
delimited by J , it follows from Corollary 2.10 that 
 intersects these sectors, which is
impossible since we know from Theorem 2.4 that 
 cannot intersect J twice. Thus, we
have proved that CH.
/ is locally finite.

In order to prove that hgi acts cocompactly on CH.
/, it suffices to show that CH.
/
lies in a neighbourhood of 
 . So we fix a vertex x 2 CH.
/. According to Proposition 3.8,
there exist a power r � 1 and a hyperplane J crossing 
 such that ¹grkJ j k 2 Zº is a
collection of pairwise strongly separated hyperplanes. Up to translating J with a power
of g, we assume that x lies between J and grJ . Let y 2 
 be an arbitrary vertex lying
between J and grJ . Observe that, as a consequence of Corollary 2.10, every hyperplane
separating x and y must cross 
 . On the other hand, a hyperplane crossing 
 before g�rJ
(resp. after g2rJ ) cannot separate x and y since otherwise it would be transverse to g�1J
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and J (resp. to grJ and g2rJ ). Consequently, all the hyperplanes separating x and y
must cross 
 between g�rJ and g2rJ . It follows from Theorem 2.4 that d.x; y/ � 3rkgk
where kgk denotes the translation length of g along 
 . We conclude that CH.
/ lies in the
3rkgk-neighbourhood of 
 , as desired. The proof of Claim 6 is complete.

Let A.g/ denote the subgraph of �X induced by all the hyperplanes of X in contact
with CH.
/ (i.e., whose carriers intersect CH.
/).

Claim 7. The action hgiÕ A.g/ is cocompact.
It follows from the assumption that every vertex in X belongs to only finitely many

cliques and from Claim 6 that hgi acts on A.g/ with only finitely many orbits of vertices.
In order to show that there are only finitely many orbits of edges too, it is sufficient to
observe that A.g/, as a subgraph of the crossing graph, is locally finite. So fix a hyper-
plane H in A.g/, that is, tangent to CH.
/. According to Proposition 3.8, there exist a
power r � 1 and a hyperplane J crossing 
 such that ¹grkJ j k 2 Zº is a collection
of pairwise strongly separated hyperplanes. Up to translating J by a power of g, we
assume that H lies between J and g2rJ . Clearly, a hyperplane in contact with H must
lie between g�rJ and g3rJ . Therefore, the neighbours of H in A.g/ are hyperplanes in
contact with the (finite) piece of CH.
/ lying between g�rJ and g3rJ , which yields the
desired conclusion. The proof of Claim 7 is complete.

Claim 8. A.g/ is isometrically embedded in �X .
Let M;N 2 A.g/ be two hyperplanes. Fix an arbitrary geodesic J1; : : : ; Jk from M

to N in �X and define its complexity as d.N.J1/;CH.
//C � � � C d.N.Jk/;CH.
//. If
the complexity is zero, then our geodesic lies in A.g/ and there is nothing to prove. From
now on, we assume that the complexity is not zero, that is, there exists some 2� i � k � 1
such that N.Ji / and CH.
/ are disjoint. According to Proposition 2.11, there exists a
hyperplane J weakly separating N.Ji / and CH.
/. Necessarily, there exist 1 � a � i � 1
and i C 1 � b � k such that J is transverse to Ja and Jb . Observe that b � a � 2 since
otherwise it would be possible to shorten our geodesic by replacing Ja;JaC1; : : : ;Jb�1;Jb
with Ja; J; Jb . In other words, J is transverse to Ji�1 and JiC1. By replacing Ji with J ,
we obtain a new path from M to N that is a geodesic, since the length remains the
same, and whose complexity is smaller, since d.CH.
/; N.J // < d.CH.
/; N.Ji //. By
iterating, we eventually get a geodesic lying in A.g/, concluding the proof of Claim 8.

Claim 9. Fix a finite set of vertices S � CH.
/ separating the ends of CH.
/ and let CS
denote the set of the hyperplanes in contact with S . Then CS separates the ends of A.g/.

Let A; B be two hyperplanes such that the intersections between their carriers and
CH.
/ are non-empty and separated by S . Let J1; : : : ; Jn be a path in �X from A to B
all of whose hyperplanes are in contact with CH.
/. If one of the Ji is in contact with S ,
we are done. Otherwise, each Ji can be labelled by the component of CH.
/nS con-
taining N.Ji / \ CH.
/. Because A D J1 and B D Jn have different labels, there must
exist some 1 � i � n � 1 such that Ji and Ji�1 have different labels. Fix three vertices
a 2 N.Ji / \ CH.
/, b 2 N.JiC1/ \ CH.
/, and c 2 N.Ji / \N.JiC1/. Let .x; y; z/ be
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the median triangle of .a; b; c/. Because N.Ji / is gated, a; x; z; c; b all belong to N.Ji /.
Similarly, b; y; z; c; a all belong to N.JiC1/. Thus, there exists a geodesic from a to b
passing through x and y lying in .N.Ji / [N.JiC1// \ CH.
/. Because a and b are sep-
arated by S , it follows that either Ji or JiC1 is in contact with S . This concludes the proof
of Claim 9.

So far, we know that A.g/ is isometrically embedded in�X and that hgi acts on A.g/
freely and cocompactly. It remains to find an upper bound on width.A.g//. As a con-
sequence of Claim 10, fixing an arbitrary vertex o 2 
 , the set S WD B.o; 2QC.
/C 1/ \
CH.
/ separates the ends of CH.
/. Then, Claim 9 implies that CS separates the ends
of A.g/. We claim that jCS j � N 2QC.
/C3. This will imply the first assertion of our the-
orem according to Proposition 4.2. Also, an axis for a power of g in A.g/ will necessarily
intersect CS , which proves the second assertion of our theorem.

In order to estimate the size of CS , we first estimate the size of S . Notice that
every clique of X intersects S along at most one edge. Indeed, if S contains a 3-cycle,
then we can find a hyperplane J delimiting three sectors intersecting S , and a fortiori
CH.
/. According to Corollary 2.10, this implies that 
 intersects three sectors delimited
by J , which is impossible since 
 is a geodesic (Theorem 2.4). Since every vertex of X
belongs to at most N cliques, we deduce that every vertex of S has degree �N . Hence,
jS j �N 2QC.
/C1. Since a hyperplane in contact with S contains an edge with an endpoint
in S , and again because every vertex of X belongs to at most N cliques, we conclude that
jCS j � N 2QC.
/C3, as desired.

Claim 10. Let Y be a graph, Z � Y an isometrically embedded subgraph, and � � Z
a bi-infinite geodesic. Assume that the Hausdorff distance D between � and Z is finite.
Given a vertex o 2 �, the ball B.o; 2D C 1/ \Z separates the ends of Z.

Let p; q 2 Z be two vertices separated by a large ball centred at o. Fix a geodesic �
from p to q. Every vertex of � lies at distance �D from a vertex of �. If such a vertex lies
in the same component �` (resp. �r ) of �nB.o;D C 1/ as p (resp. q), we say that it is a
left (resp. right) vertex. Let a 2 � denote the last left vertex along � and let b denote the
first right vertex following a. If x 2 �` (resp. y 2 �r ) is vertex of � at distance �D from a

(resp. b), then

2.D C 1/ � d.x; y/ � d.x; a/C d.a; b/C d.b; y/ � d.a; b/C 2D;

hence d.a; b/ � 2. Consequently, there exists some vertex c 2 � between a and b. By
construction, c is neither left nor right, so there exists some z 2 � \B.o;DC 1/ such that
d.c; z/ � D. Then

d.c; o/ � d.c; z/C d.z; o/ � D CD C 1 D 2D C 1;

proving that � intersects B.o; 2D C 1/, as desired.
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4.2. Hyperbolic case

Given an isometry g of some quasi-median graph X , the upper bound given by The-
orem 4.1 depends only on the local structure of X and the quasiconvexity constant QC.g/
of g. In full generality, the quantity QC.g/ can take arbitrarily large finite values. But
there is a worth mentioning situation where the quasiconvexity constants are uniformly
bounded: in hyperbolic graphs. Indeed, if X is ı-hyperbolic, then the Hausdorff distance
between any two bi-infinite geodesics having the same endpoints at infinity is at most
8ı (see, for instance, [13, Proposition 2.2.2]), hence QC.g/ � 8ı for every loxodromic
isometry g 2 Isom.X/. Thus, Theorem 4.1 immediately implies the following.

