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On the closure of the Airault–Mckean–Moser locus
for elliptic KdV potentials via Darboux transformations

Zhijie Chen, Ting-Jung Kuo, and Chang-Shou Lin

Abstract. We study the general elliptic KdV potentials, which can be expressed (up to adding
a constant) as

qp.z/´

nX
jD1

mj .mj C 1/}.z � pj /; mj 2 N:

We give an elementary proof of the theorem that the singularity

p D .
m1.m1C1/=2‚ …„ ƒ
p1; : : : ; p1 ; : : : ;

mn.mnC1/=2‚ …„ ƒ
pn; : : : ; pn /

is contained in the closure of the elliptic Airault–Mckean–Moser locus, which was proved pre-
viously by Treibich and Verdier in the late 1980s using purely algebro-geometric methods. Our
proof is based on Darboux transformations and does not use algebraic geometry. This solves
an open problem posed by Gesztesy, Unterkofler, and Weikard [Trans. Amer. Math. Soc. 358
(2006), 603–656]. Some applications are also given.

1. Introduction

Let � 2 H D ¹� 2 C j Im � > 0º and E� ´ C=.ZCZ�/ be a flat torus. Let }.z/ be
the Weierstrass }-function with periods !1 D 1 and !2 D � , �.z/´ �

R z
}.�/d�

be the Weierstrass zeta function with two quasi-periods �k:

�k ´ 2�.
!k

2
/ D �.z C !k/ � �.z/; k D 1; 2; (1.1)

and �.z/´ exp
R z
�.�/d� be the Weierstrass sigma function. Notice that �.z/ is an

odd meromorphic function with simple poles at ƒ� ´ ZCZ� , while �.z/ is an odd
entire function with simple zeros atƒ� and satisfies the following transformation law

�.z C !k/ D �e
�k.zC

1
2!k/�.z/; k D 1; 2: (1.2)
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In this paper, we give new proofs of several theorems (see Theorems 1.1, 1.3,
and 1.4 below) related to the elliptic KdV potentials, or equivalently, Picard potentials.
These theorems and our new proofs will play important roles in our future study of
the partial differential equation

�uC eu D 8�

nX
jD1

mj ıpj
; on E� ;

where ıpj
denotes the Dirac measure at pj . Although these theorems were not stated

precisely the same as the current form appearing in this paper, they can be deduced
from Treibich and Verdier’s papers [26, 27, 29, 31]. Treibich and Verdier’s proofs are
purely algebro-geometric. Our new proofs are quite elementary in the sense that we
mainly use the Darboux transformation instead of using algebraic geometry. In partic-
ular, this solves an open question raised by Gesztesy, Unterkofler, and Weikard [12].

According to Gesztesy and Weikard [15], an elliptic function q.z/ is called a
Picard potential if, for any E 2 C, all solutions of the linear ODE (denoted by
L.qIE/)

y00.z/ D .q.z/ �E/y.z/; z 2 C (1.3)

are meromorphic in C; in other words, the local monodromy matrix of (1.3) at any
singularity is always the identity matrix I2, so the monodromy representation of (1.3)
would be reduced to a group homomorphism �W �1.E� /! SL.2;C/. This class of
linear ODEs might be simplest from the monodromy aspect. It was proved in [12,
Theorem 1.1] that q.z/ is a Picard potential if and only if up to adding a constant,
q.z/ is expressed as

q.z/ D

nX
jD1

mj .mj C 1/}.z � pj /; (1.4)

where mj 2 N, pj 2 E� satisfies pi ¤ pj for i ¤ j and the following conditions

nX
jD1;¤i

mj .mj C 1/}
.2k�1/.pi � pj / D 0 for 1 � k � mi , 1 � i � n: (1.5)

It is interesting to note that Picard potentials are closely related to the theory of the
stationary KdV hierarchy [14, 15]. As in [11, 12], an elliptic function q.z/ is called
an elliptic KdV potential if q.z/ is an algebro-geometric solution of the stationary
KdV hierarchy; see Section 2 for a brief overview of this theory. The stationary KdV
hierarchy has been widely studied in the literature; see e.g., [1, 7, 8, 10, 12, 15–17,
22, 24–32] and references therein. In the seminal work [15], Gesztesy and Weikard
proved the following remarkable result.
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Theorem A ([15]). An elliptic function q.z/ is an elliptic KdV potential if and only
if q.z/ is a Picard potential.

