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Counterexamples and weak (1,1) estimates of wave operators
for fourth-order Schrödinger operators in dimension three

Haruya Mizutani, Zijun Wan, and Xiaohua Yao

Abstract. This paper is dedicated to investigating the Lp-bounds of wave operators
W˙.H; �

2/ associated with fourth-order Schrödinger operators H D �2 C V on R3 with
real potentials satisfying jV.x/j . hxi�� for some � > 0. A recent work by Goldberg and
Green (2021) has demonstrated that wave operatorsW˙.H;�

2/ are bounded onLp.R3/ for all
1 < p <1 under the condition that �> 9 and zero is a regular point ofH . In the paper, we aim
to further establish endpoint estimates forW˙.H;�

2/ in two significant ways. First, we provide
counterexamples to illustrate the unboundedness ofW˙.H;�

2/ on the endpoint spacesL1.R3/
and L1.R3/ for non-zero compactly supported potentials V . Second, we establish weak .1; 1/
estimates for the wave operatorsW˙.H;�

2/ and their dual operatorsW˙.H;�
2/� in the case

where zero is a regular point and � > 11. These estimates depend critically on the singular inte-
gral theory of Calderón–Zygmund on a homogeneous space .X; d!/ with a doubling measure
d!.

1. Introduction

1.1. The main results

Let H D �2 C V.x/ be the fourth-order Schrödinger operator on R3, where V.x/ is
a real-valued potential satisfying jV.x/j . hxi��, x 2 R3 with some � > 0 specified
later and hxi D

p
1C jxj2. As � > 1, it was well known (see, e.g., [1,23,26,27]) that

the wave operators

W˙ D W˙.H;�
2/´ s-lim

t!˙1
eitH e�it�

2

(1.1)

exist as partial isometries on L2.R3/ and are asymptotically complete.
Note that W˙ are clearly bounded on L2.R3/. Hence, it would be interesting to

establish the following Lp-bounds of W˙ for p ¤ 2:

kW˙'kLp.R3/ . k'kLp.R3/: (1.2)
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To explain the importance of these bounds, recall that W˙ satisfy the identities

W˙W
�
˙ D Pac.H/; W �˙W˙ D I;

and the intertwining property f .H/W˙ DW˙f .�2/, where f is a Borel measurable
function on R. These formulas especially imply

f .H/Pac.H/ D W˙f .�
2/W �˙: (1.3)

By virtue of (1.3), theLp-boundedness ofW˙;W �˙ can immediately be used to reduce
the Lp-Lq estimates for the perturbed operator f .H/ to the same estimates for the
free operator f .�2/ as follows:

kf .H/Pac.H/kLp!Lq � kW˙kLq!Lq kf .�
2/kLp!Lq kW

�
˙kLp!Lp : (1.4)

For many cases, under suitable conditions on f , it is feasible to establish the Lp-Lq

bounds of f .�2/ by Fourier multiplier methods. Thus, in order to obtain the inequal-
ity (1.4), it is a key problem to prove the Lp-bounds (1.2) of W˙ and W �

˙
.

Recently, in the regular case (i.e., zero is neither an eigenvalue nor a resonance
of H ), Goldberg and Green [16] have demonstrated that the wave operators W˙ are
bounded on Lp.R3/ for all 1 < p <1 if jV.x/j . hxi�� for some � > 9 and there
are no embedded positive eigenvalues in the spectrum of H D �2 C V . Therefore, it
is natural to consider whether the boundedness of W˙ holds for the endpoint cases,
namely, when p D 1 and p D1.

The following theorem provides a negative answer, showing that the wave oper-
ators W˙ are unbounded on L1.R3/ and L1.R3/ assuming that V is compactly
supported on R3. Furthermore, weak .1; 1/ estimates for W˙ can be established in
the regular case, provided that � > 11.

In order to state our results, we denote by B.X;Y / the space of bounded operators
from X to Y , B.X/ D B.X;X/, and by L1;1.R3/ the weak L1.R3/. Moreover, we
say that zero is a regular point of H D �2 C V if there only exists zero solution to
H D 0 in the weighted spaceL2�s.R

3/ for all s > 3
2

, whereL2�s.R
3/D h�isL2.R3/.

Theorem 1.1. Let H D �2 C V.x/. Suppose that V is compactly supported and
V 6� 0 such that zero is a regular point of H and H has no embedded eigenvalue in
.0;1/. Then W˙; W �˙ … B.L1.R3// [ B.L1.R3//.

Theorem 1.2. Let V satisfy jV.x/j . hxi�� for some � > 11. Assume also H has
no embedded eigenvalue in .0;1/ and zero is a regular point of H . Then W˙;W �˙ 2
B.L1.R3/; L1;1.R3//, that is,

j¹x 2 R3 W jW˙f .x/j � �ºj .
1

�

Z
R3

jf .x/j dx; � > 0;

with the analogous estimate for W �
˙

.



Counterexamples and weak .1; 1/ estimates of wave operators 1411

Remark 1.3. By the interpolation and the duality, Theorem 1.2 also implies W˙ 2
B.Lp.R3// for all 1 < p < 1, while this is already known due to Goldberg and
Green [16].

Finally, we would like to emphasize that the condition of the absence of embedded
positive eigenvalues is a fundamental assumption when studying dispersive estimates
and Lp-bounds of wave operators for higher-order Schrödinger operators. In fact, for
any dimension d � 1, it is relatively straightforward to construct a potential function
V 2C10 .R

d / such thatH D�2CV has some positive eigenvalues, as demonstrated,
for instance, in [10, Section 7.1].

On the other hand, it is worth noting that Feng et al. in [10] have proven thatH D
�2CV does not have any positive eigenvalues under the assumption that the potential
V is bounded and satisfies the repulsive condition, meaning that .x � r/V � 0. Addi-
tionally, it is well established, as demonstrated by Kato in [22], that the Schödinger
operator �� C V has no positive eigenvalues when the potential is bounded and
satisfies the condition V.x/D o.jxj�1/ as jxj !1. Consequently, these studies indi-
cate that establishing the absence of positive eigenvalues for fourth-order Schrödinger
operators is a more intricate task compared to second-order cases when dealing with
bounded potential perturbations.

1.2. Further backgrounds

For the classical Schrödinger operatorH D ��C V.x/, since the seminal work [30]
of Yajima, there exists a great number of interesting works on the Lp-boundedness
for the wave operatorsW˙. More specifically, in the space dimension d D 1, the wave
operators W˙ are bounded on Lp.R/ for 1 < p <1 for both regular and zero reso-
nance cases but in general unbounded on Lp.R/ for p D 1;1 (see, e.g., [2,4,29]). In
the regular case, for dimension d D 2 the wave operatorsW˙ are bounded onLp.R2/
for 1 < p <1 but the result of endpoint is unknown (see [20, 32]). For dimensions
d � 3, the wave operatorsW˙ are bounded on Lp.Rd / for 1 � p �1 in the regular
case (see, for example, [3, 30, 31]). However, the existence of threshold resonances
shrink the range of p, which depends on dimension d and the decay properties of
zero energy eigenfunctions (see [5, 12, 14, 15, 21, 33–37]).

More recently, there exist several works for theLp-boundedness of the wave oper-
ators W˙ for higher order Schrödinger operators H D .��/m C V.x/ especially for
m D 2. First of all, Goldberg and Green in [16] proved that for dimension d D 3

and m D 2, the wave operators W˙ extend to bounded operators on Lp.R3/ for 1 <
p <1when zero is a regular point (the endpoint case is not mentioned in [16]). Then
Erdoğan and Green in [7, 8] further showed that as m > 1 and d > 2m,
W˙ are bounded on Lp.Rd / for 1 � p � 1 for certain smooth potentials V.x/ in
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the regular case. Moreover, Erdoğan, Goldberg, and Green in [6] also obtained that
for dimension d > 4m � 1 and 2d

d�4mC1
< p � 1, the Lp boundedness of the wave

operators may fail for compactly supported continuous potentials if the potential is
not sufficiently smooth. In our previous work [25], we studied the case d D 1 and
m D 2 and obtained that whatever zero is a regular point or a resonance of H , the
wave operators W˙ are bounded on Lp.R/ for 1 < p < 1. Moreover, if in addi-
tion V is compactly supported, then W˙ are also bounded from L1.R/ to L1;1.R/.
On the other hand, W˙ are shown to be unbounded on both L1.R/ and L1.R/ at
least for the regular case. More recently, Galtbayar and Yajima [13] have established
the Lp-estimates of wave operator W˙ with zero resonances for the case m D 2 and
d D 4.

In a forthcoming paper [24], the authors consider all the zero resonance cases for
H D �2 C V on R3 and show that W˙ 2 B.Lp.R3// for all 1 < p <1 in the first
kind resonance case. For the second and third kind resonance cases, it is shown that
W˙ 2 B.Lp.R3// for all 1 < p < 3 but W˙ … B.Lp.R3// for any 3 � p � 1.

1.3. The ideas of the proof

Let us explain briefly the idea of the proof. We begin with the stationary representation
of W�:

W� D I �
2

�i

1Z
0

�3RCV .�
4/V .RC0 .�

4/ �R�0 .�
4// d�;

whereR˙0 .�/D .�
2 � �� i0/�1 andR˙V .�/D .H � �� i0/

�1 are the free and per-
turbed limiting resolvents, respectively. Since the high energy part is already known
to be bounded on Lp for all 1 � p � 1 by [16], it is enough to deal with the low
energy part

W L
� ´

1Z
0

�3�.�/RCV .�
4/V .RC0 .�

4/ �R�0 .�
4// d�;

with supp � � Œ��0; �0� and �0 � 1. To regard W L
� as an (singular) integral oper-

ator, we then use the asymptotic expansion of RCV .�
4/V near � D 0. Note that the

integral kernel of R˙0 .�
4/ is explicit (see (3.2)). In [16], Goldberg and Green used the

expansion

RCV .�
4/V D RC0 .�

4/v¹QA0QC �A1 C �2.�/ºv; v D jV j1=2; (1.5)

whereQD I �P ,P DkV k�1
L1
h�;viv,A0;A1 2B.L2/, and �k.�/ denotes a �-depen-

dent absolutely bounded operator on L2 such that

kX
`D0

kj�`@`��k.�/jkL2!L2 . �k; 0 < � � �0:
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This formula was enough for 1<p<1, while this is not the case for pD 1;1 not
only for the unboundedness, but also for the weak .1; 1/ estimate. Hence, we compute
the right-hand side of (1.5) more precisely to obtain

RCV .�
4/V D RC0 .�

4/v¹QA0QC �.QA1;0 C A0;1Q/C � zP C �
2A2 C �3.�/ºv;

(1.6)

where A1;0; A0;1; A2 2 B.L2/ and zP D cP with some constant c. To ensure this
expansion make sense, we need the condition jV.x/j . hxi�� with � > 11.

