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Hadamard-type variation formulas for the eigenvalues
of the n-Laplacian and applications

José Nazareno Vieira Gomes, Marcus Antonio Mendonca Marrocos, and
Raul Rabello Mesquita

Abstract. We consider an analytic family of Riemannian metrics on a compact smooth mani-
fold M . We assume the Dirichlet boundary condition for the n-Laplacian and obtain Hadamard-
type variation formulas for analytic curves of eigenfunctions and eigenvalues. As an application,
we show that for a subset of all C” Riemannian metrics M” on M, all eigenvalues of the -
Laplacian are generically simple, for 2 < r < oo. This implies the existence of a residual set of
metrics in M” that makes the spectrum of the n-Laplacian simple. Likewise, we show that there
exists a residual set of drifting functions 7 in the space ¥ of all C” functions on M, that again
makes the spectrum of the n-Laplacian simple, for 2 < r < oco. Besides, we provide a precise
information about the complement of these residual sets as well as about the structure of the set
of deformations of a Riemannian metric (respectively, of the set of deformations of a drifting
function) which preserves double eigenvalues. Moreover, we consider a family of perturbations
of a domain in a Riemannian manifold and obtain Hadamard-type formulas for the eigenval-
ues of the n-Laplacian in this case. We also establish generic properties of eigenvalues in this
context.

1. Introduction

In [4], Berger derived variation formulas for the eigenvalues of the Laplace—Beltrami
operator with respect to a differentiable one-parameter family of Riemannian metrics
g(t) on a smooth manifold M. Such formulas are known as Hadamard-type variation
formulas. In a seminal work, Uhlenbeck [15] proved results on generic properties of
the eigenvalues and eigenfunctions of the Laplace—Beltrami operator A, on a com-
pact Riemannian manifold (M, g) without boundary. In order to prove her results on
the genericity of the eigenvalues of Ag, she used the Thom transversality theorem.
Here we work on the Dirichlet problem for the n-Laplacian L, := Ag — g(Vn, V)
on a compact Riemannian manifold (M, g). Our main tools are Hadamard-type vari-
ation formulas, where the differentiable function n: M — R is known as drifting
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function. Such formulas are the optimal device to apply Teytel’s approach [14]. The
crucial step in Teytel’s work has been to impose a condition that is closely related to
the strong Arnol’d hypothesis [2] for double eigenvalues, but significantly easier to
check. More precisely, let M” denote the space of all C” Riemannian metrics on M
equipped with the C" topology, for 2 < r < oo, and let I" be the set of all g € M"
such that the eigenvalues of L, are all simple, so that each g € I" can be obtained as a
generic member of a differentiable family of self-adjoint operators A(q) indexed by a
parameter ¢ € M". In this setting, we know a precise information about the comple-
ment of I' as well as about the structure of the set of deformations of a Riemannian
metric g which preserves double eigenvalues of Lg; see Gomes and Marrocos [7], or
Teytel’s paper for an abstract setting.

The use of Hadamard-type formulas appears in works such as Albert [1], El Soufi
and Ilias [6], Henry [8], and Pereira [12], which are good references in the literature
on this topic. These formulas have also been used by Gomes and Marrocos [11] to
show a density theorem for a class of warping functions that make the spectrum of
the Laplacian a warped-simple spectrum. As an application, they provided a partial
answer to a question about the generic situation of the multiplicity of the eigenvalues
of the Laplacian on principal bundles posed by Zeldich [17]. More importantly, they
partially answered a more general question regarding the generic G-simple spectrum
of the real Laplace—Beltrami operator on a G-manifold, which was formulated as
number 42 in Yau’s list of open problems (Yau, 1993).

The interest in understanding how the eigenvalues of a family of self-adjoint
operators change emerges naturally in quantum mechanical systems. For instance,
von Neumann and Wigner [16] studied the behavior of eigenvalues (energy values)
in adiabatic processes. These energy values are eigenvalues of a Hermitian matrix
H;j, which can be finite or infinite dimensional. Assuming that {H;;} is a family of
n-dimensional real Hermitian matrices depending on n? real parameters, they showed
that the set of parameters for which H;; has double eigenvalues has codimension 2 in
R"*. If one considers only a family of (not the set of all) self-adjoint operators, some
transversality hypothesis is necessary to guarantee this type of result. Arnol’d [2] dealt
with this question in more detail in the context of membrane vibration frequencies.