Theorem A implies that an elliptic function q.z/ is an elliptic KdV potential if
and only if up to adding a constant, q.z/ is of the form (1.4) satisfying (1.5). When
mi D 1 for all i , the condition (1.5) becomes

nX
jD1;¤i

}0.pi � pj / D 0 for 1 � i �n;

which was first studied by Airault, Mckean, and Moser [1].
Now, we fix N 2 N. Given any p D .p1; : : : ; pN / 2 SymN E� ´ EN� =SN (i.e.,

the symmetric space of the N -th copy of E� ), we define

qp.z/´ 2

NX
jD1

}.z � pj /:

As in [1, 12], we define the elliptic Airault–Mckean–Moser (AMM) locus of poles
LN � SymN E� by

LN ´

²
p D .p1; : : : ; pN / 2 SymN E�

ˇ̌̌̌
pi ¤ pj for i ¤ j;
qp.z/ is a KdV potential

³
D

²
p D .p1; : : : ; pN / 2 SymN E�

ˇ̌̌̌
pi ¤ pj for i ¤ j;PN
j¤i }

0.pi � pj / D 0 for all i

³
(1.6)

in the collisionless case. In the presence of collisions, it is convenient to introduce the
following locus:

AN ´ ¹p D .p1; : : : ; pN / 2 SymN E� j qp.z/ is a KdV potentialº:

That is, in contrast to the elliptic AMM locus LN , several numbers of pi ’s might
collapse together for p 2 AN , i.e.,

p D .

m1.m1C1/=2‚ …„ ƒ
p1; : : : ; p1 ; : : : ;

mn.mnC1/=2‚ …„ ƒ
pn; : : : ; pn/; (1.7)

where pi ¤ pj for any i ¤ j;

N D
1

2

nX
iD1

mi .mi C 1/;

and

qp.z/ D 2

NX
iD1

}.z � pi / D

nX
iD1

mi .mi C 1/}.z � pi /: (1.8)
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Clearly, LN � AN . Let LN and AN be the closure of LN and AN in SymN E� ,
respectively. The characterization of the closure of the elliptic AMM locus is given
by the following interesting result.

Theorem 1.1 ([29, 31]). There holds LN D AN D AN :

Remark 1.2. Theorem 1.1 shows that any p 2 AN belongs to the closure of the
elliptic AMM locus. Theorem 1.1 was first proved by Treibich and Verdier [29, 31].

On the other hand, Gesztesy, Unterkofler, and Weikard [12] proved the same state-
ment as Theorem 1.1 for rational KdV potentials and simply-periodic KdV potentials.
Their proofs apply the Darboux transformation and do not need to use algebraic geo-
metry. In [12, Remark 3.18], they proposed the open question of whether this result
for elliptic KdV potentials (i.e., Theorem 1.1) can be proved via the Darboux trans-
formation either. The main purpose of this paper is to give a positive answer to this
open question, namely we will give a new proof of Theorem 1.1 via the Darboux
transformation.

It is interesting to note that the Darboux transformation can also be applied to
give new proofs of some other statements concerning the covering map, which was
first introduced by Krichever [17]. There are two ways to define the covering map.
In the seminal work [17], Krichever considered the elliptic KdV potential qp.z/ with
p 2 LN :

qp.z/ D 2

NX
jD1

}.z � pj /; pi ¤ pj in E� for i ¤ j :

Recall (1.6) that p 2 LN if and only if

NX
jD1;¤i

}0.pi � pj / D 0 for 1 � i �N: (1.9)

In [17], Krichever proved that, except for finitely many E’s, the ODE

y00.z/ D .qp.z/ �E/y.z/ D
h
2

NX
jD1

}.z � pj / �E
i
y.z/

has a solution of the following form that is now known as Krichever’s ansatz in the
literature:

'.zI �; ˛/´ e��z �

NX
iD1

di‰.z � pi I˛/; (1.10)

where ˛ 2 E� n ¹0º, � 2 C, di 2 C for all i and

‰.zI˛/´ �
�.z � ˛/

�.z/�.˛/
e�.˛/z :
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To find such a solution '.z/, Krichever introduced the following twoN �N matrices
L.˛/ and T .˛/:

L.˛/ D .Lij /N�N with Lij D .1 � ıij /‰ij .˛/´

´
0 if i D j;

‰ij .˛/ if i ¤ j;

and

T .˛/ D .Tij /N�N with Tij D ıij
X
k¤i

}ik C .1 � ıij /‰
0
ij .˛/;

where we use the notations ‰ij .˛/´ ‰.pi � pj I ˛/, ‰0ij .˛/´
d
dz
‰.pi � pj I ˛/,

and }ij ´ }.pi � pj / for i ¤ j . Among other things, Krichever obtained the fol-
lowing results.

(i) L.˛/ and T .˛/ commute if and only if (1.9) holds, i.e., p 2 LN .

(ii) The vector Ed D .d1; : : : ; dN /t , which consists of the coefficients in (1.10),
is a common eigenvector of L.˛/ and T .˛/ with � being the corresponding
eigenvalue of L.˛/.

(iii) The pair .�; ˛/ satisfies R.�; ˛/ D 0, where R.�; ˛/ is the characteristic
polynomial of L.˛/, i.e.,

R.�; ˛/ D Rp.�; ˛/´ det.�IN � L.˛//:

This R.�; ˛/ will be called Krichever polynomial in this paper.

(iv) The algebraic curve defined by

�N ´ ¹.�; ˛/ j R.�; ˛/ D 0º

is an N -sheeted covering over E� , where the covering map � W �N ! E�

is defined by �.�; ˛/´ ˛. This covering map � will be called Krichever
covering map in this paper.

We will briefly review this theory in Section 4. Note that this covering map � was
originally defined only for p 2 LN .

On the other hand, there is another way to introduce the covering map for a general
elliptic KdV potential qp.z/ of the form (1.8). This alternative way is based on the
Baker–Akhiezer function of the associated ODE L.qpIE/,

y00.z/ D .qp.z/ �E/y.z/ D
h nX
iD1

mi .mi C 1/}.z � pi / �E
i
y.z/: (1.11)

It is well known (cf. [11]) that, for the elliptic KdV potential qp.z/, there is an associ-
ated spectral polynomialQqp.E/ of odd degree as well as the corresponding spectral
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curve
�qp ´ ¹P ´ .E;C/ 2 C2

j C2 �Qqp.E/ D 0º:

The one-point compactification of this hyperelliptic curve �qp , i.e., by joining the
point at infinity (denoted by P1), is denoted by �qp . We also define the involution �
on �qp by

�W�qp ! �qp ; P D .E;C/ 7! P � D .E;�C/; P �1 D P1:

It is well known (cf. [11]) that, given P D .E;C/ 2 �qp , there is an associated Baker–
Akhiezer function  .P I z/, which solves (1.11) and is unique up to multiplying a
constant. Furthermore, we have the following.

(a)  .P I z/ is elliptic of the second kind as a meromorphic function of z 2 C;
namely, there are �i D �i .P / 2 C n ¹0º’s such that

 .P I z C !i / D �i .P I z/; i D 1; 2;

and �i .P �/ D 1=�i .P / for i D 1; 2.

(b) When C2 �Qqp.E/ ¤ 0, i.e., P ¤ P �, then  .P I z/ and  .P �I z/ are lin-
early independent solutions of (1.11). In this case, the monodromy matrices
of (1.11) with respect to . .P I z/;  .P �I z// is given by�

 .P I z C !i /

 .P �I z C !i /

�
D

�
�i 0

0 ��1i

��
 .P I z/

 .P �I z/

�
; i D 1; 2: (1.12)

See Section 2 for a brief overview of this theory. Denote

m´

nX
iD1

mi for qp given by (1.8):