By (1.6), W L
� can be written as a sum of associated six integral operators. More-

over, using the explicit formula (3.2) of R˙0 .�
4/ and the cancellation propertyZ

Qv.x/ dx D 0;

we can categorize such six operators into three classes (I)–(III), where (I) is associ-
ated with QA0Q;�.QA1;0 C A0;1Q/ and �2A2, (II) with � zP , and (III) with �3.�/,
respectively.

The operators in the class (I) can be shown to be bounded on Lp.R3/ for all 1 �
p � 1. Indeed, thanks to the translation invariance of Lp-norms and Minkowski’s
integral inequality (see e.g., (4.6)), the proof can be reduced to deal with an integral
operator with the kernel bounded by

min¹hxi�1hyi�1hjxj ˙ jyji�2; hjxj ˙ jyji�4º:

Although classical Schur’s test cannot be applied to this case, separating it into three
regions jxj � jyj, jxj � jyj and jxj � jyj, we can show it is bounded on Lp.R3/
for all 1 � p �1. For the class (III), we can apply Schur’s test directly to obtain the
Lp-boundedness for all 1 � p �1. We would emphasize that the strong L1 and L1

boundedness for the classes (I) and (III) are necessary to achieve the unboundedness
of the full operator W L

� on L1 and L1.
For the class (II), we show that the operator associated with � zP and its adjoint

are bounded from L1.R3/ to L1;1.R3/. To explain the main idea of this result, let us
consider the following model kernel

K D
jxj

jxj4 � jyj4

D
1

2jxj.jxj2 C jyj2/
C

1

4jxj2.jxj C jyj/
C

1

4jxj2.jxj � jyj/
µ

3X
jD1

Kj ;

restricted on the region ¹.x; y/ W jjxj � jyjj � 1º. Note that TK1 ; TK2 2 B.L1.R3/;

L1;1.R3//, sinceK1;K2 are dominated by jxj�3 2 L1;1.R3/. To deal with TK3 , we
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use the polar coordinate to rewrite TK3f .x/ as the following weighted 1D singular
integral:

TK3f .x/ D

1Z
0

g.r/

4jxj2.jxj � r/
�¹jjxj�rj�1ºr

2 dr; g.r/ D

Z
S2

f .r!/ d!:

We then use the theory of general C-Z singular integrals on the homogeneous space
to obtain that TK3 2 B.L1.R3/; L1;1.R3//.

Let us emphasize that K is just a model kernel and the integral kernel KP associ-
ated with � zP is in fact much more complicated. Indeed, we will show the following
two different expressions:

KP .x; y/

D �
1C i

4�
G.x/

�
jxj�¹jjxj�jyjj�1º

jxj4 � jyj4

�
G.y/CO

� 1

hxihyihjxj � jyji2

�
(1.7)

D
1

8�.1C i/kV k2
L1

Z
R6

v2.u1/v
2.u2/ zKP .x � u1; y � u2/ du1 du2; (1.8)

where

G.x/ D
jxj

kV kL1

�Z
R3

jV j.u/

jx � uj
du

�
;

zKP .z; w/ D
�4i jzj�¹jjzj�jwjj�1º

jzj4 � jwj4
C‰.z;w/;

and T‰ 2 B.Lp/ for all 1 � p �1. The former equality (1.7) is used for proving the
weak .1; 1/ estimate and the latter one (1.8) for the unboundedness on L1 and L1.
In particular, for the unboundedness, we utilize the assumption that suppV � ¹jxj �
R0º with some R0 and take characteristic functions f1.y/ D �¹jyj�1º and fR.y/ D
�¹jyj�Rº with R � R0 to somehow estimate

R
R3 jTKP f1jdx and j.TKP fR/.x/j,

respectively, then we show that TKP f1 … L
1.R3/ and kTKP fRkL1.R3/ ! 1 as

R!1, which implies the desired unboundedness of W˙ on L1.R3/ and L1.R3/.

1.4. Some notations

Some notations used in the paper are listed as follows.

• A . B (resp. A & B) means A � CB (resp. A � CB) with some constant C > 0.

• Lp D Lp.Rn/; L1;1 D L1;1.Rn/ denote the Lebesgue and weak L1 spaces,
respectively.
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• For w 2 L1loc.R
n/ positive almost everywhere and 1 � p <1,

Lp.w/ D Lp.Rn; wdx/

denotes the weighted Lp-space with the norm

kf kLp.w/ D

�Z
jf .x/jpw.x/ dx

�1=p
:

Set
w.E/´

Z
E

w.x/ dx; for each Borel subset E � Rn:

Denote L1;1.w/ as the weighted weak L1 space with the quasi-norm

kf kL1;1.w/ D sup
�>0

�w.¹x W jf .x/j > �º/:

• Let ¹'N ºN2Z be a homogeneous dyadic partition of unity on .0;1/, that is '0 2
C10 .RC/, 0� ' � 1, supp' �

�
1
4
;1
�
, 'N .�/D '0.2�N�/, supp'N � Œ2N�2;2N �

and X
N2Z

'N .�/ D 1; � > 0:

2. Some integrals related with wave operators

In this section, we prepare some basic criterions to the boundedness of integral oper-
ators related with the wave operators W˙. Throughout the paper, we always use TK
to denote the integral operator defined by the kernel K.x; y/:

TKf .x/ D

Z
R3

K.x; y/f .y/ dy:

Moreover, we say that the kernelK.x;y/ of an operator TK is admissible if it satisfies

sup
x2R3

Z
R3

jK.x; y/j dy C sup
y2R3

Z
R3

jK.x; y/j dx <1:

Let us first recall of the classical Schur test lemma.

Lemma 2.1. TK 2 B.Lp.R3// for all 1 � p �1 if its kernelK.x; y/ is admissible.

Next, the following proposition is crucial to the Lp-boundedness of wave opera-
tors W˙.
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Proposition 2.2. Let the kernel K.x; y/ satisfy the following condition:

jK.x; y/j . hxi�1hyi�1hjxj � jyji�2; .x; y/ 2 R3 �R3: (2.1)

Then TK 2 B.L1.R3/; L1;1.R3// \ B.Lp.R3// for 1 < p <1. That is

kTKf kLp.R3/ . kf kLp.R3/; 1 < p <1; (2.2)

j¹x 2 R3 W j.TKf /.x/j � �ºj .
1

�

Z
R3

jf .x/j dx; � > 0: (2.3)

Moreover, if there exists ı > 0 such that K.x; y/ further satisfies one of the following
two conditions:

jK.x; y/j . hxi�1hyi�1hjxj � jyji�2�ı ; (2.4)

jK.x; y/j . min¹hxi�1hyi�1hjxj � jyji�2; hjxj � jyji�3�ıº; (2.5)

then TK 2 B.Lp.R3// for all 1 � p � 1.

Proof. Firstly, we decompose K.x; y/ as

K.x; y/ D K.x; y/.�
¹ 12 jxj�jyj�2jxjº

C �
¹jyj< 12 jxjº

C �¹jyj>2jxjº/

µ K1.x; y/CK2.x; y/CK3.x; y/;

and denote TKi as the integral operators associated with the kernels Ki .x; y/ for
i D 1; 2; 3. Using (2.1), we haveZ

R3

jK1.x; y/jdy .
1

hxi2

Z
1
2 jxj�jyj�2jxj

hjxj � jyji�2 dy

.
jxj2

hxi2

2jxjZ
1
2 jxj

hjxj � ri�2 dr .
C1Z
�1

hri�2 dr . 1;

uniformly in x 2 R3. Similarly, we also haveZ
R3

jK1.x; y/j dx .
1

hyi2

Z
1
2 jyj�jxj�2jyj

hjxj � jyji�2 dx . 1;

uniformly in y 2 R3. Hence, by Schur’s test, we conclude that TK1 2 B.Lp.R3// for
all 1 � p � 1.

Now, consider the integral operator TK2 . Note that

jK2.x; y/j . hxi�1hyi�1hjxj � jyji�2 �¹jyj� 12 jxjº:
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Then, for f 2 L1.R3/, we have

jTK2f .x/j .
� Z
jyj� 12 jxj

hxi�1hyi�1hjxj � jyji�2 dy

�
kf kL1.R3/

.
1

hxi3

� Z
jyj� 12 jxj

hyi�1 dy

�
kf kL1 . kf kL1.R3/;

which yields TK2 2 B.L1.R3//. On the other hand, if f 2 L1.R3/, then

jTK2f .x/j . hxi
�3

� Z
jyj� 12 jxj

hyi�1jf .y/j dy

�
� hxi�3kf kL1.R3/; (2.6)

which leads to TK2 2 B.L1; L1;1/ due to hxi�3 2 L1;1.R3/. By the Marcinkiewicz
interpolation (see, e.g., Grafakos [18, p. 34]), we obtain that

TK2 2 B.L1.R3/; L1;1.R3// \ B.Lp.R3// for all 1 < p � 1.

