
J. Spectr. Theory 14 (2024), 1275–1309
DOI 10.4171/JST/525

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Analysis on the derivative of the discriminant polynomial
for the critical almost Mathieu operator

Hao Sun

Abstract. This article first introduces the discriminant polynomial and the central spectral band
of the critical almost Mathieu operator. The Hardy–Littlewood method and the symbolic coding
of continued fractions are introduced and applied to estimate the first-order and the second-order
derivatives of the discriminant polynomial. Finally, these results are applied to obtain a lower
bound for the measure of the central spectral band.

1. Introduction

Given ˛; �; � 2 R, the almost Mathieu operator is a discrete Schrödinger operator on
`2.Z/ which is defined by

.H�/.n/ D �.nC 1/C �.n � 1/C � cos.2�˛nC �/�.n/:

The condition �D 2 is critical and the critical almost Mathieu operator is also known
as Harper’s equation or the Azbel–Hofstadter model in modern physics. The spectrum
of the almost Mathieu operator �.˛; �; �/ is an important mathematical object with
abundant spectral properties, which are related to number theory and fractal geome-
try. Moreover, the almost Mathieu operator describes the motion of an electron in a
one-dimensional lattice under the potential, and it has deep connections with various
fields of modern physics, such as quasi-crystals and the quantum Hall effect.

The almost Mathieu operator has been a subject of mathematical research.
J. Bellissard and B. Simon applied the integrated density of states and the Baire cat-
egory theorem to construct a dense Gı set of .˛; �/ 2 R2 (see [3]). For any .˛; �/
in this set, they proved that the spectrum �.˛; �; �/ is a Cantor set. A. Avila and
S. Jitomirskaya solved the Ten-Martini problem [1]. They demonstrated that the spec-
trum �.˛;�; �/ is a Cantor set for �¤ 0;˛ 2Qc and � 2R. The measure of the spec-
trum has also been studied. Y. Last demonstrated that j�.˛; �; �/j D j4� 2j�jj, when
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�; � 2 R, and ˛ 2 .0; 1/\Qc can be approximated by a sequence of rationals pn=qn
(n � 1) with q2nj˛ � pn=qnj ! 0 (n!1), see [8]. Jitomirskaya and I. Krasovsky
proved that j�.˛; �; �/j D j4 � 2j�jj for � ¤ ˙2; � 2 R and ˛ 2 .0; 1/ \ Qc ,
see [5]. Avila and R. Krikorian solved the critical condition j�.˛;˙2; �/j D 0,
when � 2 R and ˛ has the constant type [2]. The works [2, 5, 8] completed the
Aubry–André conjecture. The Hausdorff dimension of the spectrum has also been
studied under the critical condition. Last and M. Shamis applied the Green func-
tion to construct a refining family of covering intervals over the spectrum, which
implies dimH .�.˛; 2; �// D 0 for a dense Gı set of ˛ 2 R (see [9]). Jitomirskaya
and Krasovsky proved that dimH .�.˛; 2; �// � 1=2 for ˛ 2 .0; 1/ \Qc and � 2 R

(see [6]). B. Helffer, Q. Liu, Y. Qu, and Q. Zhou constructed a dense subset
F � .0; 1/ \ Qc with positive Hausdorff dimension, and they demonstrated that
dimH .�.˛; 2; �// > 0 for any � 2 R and ˛ 2 F (see [4]).

The discriminant polynomial is an essential notion in the analysis of the critical
almost Mathieu operator, which has a close connection to the spectrum. Krasovsky
applied the Hardy–Littlewood method to derive a bound for the first-order deriva-
tive of the discriminant polynomial when the angular velocity is of the form ˛ D

Œo; e; e; : : : ; e� (see [7]). This article generalizes the method of Krasovsky to obtain a
bound for the first-order and the second-order derivatives under the general condition.
A lower bound for the measure of the central spectral band is also obtained. We intro-
duce the discriminant polynomial and the central spectral band for the critical almost
Mathieu operator in Section 2. We also derive explicit expressions for the derivatives
of the discriminant polynomial (Proposition 2.1). The complete Hardy–Littlewood
method is introduced in Section 3 and Section 4. We introduce the symbolic encoding
of continued fractions in Section 5, which is applied to derive a bound for the first-
order and the second-order derivatives of the discriminant polynomial (Theorem 5.1).
Finally, this result is applied to obtain a lower bound for the measure of the central
spectral band in Section 6 (Corollary 6.4).

2. Derivative of the discriminant polynomial

We first introduce the spectrum and the discriminant polynomial of the critical almost
Mathieu operator. For ˛; � 2 R, the critical almost Mathieu operator is

H W `2.Z/! `2.Z/; � 7! H�;

where
.H�/.n/ D �.nC 1/C �.n � 1/C 2 cos.2�˛nC �/�.n/:

The critical almost Mathieu operator is bounded and self-adjoint. The spectrum of the
operator is denoted by �.˛; �/ � R, which is nonempty and compact. For m; n 2 N,
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we denote by .m;n/ their greatest common divisor. Given ˛D p=q�1 and .p;q/D1,
we can define the discriminant polynomial

D˛.x; �/ D Tr.M˛;� .x; q/M˛;� .x; q � 1/ � � �M˛;� .x; 1//;

where the transition matrix is

M˛;� .x; n/ D

�
x � 2 cos.2�˛nC �/ �1

1 0

�
:

Chambers described the dependence of the discriminant polynomial on � (see [3]),
and we only need to study the special discriminant polynomial �˛.x/DD˛.x;�=2q/.
The spectrum can be described by the discriminant polynomial. The union of the
spectrum �.˛; �/ over � 2R is defined to be S.˛/ and we have S.˛/D ��1˛ .Œ�4; 4�/.
The discriminant polynomial �˛.x/ has q distinct real roots. Around each root, the
preimage of Œ�4; 4� is a closed band. The discriminant polynomial �˛.x/ is an odd
function when q is odd, and it is an even function when q is even. This implies that
these closed bands are symmetric about the origin. When q is odd, the central spectral
band is the closed band containing the origin. When q is even, the origin is a common
endpoint of the left band and the right band. Under this condition, we define the central
spectral band to be the union of the left band and the right band. As we will see, the
measure of the central spectral band can be described by the derivatives � 0˛.0/ and
� 00˛ .0/.

We now calculate the expression for the derivative of the discriminant polynomial.
When p D q D 1, the discriminant polynomial is �˛.x/ D x. We consider the condi-
tion p < q and .p; q/D 1. Given ' D ˛� , we suppose that A is a q-order matrix with
A.n; nC 1/ D A.nC 1; n/ D 2 sin.n'/ (for 1 � n � q � 1) and the other elements
are zero. By the chiral gauge transformation [6], we have �˛.x/ D det.xI � A/. By
the parity of the discriminant polynomial, we have � 0˛.0/ D 0 when q is even and
� 00˛ .0/ D 0 when q is odd. The following proposition completes the expression of the
first-order and the second-order derivatives. Proposition 2.1 (1) summarizes relevant
results in [7], and Proposition 2.1 (2) deals with the second-order condition.

Proposition 2.1. The following statements hold true.

(1) Suppose ˛ D p=q with p < q and .p; q/ D 1. Denote ' D ˛� and let �˛.x/
be the discriminant polynomial of the critical almost Mathieu operator. When
q is odd, we denote r D .q � 1/=2 and we have

j� 0˛.0/j D

rX
D0

eL (1)

where L D
Pr
nD1 2 ln j2 sin.2.nC /'/j.
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(2) Suppose ˛ D p=q with p < q and .p; q/ D 1. Denote ' D ˛� and let �˛.x/
be the discriminant polynomial of the critical almost Mathieu operator. When
q is even, we have

j� 00˛ .0/j D
X

2−�;2j�;1��<��q

2eL�� (2)

where L�� D
P.�;�/
n 2 ln j2 sin.n'/j and the summation is defined by

.�;�/X
n

D

X
2−n;1�n���2

C

X
2jn;�C1�n���2

C

X
2−n;�C1�n�q�1

:

Proof. We supposeP is an .mC 1/-order matrix withP.n;nC 1/DP.nC 1;n/Dan
(for 1 � n � m) and that the other elements are zero. By Laplace’s expansion of the
determinant, we demonstrate det.P / D 0 when m is even and

det.P / D
Y

2−n;1�n�m

.�a2n/

when m is odd. This observation enables us to calculate the derivative of the discrim-
inant polynomial.

(1) Suppose q is odd and denote r D .q � 1/=2: For the determinant det.xI �A/,
we calculate the derivative of the m-th column and take x D 0 (for 1 � m � q). We
thus obtain two submatrices and the determinants of them are nonzero only when m
is odd. We have

� 0˛.0/ D .�1/
r

rX
D0

� Y
nD1

2 sin..2n � 1/'/
rY

nDC1

2 sin.2n'/
�2

and j� 0˛.0/j D
Pr
D0 e

L , where

L D

X
nD1

2 ln j2 sin..2n � 1/'/j C
rX

nDC1

2 ln j2 sin.2n'/j

D

X
nD1

2 ln j2 sin..2n � 1/'/j C
0X

nD�rC1

2 ln j2 sin..2n � 1/'/j

D

rX
nD1

2 ln j2 sin.2.nC /'/j:

The proof of equation (1) is completed.
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(2) Suppose that q is even. The proof is similar to that of (1). By calculating the
derivative of the determinant, we have

� 00˛ .0/ D 2

2−�;2j�X
1��<��q

.�;�/Y
n

.�.2 sin.n'//2/

where
.�;�/Y
n

D

2−nY
1�n���2

�

2jnY
�C1�n���2

�

2−nY
�C1�n�q�1

:

We further have
j� 00˛ .0/j D

X
2−�;2j�;1��<��q

2eL��

where L�� D
P.�;�/
n 2 ln j2 sin.n'/j.