In this paper, we consider the Dirichlet problem for the n-Laplacian parametrized
by three types of parameters: Riemannian metrics, drifting functions, and bounded
domains in M. We derive generic properties of the eigenvalues of the n-Laplacian
with respect to variation metrics and/or drifting functions. We also work with per-
turbations of a bounded domain €2 (given by diffeomorphisms) in a Riemannian
manifold (M, g) and establish generic properties of eigenvalues with respect to these
perturbations. For this, we consider a family of operators 7(¢)-Laplacian where the
drifting function n depends on the parameter ¢, see equations (3.5) and (3.7). Besides,
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we consider a family {L,} of n-Laplacians parameterized by drifting functions 7 in
order to obtain analogous results as in [7, Sections 5 and 6], see Theorem 4.

Before stating our theorems, we recall that a subset I' C M" is called residual if
it contains a countable intersection of open dense sets. The property of metrics in I"
is called generic if it holds on a residual subset.

In the following, we assume all manifolds to be oriented and those that are com-
pact are assumed to have a boundary.

Theorem 1. Given a compact smooth manifold M™, n > 2, there exists a residual
subset ' C M”, 2 < r < 00, such that for all g € T the eigenvalues of the Dirichlet
problem for the n-Laplacian Lg are simple.

Let 2 be a bounded domain in a Riemannian manifold (M, g), and D" (2) (with
the fixed C” topology, 2 < r < 0o) be the set of all f: €2 — M which are C" diffeo-
morphisms from 2 to f(€2). It is known that this set is an affine manifold of a Banach
space (see [5]). Then, we show that the following property is generic.

Theorem 2. Given a Riemannian manifold (M", g), n > 2, define ® C D"(R2), 2 <
r < 09, to be the subset of f:2 — (M, g) such that all eigenvalues of the n-Laplacian
Lg on C2°(f(2)) (with Dirichlet boundary condition on f(2)) are simple. Then ©
is a residual subset.

Let 7 (with the fixed C" topology, 2 < r < 00) be the set of all C" drifting
functions 7, and let us use the notation L, := Ay — g(Vn, V) just to emphasize that
the parameter is 7.

Theorem 3. Given a compact Riemannian manifold (M", g), n > 2, there exists a
residual subset & C 7, 2 <r < oo, such that, for all n € &, the eigenvalues of the
Dirichlet problem for Ly are simple.

Now, we discuss an interesting case of the spectrum of L, which stems from work
of Teytel [14].

Theorem 4. Let (M",g), n > 2, be a compact Riemannian manifold, andlet & C ¥,
2 <r < 00, be aresidual subset such that for all n € &, the eigenvalues of the Dirichlet
problem for Ly are simple.

(1) The set F"\& has meager codimension 2 in .

(2) Take no € ¥, and let A be an eigenvalue of the operator Ly, of multiplicity 2.
Then, in a neighborhood of no, the set of all n € ¥ such that L, admits
an eigenvalue A(n) of multiplicity 2 near A form a submanifold of meager
codimension 2 in ¥7.
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(3) Consider the same setup as in (2). Then, in a neighborhood of 1y, the set of
alln € F7 which preserves double eigenvalues, i.e., L, admits an eigenvalue
A(n) of multiplicity 2 such that A(n) = A(no), form a submanifold of meager
codimension 3 in ¥7.

Remark 1. Theorem 4 is also true in the context of the family of bounded domains
in a Riemannian manifold under the same setting as in Theorem 2. The proof follows
the same steps as in the proofs of these theorems.