Since  .P I z/ is a solution of (1.11),  .P I z/ has at most poles at pi with order mi .
Note from (1.12) that the zeros of  .P I z/ are well defined on E� , and as an elliptic
function of the second kind, the number of zeros of  .P I z/ on E� equals the number
of poles by counting multiplicity. Then the classical theory of elliptic functions says
that, up to multiplying a nonzero constant,  .P I z/ can be expressed as

 .P I z/ D ec.P /z
Qm
iD1 �.z � ai .P //Qn
iD1 �.z � pi /

mi
;

for some ai .P / 2 E� and some constant c.P / 2 C. Therefore, the spectral curve �qp

can be embedded into SymmE� by mapping P to the zero set ¹a1.P /; : : : ; am.P /º 2

SymmE� of  .P I z/. Note that SymmE� has a natural addition map to E� :

¹a1; : : : ; amº 7!

mX
iD1

ai �

nX
jD1

mjpj ;
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so the composition will give rise to a covering map �qP
W�qp D �qp [ ¹P1º ! E� ,

which is defined by

�qP
.P /´

mX
iD1

ai .P / �

nX
jD1

mjpj for all P 2 �qp :

The degree of this covering map �qp is defined as deg �qp D #��1qp
.z/ counted with

multiplicity. The basic question is how to compute it.
The interesting thing is that, when p 2 LN , we will see in Theorem 4.6 that there

is a birational map # W �qp ! �N such that �qp D � ı # , where � W �N ! E� is
precisely the aforementioned Krichever covering map. For this reason, this �qp for
general p 2 AN will also be called Krichever covering map in this paper.

The next result gives the formula of deg �qp for all p 2 AN D LN .

Theorem 1.3. [26, 27] For any p 2 AN D LN , the Krichever covering map

�qp W�qP
! E�

always has degree N .

Theorem 1.3 was first proved by Treibich [26, 27]. Here we give a new proof
of Theorem 1.3 via the Darboux transformation. More precisely, we will prove The-
orem 1.3 first for p 2 LN via Krichever’s theory [17], and then for general p 2 AN

via Ehlers–Knörrer’s theorem [9, 10] concerning the Darboux transformation for the
KdV hierarchy. We will briefly review Ehlers–Knörrer’s theorem in Section 2.

Let K.E� / and K.�qp/ be the field of rational functions on E� and �qp , respect-
ively. Then Theorem 1.3 indicates that K.�qp/ is a finite field extension over K.E� /
with

ŒK.�qp/WK.E� /� D deg �qp D N:

A basic question is how to find a primitive generator of this field extension.
The results of [3, 4, 19, 20] for Lamé and Darboux–Treibich–Verdier potentials

indicate that this primitive generator is related to the monodromy (1.12); see Section 5
for details. This motivates us to define a rational function zpW�qp ! C [ ¹1º by

zp.P /´ �
� mX
kD1

ak.P / �

nX
jD1

mjpj

�
�

mX
kD1

�.ak.P / � pn/

C

n�1X
jD1

mj �.pj � pn/ for all P 2 �qp :

Remark that we can replace pn with any fixed pi in the definition of zp; see Section 5.
The next result shows that this zp can be taken as a primitive generator.
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Theorem 1.4 ([26,27]). zp is a primitive generator of the field extensionK.�qp/ over
K.E� /.

Again, Theorem 1.4 can be deduced from Treibich [26, 27]. Here our new proof
of Theorem 1.4 is based on the Darboux transformation and Krichever’s theory [17].
In particular, we will see in Section 5 that, for p 2 LN , the minimal polynomial of zp

coincides with the Krichever polynomial Rp.�; ˛/.
The rest of this paper is organized as follows. In Section 2, we give a brief over-

view of the theory of the stationary KdV hierarchy and the Darboux transformation. In
Section 3, we introduce our new observation concerning the Darboux transformation,
which allows us to connect p 2 AN nLN with p 2 LN and plays a key role in this
paper. This idea is also the main novelty of our approach in this paper. As an applic-
ation, we can prove Theorem 1.1. In Section 4, we first briefly review Krichever’s
famous theory [17] for elliptic KdV potentials qp.z/ with p 2 LN . We will see that
Theorem 1.3 for p 2 LN easily follows from Krichever’s theory. Then we can prove
Theorem 1.3 for p 2 AN n LN via the Darboux transformation. Similarly we can
prove Theorem 1.4 in Section 5.