To obtain an upper bound of the derivatives j� 0˛.0/j and j� 00˛ .0/j, we need to esti-
mate the terms L and L�� given in Proposition 2.1. I. Krasovsky derived an upper
bound of L in [7]. We review the method of I. Krasovsky and generalize it to esti-
mate the term L�� . For x 2 .0; �/, we define f .x/ D ln.2 sin.x// and we have
f 2 L2..0; �//. We first calculate the Fourier transformation of f .x/, which is given
in the following proposition.

Proposition 2.2. For x 2 .0;�/, we define the function f .x/D ln.2 sin.x//. We have
f 2 L2..0; �// and its Fourier transformation is

f .x/ D �

1X
nD1

cos.2nx/
n

:

Proof. The set .e2inx/n2Z is an orthogonal basis of the Hilbert space L2..0; �//. We
denote the Fourier transformation by f .x/ D

P
n2Z a.n/e

2inx , where

a.n/ D
1

�

�Z
0

f .x/e�2inx d x D
1

�

�Z
0

ln.2 sin.x// cos.2nx/ d x:

The Fourier transformation is convergent everywhere since f .x/ is smooth on .0; �/.
To calculate the coefficient a.0/, we introduce the integral

I D

�
2Z
0

ln.sin.x// d x D

�
2Z
0

ln.cos.x// d x
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and we have

a.0/ D
1

�

�Z
0

ln.2 sin.x// d x D ln.2/C
1

�

�Z
0

ln.sin.x// d x D ln.2/C
2I

�
:

We consider the integral

�
2Z
0

ln.sin.2x// d x D

�
2Z
0

ln.2/C ln.sin.x//C ln.cos.x// d x D 2I C
� ln.2/
2

; (3)

which is also equal to

�
2Z
0

ln.sin.2x// d x D
1

2

�Z
0

ln.sin.x// d x D

�
2Z
0

ln.sin.x// d x D I: (4)

Combining equations (3) and (4), we obtain I D �� ln.2/=2 and a.0/ D 0. We con-
tinue to calculate other coefficients. Given n � 1, we have

a.˙n/ D �
1

2n�

�Z
0

sin.2nx/ cos.x/
sin.x/

d x

D �
1

2n�

�Z
0

sin..2nC 1/x/C sin..2n � 1/x/
2 sin.x/

d x

D �
1

4n�

�
2� C

nX
mD1

�Z
0

2 cos.2mx/ d x C
n�1X
mD1

�Z
0

2 cos.2mx/ d x
�

D �
1

2n

where we use the identities
nX

mD1

2 sin.x/ cos.2mx/ D
nX

mD1

sin..2mC 1/x/ � sin..2m � 1/x/

D sin..2nC 1/x/ � sin.x/:

Combining the results above, we obtain the Fourier transformation of f .x/.

By the Fourier transformation of f .x/, we can transform the terms L and L��
in Proposition 2.1 to another form. Suppose ˛ D p=q with p < q and .p; q/ D 1.
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We denote ' D ˛� and we first consider the condition when q is odd. Combining
Proposition 2.1 and Proposition 2.2, we obtain

L D �

rX
nD1

1X
mD1

2 cos.4m.nC /'/
m

where r D .q � 1/=2 and 0 �  � r . For 0 �  � r and 1 � m � q � 1, we define

F .m/ D �

rX
nD1

2 cos.4.nC /m'/; S D
q�1X
mD1

F .m/

m
: (5)

We represent m 2 N in the form m D aq C t , where 1 � t � q � 1 for a D 0 and
0 � t � q � 1 for a � 1. We thus obtain the expression

L D

1X
mD1

F .m/

m
D S C

1X
aD1

q�1X
tD0

F .aq C t /

aq C t

D S �

1X
aD1

�q � 1
qa
�
1

q

q�1X
tD1

F .t/

aC t=q

�
: (6)

The following proposition is summarized from [7] which studies properties of the
term F .m/.

Proposition 2.3. Denote ˛ D p=q and ' D ˛� , where p < q; .p; q/ D 1 and q is
odd. For 0 �  � r and 1 � m � q � 1, define F .m/ by equation (5). We have

F .m/ D
cos..4 C 1/m'/

cos.m'/

and
q�1X
mD1

F .m/ D q � 1:

Proof. (1) Given 0��r and 1�m�q � 1, denote �Dm'. We have 1� e4i�¤0.
By direct calculation, we have

F .m/ D �

rX
nD1

Re.2e4i.nC/�/

D Re
�
2e4i�

e2i� � e4i�

1 � e4i�

�
D Re

�e4i.1C/� � e4i.1=2C/� � e4i� C e4i.�1=2/�
cos.4�/ � 1

�
:
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By the trigonometric identities, we also obtain

F .m/ D
cos..4 C 4/�/ � cos..4 C 2/�/ � cos.4�/C cos..4 � 2/�/

cos.4�/ � 1

D
2 sin.�/ sin..4 � 1/�/ � 2 sin.�/ sin..4 C 3/�/

cos.4�/ � 1

D
2 sin.�/ sin.2�/ cos..4 C 1/�/

sin2.2�/
D

cos..4 C 1/�/
cos.�/

:

(2) Given 0 �  � r , we have

q�1X
mD1

F .m/ D �Re
� rX
nD1

q�1X
mD1

2e4i.nC/�
�

D �Re
� rX
nD1

2.e4i.nC/' � e4i.nC/q'/

1 � e4i.nC/'

�
D q � 1;

and the proof is completed.

Suppose ˛ D p=q with p < q and .p; q/ D 1. We now consider the condition
when q is even. Combining Proposition 2.1 and Proposition 2.2, we obtain

L�� D �2

.�;�/X
n

1X
mD1

cos.2nm'/
m

:

Given 1 � m � q � 1 and 1 � � < � � q, we assume � is odd and � is even. We
define

F��.m/ D �

.�;�/X
n

2 cos.2nm'/; S�� D
q�1X
mD1

F��.m/

m
: (7)

Similarly, we representm 2N in the formmD aqC t where 1� t � q � 1 for aD 0
and 0 � t � q � 1 for a � 1. We obtain the expression

L�� D

1X
mD1

F��.m/

m
D S�� C

1X
aD1

q�1X
tD0

F��.aq C t /

aq C t

D S�� �

1X
aD1

�2N��
qa
�
1

q

q�1X
tD1

F��.t/

aC t=q

�
; (8)

where N�� D
P.�;�/
n 1. The following proposition shows the properties of the term

F��.m/.
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Proposition 2.4. Denote ˛ D p=q; ' D ˛� , where p < q; .p; q/ D 1 and q is even.
Given 1 � m � q � 1 and 1 � � < � � q, we assume � is odd and � is even. We
define F��.m/ by equation (7). We have F��.q=2/ D 2� � 2� C q and F��.m/ D
.cos..2�� 1/m'/C cos..2� � 1/m'//=cos.m'/ whenm¤ q=2. Moreover, we have

q�1X
mD1

F��.m/ D 2N�� :

Proof. (1) The calculation is similar to that in Proposition 2.3. Since .p; q/ D 1 and
q is even, we demonstrate that p is odd and we have

F��.q=2/ D �

.�;�/X
n

2 cos.�np/

D 2
�� � 3

2
C 1

�
� 2

�� � � � 3
2

C 1
�
C 2

�q � � � 2
2

C 1
�

D 2� � 2� C q:

We now consider the condition m ¤ q=2. Denote � D m'. We have 1 � e4i� ¤ 0.
We define

G��.m/ D

.�;�/X
n

e2in� ;

and we have F��.m/ D �Re.2G��.m//. By direct calculation, we have

.1 � e4i�/G��.m/ D e
2i�
� e2i�� C e2i.�C1/� � e2i�� C e2i.�C1/� � e2i.qC1/�

D .e2i� � 1/.e2i�� C e2i��/

and
G��.m/ D G�.m/CG�.m/;

where

G�.m/ D
e2i��.e2i� � 1/.1 � e�4i�/

2 � 2 cos.4�/
;

G�.m/ D
e2i��.e2i� � 1/.1 � e�4i�/

2 � 2 cos.4�/
:

We first consider the term G�.m/. By the trigonometric identities, we have

Re.e2i��.e2i� � 1/.1 � e�4i�//

D cos.2.�C 1/�/ � cos.2.� � 1/�/ � cos.2��/C cos.2.� � 2/�/

D 2 sin.2�/.sin.2.� � 1/�/ � sin.2��//
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and we thus obtain

Re.G�.m// D
sin.2.� � 1/�/ � sin.2��/

2 sin.2�/
D �

cos..2� � 1/�/
2 cos.�/

:

Similarly, we have Re.G�.m//D�cos..2� � 1/�/=.2cos.�//. Combining the results
above, we have F��.m/ D .cos..2� � 1/�/C cos..2� � 1/�//= cos.�/.

(2) By direct calculation, we have

q�1X
mD1

F��.m/ D �Re
� q�1X
mD1

.�;�/X
n

2e2in�
�

D �Re
� .�;�/X

n

q�1X
mD1

2e2in�
�
D 2N�� ;

and the proof is completed.