Corollary 4.3. Let X be a ı-hyperbolic quasi-median graph, and let �X be either the
crossing graph or the contact graph ofX . In the latter case, we assume thatX has no cut-
vertices, and, in any case, we assume that a vertex of X always belongs to �N cliques.
For every isometry g 2 Isom.X/ with unbounded orbits in �X , there exists a positive
k � N 16ıC3 such that gk admits an axis in�X . As a consequence, the translation length
of g in �X is a rational with a denominator �N 16ıC3.

4.3. Some examples

In this section, we describe examples where isometries of (quasi-)median graphs can have
arbitrarily small translation lengths in the corresponding crossing graphs, thus contrasting
with Corollary 4.3.

Fix an n � 1 and let Xn denote the median graph given by the subgraph in Z2 delim-
ited by a regular staircase and its translate under .0; n/. There is an obvious isometry
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g 2 Isom.Xn/ of translation length 2. The figure on the left represents X3. If J denotes a
vertical hyperplane in Xn, then J belongs to an axis of gn in the crossing graph �Xn on
which gn acts as a translation of length 2. Consequently, g has translation length 2=n in
�Xn.

From this example, we can artificially create a median graph admitting isometries
with arbitrarily small but positive translation lengths in the crossing graph. For instance,
for every n � 1 let Zn be an infinite cyclic group. The free product G WD Z1 � Z2 � � � �
acts on its Bass–Serre tree T . We can blow up each vertex of T stabilised by a conjugate
of Zn and replace it with a copy of Xn on which Zn acts. Then G acts on the median
graph X thus obtained, and, for every n � 1, a generator of Zn acts on the crossing graph
of X with a translation length equal to 2=n.

More interestingly, the example constructed in [49] produces a group acting properly
and cocompactly on a median graph and containing elements with arbitrarily small trans-
lation length in the crossing graph. This observation is a straightforward consequence of
the arguments in [49]. We describe the construction for the reader’s convenience.

Let H be a group acting properly and cocompactly on a median graph Y . We assume
that there exist elements g 2 H and h1; h2; : : : 2 H such that:

• g admits a convex axis 
 ;

• for every n � 1, the projection of hn
 on 
 has finite length `n � n.

Such examples can be found, for instance, in uniform lattices of products of trees. Given
an n � 1, up to conjugating hn with a power of g, we can assume that kn � proj
 .hn
/
intersects projhn
 .
/ along a proper subsegment of length sn > `n � kgk.

Consider the HNN extension G WD hH; t j tgt�1 D ti acting on the median graph X
obtained from the tree of spaces modelled on the Bass–Serre tree whose vertex-spaces are
copies of Y and whose edge-spaces are copies of 
 � Œ0; 1�. For every n� 1, set kn WD thn.
The configuration to keep in mind is illustrated by Figure 3.

Set r WD
�

`n
`n�sn

˘
. One easily checks that the equality d�X .J; krnJ /D 2 holds and that

the hyperplanes k�rn J; J; krnJ; k
2r
n J; : : : all lie on a bi-infinite geodesic in �X . We have

r D
j `n

`n � sn

k
>
j n

kgk

k
; hence kknk�X D

2

r
�
2kgk

n
:

Thus, the element kn of G has smaller and smaller translation length in �X as n goes to
infinity.

5. Constructible quasi-median graphs

In this section, our goal is to show that translation lengths in crossing and contact graphs
are algorithmically computable. Of course, quasi-median graphs and isometries have to be
given algorithmically in some sense. In order to clarify such an assumption, we introduce
constructible quasi-median graphs and computable isometries.
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 � Y

J


 � knY

hn
 � knY

knJ

hn
 � k
2
nY

h2n
 � k
2
nY

k2nJ

h2n
 � k
3
nY

h3n
 � k
3
nY

k3nJ

h3n
 � k
4
nY

h4n
 � k
4
nY

k4nJ

Figure 3. The isometry kn has a small translation length in the crossing graph.

Definition 5.1. Let X be a quasi-median graph.

• X is geodesically constructible if there exists an algorithm that determines, given two
vertices x; y 2 X , the interval I.x; y/.

• X is locally constructible if there exists an algorithm that yields, given a vertex x 2X ,
a set of neighbours N .x/ such that every clique containing x intersects N .x/ along
exactly one vertex.

A quasi-median graph is constructible if it is geodesically and locally constructible.

It could be tempted to define a graphX as being metrically constructible if there exists
an algorithm that constructs, given a vertex x and an integerR� 0, the ballB.x;R/. How-
ever, despite the fact that metrically constructible are constructible, this notion only deals
with locally finite graphs: Since an algorithm has to stop after a finite amount of time,
its output must contain only a finite amount of data. Because we are also interested in
quasi-median graphs that are not locally finite (e.g., quasi-median graphs associated with
right-angled Artin groups), metrically constructible graphs are not relevant for us. Never-
theless, our quasi-median graphs do satisfy some weak property of local finiteness: Every
vertex belongs to only finitely many cliques. This is the property exploited by our defini-
tion of locally constructible quasi-median graphs. It is worth noticing, however, that being
constructible and being metrically constructible coincide for median graphs since their
cliques are edges.

Definition 5.2. Let X be a graph. An isometry g 2 Isom.X/ is computable if there exists
an algorithm that determines, given a vertex x 2 X , the translate g � x.
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As a justification that our definition is well founded, let us mention that, given a
compact locally quasi-median prism complex Q as defined in [17] (e.g., a compact non-
positively curved cube complex), the one-skeleton X of the universal cover of Q is
a constructible quasi-median graph and every g 2 �1.Q/ induces on X a computable
isometry. This observation, which will not be used in our article, essentially follows
from [17, Lemma 2.2] (already used during the proof of Lemma 3.2), which shows that
any two homotopic paths in the one-skeleton of Q can be transformed into each other by
a sequence of elementary transformations.

5.1. Basic algorithmic problems

In this section, we record a few elementary problems in constructible quasi-median graphs
that can be solved algorithmically. These statements will be frequently used in the next
sections.

Lemma 5.3. Let X be a geodesically constructible quasi-median graph. There exists an
algorithm that determines, given a vertex x 2 X and an edge e � X , the projection of x
on the clique containing e.

Proof. Let C denote the clique containing e and p; q the endpoints of e. The projection
of x on C is the unique vertex in I.x; p/ \ I.x; q/ \ C . By assumption, I.x; p/ and
I.x; q/ are algorithmically constructible. And a vertex belongs to C if and only if it lies
at distance �1 from both p and q.

Corollary 5.4. LetX be a geodesically constructible quasi-median graph. There exists an
algorithm that determines whether two given edges in X belong to the same hyperplane.

Proof. Let e; e0 � X be two edges. As a consequence of Proposition 2.5, e belongs to the
same hyperplane as e0 if and only if the endpoints of e have distinct projections on the
clique containing e0. Thus, our corollary follows from Lemma 5.3.