Next, we deal with the third integral operator TK3 . Clearly, T �K3 D TK�3 with

jK�3 .x; y/j D jK3.y; x/j . hxi
�1
hyi�1hjxj � jyji�2 �

¹jyj� 12 jxjº
:

By the same argument as in TK2 , one has TK�
3
2B.L1.R3/;L1;1.R3//\B.Lp.R3//

for all 1 < p �1. Hence, TK3 2 B.Lp.R3// for all 1 � p <1 by the duality. Com-
bining with the boundedness of TKj for j D 1;2;3, we conclude that TK 2B.L1.R3/;

L1;1.R3// \ B.Lp.R3// for all 1 < p <1 as desired.
Finally, we shall show TK 2 B.Lp.R3// for all 1 � p � 1 under the condi-

tions (2.4) or (2.5). By the above argument, it suffices to show TK2 2 B.L1.R3//.
If (2.4) holds, then for any f 2 L1.R3/,Z

R3

jTK2f .x/j dx .
Z

R3

� Z
jyj� 12 jxj

hxi�1hyi�1hjxj � jyji�2�ı jf .y/j dy

�
dx

.
�Z

R3

hxi�3�ı dx

�
kf kL1 . kf kL1.R3/:

That is, TK2 2 B.L1.R3//. If (2.5) holds, then

jK2.x; y/j . hjxj � jyji�3�ı �¹jyj< 12 jxjº;

for some ı > 0. Hence, again, we can obtain from the (2.6) thatZ
R3

jTK2f .x/j dx .
�Z

R3

hxi�3�ı dx

�� Z
jyj< 12 jxj

jf .y/j dy

�
. kf kL1.R3/:

Thus, the whole proof of Proposition 2.2 has been finished.
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Remark 2.3. In Proposition 2.2, under condition (2.1), the strong estimates (2.2) of
TK have been obtained by Goldberg and Green [16, Lemma 2.1] using a different
argument from one above. We also remark that the weak estimate (2.3) of TK seems
to be new.

As is seen in Section 4 below, Proposition 2.2 is not enough to prove Theorem 1.2
and we need to study some integral operators TK with kernels likeK.x;y/D jxj

jxj4�jyj4
.

To establish the Lp boundedness of such an operator TK , we will make use of the
theory of Caldeŕon–Zygmund on theAp-weighted spaces and on homogeneous spaces
with doubling measures. Although the proof of the following proposition is reduced
to the Calderón–Zygmund theory of singular integrals, the kernel jxj

jxj4�jyj4
is not a

standard Calderón–Zygmund kernel of R3, e.g., see Grafakos [18, p. 359].

Proposition 2.4. Let TK be the integral operator with the following truncated kernel

K.x; y/´
jxj�¹jjxj�jyjj�1º

jxj4 � jyj4
; .x; y/ 2 R3 �R3:

Then the operator TK ; T �K 2 B.L1.R3/;L1;1.R3//\B.Lp.R3// for all 1 < p <1.

Proof. It should be pointed out that [16, Lemma 3.3] implies TK 2 B.Lp.R3// for all
1 < p <1. Hence, in the sequel we mainly show the weak estimate for the endpoint
case pD 1with only a sketch of the proof for 1 < p <1. Following a similar method
as of [16], we reduce the integral in three space dimensions to the one-dimensional
integral by the spherical coordinate transform. Let g.s/´

R
S2
f .s!/d! for s > 0,

where S2 is the unite sphere of R3. Then

TKf .x/ D

Z
jjxj�jyjj�1

jxj

jxj4 � jyj4
f .y/ dy

D
jxj

4

Z
jjxj� 4

p
rj�1

r�
1
4g. 4
p
r/

jxj4 � r
dr ´

jxj

4
G.jxj4/;

where

G.s/ D

Z
j 4
p
s� 4
p
rj�1

r�
1
4g. 4
p
r/

s � r
dr:

Note that in [16, Lemma 3.3] it was shown that the functionG.s/ can be dominated by
the maximal truncated Hilbert transform H�. Qg/.s/ and Littlewood–Hardy maximal
function M. Qg/.s/, where the function Qg.r/´ r�

1
4g. 4
p
r/. That is,

jG.s/j . H�. Qg/.s/CM. Qg/.s/; s > 0:
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Since Z
R3

jTKf .x/j
p dx D

�

4pC1

1Z
0

jG.s/jps
p�1
4 ds;

and jsj
p�1
4 isAp�weights for all 1 < p <1, by using the boundedness of H� and M

on Lp.R; jsj
p�1
4 ds/ (see, e.g., Grafakos [18, Chapter 7]), then it immediately follows

that Z
R3

jTKf .x/j
p dx .

1Z
0

jH�. Qg/.s/jps
p�1
4 ds C

1Z
0

jM. Qg/.s/jps
p�1
4 ds

.
1Z
0

j Qg.r/jpr
p�1
4 dr . kf kp

Lp.R3/
;

which gives the integral operator TK 2 B.Lp.R3// for all 1 < p <1.
We remark that the arguments above depend on the strong estimates of Hilbert

transforms H�. Qg/ and the Littlewood–Hardy maximal function M. Qg/ on Lp.R3/ for
1 < p <1, which do not directly work for p D 1 or1 due to the failure of strong
estimates of H� and M on these limiting spaces. Hence, in the following, we will use
another argument to prove TK 2 B.L1.R3/; L1;1.R3//.

Firstly, we decompose K.x; y/ as follows:

K.x; y/

D
�¹jjxj�jyjj�1º

2jxj.jxj2 C jyj2/
C

�¹jjxj�jyjj�1º

4jxj2.jxj C jyj/
C

�¹jjxj�jyjj�1º

4jxj2.jxj � jyj/
µ

3X
jD1

Kj .x; y/;

and write the integral operator TK into the sum
P3
jD1 TKj , respectively. Let f 2

L1.R3/. Then for each x 2 R3 we easily obtain that

jTK1f .x/j C jTK2f .x/j . jxj
�3
kf kL1.R3/:

Since jxj�3 2L1;1.R3/, so it follows immediately that TKj 2B.L
1.R3/;L1;1.R3//

for j D 1; 2.
Next, it remains to show TK3 2 B.L

1.R3/; L1;1.R3//. By the polar coordinate
transform,

TK3f .x/ D

1Z
0

g.r/

4jxj2.jxj � r/
�¹jjxj�rj�1º r

2 dr DW .g0/.jxj/;
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where g.r/ D
R
S2
f .r!/ d! and

W .g0/.s/´

Z
R

�¹js�rj�1º

4s2.s � r/
g0.r/r

2 dr; g0.s/ D �.0;1/.s/g.s/:

Let d�.r/D r2dr be a Borel measure on the real line R. Then d�.r/ is a doubling
measure on R (see, e.g., Stein [28, p. 12]). In the following, we will regard the integral
W .g0/ as a singular integral on L1.R; d�/ in order to establish the weak estimate of
TK3f on L1.R3/.

In fact, in view of the following facts:

j¹x 2 R3 W jTK3f .x/j > �ºj D j¹x 2 R3 W jW .g0/.jxj/j > �ºj

D 4�

1Z
0

�¹s2RWjW .g0/.s/j>�ºs
2 ds

D 4��¹s 2 RC W jW .g0/.s/j > �º;

and Z
R

jg0.s/j d�.s/ �

1Z
0

Z
S2

jf .r!/jr2 d! dr D kf kL1.R3/;

we can immediately conclude that the operator TK3 2 B.L1.R3/; L1;1.R3//, if one
has

��¹s 2 R W jW .g0/.s/j > �º .
Z
R

jg0.s/j d�.s/; � > 0: (2.7)

To obtain the weak estimate (2.7), we will make use of the theory of general
C–Z singular integral on the homogeneous space .X;d�/ with a doubling measure �.
Indeed, in view of conclusions in Stein [28, p. 19, Theorem 1.3], it suffices to show
that the integral W .f / on the homogeneous space .R; r2dr/ satisfies the following
two conditions:

(i) there exist some q > 1 and A > 0 such that

kW .f /kLq.R;d�/ � Akf kLq.R;d�/; d� D r2dr I

(ii) the kernel K.s; r/D
�¹js�rj�1º
4s2.s�r/

of the integral operator W .f /, satisfies thatZ
js�rj�2ı

jK.s; r/ �K.s; Nr/j d�.s/ � A <1;

whenever jr � Nr j < ı and ı > 0.
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Firstly, let us check the condition (i). Indeed, let 1 < q < 3
2

, thenZ
R

jW .f /.s/jq d�.s/ D 4�q
Z
R

ˇ̌̌̌ Z
js�rj�1

f .r/r2

s � r
dr

ˇ̌̌̌
s2�2q ds

.
Z
R

jf .r/r2jqr2�2q dr D kf k
q

Lq.R;d�/;

where in the second inequality above, we have used the weighted Lq estimates of the
truncated Hilbert transform on Lq.R;w.r/dr/ with a Aq-weight w.r/D jr j2�2q due
to the fact �1 < 2 � 2q < q � 1 as 1 < q < 3

2
.

Next, we come to prove the condition (ii). Let ı > 0 and jr � Nr j < ı. ThenZ
js�rj�2ı

jK.s; r/ �K.s; Nr/j d�.s/

D
1

4

Z
js�rj�2ı

j
�¹js�rj�1º

s � r
�
�¹js�Nrj�1º

s � Nr
j ds

.
Z

js�rj�2ı

j
�¹js�rj�1º

s � r
�
�¹js�rj�1º

s � Nr
j ds C

Z
js�rj�2ı

j
�¹js�rj�1º � �¹js�Nrj�1º

s � Nr
j ds

´ IC II.

Note that jr � Nr j < ı and js � r j � 2ı, which imply that js � Nr j � 1
2
js � r j. Then

I �
Z

js�rj�2ı

2jr � Nr j

j.s � r/.s � Nr/j
ds � 2ı

Z
js�rj�2ı

ds

js � r j2
D 4;

and

II �
Z

js�rj�2ı

.�¹js�Nrj�1=2º � �¹js�Nrj�1º/

js � Nr j
ds C

Z
1>js�rj�2ı

�¹js�Nrj�1º

js � Nr j
ds

�

Z
1
2�js�Nrj<1

ds

js � Nr j
C

Z
js�rj<1

ds � 2:

Thus, condition (ii) holds. Hence, by summarizing above all arguments we can con-
clude the desired estimate (2.7), and then TK 2 B.L1.R3/; L1;1.R3//.

Finally, we observe that the kernel of T �K is given by

K.y; x/D�¹jjxj�jyjj�1º

�
jyj

2jxj2.jxj2 C jyj2/
�

1

4jxj2.jxj C jyj/
C

1

4jxj2.jxj � jyj/

�
:
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The last two terms are equal to exactly K2 and K3, respectively. The first term is
dominated by jxj

�3

4
. Hence, the same argument as above shows T �K 2 B.L1.R3/;

L1;1.R3//.