Before we obtain an upper bound of the terms L and L�� , we first review the
definition and the properties of the  -function. Euler’s constant is denoted by

0 D lim
m!1

mX
nD1

1

n
� ln.m/

and we have 0 2 .1=2; 1/. For x > 0, we define the Gamma function and the  -func-
tion

�.x/ D

C1Z
0

tx�1e�t d t;  .x/ D � 0.x/=�.x/:

The  -function has the following properties:

(1) for x > 0, we have  .x C 1/ D  .x/C 1=x;

(2) for x � 0, we have  .x C 1/ D
P1
nD1.1=n � 1=.nC x// � 0;

(3) for x 2 Œ1; 2�, we have  0.x/ � 0 and the function is non-decreasing. Since
 .1/ D �0 and  .2/ D  .1/C 1 D 1 � 0, we also have j .x/j � 0.

Now, we are able to obtain an upper bound of the terms L and L�� in the fol-
lowing theorem.

Theorem 2.5. The following statements hold true.

(1) Given .p; q/ D 1; with q > p and q odd, we denote r D .q � 1/=2. For 0 �
 � r , the definitions of L and S are given by equations (1) and (5). We
have

L � 0.ln.q/C 2/C jS j:
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(2) Suppose .p;q/D 1, with q >p and q even. Given 1��<� � q, we assume�
is odd and � is even. The definitions ofL�� and S�� are given by equations (2)
and (7). We have

L�� � 20.ln.q/C 3/C jS�� j:

Proof. (1) We first assume q is odd and we take 0�  � r . The proof is an application
of the  -function and equation (6). For x � 0, the properties of the  -function show
that

lim
m!1

mX
nD1

1

nC x
� ln.m/ D lim

m!1

mX
nD1

� 1

nC x
�
1

n

�
C lim
m!1

mX
nD1

1

n
� ln.m/

D � .x C 1/: (9)

Combining equations (6) and (9), we obtain

L � S

D � lim
m!1

�q � 1
q

� mX
nD1

1

n
� ln.m/

�
�
1

q

q�1X
tD1

F .t/
� mX
nD1

1

nC t
q

� ln.m/
��

D �
0.q � 1/

q
�
1

q

q�1X
tD1

F .t/ 
�
1C

t

q

�
; (10)

where Proposition 2.3 is applied. We need to estimate the summation in equation (10).
Since we have j .x/j � 0.x 2 Œ1; 2�/, we obtain the inequalityˇ̌̌1

q

q�1X
tD1

F .t/ 
�
1C

t

q

�ˇ̌̌
�
0

q

q�1X
tD1

jF .t/j �
0

q

q�1X
tD1

1ˇ̌
cos
�
�tp
q

�ˇ̌ :
Note that j cos.�tp=q/j D j cos.�.tp .mod q//=q/j. By the condition .p; q/ D 1, we
also obtain

0

q

q�1X
tD1

1ˇ̌
cos
�
�tp
q

�ˇ̌ D 0

q

q�1X
tD1

1ˇ̌
cos
�
�t
q

�ˇ̌ D 20

q

rX
tD1

1ˇ̌
cos
�
�t
q

�ˇ̌
D
20

q

r�1X
tD0

1ˇ̌
cos
�
�.r�t/
q

�ˇ̌ D 20

q

r�1X
tD0

1ˇ̌
sin
�
�.2tC1/
2q

�ˇ̌
D
40

q

r�1X
tD0

1

j1 � ei�.2tC1/=qj
:

By the inequality 2x � j1 � ei�xj.x 2 Œ0; 1�/, we have

40

q

r�1X
tD0

1

j1 � ei�.2tC1/=qj
� 0

r�1X
tD0

1

t C 1
2

� 0

�
2C

r�1Z
0

1

x C 1
2

d x
�

� 0.ln.q/C 2/:
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Combining the results above, we have

L � S �

q�1X
tD1

F .t/ 
�
1C t

q

�
q

� 0.ln.q/C 2/C jS j:

(2) We now assume q is even and the proof is similar to that in (1). Given 1 �
� < � � q, we assume � is odd and � is even. Combining equations (8) and (9), we
have

L�� � S��

D � lim
m!1

�2N��
q

� mX
nD1

1

n
� ln.m/

�
�
1

q

q�1X
tD1

F��.t/
� mX
nD1

1

nC t
q

� ln.m/
��

D �
2N��0

q
�
1

q

q�1X
tD1

F��.t/ 
�
1C

t

q

�
:

By Proposition 2.4, we also have the inequalityˇ̌̌1
q

q�1X
tD1

F��.t/ 
�
1C

t

q

�ˇ̌̌
�
0

q

q�1X
tD1

jF��.t/j

�
0

q

�
j2� � 2� C qj C

q�1X
tD1;t¤q=2

2ˇ̌
cos
�
�tp
q

�ˇ̌�
�
0

q

�
3q C

q�1X
tD1;t¤q=2

2ˇ̌
cos
�
�tp
q

�ˇ̌�:
Similar to the method in (1), we obtain

0

q

q�1X
tD1;t¤q=2

1ˇ̌
cos
�
�t
q

�ˇ̌ D 20

q

q=2�1X
tD1

1ˇ̌
sin
�
�t
q

�ˇ̌ D 40

q

q=2�1X
tD1

1

j1 � e2i�t=qj

� 0

q=2�2X
tD0

1

t C 1
� 0

�
1C

q=2�2Z
0

1

x C 1
d x
�

� 0.1C ln.q//:

Combining the results above, we have L�� � S�� �
Pq�1
tD1 F��.t/ .1C t=q/=q �

20.ln.q/C 3/C jS�� j and the proof is completed.
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3. Hardy–Littlewood method (I)

To obtain an upper bound of the derivatives j� 0˛.0/j and j� 00˛ .0/j, Theorem 2.5 shows
that we need to estimate the terms jS j and jS�� j. I. Krasovsky applied the Hardy–
Littlewood method to estimate the term jS j (see [7, 10]). In this section, we review
and generalize the method of Krasovsky to estimate the term jS�� j, which relies on
a recursive computation of contour integrals. We first introduce some fundamental
definitions.

(1) Suppose .p; q/ D 1, q � p, and 2 2 Œp=q; 2C p=q�. The contour

�.q/ D �1.q/ [ �2.q/

consists of an upper line and a lower line which are given by

�1.q/ D 2�i
�
q �

1

4

�
CR; �2.q/ D

�i

2
CR:

The upper line �1.q/ is oriented fromC1 to�1 and the lower line �2.q/ is oriented
from �1 toC1. We define the integral

I.p; q; / D �2

Z
�.q/

e.1Cp=q/z

.1C epz=q/.1 � ez/

e�z

z
d z: (11)

Note that .1 C epz=q/.1 � ez/ ¤ 0 when z 2 �.q/. Let x > 0 and suppose zC D
2�i.q � 1=4/C x 2 �1.q/ or zC D .1=2/�i C x 2 �2.q/. When x is large enough,
we have ˇ̌̌ e.1Cp=q/zC

.1C epzC=q/.1 � ezC/

e�zC

zC

ˇ̌̌
.
e�x

x
: (12)

We also suppose z� D 2�i.q � 1=4/ � x 2 �1.q/ or z� D .1=2/�i � x 2 �2.q/.
When x is large enough, we haveˇ̌̌ e.1Cp=q/z�

.1C epz�=q/.1 � ez�/

e�z�

z�

ˇ̌̌
.
e�.1Cp=q�/x

x
: (13)

Inequalities (12) and (13) prove that the integral I.p; q; / is well defined.
(2) Given .p; q/ D 1; q � p; ı 2 ¹0; 1º and 2 2 Œp=q; 2 C p=q�, the contour

�.q/ and its orientation have been given in (1). We define the integral

J.p; q; ; ı/ D 2

Z
�.q/

.�1/ıe.1Cp=q/z

.1 � .�1/ıepz=q/.1C ez/

e�z

z
d z: (14)

Note that .1 � .�1/ıepz=q/.1C ez/ ¤ 0 when z 2 �.q/. Similar to inequalities (12)
and (13), we show that the integral J.p; q; ; ı/ is well defined.
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(3) Suppose .p;q/D1, q�p, and 2R. When q is odd, we have cos.�np=q/¤0
(for 1 � n � q � 1), and we can define

S.p; q; / D

q�1X
nD1

e�inp=q�2�in

n cos
�
�np
q

� :

When q is even, we define

S 0.p; q; / D

q�1X
nD1;n¤q=2

e�inp=q�2�in

n cos
�
�np
q

�
and the denominator is also nonzero.

(4) Suppose .p;q/D 1, q�p,  2R, and ı 2 ¹0;1º. If q is even or 2 j .p� 1C ı/,
we can define

T .p; q; ; ı/ D

qX
nD1

.�1/ıe2�i.n�1=2/p=q

1 � .�1/ıe2�i.n�1=2/p=q
2e�2�i.n�1=2/

n � 1
2

:

Note that the denominator 1 � .�1/ıe2�i.n�1=2/p=q is nonzero and T .p; q; ; ı/ is
well defined. If q is odd, we can define

T 0.p; q; ; ı/ D

qX
nD1;n¤.qC1/=2

.�1/ıe2�i.n�1=2/p=q

1 � .�1/ıe2�i.n�1=2/p=q
2e�2�i.n�1=2/

n � 1
2

and the denominator is also nonzero.
(5) Given ı 2 ¹0;1º, we say that .p;q/2N2 satisfies the ı-condition if (i) p is odd

when ı D 0 and (ii) p; q have different parities when ı D 1. We say that .p; q/ 2 N2

satisfies the ı0-condition if (i) p is even when ı D 0 and (ii) p; q have the same parity
when ı D 1.