Lemma 5.5. Let X be a geodesically constructible quasi-median graph. There exists an
algorithm that determines, given two edges e; e0 � X , whether or not the hyperplanes
containing e and e0 are transverse.

Proof. The key observation is that J and J 0 are transverse if and only if there exists
a geodesic between two endpoints of e and e0 with two consecutive edges spanning a
4-cyclic and belonging to J and J 0.

Indeed, let p and p0 be two endpoints of e and e0 that are separated by both J and J 0.
Fix a geodesic 
0 from p to p0 and let "; "0 � 
0 denote the two edges in J;J 0. If J and J 0

are transverse, then every hyperplane crossing 
0 between " and "0 are transverse to J or
J 0. If " and "0 are adjacent, we are done. Otherwise, let � � 
0 denote the closest edge
from " that lies between " and "0 and whose hyperplane J.�/ is transverse to J . If " and �
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are not adjacent, then the hyperplane containing the edge �0 between " and � adjacent to
� must be transverse to J.�/, so � and �0 span a 4-cycle and we can modify 
0 by flipping
this 4-cycle in order to decrease the distance between � and ". Thus, up to modifying the
geodesic 
0, we can assume that " and � are adjacent. Necessarily, these two edges span a
4-cycle, because their hyperplanes are transverse, and we can again modify 
0 by flipping
this 4-cycle in order to decrease the distance between " and "0. After a few iterations, we
get a geodesic with " and "0 adjacent, providing the desired geodesic. The converse of our
claim is clear.

Because geodesics are constructible, that spanning a 4-cycle is algorithmically decid-
able as a particular, and that belonging to a given hyperplane is algorithmically decidable
according to Corollary 5.4, our lemma follows from the characterisation just proved.

Lemma 5.6. LetX be a constructible quasi-median graph. There exists an algorithm that
decides, given a vertex x 2 X and an edge e � X , whether or not x belongs to the carrier
of the hyperplane containing e.

Proof. Because X is locally constructible, we get algorithmically a collection of edges
e1; : : : ; en containing x such that every hyperplane containing x in its carrier contains one
of the ei . So just need to check whether e belongs to the same hyperplane as one of the ei ,
which is possible algorithmically according to Corollary 5.4.

Lemma 5.7. LetX be a constructible quasi-median graph. There exists an algorithm that
gives, given two edges e; e0 � X , two vertices x; x0 2 X minimising the distance between
the carriers of the hyperplanes containing e; e0.

Proof. Let N and N 0 denote the carriers of the hyperplanes containing e and e0. Fix two
endpoints p and p0 of e and e0. Let q denote the projection of p on N 0 and q0 the pro-
jection of q on N . We know that q belongs to I.p; p0/ and that q0 belongs to I.q; p/, so
there exists a geodesic between p and p0 passing through q and q0. But it follows from
Lemma 2.6 that p and p0 are two vertices minimising the distance between N and N 0.

Therefore, in order to get two vertices minimising the distance between N and N 0, it
suffices, for every geodesic 
 between p and p0, to find the last vertex a
 in 
 belonging
to N and the first vertex a0
 in N 0 (algorithmically thanks to Lemma 5.6), and to choose
a pair a
 ; a0
 with d.a
 ; a0
 / minimal. Because geodesics are constructible, the whole
process is algorithmic.

Corollary 5.8. Let X be a constructible quasi-median graph. There exists an algorithm
that determines, given two edges e; e0 � X , whether or not the hyperplanes containing e
and e0 are in contact.

Proof. Two hyperplanes are in contact if and only if the distance between their carriers is
zero, so the desired conclusion follows from Lemma 5.7.
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Lemma 5.9. LetX be a constructible quasi-median graph. There exists an algorithm that
determines, given two edges e; e0 � X , whether or not the hyperplanes containing e and
e0 are strongly separated.

Proof. Let J and J 0 denote the hyperplanes containing e and e0, andN andN 0 their carri-
ers. According to Lemma 5.7, we can find algorithmically two vertices x 2N and x0 2N 0

minimising the distance between N and N 0. If J and J 0 are not strongly separated, then
the projection ofN 0 onN is not reduced to single vertex, so x must have a neighbour such
that the hyperplane H separating these two vertices is transverse t both J and J 0. But X
is locally constructible, so we can get algorithmically edges e1; : : : ; en containing x such
that H contains one of the ei and we can check thanks to Lemma 5.5 that H is trans-
verse to both J and J 0. Thus, the existence of a hyperplane transverse to both J and J 0 is
decidable algorithmically.

5.2. Strongly contracting isometries

This section is dedicated to the proof of the following theorem. As a consequence of Pro-
position 3.8, it can be thought of as a particular case of Theorem 1.3 since it recognises
algorithmically the isometries with zero translation length in the crossing and contact
graphs.

Theorem 5.10. Let X be a constructible quasi-median graph. Let �X denote the cross-
ing or contact graph of X . In the former case, we assume that X has no cut-vertex, and,
in any case, we assume that every vertex of X belongs to �N cliques. There exists an
algorithm that determines, given a computable isometry g 2 Isom.X/, whether or not g
is strongly contracting.

Our argument has two steps. First, we show that crossing and contact graphs of
constructible quasi-median graphs inherit weak algorithmic properties. More precisely,
Proposition 5.12 shows geodesics in crossing and contact graphs can be algorithmically
constructed in the following sense.

Definition 5.11. Let X be a graph. A combing is a map 
 that associates with every pair
of vertices .x; y/ 2 X2 a path 
.x; y/ from x to y. It is geodesic if 
.x; y/ is a geodesic
for all x; y 2 X , and constructible if there exists an algorithm that, given two vertices
x; y 2 X , yields 
.x; y/.

Our second step is to show that, in a hyperbolic graph admitting a constructible
geodesic combing, it can be decided whether a (non-parabolic) isometry is elliptic or
loxodromic. This is Proposition 5.14.

Before turning to the proofs of our proposition, let us mention that, from the
algorithmic point of view, we think about crossing and contact graphs slightly differently
as before. Indeed, a vertex in such a graph is, by definition, a hyperplane. But a hyper-
plane, as an infinite collection of edges, is not algorithmic-friendly. Instead, we think of a
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vertex in the crossing or contact graph as an edge of the quasi-median graph under con-
sideration, and we define two edges as representing the same vertex if they belong to the
same hyperplane (which can be decided algorithmically according to Lemma 5.5); two
edges represent two adjacent vertices if the hyperplanes containing them are transverse or
in contact (which can be decided algorithmically according to Corollary 5.8). Formally,
this amounts to working with a pseudo-metric on the set of the edges of our quasi-median
graph.

Proposition 5.12. Let X be a constructible quasi-median graph. Let �X denote the
crossing or contact graph of X ; in the former case, we assume that X has no cut-vertex.
Then �X admits a constructible geodesic combing.

The proposition will essentially follow from the combination of our next lemma with
the basic results of the previous section.

Lemma 5.13. LetX be a quasi-median graph, A;B two hyperplanes, and a 2 N.A/; b 2
N.B/ two vertices. There exist a geodesic H1; : : : ; Hr between A and B in the crossing
(resp. contact) graph and a geodesic 
 between a and b in X such that 
 \ N.Hi / ¤ ;
for every 1 � i � r .

Proof. Let H0; : : : ; Hr be a geodesic in the crossing (resp. contact) graph such that the
quantity d.a; N.H0//C � � � C d.a; N.Hr // is as small as possible. Define the sequence
.xi /0�i�rC1 as follows:

• x0 WD a and xrC1 WD b;

• for every 1 � i � r , xi is the projection of xi�1 on N.Hi /.