3. Stationary formula and resolvent expansion at zero

3.1. The stationary formulas of wave operators

First of all, we observe that it suffices to deal with W� since (1.1) implies WCf D
W� Nf . The starting point is the following well-known stationary representation ofW�
(see, e.g., Kuroda [23]):

W� D I �
2

�i

1Z
0

�3RCV .�
4/V

�
RC0 .�

4/ �R�0 .�
4/
�
d�: (3.1)

To explain the formula (3.1), we need to introduce some notations. Let

R0.z/ D .�
2
� z/�1; RV .z/ D .H � z/

�1; z 2 C n Œ0;1/;

be the resolvents of �2 and H D �2 C V.x/, respectively. We denote by R˙0 .�/;
R˙V .�/ their boundary values (limiting resolvents) on .0;1/, namely

R˙0 .�/ D lim
"&0

R0.�˙ i"/; R˙V .�/ D lim
"&0

RV .�˙ i"/; � > 0:

The existence of R˙0 .�/ as bounded operators from L2s .R
3/ to L2�s.R

3/ with s > 1
2

follows from the limiting absorption principle for the resolvent .�� � z/�1 of the
free Schrödinger operator �� (see, e.g., Agmon [1]) and the following equality:

R0.z/ D
1

2
p
z

�
.�� �

p
z/�1 � .��C

p
z/�1

�
; z 2 C n Œ0;1/; Im

p
z > 0:

This formula above also gives the explicit expressions of the kernels of R˙0 .�
4/:

R˙0 .�
4; x; y/ D

1

8��2jx � yj
.e˙i�jx�yj � e��jx�yj/ D

F˙.�jx � yj/

8��
; (3.2)

where x; y 2 R3 and F˙.s/ D s�1.e˙is � e�s/. The existence of R˙V .�/ for � > 0
under our assumption of Theorem 1.2 has been also already shown (see, e.g., [1,23]).
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3.2. Resolvent asymptotic expansions near zero

This section is mainly devoted to the study of asymptotic behaviors of the resolvent
RCV .�

4/ at low energy �!C0. We also prepare some elementary lemmas needed in
the proof of our main theorems.

We begin with recalling the symmetric resolvent formula for R˙V .�
4/. Let v.x/D

jV.x/j1=2 and U.x/ D sgn V.x/, that is U.x/ D 1 if V.x/ � 0 and U.x/ D �1 if
V.x/ < 0. Let M˙.�/ D U C vR˙0 .�

4/v and .M˙/�1.�/´ .M˙.�//�1.

Lemma 3.1. For � > 0, M˙.�/ is invertible on L2.R3/ and R˙V .�
4/V has the form

R˙V .�
4/V D R˙0 .�

4/v.M˙/�1.�/v: (3.3)

Proof. Due to the absence of embedded positive eigenvalue of H , it was well known
that M˙.�/ is invertible on L2.R3/ for all � > 0 (see, e.g., Agmon [1] and
Kuroda [23]). Since V D vUv and 1 D U 2, we have

R˙V .�
4/v D R˙0 .�

4/v �R˙V .�
4/vUvR˙0 .�

4/v

D R˙0 .�
4/v.1C UvR˙0 .�

4/v/�1

D R˙0 .�
4/v.U C vR˙0 .�

4/v/�1U�1:

Multiplying Uv from the right, we obtain the desired formula for R˙V .�
4/V .

Throughout the paper, we only use MC.�/, so we write M.�/ D MC.�/ for
simplicity. In order to obtain the asymptotic behaviors of RCV .�

4/ near � D 0, we
need to establish the asymptotic expansion of M�1.�/, which plays a crucial role in
the paper. To this end, we introduce some notations. We say that an integral operator
TK 2 B.L2.R3// with the kernel K is absolutely bounded if TjKj 2 B.L2.R3//. Let

P ´
h�; viv

kV kL1
; zP D

8�

.1C i/kV kL1
P D

8�

.1C i/kV k2L1
h�; viv; Q´ I � P:

(3.4)

Note that P is the orthogonal projection onto the span of v in L2.R3/, i.e., PL2 D
span¹vº, and Q.v/ D 0.

Lemma 3.2. Let H D �2 C V.x/ with jV.x/j . hxi�� for x 2 R3. If 0 is a regu-
lar point of H and � > 11, then there exists �0 > 0 such that M�1.�/ satisfies the
following asymptotic expansions on L2.R3/ for 0 < � � �0:

M�1.�/ D QA0QC �.QA1;0 C A0;1Q/C � zP C �
2A2 C �3.�/; (3.5)

where A0, A1;0, A0;1 and A2 are �-independent bounded operators on L2 and �3.�/
are �-dependent bounded operators on L2 such that all the operators in the right
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sides of (3.5) are absolutely bounded. Moreover, �3.�/ satisfy that for ` D 0; 1; 2; 3,

kj@`��3.�/jkL2!L2 � C`�
3�`; 0 < � � �0: (3.6)

We remark that, in the regular case (i.e., zero is neither an eigenvalue nor a reso-
nance of H ), the expansion of M�1.�/ at zero has been obtained with different error
terms in [9, 11, 16]. In Lemma 3.2 above, the expansion (3.5) contains more specific
and higher order terms at the cost of fast decay of V in order to study the endpoint
estimates of wave operators W˙ here. For reader’s convenience, we give its simple
proof in Appendix A. Moreover, it should be pointed out that asymptotic expansions
of M�1.�/ were also established in the presence of zero resonance or eigenvalue
in [9].

In the following we give some elementary but useful lemmas.

Lemma 3.3. Let � > 0 and x; y 2 R3. If F 2 C 1.RC/, then

F.�jx � yj/ D F.�jxj/ � �

1Z
0

hy;w.x � �y/iF 0.�jx � �yj/ d�;

where F 0.s/ is the first order derivative of F.s/, h�; �i denotes the inner product of R3,
and w.x/ D x

jxj
for x ¤ 0 and w.x/ D 0 for x D 0.

Proof. Let G".y/ D F.�
p
"2 C jx � yj2/; " ¤ 0. Then G".y/ 2 C 1.R3/ for " ¤ 0

and F.�jx � yj/ D lim"!0G".y/. By Taylor’s expansions, we have

G".y/ D G".0/C

1Z
0

X
j˛jD1

.@˛G"/.�y/y
˛ d�: (3.7)

Observe that

@yjG".y/ D
��.xj � yj /

."2 C jx � yj2/
1
2

F 0.�
p
"2 C jx � yj2/; j D 1; 2; 3:

Since there exists a constantsC DC.�;x;y/ such that j.@yiG"/.�y/j �C.i D 1;2;3/
for 0 � � � 1 and 0 < " � 1, then by the Lebesgue dominated convergence theorem,
we have for x � �y ¤ 0,

lim
"!0

1Z
0

.@yiG"/.�y/ d� D

1Z
0

��.xj � �yj /

jx � �yj
F 0.�jx � �yj/ d�; j D 1; 2; 3;

and

lim
"!0

1Z
0

.@yiG"/.�y/ d� D 0 (j D 1; 2; 3)
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for x � �y D 0. From Taylor expansions (3.7), we obtain that

F.�jx � yj/ D F.�jxj/ � �

1Z
0

F 0.�jx � �yj/hy;w.x � �y/i d�:

Below we apply Lemma 3.3 for the specific functions F˙.s/ D s�1.e˙is � e�s/
to establish the following formulas used later.

Lemma 3.4. LetQ be the orthogonal projection defined in (3.4), � > 0 and F˙.s/D
s�1.e˙is � e�s/. Then�

QvR˙0 .�
4/f

�
.x/

D �
1

8�
Q

�
v.x/

Z
R3

� 1Z
0

hx;w.y � �x/i F
.1/
˙
.�jy � �xj/d�

�
f .y/ dy

�
and �

R˙0 .�
4/vQf

�
.x/

D �
1

8�

Z
R3

� 1Z
0

F
.1/
˙
.�jx � �yj/hy;w.x � �y/i d�

�
v.y/.Qf /.y/ dy;

where F .1/
˙
.s/ D s�2..˙is � 1/e˙is C .s C 1/e�s/ denotes the first order derivative

of F˙.s/.

Remark 3.5. The above formulas for QvR˙0 .�
4/f and R˙0 .�

4/vQf can be written
respectively as

QvR˙0 .�
4/f D

1

8�
Q

�Z
R3

h`.�; x; y/f .y/ dy

�
;

R˙0 .�
4/vQf D

1

8�

Z
R3

hr.�; x; y/.Qf /.y/ dy;

where

h`.�; x; y/ D �v.x/

1Z
0

hx;w.y � �x/i F
.1/
˙
.�jy � �xj/ d�;

hr.�; x; y/ D �v.y/

1Z
0

hy;w.x � �y/i F
.1/
˙
.�jx � �yj/ d�:
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Moreover, we also notice that

h`.�; x; y/; hr.�; x; y/ D Ox;y.1/; �!C0:

Here, we use h.�; x; y/ D Ox;y.�k/ to denote that jh.�; x; y/j . �k for fixed x; y.
Compared with the free resolvent jR˙0 .�

4/.x; y/j . ��1, such a gain of one order
power of �will be crucial to establish stronger point-wise estimates of integral kernels
related to W˙ later.

Proof of Lemma 3.4. By (3.2) and applying Lemma 3.3 to F˙, we obtain

R˙0 .�
4; x; y/ D

F˙.�jy � xj/

8��

D
F˙.�jyj/

8��
�

1

8�

1Z
0

hx;w.y � �x/iF 0˙.�jy � �xj/ d�:

Since Q.v/ D 0, then it follows that�
QvR˙0 .�

4/f
�
.x/

D
1

8��
Q.v/

Z
R3

F˙.�jyj/f .y/dy

�
1

8�
Q

�
v

Z
R3

� 1Z
0

hx;w.y � �x/iF 0˙.�jy � �xj/ d�

�
f .y/ dy

�

D �
1

8�
Q

�
v

Z
R3

� 1Z
0

hx;w.y � �x/iF 0˙.�jy � �xj/ d�

�
f .y/ dy

�
:

For RC0 .�
4/vQf , by taking

R˙0 .�
4; x; y/ D

F˙.�jxj/

8��
�

1

8�

1Z
0

hy;w.x � �y/iF 0˙.�jx � �yj/ d�;

the proof is analogous.

Moreover, we also need to frequently use the following lemmas later.