To utilize the Hardy–Littlewood method, we first derive an upper bound of the
integrals jI.p; q; /j and jJ.p; q; ; ı/j. We then calculate the residues of the integrals
inside the contour �.q/, which displays the relation between I.p; q; /; J.p; q; ; ı/
and S.p; q; /; T .p; q; ; ı/ (or S 0.p; q; /; T 0.p; q; ; ı/). We thus obtain an upper
bound for jS.p; q; /j; jT .p; q; ; ı/j and jS 0.p; q; /j; jT 0.p; q; ; ı/j. In this sec-
tion, we complete the analysis on the integral I.p; q; /; the analysis on the integral
J.p; q; ; ı/ will be given in the next section. We start with the estimate of the integral
jI.p; q; /j.

Proposition 3.1 (following [7]). Given .p; q/D 1, q � p, and 2 2 Œp=q; 2C p=q�,
we define the integral I.p; q; / by equation (11). We have

jI.p; q; /j � 4 ln
� q
p

�
C

6

�p
C ˇ;
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where ˇ D 4.e�1 C arcsinh.4=�//.

Proof. Denote the integral along the lower line by I2 D IC C I�, where IC is the
integral along the positive half-line and I� is the integral along the negative half-line.
Denote z D .1=2/�i C x. We have

jICj � 2

C1Z
0

ˇ̌̌ e.1Cp=q/z

.1C epz=q/.1 � ez/

e�z

z

ˇ̌̌
d x

D 2

C1Z
0

1

je�pz=q C 1jje�z � 1j

e�xq
x2 C �2

4

d x

D 2

C1Z
0

1p
1C e�2xp=q C 2e�px=q cos.�/

p
1C e�2x

e�xq
x2 C �2

4

d x (15)

where � D p�=.2q/. Denote z D .1=2/�i � x. We also have

jI�j � 2

C1Z
0

ˇ̌̌ e.1Cp=q/z

.1C epz=q/.1 � ez/

e�z

z

ˇ̌̌
d x

D 2

C1Z
0

1

j1C epz=qjj1 � ezj

e�.1Cp=q�/xq
x2 C �2

4

d x

D 2

C1Z
0

1p
1C e�2xp=q C 2e�px=q cos.�/

p
1C e�2x

e�.1Cp=q�/xq
x2 C �2

4

d x: (16)

Note that cos.�/ � 0 and 2 2 Œp=q; 2C p=q�. Combining inequalities (15) and (16),
we obtain

jI2j � jICj C jI�j

� 4

C1Z
0

�
x2 C

�2

4

��1=2
e�px=.2q/ d x

D 4

C1Z
0

�
u2 C

�p�
4q

�2��1=2
e�u du

� 4

� 1Z
0

�
u2 C

�p�
4q

�2��1=2
duC

�
1C

�p�
4q

�2��1=2 C1Z
1

e�u du
�
:
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By the transformation u D p� tan.�/=.4q/, we also obtain

jI2j � 4
�

ln
�
1C

�
1C

�p�
4q

�2�1=2�
� ln

�p�
4q

�
C e�1

�
1C

�p�
4q

�2��1=2�
� 4

�
ln
�
1C

�
1C

��
4

�2�1=2�
� ln

��
4

�
C ln

� q
p

�
C e�1

�
1C

�p�
4q

�2��1=2�
� 4 ln

� q
p

�
C ˇ:

We use similar methods to estimate the integral along the upper line. We denote I1 D
IC C I� where IC is the integral along the positive half-line and I� is the integral
along the negative half-line. Let z D 2�i.q � 1=4/C x. We have

jICj � 2

C1Z
0

ˇ̌̌ e.1Cp=q/z

.1C epz=q/.1 � ez/

e�z

z

ˇ̌̌
d x

� 2

C1Z
0

1

je�pz=q C 1jje�z � 1j

e�xq
x2 C 4�2

�
q � 1

4

�2 d x

D 2

C1Z
0

1p
1C e�2xp=q C 2e�px=q cos.�/

p
1C e�2x

e�xq
x2 C 4�2

�
q � 1

4

�2 d x:

Let z D 2�i.q � 1=4/ � x. We also have

jI�j � 2

C1Z
0

ˇ̌̌ e.1Cp=q/z

.1C epz=q/.1 � ez/

e�z

z

ˇ̌̌
d x

� 2

C1Z
0

1

jepz=q C 1jjez � 1j

e�.1Cp=q�/xq
x2 C 4�2

�
q � 1

4

�2 d x

D 2

C1Z
0

1p
1C e�2xp=q C 2e�px=q cos.�/

p
1C e�2x

e�.1Cp=q�/xq
x2 C 4�2

�
q � 1

4

�2 d x:

Combining the inequalities above, we obtain

jI1j � jICj C jI�j � 4

C1Z
0

�
x2 C 4�2

�
q �

1

4

�2��1=2
e�px=.2q/ d x

D 4

C1Z
0

�
u2 C

�
p�
�
1 �

1

4q

��2��1=2
e�u du �

6

�p
:
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Combining the results above, we have jI.p; q; /j � 4 ln.q=p/C 6=.�p/C ˇ, and
the proof is completed.

To show the relation between I.p; q; / and S.p; q; /, we now calculate the
residues of the integral I.p; q; / inside the contour �.q/. The following proposition
is essential in the Hardy–Littlewood method.

Proposition 3.2 (following [7]). Given .p; q/D 1, q > p, and 2 2 Œp=q; 2C p=q�,
suppose q is odd and

p

q
D

1

aC p0

q0

(17)

where .p0; q0/D 1;q0 � p0 and a 2N. The pair .p0; q0/ satisfies the .a .mod2//-con-
dition and

I.p; q; / D S.p; q; / � .�1/"T .p0; q0;  0; a .mod 2//

where  0 � q=p 2 Z and " D j 0 � q=pj .mod 2/.

Proof. By equation (17), we have p.aq0 C p0/ D qq0. This shows that q0 j p and
p j q0, and we thus have q0 D p. Since aq0 C p0 D q, we prove that p0 is odd when
a is even, and that p0 and q0 have different parities when a is odd. Therefore, .p0; q0/
satisfies the .a .mod 2//-condition. Given � > 0, we define the path

�1.�/ D
h
2�i

�
q �

1

4

�
� �; 2�i

�
q �

1

4

�
C �

i
;

�2.�/ D
h1
2
�i � �;

1

2
�i C �

i
;

�3.�/ D
h1
2
�i � �; 2�i

�
q �

1

4

�
� �

i
;

�4.�/ D
h1
2
�i C �; 2�i

�
q �

1

4

�
C �

i
;

and the contour is �.�/ D
S4
iD1 �i .�/ which has the positive orientation. We define

I.�/D
P4
iD1 Ii .�/, where Ii .�/ is the integral along �i .�/. When � is large enough,

we have

jI3.�/j .
e�.1Cp=q�/�

�
; jI4.�/j .

e��

�
;

which shows that I.p; q; / D lim�!C1 I.�/. By the residue theorem, the integral
I.�/ is determined by the poles inside the contour. By direct calculation, the poles of
the integrand are

zm D 2�im; z0n D 2�i
�
n �

1

2

� q
p
;
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where 1 � m � q � 1 and 1 � n � p. Since .p; q/ D 1 and q is odd, the poles are
distinct and we now calculate the residues. For 1 � m � q � 1, we have

Res.zm/ D
�

lim
z!zm

z � zm

1 � ez

� e2�im.1Cp=q�/

2�im.1C e2�imp=q/
D �

e2�im.p=q�/

2�im.1C e2�imp=q/
:

We denote by R1 the contribution of these poles to the integral I.p; q; /. We have

R1 D �

q�1X
mD1

4�i � Res.zm/ D
q�1X
mD1

2e�imp=q�2�im

m.e�imp=q C e��imp=q/
D S.p; q; /: (18)

Now, we calculate the residues of z0n.1 � n � p/. By direct calculation, we have

Res.z0n/ D
�

lim
z!z0n

z � z0n

1C epz=q

�e.1Cp=q�/z0n
z0n.1 � e

z0n/
D

qe.1�/z
0
n

pz0n.1 � e
z0n/
:

Denote by R2 the contribution of these poles to the integral. We have

R2 D �

pX
nD1

4�i � Res.z0n/ D �2
pX
nD1

e2�i.1�/.n�1=2/q=p

.1 � e2�i.n�1=2/q=p/
�
n � 1

2

�
D �2

pX
nD1

e2�i.n�1=2/.aCp
0=q0/

1 � e2�i.n�1=2/.aCp
0=q0/

e�2�i.n�1=2/.kC
0/

n � 1
2

D �.�1/"T .p0; q0;  0; a .mod 2//; (19)

where k D q=p �  0. Combining equations (18) and (19), we obtain

I.p; q; / D R1 CR2 D S.p; q; / � .�1/
"T .p0; q0;  0; a .mod 2//

and the proof is completed.

Proposition 3.3 is a special condition of Proposition 3.2, which completes the
relation between I.p; q; / and S.p; q; /.

Proposition 3.3. Suppose that a 2 N is odd and 2 2 Œ1=a; 2C 1=a�. Then we have

I.1; a; / D S.1; a; /C 2e��ia :

Proof. Similar to Proposition 3.2, the integral I.1; a; / is determined by the poles
inside the contour. When a D 1, the fraction .1 � ez/�1 has no pole and we have
S.1; 1; / D 0 by the previous definition. When a � 2, the poles of the fraction
.1 � ez/�1 are given by zm D 2�im (for 1 � m � a � 1). Similar to the compu-
tation in Proposition 3.2, the contribution of these poles to the integral I.1; a; / is
R1 D S.1; a; /. The only pole of the fraction .1C ez=a/�1 is z0 D �ia and we have
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Res.z0/ D �e��ia=.2�i/. Denote by R2 the contribution of the pole z0. Combining
the results above, the integral is

I.1; a; / D R1 CR2 D S.1; a; / � 4�i � Res.z0/ D S.1; a; /C 2e��ia

and the proof is completed.