For every 0 � i � r , fix a geodesic Œxi ; xiC1� between xi and xiC1, and let 
 denote
the concatenation Œx0; x1� [ � � � [ Œxr ; xrC1�. By construction, xi 2 
 \N.Hi / for every
1 � i � r . In order to conclude our lemma, it suffices to show that 
 is a geodesic.

If 
 is not a geodesic, then it crosses twice some hyperplane. Observe that, for every
0� i � r � 1, no hyperplane crosses both Œxi ;xiC1� and ŒxiC1;xiC2� because every hyper-
plane separating xi from its projection xiC1 has to separate xi from N.HiC1/. Also, a
hyperplane J cannot cross Œxi ; xiC1� and Œxj ; xjC1� for some 0 � i; j � r � 1 satisfying
ji � j j > 2 since otherwise we could shorten H0; : : : ; Hr by replacing Hi ; : : : ; Hj with
Hi ; J;Hj . Therefore, if 
 is not a geodesic, there must exist some 0 � i � r � 2 such that
Œxi ; xiC1� and ŒxiC2; xiC3� are crossed by a common hyperplane J . As a consequence of
what we already know, J cannot cross 
 a third time, so it separates a from N.HiC1/.
Because J must be transverse to bothHi andHiC2,H0; : : : ;Hi ; J;HiC2; : : : ;Hr is also
a geodesic in the crossing (resp. contact) graph of X with

d.a;N.H0//C � � � d.a;N.Hi //C d.a;N.J //C d.a;N.HiC2//C � � � d.a;N.Hr //

< d.a;N.H0//C � � � C d.a;N.Hr //;

contradicting the minimality satisfied by H0; : : : ;Hr .
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Proof of Proposition 5.12. Let e; e0 � X be two edges. Fix to endpoints p and p0 of e
and e0. For all geodesic 
 from p to p0 (which can be enumerated algorithmically
because X is geodesically constructible), integer 1 � k � d.p; p0/, vertices x0 WD
p; x1; : : : ; xk�1; xk WD p0 of 
 , and hyperplanes J1; : : : ; Jk�1 containing, respectively,
x1; : : : ; xk�1 in their carriers (which can be enumerated algorithmically because X is
locally constructible), check whether A; J1; : : : ; Jk�1; B defines a path in the crossing
(resp. contact) graph (which can be done algorithmically according to Lemma 5.5 (resp.
Corollary 5.8)). As a consequence of Lemma 5.13, the path in the crossing (resp. contact)
graph with the smallest k yields a geodesic between A and B in the crossing (resp. con-
tact) graph of X . We choose such a geodesic in order to define our constructible geodesic
combing.

Next, we turn to the second step of the proof of our theorem.

Proposition 5.14. Let X be a ı-hyperbolic graph admitting a constructible geodesic
combing. There exists an algorithm that determines, given a non-parabolic computable
isometry g 2 Isom.X/, whether g is elliptic or loxodromic.

Our proposition follows from our next two lemmas, which allow us to distinguish
elliptic and loxodromic isometries in hyperbolic graphs.

Lemma 5.15. Let X be a ı-hyperbolic graph and g 2 Isom.X/ a loxodromic isometry.
For every x 2 X and every k 2 Z, d.x; gkx/ � jkj C 16ı.

Proof. According to [13, Proposition 10.6.4], we have

d.x; gkx/ � Œgk � � kgkk C 16ı D jkj � kgk C 16ı;

where, for every isometry h of X ,

Œh� WD min¹d.z; hz/ j z 2 Xº and khk WD lim
n!C1

1

n
d.o; hno/

for an arbitrary basepoint o 2 X . But X is a graph, so we must have kgk � 1, concluding
the proof of our lemma.

Lemma 5.16. Let X be a ı-hyperbolic graph and g 2 Isom.X/ an elliptic isometry. For
every vertex x 2 X , every integer k 2 Z, and every geodesic Œx; gkx� between x and gkx,
there exists a vertex y 2 Œx; gkx� satisfying d.y; gky/ � 32ı.

Proof. We begin by proving the following observation.
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Fact 1. The subgraph F WD ¹z 2 X j diam.hgi � z/ � 2ıº is non-empty and is also
12ı-quasiconvex.

The fact that F is non-empty follows from [8]. To be precise, given a bounded sub-
graph B � X , define its radius rad.B/ as min¹r � 0 j 9c 2 X; S � B.c; r/º. A vertex
c 2 X is a centre of B if B � B.c; rad.B//. According to [8, Lemma 2.1], the set of the
centres of a bounded subgraph has diameter at most 2ı, so F contains the centre of every
hgi-orbit. (It is worth mentioning that [8, Lemma 2.1] assumes that the hyperbolic space is
proper, but only in order to assure the existence of a centre, which is not needed here since
our metric is discrete.) Now, let a; b 2 F be two vertices and z 2 I.a; b/ a third vertex.
Because the distance in X is 8ı-convex [13, Corollaire 10.5.3], we know that hgi � z has
diameter at most 12ı. Taking a centre c of this orbit, we have

d.z; F / � d.z; c/ � rad.hgi � z/ � diam.hgi � z/ � 12ı;

concluding the proof of our fact.

p

F

gkp

a

x

y
gkx

cb

c

Now, fix a vertex x 2X , an integer k 2Z, and a geodesic Œx;gkx� between x and gkx.
Also, fix an arbitrary vertex p 2 F and some geodesics Œx; p�, Œp; gkx�, and Œp; gkp�.
Because X is ı-hyperbolic, there exist vertices y 2 Œx; gkx�, a 2 Œx; p�, and b 2 Œp; gkx�
pairwise at distance �2ı. Also, there exists c 2 Œp; gkp�[ gk Œp; x� such that d.b; c/ � ı.

If c 2 Œp; gkp�, then

d.y; F / � d.y; b/C d.b; c/C d.c; F / � 2ı C ı C 12ı D 15ı:

Therefore, diam.hgi � y/ � 32ı.
Otherwise, if c 2 gk Œp; x�, we have

jd.gkp; c/ � d.p; a/j � d.a; c/C d.p; gkp/ � 3ı C 2ı D 5ı:
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Because c and gka lies on the same geodesic gk Œp; x�, this implies that d.gka; c/ � 5ı.
Thus,

d.gky; y/ � d.gky; gka/C d.gka; c/C d.c; y/ � 2ı C 5ı C 3ı D 10ı:

Therefore, we have proved that d.gky; y/ � 32ı in any case, concluding the proof of our
lemma.

Proof of Proposition 5.14. Fix an arbitrary vertex o 2 X . Given a computable isometry
g 2 Isom.X/, construct the geodesic Œo; g17ıo� given by our combing, and, for every ver-
tex x 2 Œo; g17ıo�, compute d.x; g17ıx/. As a consequence of Lemmas 5.15 and 5.16,
either all these values are greater than 33ı, and g must be loxodromic, or g is elliptic
otherwise.

Proof of Theorem 5.10. As a consequence of Propositions 5.12 and 5.14, there exists an
algorithm that determines, given a computable isometry g 2 Isom.X/ that does not include
a parabolic isometry on the crossing (resp. contact) graph, whether or not g is loxodromic
in the crossing (resp. contact) graph, which amounts to saying that g is strongly contract-
ing according to Proposition 3.8. Since we know from Proposition 3.8 that an isometry
ofX cannot induce a parabolic isometry of the crossing (resp. contact) graph, our theorem
follows.

5.3. Computing translation lengths

We are now finally ready to prove the second main result of this article, namely
Theorem 1.3. In fact, we are going to prove the following stronger version of it.