Lemma 3.6. Let

F˙.s/ D s
�1.e˙is � e�s/;

A˙.s/ D e
�isF 0˙.s/ and B˙.s/ D e

�isF˙.s/:
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Then for any ` 2 N, the following estimates hold:

jF
.`/
˙
.s/j . hsi�1; s > 0;

jA
.`/
˙
.s/j C jB

.`/
˙
.s/j . hsi�`�1; s > 0;

where F .`/
˙
.s/,A.`/

˙
.s/ denote the `th order derivative of F .`/

˙
.s/,A.`/

˙
.s/, respectively.

Proof. We only prove the estimates of A˙.s/ due to similarity. Firstly, we calculate
that

A˙.s/ D s
�2..˙is � 1/C .s C 1/e.�1�i/s/:

For each ` 2 N, it follows by Leibniz’s rule that

jA
.`/
˙
.s/j . s�`�2

�
.s C 1/C

X̀
kD0

ske�s
�
;

which gives
jA
.`/
˙
.s/j . s�`�1 for s � 1.

Additionally, by Taylor’s expansion of e.�1�/s , we obtain

A˙.s/ D

1X
kD0

.k C 1 � i/.�1� i/kC1
sk

.k C 1/Š
;

which gives A˙.s/ 2 C1.R/. Hence, jA.`/
˙
.s/j . s�`�1 for s > 0 and ` 2 N.

Finally, we record the following well-known lemma, e.g., see [17, Lemma 3.8].

Lemma 3.7. Let ˛ and ˇ satisfy 0 < ˛ < n < ˇ. ThenZ
Rn

1

hyiˇ jx � yj˛
dy . hxi�˛:

4. The proof of Theorem 1.2

In this section we consider the proof of Theorem 1.2. The stationary formula (3.1) of
W� is decomposed into the low and high energy parts as follows: fixed �0 > 0 small
enough, let � 2 C10 .R/ be such that � � 1 on

�
�
�0
2
; �0
2

�
and supp � � Œ��0; �0�.

We define

W L
� D

1Z
0

�3�.�/RCV .�
4/V .RC0 .�

4/ �R�0 .�
4// d�; (4.1)

W H
� D

1Z
0

�3.1 � �.�//RCV .�
4/V .RC0 .�

4/ �R�0 .�
4// d�:
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ThenW� D I � 2
�i
.W L
� CW

H
� /. In view of the decomposition, it suffices to estimate

W H
� andW L

� , separately. Indeed, in the work [16, Proposition 4.1], it has been proved
that high energy part W H

� is bounded on Lp.R3/ for all 1 � p � 1 with the decay
rate � > 5 for V.x/. Hence, it only remains to deal with the low energy part W L

� .
Now, we will prove the following conclusion.

Theorem 4.1. Under the assumption in Theorem 1.2, the low energy partW L
� defined

by (4.1) satisfies the same statement as that in Theorem 1.2.

Throughout this section, we thus always assume that jV.x/j. hxi�� with � > 11
and zero is a regular point of H . Substituting the expansion (3.5) into (3.3), if 0 <
� � �0, then we have

RC.�4/V D RC0 .�
4/v¹QA0QC �.QA1;0 C A0;1Q/C � zP C �

2A2 C �3.�/ºv:

Hence, W L
� can be written as follows:

W L
� D TK0 C TK1;0 C TK0;1 C TKP C TK2 C TK3 ; (4.2)

where the kernels of six operators in the right side of the (4.2) are given by the fol-
lowing integrals:

K0.x; y/ D

1Z
0

�3�.�/
�
RC0 .�

4/vQA0Qv.R
C
0 �R

�
0 /.�

4/
�
.x; y/ d�; (4.3a)

K1;0.x; y/ D

1Z
0

�4�.�/
�
RC0 .�

4/vQA1;0v.R
C
0 �R

�
0 /.�

4/
�
.x; y/ d�; (4.3b)

K0;1.x; y/ D

1Z
0

�4�.�/
�
RC0 .�

4/vA0;1Qv.R
C
0 �R

�
0 /.�

4/
�
.x; y/ d�; (4.3c)

KP .x; y/ D

1Z
0

�4�.�/
�
RC0 .�

4/v zPv.RC0 �R
�
0 /.�

4/
�
.x; y/ d�; (4.3d)

K2.x; y/ D

1Z
0

�5�.�/
�
RC0 .�

4/vA2v.R
C
0 �R

�
0 /.�

4/
�
.x; y/ d�; (4.3e)

K3.x; y/ D

1Z
0

�3�.�/
�
RC0 .�

4/v�3.�/v.R
C
0 �R

�
0 /.�

4/
�
.x; y/ d�: (4.3f)

In view of this formula (4.2) for W L
� , Theorem 4.1 follows from the corresponding

boundedness of these six integral operators. By virtue of Lemma 3.4 and Remark 3.5,
the six operators TKj ; TKP ; TKij are classified into the following three cases.
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Class I. TK0 ; TK1;0 ; TK0;1 , TK2 , where all integrands can be dominated by C�3

for fixed x; y in their corresponding kernel integrals (4.3). (For short, we may set
Ox;y.�

3/ below).

Class II. TKP with Ox;y.�2/.

Class III. TK3 with Ox;y.�4/.

In particular, all the six operators above are in fact well-defined integral operators.
Note that, since jv.x/j . hxi��=2 with � > 11, we have

khxikvBvhxikf kL1.R3/ � khxi
kvk

2

L2kBkL2!L2kf kL1

. khxi2kV kL1.R3/kf kL1.R3/;

for all B D QA0Q; QA1;0; A0;1Q; zP; A2; �3.�/, and k < ��3
2

. Hence, in all
cases, hxikvBvhxik is an absolutely bounded integral operator for any k � 3 at least,
satisfying Z

R6

hxikj.vBv/.x; y/jhyik dx dy . khxi2kV kL1.R3/ <1; (4.4)

where we use the notation .vBv/.x; y/ D v.x/B.x; y/v.y/.
Now, let us finish the proof of Theorem 4.1 in the following three propositions

corresponding to the three classes I–III above.

Proposition 4.2. LetK 2 ¹K0;K1;0;K0;1;K2º. Then TK 2B.Lp/ for all 1� p �1.

Proof. All the kernels K0; K1;0; K0;1, and K2 can be written as the difference of the
following two kernels

K˙˛ˇ .x; y/´

1Z
0

�5�˛�ˇ�.�/.RC0 .�
4/vQ˛BQˇvR

˙
0 .�

4//.x; y/ d�;

with some B 2 B.L2/ so thatQ˛BQˇ is absolutely bounded, where we setQ1 DQ,
Q0 D I (the identity) and

.˛; ˇ/ D

8̂̂̂̂
<̂
ˆ̂̂:
.1; 1/ for K D K0;

.1; 0/ for K D K1;0;

.0; 1/ for K D K0;1;

.0; 0/ for K D K2:

Then we shall show T
K˙
˛ˇ

satisfies the desired assertion for all pairs .˛; ˇ/ above. To

this end, we consider two cases (i) ˛ D ˇ D 1, (ii) ˇ D 0 or ˛ D 0.
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Case (i). By Lemma 3.4 and Remark 3.5, we can rewrite K˙11 as follows:

K˙11.x; y/ D
1

64�2

1Z
0

�3�.�/

�Z
R6

I1.vQA0Qv/.u1; u2/I2 du1 du2

�
d�; (4.5)

where

I1´

1Z
0

hu1; w.x � �1u1/iF
.1/
C .�jx � �1u1j/ d�1;

I2´

1Z
0

hu2; w.y � �2u2/iF
.1/
˙
.�jy � �2u2j/ d�2;

and F .1/
˙
.s/ is the first order derivative of F˙.s/D s�1.e˙is � e�s/, h�; �i denotes the

inner product of R3, and w.x/ D x
jxj

for x ¤ 0 and w.x/ D 0 for x D 0.
By changing the order of integrals in (4.5), then it follows that

jK˙11.x; y/j �
1

64�2

Z
R6�Œ0;1�2

�
ju1jv.u1/j.QA0Q/.u1; u2/jju2jv.u2/

�

�

ˇ̌̌̌ 1Z
0

�3�.�/F
.1/
C .�jx � �1u1j/F

.1/
˙
.�jy � �2u2j/ d�

ˇ̌̌̌
du d�;

where .u; �/ D .u1; u2; �1; �2/ 2 R6 � Œ0; 1�2.
Let

G˙11.X; Y / D

1Z
0

�3�.�/F
.1/
C .�jX j/F

.1/
˙
.�jY j/d�; X; Y 2 R3:

Then

jK˙11.x; y/j

.
Z

R6�Œ0;1�2

.ju1jj.vQA0Qv/.u1; u2/jju2j/jG
˙
11.x � �1u1; y � �2u2/j du d�:

(4.6)

Denote by T
G˙
11

the integral operator associated with G˙11.x; y/. Then, by (4.4)
and (4.6), Minkowski’s inequality, and the translation invariance of Lp-norm, we can
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reduce the Lp-boundedness of T
K˙
11

to the Lp-boundedness of T
G˙
11

based on the
following inequality:

kT
K˙
11

kLp!Lp . kjxj2V kL1kQA0QkL2!L2kTG˙
11

kLp!Lp ; 1 � p � 1:

Indeed, to establish the Lp-boundedness of T
G˙
11

for all 1 � p � 1, by Proposi-
tion 2.2 it suffices to prove that G˙11.x; y/ satisfies the following point-wise estimate:

jG˙11.x; y/j . min¹hxi�1hyi�1hjxj ˙ jyji�2; hjxj ˙ jyji�4º; x; y 2 R3: (4.7)

Now, we rewrite G˙11.x; y/ as an oscillatory integral,

G˙11.x; y/ D

1Z
0

�3�.�/ei�.jxj˙jyj/AC.�jxj/A˙.�jyj/d�; x; y 2 R3; (4.8)

where
A˙.s/´ e�isF

.1/
˙
.s/ D s�2..˙is � 1/C .s C 1/e.�1�i/s/;

which by Lemma 3.6, satisfies the following estimates:

jA
.`/
˙
.s/j . hsi�`�1; s > 0; ` 2 N0: (4.9)

To estimate the integral (4.8), we decompose � by using the dyadic partition of unity
¹'N º defined in Section 1.4, as

�.�/ D

N0X
ND�1

Q�N .�/; Q�N .�/´ �.�/'N .�/; � > 0;

where N0 . log�0 . �1 since supp� � Œ��0; �0�. Then we decompose

G˙11.x; y/ D

N0X
ND�1

1Z
0

ei�.jxj˙jyj/‰N .�; x; y/d�´

N0X
ND�1

E˙N .x; y/;

where
‰N .�; x; y/´ �3 Q�N .�/AC.�jxj/A˙.�jyj/:

Note that supp Q�N � Œ2N�2; 2N � and

j@`� Q�N .�/j . 2�N`; ` 2 N0: (4.10)

Hence, by Leibniz’s formula, (4.9), and (4.10), we have

j@k�‰N .�; x; y/j . 2.3�k/N h2N jxji�1h2N jyji�1; k 2 N0:
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Thus, by k-times integration by parts for E˙N .x; y/, it follows that

jE˙N .x; y/j . 2.4�k/N jjxj ˙ jyjj�kh2N jxji�1h2N jyji�1; k 2 N0; (4.11)

which leads to the following estimates for N � N0:

jE˙N .x; y/j .