To complete the Hardy–Littlewood method, we also need to consider the rela-
tion between I.p; q; / and S 0.p; q; /, which is essential for the estimate of the
second-order derivative j� 00˛ .0/j. The calculation is similar to that in Proposition 3.2
and Proposition 3.3, but the central pole inside the contour is second-order under this
condition.

Proposition 3.4. Given .p; q/ D 1; q > p and 2 2 Œp=q; 2 C p=q�, suppose q is
even and

p

q
D

1

aC p0

q0

(20)

where .p0; q0/D1; q0�p0 and a2N. The pair .p0; q0/ satisfies the .a .mod 2//0-con-
dition and

I.p; q; / D R.p; q; /C S 0.p; q; / � .�1/"T 0.p0; q0;  0; a .mod 2//

where jR.p; q; /j � 12;  0 � q=p 2 Z and " D j 0 � q=pj .mod 2/.

Proof. Equation (20) shows that q0 D p and aq0 C p0 D q. Thus q0 is odd, since
.p; q/D 1 and q is even. Similar to Proposition 3.2, we prove that .p0; q0/ satisfies the
.a .mod2//0-condition. The poles of .1� ez/�1 are zm D 2�im (for 1 �m � q � 1)
and the poles of .1C epz=q/�1 are z0n D 2�i.n � 1=2/q=p (for 1 � n � p). These
poles are distinct except zm D z0n when m D q=2 and n D .p C 1/=2. The central
pole

z0 D zq=2 D z
0
.pC1/=2 D �iq

is second order and the other poles are of first order. To calculate I.p;q; /, we denote
by R1 the contribution of the poles zm (for 1 � m � q � 1 and m ¤ q=2) and by R2
the contribution of the poles z0n (for 1� n� p and n¤ .pC 1/=2). We also denote by
R3 the contribution of the central pole z0. By a calculation similar to Proposition 3.2,
we obtain

R1 D

q�1X
mD1;m¤q=2

�4�i � Res.zm/ D S 0.p; q; /;

R2 D

pX
nD1;n¤.pC1/=2

�4�i � Res.z0n/ D �.�1/
"T 0.p0; q0;  0; a .mod 2//:
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We have R3 D �4�i � Res.z0/ and we now calculate the residue of z0. We assume
that the expansions around the central pole z0 are

z�1e.1Cp=q�/z D

1X
nD0

an.z � z0/
n;

.1C epz=q/�1 D

1X
nD�1

bn.z � z0/
n;

.1 � ez/�1 D

1X
nD�1

cn.z � z0/
n:

We calculate the coefficients in the expansions. We have a0 D e.1Cp=q�/z0z�10 and

a1 D .z
�1e.1Cp=q�/z/0jzDz0 D z

�2
0 e.1Cp=q�/z0

��
1C

p

q
� 

�
z0 � 1

�
:

By direct computation, we obtain

b�1 D lim
z!z0

z � z0

1C epz=q
D �q=p;

c�1 D lim
z!z0

z � z0

1 � ez
D �1;

and

b0 D lim
z!z0

� z � z0

1C epz=q

�0
D
1

2
;

c0 D lim
z!z0

�z � z0
1 � ez

�0
D
1

2
:

Combining the results above, we obtain

Res.z0/ D a1b�1c�1 C a0.b�1c0 C b0c�1/ D a1
q

p
� a0

1C q
p

2
:

We now derive an upper bound of the residue jRes.z0/j. We have ja0j D 1=.�q/ and

ja1j �
1C �q

ˇ̌
1C p

q
� 

ˇ̌
.�q/2

�
1C �q

�
1C p

2q

�
.�q/2

�
2

�q
;

which implies jRes.z0/j � 2=.�p/C .1=q C 1=p/=.2�/ � 3=� and jR3j � 12. Let
R.p; q; / D R3. We have

I.p; q; / D R1 CR2 CR3

D R.p; q; /C S 0.p; q; / � .�1/"T 0.p0; q0;  0; a .mod 2//:

The proof is completed.
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Proposition 3.5. Suppose that a 2 N is even and 2 2 Œ1=a; 2C 1=a�, then

I.1; a; / D R.1; a; /C S 0.1; a; /;

where jR.1; a; /j � 12.

Similar to Proposition 3.3, we also need to show the relation between I.p; q; /
and S 0.p; q; / under another special condition. This is accomplished in Proposi-
tion 3.5 and the proof is omitted. We can obtain the explicit expression of R.p; q; /
in Proposition 3.4 and Proposition 3.5, but this is not necessary.

4. Hardy–Littlewood bethod (II)

In this section, we continue to introduce the Hardy–Littlewood method. We derive an
upper bound for jJ.p; q; ; ı/j and calculate the residues inside the contour �.q/. We
also consider the relation between J.p; q; ; ı/ and T .p; q; ; ı/; T 0.p; q; ; ı/. The
method is similar to that in Section 3.

Proposition 4.1 (following [7]). Given .p; q/ D 1, q � p; 2 2 Œp=q; 2C p=q�, and
ı 2 ¹0; 1º, the integral J.p; q; ; ı/ is defined by equation (14). We have

jJ.p; q; ; ı/j � Aı

�
4 ln

q

p
C

6

�p
C ˇ

�
where A0 D .sin.�p=.2q///�1, A1 D 1, and ˇ D 4.e�1 C arcsinh.4=�//.

Proof. Denote the integral along the lower line by J2 D JC C J�, where JC is the
integral along the positive half-line and J� is the integral along the negative half-line.
Denote z D �i=2C x: We have

jJCj � 2

C1Z
0

ˇ̌̌ .�1/ıe.1Cp=q/z

.1 � .�1/ıepz=q/.1C ez/

e�z

z

ˇ̌̌
d x

D 2

C1Z
0

1

je�pz=q � .�1/ı jje�z C 1j

e�xq
x2 C �2

4

d x

D 2

C1Z
0

1p
1C e�2xp=q � 2.�1/ıe�px=q cos.�/

p
1C e�2x

e�xq
x2 C �2

4

d x;
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where � D p�=.2q/. Denote z D �i=2 � x: We have

jJ�j � 2

C1Z
0

ˇ̌̌ .�1/ıe.1Cp=q/z

.1 � .�1/ıepz=q/.1C ez/

e�z

z

ˇ̌̌
d x

� 2

C1Z
0

1

j1 � .�1/ıepz=qjj1C ezj

e�.1Cp=q�/xq
x2 C �2

4

d x

D 2

C1Z
0

1p
1C e�2xp=q � 2.�1/ıe�px=q cos.�/

p
1C e�2x

e�.1Cp=q�/xq
x2 C �2

4

d x:

Note that 2 2 Œp=q; 2C p=q� and .1C e�2xp=q � 2.�1/ıe�px=q cos.�//�1=2 � Aı .
Combining the inequalities above, we obtain

jJ2j � jJCj C jJ�j

� 2

C1Z
0

e�x C e�.1Cp=q�/xp
1C e�2xp=q � 2.�1/ıe�px=q cos.�/

p
1C e�2x

1q
x2 C �2

4

d x

� 4Aı

C1Z
0

�
x2 C

�2

4

��1=2
e�px=.2q/ d x � Aı

�
4 ln

q

p
C ˇ

�
:

We now consider the integral along the upper line and denote J1 D JC C J�, where
JC is the integral along the positive half-line and J� is the integral along the negative
half-line. Denote z D 2�i.q � 1=4/C x: We have

jJCj � 2

C1Z
0

ˇ̌̌ .�1/ıe.1Cp=q/z

.1 � .�1/ıepz=q/.1C ez/

e�z

z

ˇ̌̌
d x

� 2

C1Z
0

1

je�pz=q � .�1/ı jje�z C 1j

e�xq
x2 C 4�2

�
q � 1

4

�2 d x

D

C1Z
0

2p
1C e�2xp=q � 2.�1/ıe�px=q cos.�/

p
1C e�2x

�
e�xq

x2 C 4�2
�
q � 1

4

�2 d x:
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Denote z D 2�i.q � 1=4/ � x. We also have

jJ�j � 2

C1Z
0

ˇ̌̌ .�1/ıe.1Cp=q/z

.1 � .�1/ıepz=q/.1C ez/

e�z

z

ˇ̌̌
d x

� 2

C1Z
0

1

j1 � .�1/ıepz=qjjez C 1j

e�.1Cp=q�/xq
x2 C 4�2

�
q � 1

4

�2 d x

D

C1Z
0

2p
1C e�2xp=q � 2.�1/ıe�px=q cos.�/

p
1C e�2x

�
e�.1Cp=q�/xq
x2 C 4�2

�
q � 1

4

�2 d x:

Combining the inequalities above, we obtain

jJ1j � jJCj C jJ�j � 4Aı

C1Z
0

.x2 C 4�2.q � 1=4/2/�1=2e�px=.2q/ d x �
6Aı

�p

and we have jJ.p; q; ; ı/j � jJ1j C jJ2j � Aı.4 ln.q=p/C 6=.�p/C ˇ/.

To prove the relation between J.p; q; ; ı/ and T .p; q; ; ı/, we now calculate
the residues of the integral J.p; q; / inside the contour �.q/. Proposition 3.2 and
Proposition 4.2 enable us to obtain an upper bound of the first-order derivative j� 0˛.0/j.