2. Preliminaries

Let us consider an oriented compact Riemannian manifold (M, g) with boundary oM
and volume form dV. It is endowed with a weighted measure of the form dm =
e 1dV, where n: M — R is a differentiable function. Let d be the volume form
induced on dM and d u = e~"d be the corresponding weighted measure on 0M.
We define the n-Laplacian by Ly, = A, — g(Vn, V-) which is essentially self-adjoint
on C2°(M). Observe that this allows us to use perturbation theory for linear opera-
tors [10]. To do this, we consider the set M” of all € Riemannian metrics on M.
Then every g € M” determines the sequence 0 = o(g) < n1(g) < u2(g) <--- <
i (g) < --- of the eigenvalues of Lg counted with their multiplicities. We regard
each eigenvalue i (g) as a function of g in M”. Note that, in general, the functions
g — ux(g) are continuous but not differentiable (see [10]). They are differentiable
when i is simple. With these notations, the divergence theorem remains valid under
the form [,, Ly f dm = [5,, g(V f,v) d ju. Thus, the integration by parts formula is
given by

/ZLgfdm = —/g(Vﬁ,Vf)dm+ / Lg(Vfiv)du
M M M
forall f,£ € C®(M).
The inner product induced by g on the space of (0, 2)-tensors on M is given by
(T, S) = tr(TS *), where S* denotes the adjoint tensor of S. Clearly, we get in local
coordinates
(T.8) =) g™*g/'T;j Sk
isjk,l
Furthermore, we have A, ' = (V2 f, g), where V2 f = Vdf is the Hessian of f.
We also recall that each (0, 2)—tensor 7" on (M, g) can be associated to a unique
(1, )~tensor by g(T(Z),Y) :=T(Z,Y) for all Y, Z € X(M). We shall slightly
abuse notation here and will also write T for this (1, 1)—tensor. So, we consider the
(0, 1)—tensor given by

(divT)(v)(p) = tr(w = (Vu T)(v)(p)).
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where p € M and v € T, M. Moreover, we can define a (0, 1)-tensor div, T putting
div, T :=divT —dnoT.
Before proving our main results, we present the following one.

Lemma 1. Let T be a symmetric (0,2)—tensor on a Riemannian manifold (M, g).
Then
divy(T(¢Z2)) = ¢(div, T.Z) + ¢(VZ.T) + T(Ve. Z),

for each Z € X(M) and any differentiable function ¢ on M.

Proof. Let{eq,...,ey} be alocal orthonormal frame on (M, g). Using the properties
of divy, and the symmetry of T, for each Z € X(M) and any differentiable function
¢ on M, we compute

div,(T($Z)) = ¢ divy(T(2)) + g(Ve. T(Z))
=¢@VT)(2) +¢ ) (T (Ve,2). 1)
pe(V.T(2)) + T(V9.2)
=¢divy T Z)+(VZ, T)+T(Ve, Z).
To complete the proof is sufficient to use the duality (div, T)(Z) = (div, T, Z). =

Let us observe that for every X € X(M) the operator div, X =divX — g(Vn, X)
has the same properties of the operator div X as well as is valid

/div,,de:/g(X,v)d,u.

M oM

3. Hadamard-type variation formulas

Consider a differentiable variation g(¢) of the metric g, so that (M, g(t),dm;) is a
Riemannian manifold with a differentiable measure. Denoting by H the (0, 2)—tensor
given by H;; = %|t=0gi_,- (t) and writing h = (H, g), we easily get %’t:O
%h dm. From now on, we shall write in local coordinates f; = 9; f. We first prove the

dm, ==

following lemma.

Lemma 2. Let (M, g) be a Riemannian manifold and g(t) be a differentiable varia-
tion of the metric g. Then, for all f € C°(M), we have

L'f= Gdh — divy H, df) — (H.V%f),

where L' := %’t:OLg(t)'
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Proof. Since (df,dl) = g (t) fi{;, for L € CX®(M), and
d ; .
= I (1) = sy
77108 (1) = —g"* ¢/* Hys.

we have

d

17,4 dt) = —g"* " Hys fil; = —H (g™ fidk. g7°4;9;)

t=0
= —H(Vf,V0).

By integration by parts formula, we get

A[ug(,)f dm, = —/(dﬂ,df)dm,.

M

Hence, from equation (3.1), we have att = 0

/ZL’fdm—i-%/Ethdm:/H(Vf,V@)dm—%/h(dﬁ,df)dm
M M M M

Applying Lemma 1 for T = H, ¢ = £ and Z = V f we have
div, (H(V f)) = (div, H,df) + ¢(H,V*f) + H(V £, V).

Moreover,

divy(LhV f) = ChLf + £{dh,df) + h{dL, df).

Hence, plugging (3.3) and (3.4) into (3.2), we obtain

/zL fdm = / “(dh.df) — (div, H.df) — (H, v2f>) dm,

which concludes the proof of the lemma.