2. Preliminaries

2.1. Stationary KdV hierarchy

In this section, we review basic facts on the stationary KdV hierarchy following
Gesztesy and Holden [11, Chapter 1]. Given a meromorphic function q.z/ in C, we
define ¹f`.z/º`2N[¹0º recursively by

f0 D 1; f 0` D �
1

4
f
.3/

`�1
C qf 0`�1 C

1

2
q0f`�1; ` 2 N: (2.1)

Explicitly, one finds

f0 D 1; f1 D
1

2
q C c1; f2 D �

1

8
.q00 � 3q2/C c1

1

2
q C c2; : : : :

Here ¹c`º`2N �C denote integration constants that naturally arise when solving (2.1).
It is known (cf. [11, Theorem D.1]) that fj .z/ are differential polynomials of q.z/ for
all j . In particular, fj .z/ is meromorphic in z.

Consider a second-order differential operator of Schrödinger type

L D �
d2

dz2
C q;
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and a 2g C 1-order differential operator

P2gC1 D

gX
jD0

�
fj
d

dz
�
1

2
f 0j

�
Lg�j ; g 2 N [ ¹0º:

By the recursive relation (2.1), a direct computation leads to (note that Œ�; �� denotes
the commutator symbol)

ŒL; P2gC1� D �2f
0
gC1; g 2 N [ ¹0º:

In particular, .L;P2gC1/ represents the celebrated Lax pair [18] of the KdV hierarchy.
Varying g 2 N [ ¹0º, the stationary KdV hierarchy is then defined in terms of the
vanishing of the commutator of L and P2gC1 by

s-KdVg.q/ D ŒL; P2gC1� D �2f 0gC1 D 0; g 2 N [ ¹0º: (2.2)

For example,

s-KdV0.q/ D �q0 D 0; s-KdV1.q/ D
1

4
q.3/ �

3

2
qq0 C c1.�q

0/ D 0; : : :

represent the first two equations of the stationary KdV hierarchy. By definition, the
set of solutions of (2.2), with g ranging in N [ ¹0º and c` in C, represents the class
of algebro-geometric KdV solutions. As in [11,12], it will be convenient to abbreviate
algebro-geometric KdV solutions q simply as KdV potentials.

Next, we introduce a polynomial ˆq D ˆq;g of degree g with respect to the spec-
tral parameter E 2 C by

ˆq.zIE/ D ˆq;g.zIE/´

gX
`D0

fg�`.z/E
`; g 2 N [ ¹0º: (2.3)

The recursive relation (2.1) and (2.2) together imply that this meromorphic function
ˆq.zIE/ solves

ˆ000.z/ � 4.q.z/ �E/ˆ0.z/ � 2q0.z/ˆ.z/ D 0:

Consequently,

Qq.E/ D Qq;2gC1.E/´
1

2
ˆqˆ

00
q �

1

4
ˆ02q � .q �E/ˆ

2
q (2.4)

is a monic polynomial inE of degree 2gC 1 that is independent of z. Since the equal-
ity ŒL;P2gC1�D 0 implies P 22gC1� D�Qq.E/� for anyL� DE�, we conclude that

P 22gC1 CQq.L/ D 0; (2.5)
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a celebrated theorem by Burchnall and Chaundy [2]. Equation (2.5) leads naturally to
the hyperelliptic curve �q of (arithmetic) genus g:

�q ´ ¹.E;C/ 2 C2
j C2 �Qq.E/ D 0º:

Remark 2.1. As mentioned in [11, Remark 1.5], if q.z/ satisfies one stationary
KdV equation s-KdVg.q/ D 0 for some g, then it also satisfies s-KdVk.q/ D 0

for any k > g. In this paper, we say that q is a genus g KdV potential if g is the
smallest integer such that s-KdVg.q/ D 0, i.e., s-KdVg�1.q/ ¤ 0 for any choices
of integration constants ck’s. For a genus g KdV potential q.z/, the corresponding
Qq.E/ D Qq;2gC1.E/ is called its spectral polynomial and �q in (2.5) is called its
spectral curve.