Theorem 5.17. Let X be a constructible quasi-median graph, and let �X be either the
crossing graph or the contact graph of X . In the former case, we assume that X has not
cut-vertex, and, in any case, we assume that a vertex ofX belongs to at mostN cliques for
some fixed N � 1. There exists an algorithm that computes, given a computable isometry
g 2 Isom.X/, the translation length of g in �X . Moreover, if the translation length is
positive, then the algorithm provides an integer k � 1 and a hyperplane J such that J
belongs to an axis of gk in �X .

In addition of the preliminary work done so far, we need to be able to algorithmically
find axes of strongly contracting isometries in constructible quasi-median graphs.

Proposition 5.18. Let X be a constructible quasi-median graph. Then there exists an
algorithm that provides, given a computable strongly contracting isometry g 2 Isom.X/,
a vertex x 2 X and an integer N � 1 such that x belongs to an axis of gN .

The following notion will be useful in order to find axes.
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Definition 5.19. Let X be a quasi-median graph. An isometry g 2 Isom.X/ skewers an
oriented edge e WD .x; y/ if the sector containing y and delimited by the hyperplane
containing e satisfies gS ¨ S .

As the typical example to keep in mind, let 
 be an axis of our isometry g and let
e � 
 be an edge. Orient 
 such that g translates the vertices 
 in the positive direction
and endow e with the induced orientation. Then, if the hyperplanes containing e and ge
are not transverse, then g skewers e.

First, we notice that skewering an edge can be detected algorithmically.

Lemma 5.20. LetX be a quasi-median graph, g 2 Isom.X/ an isometry, and e WD .x; y/
an oriented edge. Then g skewers e if and only if the following conditions hold.

• gy does not belong to I.y; gx/.

• The hyperplanes containing e and ge are distinct and non-transverse.

Proof. First, assume that g skewers e. Let S denote the sector containing y delimited
by the hyperplane J containing e. Clearly, gS ¨ S implies that the hyperplanes J and
gJ are distinct and non-transverse. Moreover, y and gx do not belong to gS , hence
I.y; gx/ � gSc . This implies that gy, which belongs to gS , cannot belong to I.y; gx/.
Conversely, assume that the two conditions given by our lemma hold. Because J and gJ
are distinct and non-transverse, we have gS ¨ S unless gS is the sector delimited by gJ
containing J . If so, gy coincides with the projection of y on the clique containing gx and
gy, hence gy 2 I.y; gx/, contradicting our first condition.

Corollary 5.21. Let X be a geodesically constructible quasi-median graph. There exists
an algorithm that determines, given a computable isometry g 2 Isom.X/ and an oriented
edge e, whether or not g skewers e.

Proof. The first condition of Lemma 5.20 is decidable algorithmically because X is
geodesically constructible, as well as the second condition as a consequence of Corol-
lary 5.4 and Lemma 5.5.

Next, we show that powers of strongly contracting isometries skewer edges.

Lemma 5.22. Let X be a quasi-median graph and g 2 Isom.X/ a strongly contracting
isometry. There exists some N � 1 such that, for every vertex x 2 X and every geodesic
Œx; gNx� from x to gNx, some oriented edge e � Œx; gNx� is skewered by gN and the
hyperplanes containing e and gN e are strongly separated.

Proof. According to Proposition 3.8, there exists some integer N � 1 and some hyper-
plane J crossing an axis of g such that ¹gkNJ j k 2Zº is a collection of pairwise strongly
separated hyperplanes. Up to replacing J with a hgN i-translate, assume that our vertex x
lies between g�NJ and J . Of course, gNx lies between J and gNJ . Therefore, our
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geodesic Œx; gNx� from x to gNx must cross J ; let e denote the corresponding oriented
edge. The hyperplanes containing e and gN e, namely J and gNJ , are strongly separated,
and gN clearly skewers e.

Finally, we explain how skewered edges can be helpful in order to find axes of strongly
contracting isometries.

Lemma 5.23. Let X be a quasi-median graph, g 2 Isom.X/ a loxodromic isometry, and
e�X an oriented edge skewered by g. If the hyperplanes containing e and ge are strongly
separated, then the two vertices minimising the distance between the carriers of these
hyperplanes belong to an axis of g2.

Proof. Let x; y 2 X be two vertices such that e D .x; y/, let J denote the hyperplane
containing e, and let S denote the sector delimited by J containing y. Given an axis 

of g, notice that J crosses 
 . Indeed, otherwise either 
 � S , and J; gJ; g2J; : : : , yields
infinitely many hyperplanes separating Sc and 
 , which is impossible, or S \ 
 D ;, and,
given an arbitrary vertex v 2 S , the hyperplanes J; : : : ; gnJ separate gnv from 
 for
every n � 1, which is also impossible since d.gnx; 
/ D d.x; 
/ for every n � 1. Thus,
¹gkJ j k 2Zº defines a collection of pairwise strongly separated hyperplanes crossing the
axis 
 of g. Fix a vertex p 2 
 lying between g�1J and J . Of course, g2p lies between
gJ and g2J . As a consequence of Proposition 2.15, g2 admits an axis passing through
any fixed geodesic between p and g2p. But, given two vertices x 2 N.J / and y 2 N.gJ /
minimising the distance between N.J / and N.gJ /, concatenating a geodesic from p to x
with a geodesic from x to y and next a geodesic from y to g2p yields a geodesic from p

to g2p. (Indeed, no hyperplane can cross both Œp; x� and Œy; g2p� because J and gJ are
strongly separated, and no hyperplane can cross both Œp;x� and Œx;y� or Œx;y� and Œy;g2p�
since the hyperplanes separating x and y coincide with the hyperplanes separating N.J /
and N.gJ /. So no hyperplane can cross our path twice, proving that it is a geodesic.)

Proof of Proposition 5.18. Fix an arbitrary vertex o 2 X . For successive powers k D
1; 2; : : : , check whether some oriented edge e of some geodesic between o and gko sat-
isfies the following condition: gk skewers e and the hyperplanes containing e and gke
are strongly separated. This can be done algorithmically according to Corollary 5.21 and
Lemma 5.9. According to Lemma 5.22, we eventually find a powerN � 1 and an oriented
edge e for which it works. Applying Lemma 5.7 to the edges e and gN e yields two ver-
tices that, according to Lemma 5.23, belong to an axis of g2N . So our algorithm outputs
one of these two vertices and the integer 2N .

Proof of Theorem 5.17. Let g 2 Isom.X/ be a computable isometry.

Step 1. Determine whether or not g is strongly contracting. If no, stop and output
kgk�X D 0. If yes, pass to the next step.
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Checking whether g is strongly contracting can be done algorithmically according to
Theorem 5.10. If not, then it follows from Proposition 3.8 that g has bounded orbits in
�X , hence kgk�X D 0. From now on, we assume that g is strongly contracting.

Step 2. Find an edge e and a power L � 1 such that e is contained in an axis of gL and
the hyperplanes containing e and gLe are strongly separated.

According to Proposition 5.18, we can find algorithmically a vertex x 2X and a power
n � 1 such that x belongs to an axis of gn. Construct a geodesic Œx; gnx�. We know from
Proposition 2.15 that the hgni-translates of Œx; gnx� yields an axis 
 of gn. Testing the
successive values of k � 0, find an edge e � Œx; gnx� such that the hyperplanes con-
taining e and gkne are strongly separated. This can be done algorithmically according to
Lemma 5.9, and we know that we will eventually find such a k thanks to Proposition 3.8.
Then e and L WD kn are the data we are looking for.

Step 3. Compute HQC.g/.
Let H ;V be two finite transverse collection of hyperplanes crossing the axes of g.