1262

3.1

3.2)

3.3)

(3.4)

Next we consider a differentiable function 1: I x M — R and write for simplicity

= 4| _,n(t).Forall f € C®(M), we define
Lif = Acf —g@)(V(t), V).

Thus,

9| Lp=ar— (L] _O)msi-gas] o

dtlt= dtle
=L'f—(V),Vf).

3.5)
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The next result extends Berger’s [4, Lemma 3.15] to the n-Laplacian. Firstly, we
note that given an eigenvalue A(go) of L g0 With multiplicity m(A(go)), there are a
positive number €},(4),¢, and a neighborhood V¢ in M”, 2 < r < 00, such that for all
g € V¢ one has

> m() = m(A(go)). (3.6)

{IA=A(g0) <3 (g0 .0 }Nspec(Le)

Indeed, equation (3.6) is a consequence of the continuity of a finite system of eigen-
values, see [10, Section 5, Chapter 4]. In this setting, we prove the following generic
result.

Proposition 1. Let (M, g) be a compact Riemannian manifold. Consider a real ana-
Iytic one-parameter family of Riemannian metrics g(t) on M with g = g(0). If A is
an eigenvalue of multiplicity m > 1 for the n-Laplacian L, then there exist ¢ > 0,
scalars Ai(t) (i = 1,...,m), and functions ¢;(t) varying analytically in t such that
Sor all |t| < & the following relations hold:

(1) Leyi(r) = Ai(0)ei(1);
(2) 2i(0) = A;
(3) {¢i(2)} is orthonormal in L*>(M,dm,).

Proof. First, let us consider an extension g(z) of g(¢) to a domain Dg of the complex
plane C. So, we consider the operator

Lg(z):€®(M;C) - €*°(M;C),
which in a local coordinate system is given by

2 f

3xi ij

af  adn df
Tk - 22
i) e ax, y )

Lg(z)f = gij (Z)(

forall f € €*°(M;C), with

U ke(08ic | 9gje  9gij
rk = Loke(98i jt _ 98ij\
=38 (8xj * ax; Bxg)

Now, we observe that the domain D = H?(M) N Hy (M) of the operator Lg(;) is
independent of z, since M is compact, any two metrics are equivalent. Besides, the
application z = L) f is holomorphic for z € D¢ and forevery f € D. Thus, Lg(,)
is a holomorphic family of type (A4) in [10]. Now, we need to prove that the operator
Lg(z) is self-adjoint with fixed inner product. For this purpose, for each ¢, we can
construct an isometry

P:L*(M,dm) — L*(M,dm;)
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4 [Geita (0D
taking, for each u, P(u) = %u. In fact,
et(gij

/P(u)P(v)dmt =/Muvdmt = /uvdm.
M M

J det(zy; (1)

Thus, the operator L  := P71 o L, o P will have the same eigenvalues of
L H*(M,dm,) N Hy (M,dm,) — L*(M,dm,).

But the compactness of M implies that L,is self-adjoint, since

/vljtudm(isgn')/P(v)LtP(u)dm, =/P(u)LtP(v)dmt

M M M
(isgn')/P_lP(u)P_lL,P(v)dmz/uljtvdm.
M M

Under these conditions, we can apply a theorem due to Rellich [13] or in Kato’s [10,
Theorem 3.9] to obtain the result of the proposition. |

We observe that the same result of Proposition 1 holds for the operator L; defined
in (3.5). Now, we will derive the first Hadamard-type variation formula which gener-
alizes substantially one of Berger’s formulas [4].

Proposition 2. Let (M, g) be a compact Riemannian manifold, g(t) be a differ-
entiable variation of the metric g, ¢;(t) € C®°(M) be a differentiable family of
functions, and A(t) be a differentiable family of real numbers such that 1;(0) = A
foreachi =1,...,m and, forallt,

—Li(t) = Xi ()i (t) in M,

¢i(t) =0 on M,
with (¢i (1), $; (1)) 12(M,am,) = Sij- Then the derivative of t > (4;(t) + A;(1))d;; is
given by

1
(i + A;)'85j = / (516008 248 @ dey. H ) dm + / (Vil, V(1)) dm.