Proposition 4.2 (following [7]). Given .p; q/ D 1; q > p, 2 2 Œp=q; 2C p=q�, and
ı 2 ¹0; 1º, we suppose that .p; q/ satisfies the ı-condition and that

p

q
D

1

aC p0

q0

; (21)

where .p0; q0/ D 1; q0 � p0 and a 2 N. We claim that q0 is odd when ı D 0, and
.p0; q0/ satisfies the .aC 1 .mod 2//-condition when ı D 1. We also have

J.p; q; ; ı/ D T .p; q; ; ı/C

´
�S.p0; q0;  0/; ı D 0;

.�1/"T .p0; q0;  0; aC 1 .mod 2//; ı D 1;

where  0 � q=p 2 Z and " D j 0 � q=pj .mod 2/.

Proof. Equation (21) shows that q0 j p and p j q0, and we thus have q0 D p. We also
obtain aq0 C p0 D q. We claim that q0 is odd when ı D 0. When ı D 1, we claim that
.p0; q0/ satisfies the .aC 1 .mod 2//-condition since p and q have different parities.
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Similar to Proposition 3.2, the integral J.p; q; ; ı/ is determined by the poles inside
the contour. The poles of the fraction .1C ez/�1 are zm D 2�i.m � 1=2/ (for 1 �
m� q). When ıD 0, the poles of the fraction .1� .�1/ıepz=q/�1 are z0nD 2�inq=p
(for 1 � n � p � 1). When ı D 1, the poles of the fraction .1 � .�1/ıepz=q/�1 are
z0n D 2�i.n � 1=2/q=p (for 1 � n � p). By the ı-condition, these poles are distinct
and we now calculate the residues.

(1) For 1 � m � q, we have

Res.zm/ D
�

lim
z!zm

z � zm

1C ez

� .�1/ıe.1Cp=q�/zm

zm.1 � .�1/ıepzm=q/
D

.�1/ıe.p=q�/zm

zm.1 � .�1/ıepzm=q/

and the contribution of these poles to the integral is

R1 D

qX
mD1

4�i � Res.zm/ D
qX

mD1

.�1/ıe2�i.m�1=2/p=q

1 � .�1/ıe2�i.m�1=2/p=q
2e�2�i.m�1=2/

m � 1
2

D T .p; q; ; ı/:

(2) We first consider the condition ı D 0. When p D 1, we have q0 D 1 and
the fraction .1 � .�1/ıepz=q/�1 has no pole inside the contour. We also have
S.p0; 1;  0/ D 0 by definition. We now assume p � 2 and calculate the residues. For
1 � n � p � 1, we have

Res.z0n/ D
�

lim
z!z0n

z � z0n

1 � epz=q

�e.1Cp=q�/z0n
z0n.1C e

z0n/
D �

qe.1�/z
0
n

pz0n.1C e
z0n/
:

The contribution of these poles to the integral J.p; q; ; ı/ is

R2 D

p�1X
nD1

4�i � Res.z0n/ D �2
p�1X
nD1

e2�in.1�/.aCp
0=q0/

n.1C e2�in.aCp
0=q0//

D �

p�1X
nD1

e�in.p
0=q0�2 0/

n cos
�
�np0

q0

�
D �S.p0; q0;  0/:

(3) We now consider the condition ı D 1. The calculation of residues is similar
and we have

R2 D

pX
nD1

4�i � Res.z0n/ D .�1/
"C1

pX
nD1

e2�i.n�1=2/.aCp
0=q0/

1C e2�i.n�1=2/.aCp
0=q0/

2e�2�i.n�1=2/
0

n � 1
2

D .�1/"T .p0; q0;  0; aC 1 .mod 2//:

Combining the results in (1)–(3), we have

J.p; q; ; ı/ D T .p; q; ; ı/C

´
�S.p0; q0;  0/; ı D 0;

.�1/"T .p0; q0;  0; aC 1 .mod 2//; ı D 1;

and the proof is completed.
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Similar to the analysis in Section 3, we also need to study the relation between
J.p; q; ; ı/ and T .p; q; ; ı/ under another special condition, which is accomplished
in the following proposition.

Proposition 4.3. Given a 2 N and 2 2 Œ1=a; 2C 1=a�, suppose that .1; a/ satisfies
the ı-condition. We have

J.1; a; ; ı/ D T .1; a; ; ı/ �

´
0; ı D 0;

2e��ia ; ı D 1:

Proof. The integral J.1;a;;ı/ is determined by the poles inside the contour. We need
to calculate the residues. The poles of the fraction .1C ez/�1 are zmD 2�i.m� 1=2/
(for 1 � m � a). Similar to the computation in Prorposition 3.2, the contribution
of these poles to the integral is R1 D T .1; a; ; ı/. When ı D 0, then the fraction
.1 � .�1/ıepz=q/�1 has no pole inside the contour and the contribution is R2 D 0.
When ı D 1, then the only pole of this fraction is z0 D �ia and the residue is

Res.z0/ D �
�

lim
z!�ia

z � �ia

1C ez=a

� e.1C1=a�/�ia
�ia.1C e�ia/

D �
e��ia

2�i
:

The contribution of this pole to the integral isR2 D�2e��ia . Combining the results
above, we have

J.1; a; ; ı/ D R1 CR2 D T .1; a; ; ı/ �

´
0; ı D 0;

2e��ia ; ı D 1;

and the proof is completed.

To estimate the second-order derivative j� 00˛ .0/j, we also need to consider the
relation between J.p; q; ; ı/ and T 0.p; q; ; ı/. Different from the proof of Proposi-
tion 4.2 and Proposition 4.3, the central pole is of second order under this condition.

Proposition 4.4. Given .p; q/ D 1, q > p, ı 2 ¹0; 1º, and 2 2 Œp=q; 2C p=q�, we
suppose that .p; q/ satisfies the ı0-condition and that

p

q
D

1

aC p0

q0

(22)

where .p0; q0/D 1, q0 � p0, and a 2N. We claim that q0 is even when ı D 0, and that
.p0; q0/ satisfies the .aC 1 .mod 2//0-condition when ı D 1. We also have

J.p; q; ; ı/ D Q.p; q; ; ı/C T 0.p; q; ; ı/

C

´
�S 0.p0; q0;  0/; ı D 0;

.�1/"T 0.p0; q0;  0; aC 1 .mod 2//; ı D 1;

where jQ.p; q; ; ı/j � 12,  0 � q=p 2 Z, and " D j 0 � q=pj .mod 2/.
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Proof. Similar to the proof of Proposition 4.2, equation (22) shows q0 is even when
ı D 0, and .p0; q0/ satisfies the .aC 1 .mod 2//0-condition when ı D 1. We calculate
the poles of the integral J.p; q; ; ı/ inside the contour. The poles of .1C ez/�1 are
zm D 2�i.m � 1=2/ (for 1 � m � q). We consider the poles of .1 � .�1/ıepz=q/�1

under different conditions. When ı D 0, the poles of .1 � .�1/ıepz=q/�1 are z0n D
2�inq=p (for 1 � n � p � 1) and the central pole is z0 D z.qC1/=2 D z0p=2 D �iq.
When ı D 1, then the poles of .1 � .�1/ıepz=q/�1 are z0n D 2�i.n � 1=2/q=p (for
1� n� p) and the central pole is z0 D z.qC1/=2 D z0.pC1/=2 D �iq. Under either con-
dition, the central pole z0 is second-order and the other poles are first-order. Similar
to the calculations in Proposition 4.2, the contribution of the poles zm (for 1 � m � q
and m ¤ .q C 1/=2) to the integral is

R1 D

qX
mD1;m¤.qC1/=2

4�i � Res.zm/ D T 0.p; q; ; ı/:

For the fraction .1 � .�1/ıepz=q/�1, we denote the contribution of its poles by R2.
When ı D 0, we have

R2 D

p�1X
nD1;n¤p=2

4�i � Res.z0n/ D �S
0.p0; q0;  0/:

When ı D 1, we have

R2 D

pX
nD1;n¤.pC1/=2

4�i � Res.z0n/ D .�1/
"T 0.p0; q0;  0; aC 1 .mod 2//:

We now calculate the residue of the central pole and its contribution to the integral is
R3 D 4�i � Res.z0/. Around the central pole z0, we have the expansions

.�1/ız�1e.1Cp=q�/z D

1X
nD0

an.z � z0/
n;

.1 � .�1/ıepz=q/�1 D

1X
nD�1

bn.z � z0/
n;

.1C ez/�1 D

1X
nD�1

cn.z � z0/
n:

We now calculate the coefficients of expansions. We have

a0 D .�1/
ız�10 e.1Cp=q�/z0

and

a1D .�1/
ı.z�1e.1Cp=q�/z/0jzDz0 D .�1/

ız�20 e.1Cp=q�/z0
��
1C

p

q
� 

�
z0 � 1

�
:
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By direct calculation, we have

b�1 D lim
z!z0

z � z0

1 � .�1/ıepz=q
D �

q

p
;

c�1 D lim
z!z0

z � z0

1C ez
D �1;

and

b0 D lim
z!z0

� z � z0

1 � .�1/ıezp=q

�0
D
1

2
;

c0 D lim
z!z0

� z � z0
1C ez

�0
D
1

2
:

Combining the results above, we have

Res.z0/ D a1b�1c�1 C a0.b�1c0 C b0c�1/ D a1
q

p
� a0

1C q
p

2
:

Similarly, we can obtain the bounds j Res.z0/j � 3=� and jR3j � 12. Let Q.p; q;
; ı/ D R3: We have

J.p; q; ; ı/ D Q.p; q; ; ı/C T 0.p; q; ; ı/

C

´
�S 0.p0; q0;  0/; ı D 0;

.�1/"T 0.p0; q0;  0; aC 1 .mod 2//; ı D 1:

The proof is completed.