Up to translating H ;V by a power of gL, we assume that at least one hyperplane H in
H [ V lies between g�LJ and gLJ , where J denotes the hyperplane containing our
edge e. Without loss of generality, say that H belongs to H . Because every hyperplane
in V is transverse to H , they must lie between g�2LJ and g2LJ . And because every
hyperplane in H is transverse to every hyperplane in V , they must lie between g�3L

and g3L. Thus, every hyperplane in H [ V must separate g�3Le and g3Le. We imme-
diately deduce that HQC.g/ � 6LkgkX , which is sufficient for the rest of the proof; but
we can also compute precisely HQC.g/ by studying the pattern of transverse hyperplanes
separating g�3Le and g3Le (Lemma 5.5).

Step 4. Let x be an endpoint of e. Enumerate the hyperplanes in contact with

B
�
x;N 2HQC.g/�

\ I
�
g�1�L.4HQC.g/C1/x; g1CL.4HQC.g/C1/x

�
and, for each such hyperplane H , compute d�X .H; gN

2HQC.g/ŠH/. Pick a hyperplane K
for which this quantity is minimal. Then K belongs to an axis of gN

2HQC.g/Š in �X and
kgk�X D d�X .K; g

N 2HQC.g/ŠK/=N 2HQC.g/Š.
We deduce from Theorem 4.1 and Lemma 2.20 that there exists some hyperplane H

in contact with F WD B.x; 4HQC.g/C 1/ \ CH.
/ such that K belongs to an axis of gk

in �X where k WD N 2HQC.g/Š.
Observe that F � I.g�Qx; gQx/ where Q WD 1C L.4HQC.g/C 1/. Indeed, x lies

between g�LJ and gLJ , so B.x; 4HQC.g/C 1/must lie between g�QC1J and gQ�1J .
Now, if p belongs to CH.
/ and lies between g�QC1J and gQ�1J , then p must lie in
I.g�Qx; gQx/ because otherwise there would exist some hyperplane separating p from
¹g�Qx; gQxº but also crossing 
 , necessarily not between g�Qx and gQx, so such a
hyperplane would be transverse to both g�QC1J and g�QJ or to both gQ�1J and gQJ ,
which is impossible since these two pairs are strongly separated.
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Thus, there exists some hyperplane H in contact with F 0 WD B.x; 4HQC.g/C 1/ \
I.g�Qx;gQx/ such thatH belongs to an axis of gk in�X . We can enumerate the hyper-
planes in contact with F 0 because an interval is always finite (Lemma 2.8) and because X
is locally constructible. Because distances in �X are computable according to Propos-
ition 5.12, we can pick a hyperplane K in our collection for which d�X .K; gkK/ is
minimal. It follows from Lemma 2.16 that K belongs to an axis of gk . We have

kgk�X D
1

k
kgkk D

1

k
lim

n!C1

d�X .K; g
knK/

n
D d�X .K; g

kK/=k;

concluding the proof of our theorem.

6. Graph products of groups

Let � be a graph and G D ¹Gu j u 2 V.�/º a collection of groups indexed by the
vertex-set V.�/ of � . The graph product �G is

hGu .u 2 V.�// j ŒGu; Gv� D 1 .¹u; vº 2 E.�//i;

whereE.�/ denotes the edge-set of � and where ŒGu;Gv�D 1 is a shorthand for Œg;h�D 1
for all g 2 Gu, h 2 Gv . The groups of G are referred to as vertex-groups. We emphasise
that, unless explicitly stated, vertex-groups are not assumed to be finite.

Convention. We always assume that the groups in G are non-trivial. Notice that it is not
a restrictive assumption, since a graph product with some trivial factors can be described
as a graph product over a smaller graph all of whose factors are non-trivial.

A word in �G is a product g1 � � � gn where n � 0 and where, for every 1 � i � n,
gi 2 G for some G 2 G ; the gi s are the syllables of the word, and n is the length of the
word. Clearly, the following operations on a word does not modify the element of �G it
represents:

Cancellation: Delete the syllable gi if gi D 1.

Amalgamation: If gi ; giC1 2G for someG 2 G , replace the two syllables gi and giC1
by the single syllable gigiC1 2 G.

Shuffling: If gi and giC1 belong to two adjacent vertex-groups, switch them.

A word is graphically reduced if its length cannot be shortened by applying these ele-
mentary moves. Every element of �G can be represented by a graphically reduced word,
and this word is unique up to the shuffling operation. For more information on graphically
reduced words, we refer to [28] (see also [20, 33]).

The connection between graph products and quasi-median graphs is made explicit by
the following statement [17, Proposition 8.2, Corollary 8.7].
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Theorem 6.1. Let � be a graph and G a collection of groups indexed by V.�/. The Cayley
graph

QM.�;G / WD Cayl
�
�G ;

[
G2G

Gn¹1º
�

is a quasi-median graph of cubical dimension clique.�/ D max¹#V.ƒ/ j ƒ � � cliqueº.

Notice that �G naturally acts by isometries on QM.�; G / by left-multiplication and
that, as a Cayley graph, the edges of X.�;G / are naturally labelled by generators, but also
by vertices of � (corresponding to the vertex-group which contains the generator). It turns
out that any two edges of QM.�; G / must be labelled by the same vertex of � if they
belong to the same hyperplane (see [17, Lemma 8.9]), which implies that the hyperplanes
of QM.�;G / are also naturally labelled by vertices of � . An easy observation that will be
needed later is [17, Lemma 8.12], namely the following lemma.

Lemma 6.2. Let � be a simplicial graph and G a collection of groups indexed by V.�/.
Two transverse hyperplanes are labelled by adjacent vertices of � , and two tangent
hyperplanes are labelled by distinct vertices of � .

Essentially by construction of the quasi-median graph, we have the following descrip-
tion of its geodesics [17, Lemma 8.3].

Lemma 6.3. Let � be a graph and G be a collection of groups indexed by V.�/. Fix two
elements g; h 2 �G and write g�1h as a graphically reduced word u1 � � � un. Then the
sequence of vertices

g; gu1; gu1u2; : : : ; gu1 � � �un D h

defines a geodesic between g and h in QM.�; G /. Conversely, any geodesic between g
and h is labelled by a graphically reduced word representing g�1h.

Before turning to the proof of Theorem 1.4, we need a last preliminary lemma.
Namely, we need to understand when the quasi-median graph of a graph product is hyper-
bolic. A characterisation is already given by [17, Fact 8.33], but we include a proof here
with an estimate on the hyperbolicity constant.

Lemma 6.4. Let � be a simplicial graph and G a collection of groups indexed by V.�/.
The quasi-median graph QM.�; G / is hyperbolic if and only if clique.�/ is finite and �
has no induced 4-cycle. If so, the graph is 5clique.�/-hyperbolic.

Proof. If � contains a clique with n vertices, then QM.�; G / contains an isometrically
embedded product of n complete graphs, and a fortiori of Œ0; 1�n. Therefore, if clique.�/ is
infinite, that is, if n can be chosen arbitrarily large, then QM.�;G / cannot be hyperbolic.
If � contains an induced 4-cycle .a; b; c; d/, then, fixing non-trivial elements p 2 Ga,
q 2Gb , r 2Gc , and s 2Gd , the map .i; j / 7! .pr/i .qs/j defines an isometric embedding
Z2 ! QM.�;G /. Therefore, QM.�;G / cannot be hyperbolic.
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Conversely, assume that � has a finite clique number and has no induced 4-cycle.
Under these assumptions, observe the following.

Fact 2. The Hausdorff distance between two geodesics with the same endpoints is at most
2clique.�/.