M M
3.7

Proof. We begin by proving the case when 7 does not depend on ¢. Differentiating the
equation —L g (t) = Ai(t)¢i(t), wehaveatt =0, —L'¢p; — L] = Ai¢p; + Ai ],
o)

- /(aﬁjL/cbi + g L)) dm= /(A;msj ) dm=A, / by b dm — [ ¢/ Ly dm.
M M M M
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By integration by parts and the fact that ¢; = 0 on M, we obtain
)k;(gij = —/(ﬁle(]ﬁi dm.
M
Thus, writing 5;; = (A} + A), we deduce from Lemma 2
—s8ij8ij = / ¢jL'¢i dm + / ¢iL'¢j dm
M M

= ldh —div, H,¢jd¢; + ¢idep; ) — (H, ¢jV2¢i + ¢ivz¢j) dm,
2

M

and then

1
—sdy = [(3h.d@gp)am = [ g, (v, Hodgo) + (H.V*)) dm

M M

- [ g1 ((divy H.dg;) + (H.V?¢;)) dm.
M

Next, we use Lemma 1 and again the integration by parts formula to get

h

—syby == [ SL@gpam+2 [ H(V4,.V4) dm.
M M

or equivalently

sty = [ (5L@id)¢ — 261 © dgy. ) am.
M

In the general case, we differentiate the equation —L;¢; (f) = A; (¢)¢; () at t = 0 to
obtain

—L'¢i — L] = Ai¢i + Aig;.
So, —L'¢pj — Lp! = Aipi + A;¢; — (V7), V). Thus, we have that

A;Sij = —/¢jL/¢i dm—l—/q&](Vn,Vqﬁl)dm
M M

A calculation analogous to the one above completes the proof. |

Now, we show how to extend for the n-Laplacian a result by El Soufi and Ilias [6,
Corollary 2.1].
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Proposition 3. Let (M, g) be a Riemannian manifold, 2 C M be a bounded domain,
f1:Q — (M, g) be an analytic family of diffeomorphisms from Q to Q; = f;(2) such
that fy is the identity map, and A be an eigenvalue of multiplicity m > 1. Then there
exist an analytic family of m functions ¢; (t) € C*°(;) with (¢; (1), $; (1)) L2(Q, .dm) =
8ij and real numbers A;(t) with A;(0) = A, such that, forallt andi = 1,...,m, they
are solutions for the Dirichlet problem

—Lgi(t) = Ai(D)i (1) inQy,
¢i(1) =0 on 982;.

Moreover, the derivative of the curve t — (A;(t) + A;(t))d;; is given by

0,00,

3.8
dv dv (3.8)

G +A,)/8;) = —2 / (V.v)
Q2

where (V,v) = g(V,v) and V = %|t=0ft'

Proof. We consider the family of metrics g(¢) = f;"g on Q. So, we can apply Propo-
sition 1 for L,. Considering

Li(@i(t) o f1) = Ay(@i() o f1) — (O)(V (0 f1), V(i (1) o f2)),
we obtain ~
Li(¢i(?) o f1)(p) = —Ai()¢i(1) o fe(p).
For ¢; (t) = ¢i(t) o f;, for all t we have (¢; (¢), q_ﬁj (1)) L2(Q.dm;) = dij and

—Li¢i(t) = i (t)pi (1) inQ
$i(t) =0 on 992.

Since ¢; o fo = ¢; and n(t) = n o f;, we have by Proposition 2

h
sty = [ SL@iddm =2 [ H(V9. Vg am+ [ (V0 Vi) am.
Q

Q Q

Recall that H = %|t:0f,*g = &£yg, where V = %|t=0f,. Then

J8) (Vi V) dm

‘t=

| d
o Q
+ /(Vﬁ,v(¢i¢j)>dm

Q
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— [ L@igaivy am=2 [ (Ve V.V4;) dm

Q Q
2 / (Voo V. Vey) dm + / (Vi V(giy)) dm
Q Q

But,
(Vvg, V. V) = div,((V, V) Vi) + AV, V)i — Vi (V, Vy).