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

22N

hxihyi
by k D 0 of (4.11)I

2N

1C 22N .jxj ˙ jyj/2
1

hxihyijjxj ˙ jyjj
by k D 1; 3 of (4.11)I

2N

1C 22N .jxj ˙ jyj/2
1

jjxj ˙ jyjj3
by k D 3; 5 of (4.11):

So, we get that

jG˙11.x; y/j �

N0X
ND�1

jE˙N .x; y/j .

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

1

hxihyi
I

1

hxihyi.jxj ˙ jyj/2
I

1

.jxj ˙ jyj/4
:

(4.12)

Therefore, we have

jG˙11.x; y/j .
1

hxihyi
. min

° 1

hxihyihjxj ˙ jyji2
;

1

hjxj ˙ jyji4

±
;

if jjxj ˙ jyjj � 1. On the other hand, if jjxj ˙ jyjj � 1, then it is clear from (4.12)
again that

jG˙11.x; y/j . min
° 1

hxihyihjxj ˙ jyji2
;

1

hjxj ˙ jyji4

±
:

Thus, we obtain the desired estimate (4.7).

Case (ii). Let ˛ D 0 or ˇ D 0. As in case (i), it similarly follows from (3.2) and
Lemma 3.4 that

jK˙˛ˇ .x; y/j .
Z

R6�Œ0;1�2

�
ju1j

˛
j.vQ˛BQˇv/.u1; u2/jju2j

ˇ
�

� jG˙˛ˇ .x � �1u1; y � �2u2/j du d�;

where .˛; ˇ/ D .1; 0/; .0; 1/; .0; 0/, and

G˙˛ˇ .X; Y / D

1Z
0

�5�˛�ˇ�.�/F
.˛/
C .�jX j/F

.ˇ/
˙
.�jY j/ d�; X; Y 2 R3:
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Then, by using the same arguments as above, we can obtain the same estimate (4.7)
as for G˙

˛ˇ
and then the same Lp-boundedness of T

K˙
˛ˇ

for all 1 � p � 1. Hence,
this completes the proof of Proposition 4.2.

Next, we consider the operator TK3 in the class (III).

Proposition 4.3. The operator TK3 satisfies the same statement as that in Proposi-
tion 4.2.

Proof. We show that jK3.x;y/j. hxi�1hyi�1hjxj � jyji�2�ı for some ı > 0, which,
together with Lemmas 2.1 and Proposition 2.2, implies the desired assertion. The
proof is more involved than in the previous case since �3.�/ depends on �.

As before, based on the free resolvent formula 3.2, we can write that

K3.x; y/ D

1Z
0

�3�.�/
�
RC0 .�

4/v�3.�/v.R
C
0 �R

�
0 /.�

4/
�
.x; y/ d�;

D

1Z
0

�4�.�/

�Z
R6

FC.�jx � u1j/z�.�; u1; u2/

� .FC � F�/.�jy � u2j/ du1 du2

�
d�;

´ .KC3 .x; y/ �K
�
3 .x; y//;

where we set

z�.�; u1; u2/ D
1

64�2�3
.v�3.�/v/.u1; u2/ for � > 0.

Let
ˆ˙.x; y; u1; u2/ D .jx � u1j � jxj/˙ .jy � u2j � jyj/:

Then

K˙3 .x; y/ D

1Z
0

ei�.jxj˙jyj/�4�.�/b˙.�; x; y/d�;

where

b˙.�; x; y/

D

Z
R6

ei�ˆ
˙.x;y;u1;u2/BC.�jx � u1j/z�.�; u1; u2/B˙.�jy � u2j/du1du2;

and
B˙.s/ D e

�isF˙.s/ D s
�1.1 � e.�1�i/s/:
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Firstly, using Leibniz formula, (3.6), Lemma 3.6, and Lemma 3.7, it follows that

j@`�b
˙.�; x; y/j

. ��`�2
�Z

R3

hu1i
2`
jV j.u1/

jx � u1j2
du1

� 1
2
�Z

R3

hu2i
2`
jV j.u2/

jy � u2j2
du2

� 1
2

. ��`�2 hxi�1hyi�1; (4.13)

for 0 < � . 1, x; y 2 R3 and ` D 0; 1; 2; 3. Next, to deal withK˙3 , we decompose �,
by using the dyadic partition of unity ¹'N º defined in Section 1.4, as

�.�/ D

N0X
ND�1

Q�N .�/; Q�N .�/´ �.�/'N .�/; � > 0;

where N0 . log�0 . �1, supp Q�N � Œ2N�2; 2N �, and j@`
�
Q�N .�/j � C`2

�N` for all
` 2 N0. Let K˙3;N be given by K˙3 with � replaced by Q�N and decompose K˙3 as

K˙3 D
X
N�N0

K˙3;N :

Since � � 2N on supp Q�N , we know by (4.13) that

jK˙3;N .x; y/j . 22N hxi�1hyi�1
Z

supp Q�N

d� . 23N hxi�1hyi�1; x; y 2 R3:

In particular, if jjxj ˙ jyjj � 1, then

jK˙3;N .x; y/j . 23N hxi�1hyi�1hjxj ˙ jyji�3:

On the other hand, if jjxj ˙ jyjj > 1, then we obtain by integrating by parts that

K˙3;N .x; y/ D
i

.jxj ˙ jyj/3

1Z
0

ei�.jxj˙jyj/@3�
�
�4 Q�N .�/b

˙.�; x; y/
�
d�:

Then (4.10), (4.13), and the support property of Q�N imply

jK˙3;N .x; y/j . hxi
�1
hyi�1hjxj ˙ jyji�32�N

2NZ
2N�2

d�

. hxi�1hyi�1hjxj ˙ jyji�3;

as jjxj ˙ jyjj > 1. Therefore, K˙3;N .x; y/ satisfies

jK˙3;N .x; y/j . hxi
�1
hyi�1 min¹23N ; hjxj ˙ jyji�3º

. 23N.1��/hxi�1hyi�1hjxj ˙ jyji�3� ; � 2 Œ0; 1�:
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In particular, for instance, taking � D 5
6

, then we obtain

jK˙3 .x; y/j . hxi
�1
hyi�1hjxj ˙ jyji�5=2

X
N�N0

2N=2 . hxi�1hyi�1hjxj ˙ jyji�5=2:

Therefore, the desired result follows by Lemma 2.1 and Proposition 2.2.

Finally, we deal with the class (II), namely the operator TKP . First recall that

zP D
8�

.1C i/kV kL1
P; P D

1

kV kL1
h�; viv:

Proposition 4.4. Let 1 < p <1. Then TKP 2 B.L1.R3/;L1;1.R3//\B.Lp.R3//.

Remark 4.5. It will be proved in Section 5 that TKP … B.L1.R3// [ B.L1.R3//.

Proof of Proposition 4.4. By using (3.2) we first calculate that

KP .x; y/ D
8�

.1C i/kV kL1

1Z
0

�4�.�/.RC0 .�
4/vP v.RC0 �R

�
0 /.�

4//.x; y/d�

D
1

8�.1C i/kV kL1

1Z
0

�2�.�/

�

�Z
R6

FC.�jx � u1j/.vP v/.u1; u2/

� .FC � F�/.�jy � u2j/ du1 du2

�
d�;

where F˙.s/ D s�1.e˙is � e�s/ and .FC � F�/.s/ D s�1.eis � e�is/.
Note that

.vP v/.u1; u2/ D
v2.u1/v

2.u2/

kV kL1
; .u1; u2/ 2 R6:

Hence, we can rewrite KP .x; y/ as

KP .x; y/

D
1

8�.1C i/kV k2
L1

1Z
0

�.�/

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
.ei�jx�u1j � e��jx�u1j/

� .ei�jy�u2j � e�i�jy�u2j/ du1 du2

�
d�:

(4.14)
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Let z D x � u1 and w D y � u2. Then

.ei�jzj � e��jzj/.ei�jwj � e�i�jwj/

D ei�.jzjCjwj/ � ei�.jzj�jwj/ � e��.jzj�i jwj/ C e��.jzjCi jwj/:

So we can decompose KP .x; y/ as follows:

KP .x; y/ D
1

8�.1C i/kV k2
L1

�
K1P .x; y/ �K

2
P .x; y/ �K

3
P .x; y/CK

4
P .x; y/

�
;

(4.15)

where

K1P .x; y/ D

1Z
0

�.�/

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
ei�.jx�u1jCjy�u2j/ du1 du2

�
d�;

K2P .x; y/ D

1Z
0

�.�/

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
ei�.jx�u1j�jy�u2j/ du1 du2

�
d�;

K3P .x; y/ D

1Z
0

�.�/

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
e��.jx�u1j�i jy�u2j/ du1 du2

�
d�;

K4P .x; y/ D

1Z
0

�.�/

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
e��.jx�u1jCi jy�u2j/ du1 du2

�
d�:

In the following, we will estimate these kernels KjP .x; y/ (j D 1; 2; 3; 4) case by
case. We only deal with the K1P .x; y/ due to similarity. For this end, let

 1.�; x; y/´

Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
ei�..jx�u1j�jxj/C.jy�u2j�jyj//du1du2: (4.16)

Then, we obtain

K1P .x; y/ D

1Z
0

ei�.jxjCjyj/�.�/ 1.�; x; y/d�:
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By integration by parts, it follows that

K1P .x; y/

D
1

i.jxj C jyj/

�
� 1.0; x; y/ �

1Z
0

ei�.jxjCjyj/@�.� 1/

�
d�

D �
 1.0; x; y/

i.jxj C jyj/
�
@� 1.0; x; y/

.jxj C jyj/2
�

1

.jxj C jyj/2

1Z
0

ei�.jxjCjyj/@2�.� 1/d�:

(4.17)

By using (4.16), Lemma 3.7 and the decay condition of potential V , we have

j 1.�; x; y/j C j@� 1.�; x; y/j C

ˇ̌̌̌ 1Z
0

ei�.jxjCjyj/@2�.� 1/ d�

ˇ̌̌̌

.
�Z

R3

hu1i
2v2.u1/

jx � u1j
du1

��Z
R3

hu2i
2v2.u2/

jy � u2j
du2

�
.