Proposition 4.5. Given a 2 N and 2 2 Œ1=a; 2C 1=a�, suppose that a is odd. We
have

J.1; a; ; 1/ D Q.1; a; ; 1/C T 0.1; a; ; 1/

where jQ.1; a; ; 1/j � 12.

Proposition 4.5 shows the relation between J.p; q; ; ı/ and T 0.p; q; ; ı/ under a
special condition. We can also obtain the explicit expression of Q.p; q; ; ı/, but this
is not necessary. We have introduced the complete Hardy–Littlewood method and we
are able to estimate the derivatives of the discriminant polynomial.

5. Bound for the derivatives of the discriminant polynomial

In this section, the Hardy–Littlewood method is applied to estimate the derivatives
� 0˛.0/ and � 00˛ .0/ of the discriminant polynomial. We will derive an upper bound of
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the derivatives, which enables us to obtain a lower bound for the measure of the central
spectral band. We first introduce the symbolic encoding of continued fractions. The
character e represents an even integer and o represents an odd integer. The character
a represents an even or odd integer. We define the sequences of characters

(1) � D ea,

(2) " D oee � � � e � � �,

(3) !n D oee � � � eoa.n � 0/,

where there are n continued characters e in the sequence !n and there are infinite
continued characters e in the sequence ". Suppose the continued fraction is ˛ D
Œa1; a2; : : : ; an; : : : � where an � 1 (for n � 1). It is not hard to prove that there is
a unique symbolic encoding of ˛ with the sequences �; " and !n (for n � 0). There
are three possible types of symbolic encodings:

(1) ˛ D ",

(2) ˛ D r1r2 � � � rm" where ri D � or ri D !n for n � 0 and 1 � i � m,

(3) ˛ D r1r2 � � � ri � � � where ri D � or ri D !n for n � 0 and i � 1.

Given a continued fraction ˛ and M 2 N, we say that ˛ is M -weakly bounded
if a � M for each character a in the symbolic encoding of ˛. For example, ˛ is
M -weakly bounded for any M 2 N when the symbolic encoding of ˛ is of type (1).
When the symbolic encoding is of type (2), there are m characters a in the sequence
and ˛ is M -weakly bounded for M large enough. When the symbolic encoding is of
type (3), there are infinite characters a in the sequence. The continued fraction ˛ is
M -weakly bounded if these characters are bounded by M . Now, we are able to prove
the main theorem about the bound of the derivatives j� 0˛.0/j and j� 00˛ .0/j.

Theorem 5.1. Given ˛ 2 .0; 1/ \Qc and M 2 N, suppose that the continued frac-
tion is ˛D Œa1; a2; : : : ; an; : : : � and that ˛ isM -weakly bounded. Denote by �n.x/ the
discriminant polynomial of the critical almost Mathieu operator with ˛n D Œa1;

a2; : : : ; an�. There exist constants �1;2;3 D �1;2;3.M/ > 0 so that

j� 0n.0/j C j�
00
n .0/j � e

�1e�2nq�3n

for n � 1.

Proof. The proof is a recursive application of the results in the previous sections and
we start from the first step. The rational approximation of ˛ is ˛n D Œa1; a2; : : : ; an�
and we denote the canonical representation by ˛n D pn=qn. We assume that n � 3 is
given throughout the proof.

(1) For 1 � i � n, we denote the canonical representation by ti D ui=vi D Œai ;
aiC1; : : : ; an�. By definition, we have pn D u1; qn D v1. Let tnC1 D 0 and we denote
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Ai D qi C qi�1tiC1 for 2 � i � n. We prove Ai D Ai�1t�1i where 3 � i � n. By
direct calculation, we obtain

Ai D qi C qi�1tiC1 D aiqi�1 C qi�2 C qi�1tiC1 D qi�2 C
qi�1

ti
D Ai�1t

�1
i

which implies qnDAnDA2=.t3t4 � � � tn/ by induction. We now calculate the termA2.
We have q1 D a1; q2 D 1C a1a2 and

t1 D
1

a1 C t2
; t2 D

1

a2 C t3
; t1t2 D

1

1C a1.a2 C t3/
:

Combining the results above, we haveA2 D q2C q1t3 D 1C a1a2C a1t3 D 1=.t1t2/
and qn D 1=.t1t2 � � � tn/.

(2) Given z 2 Z, we construct the array .i ; mi /niD1 in this step. We first set
1 D zt1 Cm1 where m1 2 Z is selected to ensure 21 2 Œt1; 2C t1�. By induction,
we can construct .i ; mi /niD2 with the conditions

(2.1) i D mi�1ti Cmi ,

(2.2) i � i�1=ti�1 2 Z,

(2.3) i 2 Œti=2; 1C ti=2�,

where 2 � i � n. Let 2 D 1=t1 Cm02 for somem02 2 Z to be determined. By direct
calculation, we have

2 D
zt1 Cm1

t1
Cm02 D m1.a1 C t2/C z Cm

0
2 D m1t2 Cm2

where m2 D m1a1 C z C m
0
2. We take m02 2 Z to ensure that t2 � 22 � 2 C t2.

Suppose that .i ; mi / has been constructed. We now construct .iC1; miC1/. Let
iC1 D i=ti Cm

0
iC1 for some m0iC1 2 Z to be determined. We have

iC1 D
mi�1ti Cmi

ti
Cm0iC1 D mi .ai C tiC1/Cmi�1 Cm

0
iC1 D mi tiC1 CmiC1

where miC1 D miai C mi�1 C m
0
iC1. We take certain m0iC1 2 Z to ensure tiC1 �

2iC1 � 2C tiC1 and the induction is completed.
(3) We now consider the bound of the first-order derivative j� 0n.0/j. When qn is

even, the discriminant polynomial is an even function and we have � 0n.0/D 0. Assume
qn is odd and denote r D .qn � 1/=2. For 0 �  � r , the term S has been defined by
equation (5). We take z D�2 in (2) and obtain the array .i ;mi /niD1. Proposition 2.3
shows that S D Re.S.pn; qn;�2pn=qn//D Re.S.u1; v1; 1//. By Proposition 3.2,
we have

jS j � jS.u1; v1; 1/j � jI.u1; v1; 1/j C jT .u2; v2; 2; a1 .mod 2//j:
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By Proposition 4.2, we also have

jS j � jI.u1; v1; 1/j C jJ.u2; v2; 2; a1 .mod 2//j

C

´
jS.u3; v3; 3/j; a1 .mod 2/ D 0;

jT .u3; v3; 3; a2 C 1 .mod 2//j; a1 .mod 2/ D 1:

After a recursive application of Propositions 3.2 and 4.2 along the sequence, Propo-
sition 3.3 or Proposition 4.3 is applied at the final step. We thus obtain an upper
bound of jS j, which is a combination of integrals with a residue term R at the end.
The residue term can be bounded by jR j � 2. We have jS j � 2C

Pn
iD1 Pi , where

Pi D jI.ui ; vi ; i /j or Pi D jJ.ui ; vi ; i ; ıi /j. By Proposition 3.1 and Proposition 4.1,
we also have

jS j � 2C

nX
iD1

Li

�
4 ln

1

ti
C

6

�ui
C ˇ

�
;

whereLi D .sin.�ti=2//�1 ifPi D jJ.ui ; vi ; i ; 0/j, andLi D 1 ifPi D jI.ui ; vi ; i /j
or Pi D jJ.ui ; vi ; i ; 1/j. Note that Li D .sin.�ti=2//�1 is unbounded when ai is
large enough. To obtain an upper bound for jS j, we need to consider where the
term jJ.ui ; vi ; i ; 0/j (or jT .ui ; vi ; i ; 0/j) appears along the sequence. The symbolic
encoding is applied to solve this problem.

(4) For simplicity, the term S.ui ; vi ; i / is abbreviated as S and the term
T .ui ; vi ; i ; ıi / is abbreviated as T .ıi /. We claim that the term T .0/ appears at the
i -th position when and only when ai is a character a in the symbolic encoding of ˛.
For the sequence � D ea, we assume that the term S appears at the first character e.
Then the second term at a will be T .e .mod 2// D T .0/. For the sequence !n D
oee � � �eoa, we assume that the term S appears at the first character o. The second term
at e is T .o .mod 2// D T .1/ and the third term at e is T .e C 1 .mod 2// D T .1/.
By induction, all the terms after S are T .1/ except the final term at the character a,
which is T .oC 1 .mod 2// D T .0/. We still need to consider the sequence ". We
also assume that the term S appears at the first character o. The second term at e
is T .o .mod 2// D T .1/ and the third term at e is T .e C 1 .mody2// D T .1/. By
induction, all the terms after S are T .1/. Note that the term after T .0/ is always S .
Combining the observations above, we prove that the term T .0/ appears at the i -th
position when and only when ai is a character a in the symbolic encoding.