Since A = 4;(0) = A4,;(0) and S’%&j = a;;, we have

ajj = —A/(]ﬁi(ﬁj diVVdm+/(V<;b,-,Vqﬁj)didem—/divn((V, V¢])V¢,)dm
Q

Q Q

—A/W, V)i dm+[v2¢j(v, qu,-)dm—/div,,((V, Vi) V) dm
Q

Q Q

1
=3 [ (Vg am+ [ Vguv. Vg am 43 [ (90 9@igp)am
Q

Q Q

S /(qx@ divV + (V. V(i) dm — /<V, Vo) (Vi v) d i
Q

I

—/(V, Vqﬁi)(ngj,v)du+/(ng,-,Vqﬁj)didem—l—/V2¢j(V, V¢,)dm

02 Q Q
1
+ [ Vv vgan -+ [0 9@i0))am
Q Q

As ¢; = 0 on 02, we have V¢; = (V¢;, v)v = ﬂv on 0€2. Moreover,

div,((V¢i, V) V) + (Véi, Vg )(Vn, V)
= div({(V¢i, Vg;) V)
= (V¢i, Vo;) divV + (V(Vei, Vg;). V)
= (V¢;, V) divV + V2; (V, V) + V3¢ (V, V).

So,

aij = —A/dlv(¢,¢]V)dm 2/(1/ )ﬂﬁd +/divn(<V¢i,V¢j>V)dm

aQ Q

1
+ [ (Vi V)V, V) dm + / (Vi Vig;)) dm

Q Q
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It follows that

o d¢; 9 0¢i 0¢;
ajj = A/dlv((j)l(ﬁ]V)dm 2/<V >8v v du+/(V’U) dv v d

0 02

(V5. 4;)(Vn. V) am+3 [ (V.9 (gig,)) dm

Q

34’1 8¢J du—2 / div(¢;¢; V) dm

+

\@\b

9Q
1 .
- / (V1. V,)(Vn. V) dm 3 [ (V. (9} m
Q Q
On the other hand,

0= [ aivy@igyvyam = [ aiviigyvyam— [ g;(n. Vyam
Q

Q Q

Hence,

0¢; 0¢;
ay = = [V s [ (990.98)) ~ 2105) (V. V) dm

Q Q
1 .
+5 [ (0 Vgi) am. (39
Q

Since n(z, p) = no f(t, p) we have

. d d
i=—| _nep="2| @)
d
=dn| | Sep) = dnlp(V) = (VLY.

Next, we use that 4;(0) = A;(0) = A, L(¢;¢;) = ¢iLdp; + ¢; L +2(Ve;, Vo)
and the integration by parts formula to calculate

1 1 1
5 [ @y am == L) am [ i V) d

— /(vn, V)(Apidj — (V. V;)) dm
Q

This computation tells us that the last two terms in (3.9) cancel each other, which
concludes the proof of the proposition. ]
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4. Applications

In this section, we concentrate on the applications of the Hadamard-type formulas.
We first prove the following.

Proposition 4. Let (M, go) be a compact Riemannian manifold and A be an eigen-
value of Lg, for the Dirichlet problem with multiplicity m > 1. Take the positive
number €y, 4, and the neighborhood Ve of go in M as in (3.6). Then, for each open
neighborhood U C 'V, there is g € U such that all eigenvalues A(g) of Lg with
[A(g) — A| < €3¢, are simple.

Proof. We argue by contradiction. Suppose that there is an open neighborhood U C
Ve of go such that for all g € U the eigenvalue A(g) of L, with [A(g) — A| < €3 4,
has multiplicity m > 1. In this case, for any symmetric (0, 2)—tensor 7 on (M, g) the
perturbation g(¢) = g + ¢ T fails to split the eigenvalue A. The eigenvalue curves A(?)
satisfy

—Lgn¢i(t) = A(t)¢i(t) in M,

¢i(t) =0 on IM.

Since H = %g(t) =T and L = L, by Proposition 2 we have

V8 = [(GL@0g — oy ® dgy. T)am.

M

Now, considering the symmetrization tensor S;; =
fact that

4¢i®d9; ;Ld¢j ®4%: and using the

(dpi @ doj, T) = (dp; @ depi, T),
we deduce the identity
, 1
Vo = [(yL@ig — 5,.T)dm.
M
Ifi # j, we have
1
1 L(@idi)g = Sij. (4.1)

Furthermore, taking the trace in equation (4.1), we have
n n
8(Vei. Vi) = L(didj) = Z(¢iL¢j + i Loi +2g(Vi, V;))

= 2(2igy + (Vi V). (42)
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For n # 2 we can write

ni
n—2

i = g(Vi, Vj).