Let ˛; ˇ be two geodesics with the same endpoints and x 2 ˛ a vertex. It follows
from [17, Lemma 2.114] that there exists an isometrically embedded copy of Œ0; a�� Œ0; a�
in QM.�; G / with .0; 0/ D x and .a; a/ 2 ˇ. If a > clique.�/, then there are at least
two non-transverse hyperplanes separating .0; 0/ and .0; a/. Because the hyperplanes in
a maximal collection of pairwise non-transverse hyperplanes separating two vertices are
successively tangent, it follows that there exist two tangent hyperplanes separating .0; 0/
and .0; a/. Similarly, there must exist two tangent hyperplanes separating .0; 0/ and .a; 0/.
Because these two pairs of hyperplanes are transverse, we deduce from Lemma 6.2 that
� contains an induced 4-cycle, a contradiction. Thus, we must have a � clique.�/, which
implies that d.p; ˇ/ � 2clique.�/, and which finally prove our fact.

Now, fix three vertices a; b; c and three geodesics Œa; b�, Œb; c�, Œa; c�. Let .x; y; z/
be the median triangle of .a; b; c/ and let Œa; x�, Œb; y�, Œc; z�, Œx; y�, Œy; z�, Œx; z� be
geodesics. Given a vertex p 2 Œa; b�, it follows from Fact 2 that there exists some
q 2 Œa; x� [ Œx; y� [ Œy; b� such that d.p; q/ � 2clique.�/. If q 2 Œa; x� [ Œy; b�, then
we can apply Fact 2 again and deduce that p lies in the 4clique.�/-neighbourhood
of Œb; c� [ Œc; a�. Otherwise, if q 2 Œx; y�, then it follows from Proposition 2.7 and
Lemma 6.2 that d.q; y/ � clique.�/. Applying Fact 2 again, we conclude that p lies
in the 5clique.�/-neighbourhood of Œb; c� [ Œc; a�.

Proof of Theorem 1.4. The first assertion follows from Corollary 1.2, from the fact that
every vertex in QM.�;G / belongs to exactly jV.�/j cliques, and from the observation that
QM.�;G / has no cut-vertex as justified by Claim 5 and by the fact that the clique-link of
a vertex in QM.�;G / is isomorphic to � .

The second assertion follows from Corollary 4.3 and Lemma 6.4. The third assertion
follows from Theorem 1.3 and our next observation.

Claim 11. If the groups in G have solvable word problems, then QM.�; G / is construct-
ible.

Algorithmically, we think of QM.�; G / whose vertices are words in �G , two words
representing the same vertex if they are equal in �G (or equivalently, if they admit
identical graphically reduced representatives, which can be checked algorithmically if the
groups in G have solvable word problems), and whose edges connect two words if one can
be obtained from the other by right-multiplying by a non-trivial element in some vertex-
group. The fact that QM.�;G / is geodesically constructible follows from Lemma 6.3 (and
from the fact that graphically reduced representatives of an element of �G can be easily
enumerated because the groups in G have solvable word problems). In order to show
that QM.�; G / is also locally constructible, fix a non-trivial element su 2 Gu for every
u 2 V.�/. Then, for every word g, ¹gsu j u 2 V.�/º is a set of neighbours of g such
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that every clique containing g contains exactly one of these neighbours. We conclude that
QM.�;G / is constructible, as desired.

A. Translation spectrum of Morse elements

In this appendix, our goal is to clarify the construction of axes for isometries in graphs
and to mention an application to Morse elements. Before stating our main result, let us
emphasise that, despite the fact that distances in graphs are integers, stable translation
lengths may be irrational. Even finitely generated groups may contain elements with irra-
tional translation lengths [9]. As an elementary illustration of this phenomenon, let us
mention the following example.

Example A.1. Fix an irrational number r 2 .0; 1/, which we describe as the limit of
rational numbers pn=qn. Let X denote the graph obtained from a set of isolated vertices
indexed by Z by gluing a path of length pn (which we will refer to as an arc) between
the vertices i and i C qn for all i 2 Z and n � 1. Up to adding .p0; q0/ WD .1; 1/ to our
sequence if necessary, X is connected. The graph X has an obvious isometry g that shifts
the vertices indexed by Z. We claim that, if we choose our diophantine approximation of r
carefully, then the stable translation length of g is r .

As a consequence of Dirichlet’s theorem, we can assume thatˇ̌̌
r �

pn

qn

ˇ̌̌
<

1

q2n
for every n � 1:

Up to extracting a subsequence and applying a reflection centred at r , we can assume that
r < pn=qn for every n� 0. For convenience, set for every n� 0 the error en WD pn=qn � r
of our approximation. It follows from the centred inequality above that the sequence
.enqn/n�0 tends to zero as n ! C1. Up to extracting a subsequence, we can assume
that .enqn/n�0 is decreasing. Also, since qn has to tend to infinity as n! C1, we can
assume, up to extracting a subsequence, that qn � emqm=2r for all n;m � 1.

We claim that d.0; qn/D pn in X for every n � 1. This will imply that the translation
length of g is

lim
n!C1

1

qn
d.0; gqn � 0/ D lim

n!C1

1

qn
d.0; qn/ D lim

n!C1

pn

qn
D r;

as desired.
Let 
 be a geodesic in X connecting 0 to qn. We can decompose 
 as a concatenation

of arcs. Let I � N be a multi-subset such that the multi-set of the lengths of these arcs is
¹pi j i 2Nº. (Here, we are using multi-sets because lengths are counted with multiplicity.)
We have

d.0; qn/ D length.
/ D
X
i2I

pi D
X
i2I

.rqi C eiqi /:
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Notice that, because the endpoints of our arcs are vertices indexed by integers that differ
successively by˙qi for some i 2 I , we can write

qn D
X
i2I

�iqi ; where "i 2 ¹˙1º for every i 2 I:

Set N WD ¹i 2 I j �i D �1º. Then

d.0; qn/ D rqn C 2r
X
i2N

qi C
X
i2I

eiqi D pn � enqn C 2r
X
i2N

qi C
X
i2I

eiqi :

If there is some i 2 I satisfying i � n, then we deduce from eiqi � enqn that d.0;qn/�pn.
Now, assume that i > n for every i 2 I . From our decomposition of qn above, it follows
that N is non-empty. Then, fixing an arbitrary i 2 N , we deduce from 2rqi � enqn that
d.0; qn/. Thus, we have proved that d.0; qn/ � pn. But, by construction of X , there is an
arc of length pn connecting 0 to qn, hence the desired equality d.0; qn/ D pn.

Now, our goal is to prove the following criterion. Like most of the similar statement
available in the literature, our argument is an elaboration of Delzant’s argument [14]. It is
also inspired by Bowditch’s application to mapping class groups [7] and by its quantitative
improvement from [4].

Theorem A.2. LetX be a graph and g 2 Isom.X/ an isometry. Assume that all the orbits
of g are infinite and that there exists a hgi-invariant collection of bi-infinite geodesics L
and a finite set of vertices S � X that intersects every bi-infinite geodesic contained inS

L. Then there exists n � jS j such that g cyclically permutes n pairwise disjoint bi-
infinite geodesics. In particular, gn admits an axis (i.e., there is a bi-infinite geodesic on
which g acts non-trivially as a translation).

Proof. Our first goal is to show that g permutes a finite collection of bi-infinite geodesics,
regardless of its cardinality. We start by noticing the following.