1

hxihyi
:

Therefore, (4.17) implies that

K1P .x; y/D
i

.jxj C jyj/

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
du1du2

�
CO

� 1

hxihyi.jxj C jyj/2

�
;

where we use h.x; y/ D O.g.x; y// to denote jh.x; y/j . jg.x; y/j. Similarly, we
obtain that

K2P .x; y/ D
i

.jxj � jyj/

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
du1 du2

�
CO

� 1

hxihyi.jxj � jyj/2

�
;

K3P .x; y/ D
1

jxj � i jyj

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
du1 du2

�
CO

� 1

hxihyi.jxj C jyj/2

�
;

K4P .x; y/ D
1

jxj C i jyj

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
du1 du2

�
CO

� 1

hxihyi.jxj C jyj/2

�
:
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Therefore, by (4.15) it follows that

KP .x; y/ D �
1C i

4�kV k2
L1

�Z
R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
du1 du2

�
jxj2jyj

jxj4 � jyj4

CO
� 1

hxihyi.jxj � jyj/2

�
:

By (4.14) and Lemma 3.7, we also have

jKP .x; y/j .
Z

R6

v2.u1/v
2.u2/

jx � u1jjy � u2j
du1 du2 .

1

hxihyi
for all .x; y/ 2 R3 �R3:

Hence, we can finally write KP .x; y/ into the following form:

KP .x; y/ D �
.1C i/

4�
G.x/

�
jxj�¹jjxj�jyjj�1º

jxj4 � jyj4

�
G.y/CO

� 1

hxihyihjxj � jyji2

�
;

(4.18)

where

G.x/ D
jxj

kV kL1

�Z
R3

jV j.u/

jx � uj
du

�
:

Note that jG.x/j. jxjhxi�1 <1 by Lemma 3.7. Then Propositions 2.2 and 2.4 imply
that TKP ; T

�
KP
2 B.L1; L1;1/ \ B.Lp/ for all 1 < p <1.

In one word, putting Propositions 4.2–4.4 all together, we have finished the proof
of Theorem 4.1.

Remark 4.6. Although the expression of KP .x; y/ in (4.18) is suitable to show
the weak L1-boundedness (i.e., TKP 2 B.L1; L1;1/), however it is ineffective to
disprove the L1-L1 and L1-L1 boundedness of TKP . This is because the second
part of (4.18) just represents a kernel form satisfying weak L1-estimate but lacks
specificity. In Section 5 we will employ alternative formula for KP .x; y/ to show
TKP … B.L1.R3// [ B.L1.R3// assuming that V has compact support.

5. The proof of Theorem 1.1

This section is devoted to showing Theorem 1.1. Throughout the section, we assume
that V 6� 0, suppV � B.0;R0/ for some R0 > 0, zero is a regular point of H and H
has no embedded eigenvalues in .0;1/, where B.0;R/ D ¹x 2 R3 jxj � Rº.

Recall thatW�D I � 2
�i
.W L
� CW

H
� /. Except for TKP , all the other terms inW L

�

in the right side of (4.2) and the high-energy partW H
� are bounded on Lp.R3/ for all
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1 � p � 1 by Propositions 4.2 and 4.3, and [16, Proposition 4.1]. Theorem 1.1 thus
follows from the following proposition.

Proposition 5.1. Let fR D �B.0;R/. Then kTKP fRkL1.R3/ !1 as R !1, and
TKP f1 … L

1.R3/. As a consequence, TKP is neither bounded on L1.R3/ nor on
L1.R3/.

To prove Proposition 5.1, we begin with the following lemma which gives another
expression of KP .x; y/.

Lemma 5.2. Let KP .x; y/ be the kernel of the operator TKp defined in (4.2). Then

KP .x; y/ D G.x; y/C F.x; y/;

where

G.x; y/ D
�1 � i

4�kV k2
L1

Z
R6

jV.u1/V .u2/j
jx � u1j�¹jjx�u1j�jy�u2jj�1º

jx � u1j4 � jy � u2j4
du1 du2;

F.x; y/ D
1

8�.1C i/kV k2
L1

Z
R6

jV.u1/V .u2/j‰.x � u1; y � u2/ du1 du2;

and ‰.z;w/ is an admissible kernel on R3 �R3 such that T‰ is bounded on Lp.R3/
for all 1 � p � 1. As a consequence, TF 2 B.Lp.R3// for each 1 � p � 1.

Proof. Recall that v D
p
jV j. By (4.14), we can write

KP .x; y/ D
1

8�.1C i/kV k2
L1

Z
R6

jV.u1/V .u2/j zKP .x � u1; y � u2/ du1 du2;

where

zKP .z; w/ D

1Z
0

�.�/
�ei�jzj � e��jzj

jzj

��ei�jwj � e�i�jwj
jwj

�
d�: (5.1)

We set

‰.z;w/´ zKP .z; w/C
4i jzj�¹jjzj�jwjj�1º

jzj4 � jwj4
;

so that KP .x; y/ D G.x; y/C F.x; y/ as expressed above. If T‰ 2 B.Lp.R3// for
all 1 � p � 1, then Minkowski’s integral inequality and the invariance of Lp-norm
under the translation yield

kTFkLp!Lp �
1

8
p
2�
kT‰kLp!Lp :
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By virtue of Schur’s test, it thus suffices to show that ‰ is an admissible kernel on
R3 �R3, that is,

sup
z2R3

Z
R3

j‰.z;w/j dw C sup
w2R3

Z
R3

j‰.z;w/j dz <1: (5.2)

To this end, we write ‰ D ‰1 C‰2, where

‰1.z; w/ D zKP .z; w/�¹jjzj�jwjj<1º;

‰2.z; w/ D
�
zKP .z; w/C

4i jzj

jzj4 � jwj4

�
�¹jjzj�jwjj�1º:

We first deal with ‰1. Since

jF˙.s/j D
ˇ̌̌e˙is � e�s

s

ˇ̌̌
. min

°
1;
1

s

±
;

it follows from (5.1) that

j zKP .z; w/j .
1Z
0

�2�.�/jFC.�jzj/jj.FC � F�/.�jwj/j d�

. min
°
1;
1

jzj
;
1

jwj
;

1

jzjjwj

±
:

Using the bound j zKP .z; w/j . 1, we obtain

sup
jzj�1

Z
R3

j‰1.z; w/j dw . sup
jzj�1

Z
jjzj�jwjj<1

dw <1:

When jzj � 1, using the bound j zKP .z; w/j . jzj�1jwj�1, we have

sup
jzj�1

Z
R3

j‰1.z; w/j dw . sup
jzj�1

�
1

jzj

Z
jjzj�jwjj<1

1

jwj
dw

�

. sup
jzj�1

�
1

jzj

jzjC1Z
jzj�1

r dr

�
<1:

Thus,

sup
z2R3

Z
R3

j‰1.z; w/j dw <1: (5.3)
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The same argument also shows

sup
w2R3

Z
R3

j‰1.z; w/j dz <1: (5.4)

To deal with ‰2, integrating by parts in (5.1) yields

zKP .z; w/ D
1

jzjjwj

1Z
0

.ei�jzj � e��jzj/.ei�jwj � e�i�jwj/�.�/d�

D
1

jzjjwj

�
�

1

i.jzj C jwj/
C

1

i.jzj � jwj/
C

1

jzj C i jwj
�

1

jzj � i jwj

�
C

1

jzjjwj

1Z
0

�
�
ei�.jzjCjwj/

i.jzj C jwj/
C
ei�.jzj�jwj/

i.jzj � jwj/

C
e��.jzjCi jwj/

jzj C i jwj
�
e��.jzj�i jwj/

jzj � i jwj

�
�0.�/d�:

Since

1

jzjjwj

�
�

1

i.jzj C jwj/
C

1

i.jzj � jwj/
C

1

jzj C i jwj
�

1

jzj � i jwj

�
D

�4i jzj

jzj4 � jwj4
;

we find

‰2.z; w/ D
�¹jjzj�jwjj�1º

jzjjwj

1Z
0

�
�
ei�.jzjCjwj/

i.jzj C jwj/
C
ei�.jzj�jwj/

i.jzj � jwj/

C
e��.jzjCi jwj/

jzj C i jwj
�
e��.jzj�i jwj/

jzj � i jwj

�
�0.�/ d�: (5.5)

Using this expression, we shall show that

j‰2.z; w/j � CN

8̂̂̂̂
<̂
ˆ̂̂:
jzj�1jwj�1hjzj � jwji�N for all .z; w/ 2 supp‰2;

hzi�N if jwj �
1

2
;

hwi�N if jzj �
1

2
;

(5.6)
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which implies

sup
z2R3

Z
R3

j‰2.z; w/j dw

� sup
jzj�1=2

Z
R3

j‰2.z; w/jdw C sup
jzj>1=2

� Z
jwj�1=2

C

Z
jwj>1=2

�
j‰2.z; w/j dw

. sup
jzj�1=2

Z
R3

hwi�Ndw

C sup
jzj>1=2

� Z
jwj�1=2

1dw C

Z
jwj>1=2;
jjzj�jwjj�1

jzj�1jwj�1hjzj � jwji�N dw

�
<1

and similarly

sup
w2R3

Z
R3

j‰2.z; w/jdz <1:

These two bounds, (5.3), and (5.4) imply (5.2).
It remains to show (5.6). To prove the first estimate in (5.6), we observe that, since

�0 is compactly supported in .0;1/, if we integrate by parts the integral in (5.5), then
the boundary terms at � D 0;1 vanish identically. Taking into account this fact and
the bounds

jjzj ˙ jwjj � jjzj � jwjj � 1; jjzj ˙ i jwjj � jjzj � jwjj � 1; on supp‰2;

we make use of integration by parts N times to obtain

j‰2.z; w/j � CN jzj
�1
jwj�1jjzj � jwjj�N � CN jzj

�1
jwj�1hjzj � jwji�N :

For the second estimate in (5.6), using the formula

e�.aCb/

aC b
�
e�.a�b/

a � b
D be�a

� �

aC b

e�b � 1

�b
�

�

a � b

e��b � 1

�b
�

2

a2 � b2

�
with .a; b/ D .i jzj;�i jwj/ or .�jzj; i jwj/, we rewrite the integrand of ‰2 as

�0.�/

jzjjwj

�e�.i jzj�i jwj/
i jzj � i jwj

�
e�.i jzjCi jwj/

i jzj C i jwj
C
e�.�jzjCi jwj/

�jzj C i jwj
�
e�.�jzj�i jwj/

�jzj � i jwj

�
D
ei�jzj

jzj

� ��0.�/

i jzj � i jwj

e�i�jwj � 1

�jwj
�

��0.�/

i jzj C i jwj

ei�jwj � 1

�jwj
�

2i�0.�/

jzj2 � jwj2

�
C
e��jzj

jzj

� ��0.�/

�jzj C i jwj

ei�jwj � 1

�jwj
C

��0.�/

jzj C i jwj

e�i�jwj � 1

�jwj
�

2i�0.�/

jzj2 C jwj2

�
:
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Since for any ` � 0 there exists C` such that for any � > 0 and w with jwj � 1
2

,ˇ̌̌
@`�

�e˙i�jwj � 1
�jwj

�ˇ̌̌
� C`; ` D 0; 1; 2; : : : ;

with the bound jzj � 1
2

under the restrictions jjzj � jwjj � 1 and jwj � 1
2

at hand, we
obtain the second estimate in (5.6) by integrating by parts N times in (5.5). Changing
the role of z andw, we also obtain the third estimate in (5.6) by the same argument.

Proof of Proposition 5.1. By Lemma 5.2, TF 2 B.Lp.R3// for all 1 � p � 1. To
disprove the L1- and L1- boundedness of TKP , it thus is enough to prove TG …

B.L1.R3// [ B.L1.R3//. Let

ˆ.u1; u2; x/ D

Z
jyj�R

jx � u1j �¹jjx�u1j�jy�u2jj�1º

jx � u1j4 � jy � u2j4
dy

be such that

TGfR.x/ D
�1 � i

4�kV k2
L1

Z
R6

jV.u1/V .u2/jˆ.u1; u2; x/du1du2: (5.7)

(i) The unboundedness of TG on L1. Suppose R � 1 and R C 2R0 C 1 � jxj �
RC 2R0 C 2. We shall claim that

ˆ.u1; u2; x/ �
�

2
ln
�
1C

R �R0

2R0 C 1

�
; (5.8)

uniformly for u1; u2 2 B.0;R0/ if R is large enough. If (5.8) holds, then by (5.7) we
obtain

jTGfR.x/j D
1

2
p
2�kV k2

L1

Z
jV.u1/V .u2/jˆ.u1; u2; x/ du1 du2

�
1

4
p
2

ln
�
1C

R �R0

2R0 C 1

�
:

This implies that kTGfRkL1 ! 1 as R ! 1 and thus TG … B.L1.R3// since
kfRkL1 D 1.

To prove (5.8), we let ju1j � R0, ju2j � R0 and set z D y � u2 so that

ˆ.u1; u2; x/ D

Z
jzCu2j�R

jx � u1j �¹jjx�u1j�jzjj�1º

jx � u1j4 � jzj4
dz:
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Since jx � u1j � jxj � ju1j � R C R0 C 1 � jzj C 1 if jz C u2j � R, we have
�¹jjx�u1j�jzjj�1º D 1 and

ˆ.u1; u2; x/ D

Z
jzCu2j�R

jx � u1j

jx � u1j4 � jzj4
dz

�

Z
jzj�R�R0

jx � u1j

jx � u1j4 � jzj4
dz

D 4�

R�R0Z
0

jx � u1jr
2

jx � u1j4 � r4
dr

D 2�

R�R0Z
0

jx � u1j
� 1

jx � u1j2 � r2
�

1

jx � u1j2 C r2

�
dr

� 2�

� R�R0
jx�u1jZ
0

1

1 � s2
ds

�
� 2�

�Z
R

1

1C s2
ds

�
D � ln

�
1C

2.R �R0/

jx � u1j �RCR0

�
� 2�2: (5.9)

Since jx � u1j �RCR0 � 4R0 C 2, by the monotonicity of ln
�
1C 1

x

�
, (5.9) hence

implies (5.8) for sufficiently large R.

(ii) The unboundedness of TG on L1. Let jxj � 3R0 C 2, ju1j � R0, ju2j � R0 and
jyj � 1. Then

jx � u1j � jxj � ju1j � 2R0 C 2 � 2jy � u2j;

which implies

jx � u1j � jy � u2j �
1

2
jx � u1j � R0 C 1 � 1:

Hence, when jxj � 3R0 C 2,

jTGf1.x/j D
1

2
p
2�kV k2

L1

Z
R6

jV.u1/V .u2/j

�

� Z
jyj�1

jx � u1j

jx � u1j4 � jy � u2j4
dy

�
du1 du2



Counterexamples and weak .1; 1/ estimates of wave operators 1445

Since jx � u1j4 � jy � u2j4 � jx � u1j4 and jx � u1j � jxj C ju1j � 4
3
jxj, this showsZ

jxj�R

jTGf1j dx

&
1

kV k2
L1

Z
R6

jV.u1/V .u2/j

�

� Z
3R0C2�jxj�R

Z
jyj�1

jx � u1j

jx � u1j4 � jy � u2j4
dy dx

�
du1 du2

&
1

kV k2
L1

Z
R6

Z
3R0C2�jxj�R

jV.u1/V .u2/j

jx � u1j3
dx du1 du2

&
Z

3R0C2�jxj�R

1

jxj3
dx & ln

� R

3R0 C 2

�
!1

asR!1. Therefore, TGf1 … L
1.R3/ and TG … B.L1.R3// since f1 2 L1.R3/.

A. Proof of Lemma 3.2

We prove Lemma 3.2 on the expansion ofM�1.�/ near �D 0 in regular case. Before
the proof, we list the following lemma used in the proof.

Lemma A.1 ([19, Lemma 2.1]). Let A be a closed operator and S be a projection.
Suppose AC S has a bounded inverse. Then A has a bounded inverse if and only if

a´ S � S.AC S/�1S

has a bounded inverse in SH , and in this case

A�1 D .AC S/�1 C .AC S/�1Sa�1S.AC S/�1:

Proof of Lemma 3.2. Firstly, we expand M.�/ as follows for small � by Taylor
expanding the exponentials in FC.�jx � yj/D .�jx � yj/�1.ei.�jx�yj/ � e�.�jx�yj//:

M.�/ D U C vRC0 .�
4/v D

a

�
P C T C a1�vG1v CO.�

3v.x/jx � yj4v.y//;

where

T D U C vG0v; G0 D �
jx � yj

8�
; G1.x; y/ D jx � yj

2;

a D
1C i

8�
kV kL1 ; a1 D

1 � i

8� � 3Š
; v D

p
jV j;
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and where O.�3v.x/jx � yj4v.y// denotes a �-dependent absolutely bounded oper-
ator whose kernel is dominated by C�3v.x/jx � yj4v.y/ for some C > 0. Next, we
are devoted to obtaining (3.5). Write

M.�/ D
a

�

�
P C

�

a
T C

a1

a
�2vG1v CO

�
�4v.x/jx � yj4v.y/

��
´

a

�
zM.�/:

Clearly, it suffices to establish the inverse of zM.�/ in order to obtain M�1.�/ for
small �. For convenience, in the following, we also use O.�k/ as an absolutely
bounded operator on L2.R3/, whose bound is dominated by C�k .

Note that by Neumann series expansion, the operator zM.�/CQ is inverse for �
sufficiently small, and its inverse operator is given by

. zM.�/CQ/�1 D I �

3X
kD1

�kBk CO.�
4/;

where Bk.1 � k � 3/ are absolutely bounded operators in L2.R3/ as follows:

B1 D
1

a
T; B2 D

a1

a
vG1v �

1

a2
T 2; B3 D �

a1

a2
.T vG1v C vG1vT /C

1

a3
T 3:

Let

M1.�/´ Q �Q. zM.�/CQ/�1Q

D
�

a

�
QTQC a�QB2QC a�

2QB3QCO.�
3/
�
´

�

a
zM1.�/:

Since zero is a regular point of H , i.e., QTQ is invertible on QL2.R3/, then zM1.�/

is invertible on QL2.R3/. By Neumann series expansion, as � sufficiently small, one
has on QL2.R3/:

M�11 .�/ D
a

�
zM�11 .�/

D
a

�
D0 � a

2D0B2D0 C �
�
a3D0.B2D0/

2
� a2D0B3D0

�
CO.�2/;

whereD0´ .QTQ/�1. Thus, according to Lemma A.1, the inverse operator zM�1.�/
exists for sufficiently small �, and

zM�1.�/ D . zM.�/CQ/�1 C . zM.�/CQ/�1QM�11 .�/Q. zM.�/CQ/�1:
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Hence, we finally obtain as sufficiently small �,

M�1.�/ D
�

a
zM�1.�/ D D0

C �
�1
a
Q �

1

a
D0T �

1

a
TD0 C

1

a
D0T

2D0 � a1D0vG1vD0

�
C
1

a
�P C �2A2 CO.�

3/

´ QA0QC �.QA1;0 C A0;1Q/C � QP C �
2A2 C �3.�/;

where A0; A1;0; A0;1, and A2 are absolutely bounded operators on L2.R3/ indepen-
dent of �, and the error term �3.�/ satisfies the desired bounds (3.6). So we complete
the whole proof.
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