Fixing p € M, we consider an integral curve « in M such that ¢(0) = p and o’ (s) =
Vo, (a(s)). Defining B(s) := ¢;(c(s)), we compute

) ={Vy @(5)),0'(5)) = 8(Vay. V) @) = - iy (a(5)

n

A
b @($)BL).

n

which is a contradiction, since M is compact. For the case n = 2, we have from equa-
tion (4.2) that ¢;¢p; = 0. Then, it follows from the principle of the unique continua-
tion [9] that at least one of the eigenfunctions vanishes, which is again a contradiction.
Therefore, we completed the proof of the proposition. ]

Proposition 5. Let (M, g) be a Riemannian manifold and let Q2 a bounded domain
in M. Let A be an eigenvalue of L g for the Dirichlet problem with multiplicity m > 1.
Take the positive number €, q and the neighborhood Ve of the identity in D" (2) as
in (3.6). Then, for any open neighborhood U C Ve, there is a diffeomorphism f such
that all eigenvalues A(f) with |A(f) — A| < €x,q are simple.

Proof. We also argue by contradiction. Suppose that there is an open neighborhood
U C Ve of the identity such that for all f € U the eigenvalue A(f) of L, with
[A(f) — A| < €x g has multiplicity m > 1. Then, it follows from (3.8) that %% =
0 on 092. In this way, we have either aa—vi =0 or % = 0 in some open set U of
Q. If % = 01in U, since ¢ = 0 on 022, it follows from the unique continuation

principle [9] that ¢; = 0 on 2, which is a contradiction. |

Proof of Theorem 1. Let €, be the set of metrics in M” such that the first m eigen-
values of L, are simple. It is known that if these eigenvalues depend continuously on
the metric (see [3]), then for each m the set €, is open in M". On the other hand, by
Proposition 4 the set €, is dense in M". Since M” is a complete metric space in the
C7 topology, the set I' = (%_, €, is dense. ]

m=1

Proof of Theorem 2. Since D" (2) is an affine manifold in a Banach space, similar
arguments to those above allow us to obtain Theorem 2. ]

Proof of Theorem 3. The proof follows from the analogous steps for the variation of
metrics case. We shall present a brief sketch of the last claim. Indeed, the main tool is
to show a proposition analogous to Proposition 4 for the n-variation case. For this, first
note that from equation (3.7) we get (A; + A;)'8;; = [;,(Vi, V(¢i¢;)) dm. Second,
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by using the integration by parts formula, we obtain 2A'8;; = — [}, 1L,(¢ip;) dm,
since A; = A; = A. Now, we argue as in the proof of the Proposition 4 to get a contra-
diction, namely, the integral [, 7L, (¢i¢;) dm = 0 for all 7 € ¥ . This is equivalent
to g(Vei, Vo;) — Ag;¢; = 0, but nontrivial eigenfunctions cannot satisfy it. Finally,
we can proceed as in the proof of Theorem 1, and this completes our sketch. |

Proof of Theorem 4. Following Teytel’s approach as in Gomes and Marrocos [7, Sec-
tion 5], we define the linear functionals

7yt = [ Ly am.
M

where 77 € ¥ and L; = %|I=OL,7(,) = g(Va, V).

In order to prove (1) and (2), it is enough to verify that there exist two orthonormal
eigenfunctions ¢ and ¢, associated to A such that the functionals f1; — f>, and fi,
are linearly independent, see [7, Remark 2] for details. However, we prove a stronger
condition. Namely, f11, f12, f22 are linearly independent, so that we can apply the
implicit function theorem as in the proof of [14, Theorem 1.1] to get (3) as well.

First of all, we use the integration by parts formula to obtain

fMM=—/MM@%Nm
M
So,

0=oafi1+ Bfiz+vfa= / ALy (¢7) + BLy(P1¢2) + yLy(¢p3)) dm.

M

Whence, we conclude that

a(|Ve1* — 193 + Bg(V1, V) — Ad12) + y(IVa|* — A¢3) = 0.

Now, we can proceed as in [7, Section 5.1] to complete our proof. |
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