(5) For some 1 � i � n, we assume that ai is a character a in the symbolic
encoding of ˛. We have ai �M since ˛ is M -weakly bounded. This shows that ti �
1=.M C 1/ and Li D .sin.�ti=2//�1 �M C 1. We are now able to derive an upper
bound of the first-order derivative j� 0n.0/j. We have obtained j� 0n.0/j �

Pr
D0 e

L and
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Theorem 2.5 shows that L � 0.ln.qn/C 2/C jS j. We have

jS j � 2C

nX
iD1

.M C 1/
�
4 ln

1

ti
C

6

�ui
C ˇ

�
� 2C .M C 1/

�
4 ln.qn/C

�
ˇ C

6

�

�
n
�
:

Combining the inequalities above, we have

j� 0n.0/j � .r C 1/e
2C.ln.qn/C2/0C.MC1/.4 ln.qn/C.ˇC6=�/n/ � e�1e�2nq�3n

where �1;2;3 D �1;2;3.M/ > 0 are constants.
(6) We now consider the bound of the second-order derivative j� 00n .0/j. When qn

is odd, the second-order derivative of the discriminant polynomial is � 00n .0/ D 0. We
thus assume qn is even, � is odd, � is even, and 1 � � < � � qn. By Proposition 2.4,
we have S�� D 2.2� � 2� C qn/=qn C S 0� C S

0
� where

S 0� D Re
�
S 0
�
pn; qn;

�pn

qn

��
; S 0� D Re

�
S 0
�
pn; qn;

�pn

qn

��
:

We first estimate the term S 0�. We take z D � in (2) and thus obtain the array
.i ;mi /

n
iD1. We have jS 0�j � jS

0.pn; qn;�pn=qn/j � jS
0.u1;v1; 1/j. After a recursive

application of Proposition 3.4 and Proposition 4.4, we use Proposition 3.5 or Propo-
sition 4.5 at the final step. We thus obtain the upper bound jS 0�j �

Pn
iD1 Pi CQi

where Pi D jI.ui ; vi ; i /j; Qi D jR.ui ; vi ; i /j or Pi D jJ.ui ; vi ; i ; ıi /j; Qi D
jQ.ui ; vi ; i ; ıi /j. We also have the bound jQi j � 12. By Proposition 3.1 and Propo-
sition 4.1, we have

jS 0�j � 12nC

nX
iD1

Li

�
4 ln

1

ti
C

6

�ui
C ˇ

�
;

where Li D .sin.�ti=2//�1 if Pi D jJ.ui ; vi ; i ; 0/j, and where Li D 1 if Pi D
jI.ui ; vi ; i /j or Pi D jJ.ui ; vi ; i ; 1/j. Similar to the method in (4), we claim that the
term jJ.ui ; vi ; i ; 0/j appears at the i -th position when and only when ai is a character
a in the symbolic encoding of ˛. We have Li � M C 1 (for 1 � i � n) since ˛ is
M -weakly bounded. We obtain the bound

jS 0�j � 12nC .M C 1/
�
4 ln.qn/C

�
ˇ C

6

�

�
n
�
:
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We have the same bound for jS 0� j. By Proposition 2.1 and Theorem 2.5, we have

j� 00n .0/j D
X

2−�;2j�;1��<��qn

2eL��

�

X
2−�;2j�;1��<��qn

2e20.ln.qn/C3/Cj2.2��2�Cqn/=qnjCjS
0
�jCjS

0
� j

�

X
2−�;2j�;1��<��qn

2e20.ln.qn/C3/C6CjS
0
�jCjS

0
� j:

By the inequalities above, we have

j� 00n .0/j � e
�1e�2nq�3n

where �1;2;3 D �1;2;3.M/ > 0 are constants.
(7) Combining the bound of j� 0n.0/j in (5) and the bound of j� 00n .0/j in (6), we

obtain
j� 0n.0/j C j�

00
n .0/j � e

�1e�2nq�3n

where �1;2;3 D �1;2;3.M/ > 0 are constants. The proof is completed.

6. Application to the central spectral band

In this section, Theorem 5.1 is applied to obtain a bound for the derivatives j� 0˛.0/j and
j� 00˛ .0/j under stronger conditions. We demonstrate the relation between the measure
of the central spectral band and the derivatives of the discriminant polynomial. We
then derive a lower bound for the measure of the central spectral band.

Corollary 6.1. Given ˛ 2 .0; 1/ with the continued fraction ˛ D Œa1; a2; : : : ; an; : : : �,
assume the symbolic encoding is ˛ D ". We denote by �n.x/ the discriminant polyno-
mial of the critical almost Mathieu operator with ˛n D Œa1; a2; : : : ; an�. There exist
constants �1;2;3 > 0 independent of ˛ so that

j� 0n.0/j C j�
00
n .0/j � e

�1e�2nq�3n

for n � 1.

Proof. There is no character a in the symbolic encoding ˛ D " and ˛ is M -weakly
bounded for any M 2 N. By the proof of Theorem 5.1, we can find the constants
�1;2;3 > 0 independent of M so that

j� 0n.0/j C j�
00
n .0/j � e

�1e�2nq�3n

for n � 1. The proof is completed.
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Corollary 6.2. Given ˛ 2 .0; 1/ with the continued fraction ˛ D Œa1; a2; : : : ; an; : : : �,
assume ˛ is M -weakly bounded for some M 2 N. We also assume

lim sup
m!1

� mY
nD1

an

�1=m
< C1: (23)

Denote by �n.x/ the discriminant polynomial of the critical almost Mathieu operator
with ˛n D Œa1; a2; : : : ; an�, then there exists a constant � D �.˛/ > 0 so that

j� 0n.0/j C j�
00
n .0/j � �

n

for n � 1.

Proof. We denote the canonical representation by ˛n D pn=qn. Given n� 1, we have
qnC1 � .anC1C 1/qn. By condition (23), we have a1a2 : : : an � Ln.n � 1/ for some
constant L > 0. Combining the inequalities above, we have

qn �

nY
iD1

.ai C 1/ �

nY
iD1

2ai � .2L/
n:

By Theorem 5.1, there exist constants �1;2;3 D �1;2;3.˛/ > 0 so that

j� 0n.0/j C j�
00
n .0/j � e

�1e�2nq�3n � e
�1e�2n.2L/�3n

for n � 1. The proof is completed.

Given ˛ D p=q and .p; q/D 1, the union of the spectrum �.˛; �/ over � 2 R has
been denoted by S.˛/. We have defined the central spectral band of S.˛/ in Section 2.
Denote the central spectral band by �. We now consider its measure. When q is odd,
the central spectral band is the band containing the origin and Y. Last demonstrates
its measure has the order(see [8])

6

j� 0˛.0/j
� j�j �

8e

j� 0˛.0/j
: (24)

An upper bound of the derivative j� 0˛.0/j determines a lower bound of the measure
j�j. We now assume q is even and we claim the measure of the central spectral band
can be bounded from below by the second-order derivative j� 00˛ .0/j.

Lemma 6.3. Suppose ˛ D p=q; .p; q/ D 1 and q is even. Denote by �˛.x/ the dis-
criminant polynomial of the critical almost Mathieu operator and by � the central
spectral band. We have

j�j �
8p
j� 00˛ .0/j

: (25)
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Proof. Suppose that †.x/ is an n-order polynomial with n distinct real roots xi (for
1 � i � n). We assume xi < xj for 1 � i < j � n. Given 1 � i � n� 1, there exists
a unique point x0i 2 .xi ; xiC1/ with †0.x0i / D 0. It is not hard to prove that †.x/ is
strictly increasing (or decreasing) on Œxi ; x0i � and strictly decreasing (or increasing) on
Œx0i ; xiC1�. This observation is significant for the proof since the discriminant polyno-
mial �˛.x/ has q distinct real roots. We have � 0˛.0/ D 0 and j�˛.0/j D 4. We may
assume �˛.0/ D 4 and the condition �˛.0/ D �4 is similar. Denote by x0 > 0 the
right endpoint of the central spectral band �. We have �˛.x0/ D �4 and

x0Z
0

� 0˛.x/ d x D �8: (26)

We claim � 0˛.x/ � �
00
˛ .0/x for any x 2 Œ0; x0�. This claim is obvious when q D 2 and

we now assume q � 4. Denote by x1 � x0 the first critical point of �˛.x/ to the right
of the origin. There is an inflection point x2 2 .0; x1/ of the discriminant polynomial.
The second-order derivative � 00˛ .t/ is negative on .0; x2/ and positive on .x2; x1/. We
have � 00˛ .t/ � �

00
˛ .0/ for any t 2 Œ0; x1�. For x 2 Œ0; x0�, we obtain the inequality

xZ
0

� 00˛ .t/ d t �

xZ
0

� 00˛ .0/ d t

which shows that � 0˛.x/� �
00
˛ .0/x. Combining this with equation (26), we have j�j �

8=
p
j� 00˛ .0/j and the proof is completed.

We have obtained an upper bound for the derivatives j� 0˛.0/j and j� 00˛ .0/j in The-
orem 5.1. By inequalities (24) and (25), we can derive a lower bound for the measure
of the central spectral band.

Corollary 6.4. Given ˛ 2 .0; 1/ \Qc and M 2 N, suppose the continued fraction
is ˛ D Œa1; a2; : : : ; an; : : : � and ˛ is M -weakly bounded. Denote by �n the central
spectral band of the critical almost Mathieu operator with ˛n D Œa1; a2; : : : ; an�, then
there exist constants �1;2;3 D �1;2;3.M/ > 0 so that

j�nj � .e
�1e�2nq�3n /

�1

for n � 1.

Proof. By Theorem 5.1, there exist constants �1;2;3 D �1;2;3.M/ > 0 so that

j� 0n.0/j C j�
00
n .0/j � e

�1e�2nq�3n

for n � 1. By inequality (24), we have j�nj � 6.e�1e�2nq
�3
n /
�1 when qn is odd.

By inequality (25), we have j�nj � 8.e�1e�2nq
�3
n /
�1=2 when qn is even. Combining

these inequalities, the proof is completed.
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Suppose ˛ 2 .0; 1/ \Qc satisfies the condition in Corollary 6.1 or Corollary 6.2.
Similar to Corollary 6.4, we can also derive a lower bound for the measure of the
central spectral band and the details are omitted.
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