Claim 12. The orbits of g are coarsely embedded.
Assume for contradiction that this is not the case. Fixing some s 2 S , we find anR � 0

such that I WD ¹i 2 Z j d.gis; s/ � Rº is infinite. Fix a line L 2 L, it follows from the
hgi-invariance of L that giS \ L ¤ ; for every i 2 Z. Therefore, for every i 2 I , there
exists si 2 S such that gisi 2 L. Notice that

d.gisi ; s/ � d.g
isi ; g

is/C d.gis; s/ � diam.S/CR DW RC;

so gisi 2 L \ B.s; RC/. Since S and L \ B.s; RC/ are finite but I is infinite, we can
find an s0; s00 2 S such that gis0 D s00 for infinitely many i . If i and j are two distinct
such indices, then it follows that gi�j fixes s0, contradicting the fact that the orbits of g
are infinite. This concludes the proof of Claim 12.

Claim 12 implies that, up to replacing g with a large power, we can assume that
d.S; gS/ > diam.S/. As a consequence, given a line L 2 L, the intersections L \ giS
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lie in pairwise disjoint subsegments. The picture to keep in mind is that the giS are
checkpoints that are successively crossed by the lines from L.

Order the hgi-orbits of edges of
S

L by an ordinal (i.e., a totally ordered set all of
whose subsets have a minimal element, for instance N if L is countable). An edge is nat-
urally labelled by the element of the ordinal given by the orbit containing our edge. This
allows us to order the oriented paths in

S
L of a given length with the lexicographic order.

Say that an oriented bi-infinite geodesic L contained in L is special if every subsegment
of L is minimal among the oriented paths connecting its initial point to its terminal point.
Notice that, for all x; y 2

S
L contained in a common connected component, there exists

exactly one minimal oriented geodesic from x to y (here, minimal among all the oriented
geodesics from x to y). However, it is not clear that special lines even exist.

Claim 13. There exists at least one special bi-infinite geodesic in
S

L.
Fix a line L 2 L. We know that, for every i 2 Z, giS intersects L. Fix a point

`i 2 g
iS \ L. We orient L so that, along L, j̀ comes after `i whenever i < j . For

every i � 1, let Œ`�i ; `i � denote the unique minimal geodesic connecting `�i to `i and
let Li denote the line obtained from L by replacing the subsegment connecting `�i to `i
with Œ`�i ; `i �. Notice that Li \ gjS ¤ ; for all i � 1 and j 2 Z. Because S is finite,
by a diagonal argument we can assume, up to extracting a subsequence from .Li /i�1,
that Li \ gjS is eventually constant for each j fixed, say to sj 2 S . By construction,
for i sufficiently large compared to j , the subsegment of Li connecting s�j to sj is the
unique minimal geodesic connecting s�j to sj . Therefore,Li converges to some bi-infinite
geodesic L1, which is contained in

S
L and which is special. This concludes the proof

of Claim 13.

Claim 14. There exist at most jS j2 special bi-infinite geodesics in
S

L.
Assume for contradiction that there exist more than jS j2 special bi-infinite geodesics,

say L1; : : : ; Lr . Because they are distinct, we can find a large ball B such that the inter-
sections Li \ B are pairwise distinct. Fix an k � 1 sufficiently large so that g�kS and
gkS are disjoint from B . Because r > jS j2, we can find two distinct indices 1 � i; j � r
such that Li \ Lj \ g�kS ¤ ; and Li \ Lj \ gkS ¤ ;. Let s�k and sk be two points
in these intersections. Then, because Li and Lj are special, they must agree between s�k
and sk with the unique minimal geodesic connecting s�k to sk , which implies that Li and
Lj must agree in B , a contradiction. This proves Claim 14.

Because the action of g on
S

L preserves the set of special bi-infinite geodesics, we
conclude from Claim 14 that there exists a collection of �jS j2 bi-infinite geodesics that
is preserved by hgi. This already implies that some power of g admits an axis, but we do
not have yet the optimal control on the size of this power.

Claim 15. If M is a hgi-invariant collection of bi-infinite geodesics in
S

L of minimal
(finite) size, then M is a collection of pairwise disjoint geodesics.

First of all, notice that such a collection M must have size�jS j, since all the geodesics
of M must intersect S but are pairwise disjoint. Therefore, proving Claim 15 will conclude
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the proof of our theorem. During its proof, we will use repeatedly the following elementary
observation.

Fact 3. Let W be a graph and ˛ a bi-infinite geodesic. Decompose ˛ as a union of two
rays ˛� and ˛C having the same origin, say o 2 ˛. If � is a geodesic ray starting from o

and intersecting ˛C infinitely many times, then ˛� [ � is a bi-infinite geodesic.
Let r0 D o; r1; r2; : : : denote the successive vertices of � that belong to ˛C. Then

˛� [ � can be described as the limit of the lines obtained from ˛ by replacing success-
ively the subsegments connecting ri to riC1 with the subsegment of � having the same
endpoints. It is clear that these operations yield a geodesic at each step. This implies that
˛� [ � is a geodesic, concluding the proof of Fact 3.

Now, assume for contradiction that our collection M contains two intersecting
geodesics. By minimality, hgi acts transitively on M, so there must exist L 2 M and
1 � m < jMj such that L\ gmL ¤ ;. Fix a vertex x 2 L\ gmL. Notice that hgjMjix �
L \ gmL since gjMj stabilises each line of M. We have the following configuration:

g�mx




x
L

gm


gmx
gmL

g2m


g2mx

g2mL

g3m


g3mx

g3mL

where 
 denotes the subsegment of L connecting g�mx to x. By applying Fact 3 iterat-
ively, we deduce that, for every k � 1, there exists a bi-infinite geodesic passing through

; gm
; : : : ; gkm
 . This implies that the concatenation

S
i2Z g

im
 yields a bi-infinite
geodesic L0. By construction, gm stabilises L0, so M0 WD ¹L0; gL0; : : : ; gm�1L0º is a new
hgi-invariant set of lines of size m < jMj, contradicting our choice of M.

Generalising the fact that elements in hyperbolic groups have rational translation
lengths, we can deduce from Theorem A.2 that Morse elements in arbitrary finitely gener-
ated groups have rational translation lengths. Recall that, given a metric spaceX and a map
M WR2C!RC (referred to as the Morse gauge), an isometry g 2 Isom.X/ isM -Morse if
there exists a point o 2 X such that the orbit hgi � o is quasi-isometrically embedded and
such that, for all constants A > 0, B � 0 and for every .A;B/-quasigeodesic 
 connecting
two points in hgi � o, 
 stays in the M.A; B/-neighbourhoods of hgi � o. An isometry is
Morse if it is M -Morse for some Morse gauge M .
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Corollary A.3. For every integer N � 1 and every Morse gauge M , there exists a con-
stant D � 0 such that the following holds. Let X be a graph all of whose vertices have
degree �N . For every M -Morse isometry g, there exists n � D such that gn has an axis
in X .

Proof. Let g 2 Isom.X/ be an M -Morse isometry. Let o 2 X denote a vertex as given
by the definition above. For every k � 1, fix a geodesic Œg�ko; gko� connecting g�ko and
gko. By local finiteness, the Œg�ko; gko� subconverge to a bi-infinite geodesic L. Notice
that L has to stay in the M.1; 0/-neighbourhood of hgi � o. Let L denote the set of all the
bi-infinite geodesics contained in theM.1; 0/-neighbourhood of hgi � o. Clearly, L is hgi-
invariant. It is also clear that every bi-infinite geodesic contained in

S
L has to intersect

the ball B.o;M.1; 0//, which is finite with size bounded above in function of N and M .
The desired conclusion follows from Theorem A.2.

As an immediate consequence, we get the following statement (which improves [47,
Theorem K]).

Corollary A.4. Let G be a group and S � G a finite generating set. For every Morse
gauge M ,

¹�S .g/ where g is M -Morseº

is a discrete set of rational numbers.
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