2.2. Baker–Akhiezer functions and Darboux transformations

Let q.z/ be a KdV potential of genus g. First we recall the following result from [23,
32].

Theorem 2.2 ([23] or [32, Theorem 1]). Let q.z/ be a KdV potential. Then the fol-
lowing statements hold.

(1) Any pole z0 of q.z/ is a regular singular point of

y00.z/ D Œq.z/ �E�y.z/: (2.6)

Furthermore, the Laurent expansion of q.z/ near z0 is given by k.kC1/

.z�z0/2
C

O.1/ for some k 2 N (i.e., the residue of q.z/ at z0 is 0).

(2) For any E 2 C, all solutions of (2.6) are meromorphic in C.

Remark that in the case when the spectral curve �q associated with q.z/ is non-
singular, Theorem 2.2 also follows from Its and Matveev [16].

Now, we recall the notion of Baker–Akhiezer functions. Given any P D .E;C/ 2
�q and recalling the meromorphic function ˆq.zIE/ in (2.3), we define the funda-
mental meromorphic function �.P I z/ by

�.P I z/´
iC.P /C 1

2
ˆ0q.zIE/

ˆq.zIE/
; z 2 C; (2.7)

where i D
p
�1 and C.P / denotes the second component of P D .E; C/. Then,

by (2.4) and C.P /2 D Qq.E/, a direct computation implies that �.P I z/ solves the
following Ricatti equation (cf. [10, Lemma 2.1]):

�0.P I z/ D q.z/ �E � �.P I z/2: (2.8)
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Proposition 2.3. The meromorphic function �.P I z/ has only simple poles with
integer residues.

Proof. Let z0 be a pole of �.P Iz/. If z0 is not a pole of q.z/, it follows from (2.8) that
�.P I z/D .z � z0/

�1CO.1/. If z0 is a pole of q.z/, i.e., q.z/D k.kC1/

.z�z0/2
CO.1/ for

some k 2 N by Theorem 2.2, again we conclude from (2.8) that �.P I z/ D c
z�z0

C

O.1/ with c 2 ¹�k; k C 1º.

Fixing any z0 2 C n ¹poles of q.z/º, the Baker–Akhiezer function  .P I z; z0/ on
�q D �q n ¹P1º is defined by

 .P I z; z0/´ exp
� zZ
z0

�.P I �/d�

�
; P D .E;C/ 2 �q; z 2 C; (2.9)

where the integral path is chosen a smooth non-selfintersecting path from z0 to z
which avoids singularities of �.P Iz/. Clearly, Proposition 2.3 implies that .P Iz;z0/
is independent of the choice of the integral path, and so  .P I z; z0/ is single-valued
in C. Since

�.P I z/ D
 0.P I z; z0/

 .P I z; z0/
;

and �.P I z/ solves the Ricatti equation (2.8), a direct computation shows that both
 .P I z; z0/ and  .P �I z; z0/ solve

y00.z/ D Œq.z/ �E�y.z/; (2.10)

and (cf. [10, Lemma 2.1])

 .P I z; z0/ .P
�
I z; z0/ D

ˆq.zIE/

ˆq.z0IE/
; (2.11)

W. .P I z; z0/;  .P
�
I z; z0// D

2iC.P /

ˆq.z0IE/
; (2.12)

where 0 D d
dz

and W.f; g/ D f 0g � fg0 denotes the Wronskian of f; g. In particu-
lar, it follows from Theorem 2.2 that the Baker–Akhiezer functions  .P I �; z0/ and
 .P �I �; z0/ are meromorphic in C. Since different choices of z0 give the same solu-
tion of the linear ODE (2.10) up to multiplying a constant, we omit the notation z0
and write

 .P I z; z0/ D  .P I z/;  .P �I z; z0/ D  .P
�
I z/

just for convenience. Clearly, (2.12) implies that

 .P I z/;  .P �I z/ are linearly independent solutions of (2.10)

if and only if C.P / ¤ 0, i.e., Qq.E/ ¤ 0: (2.13)
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Now, we recall the following Ehlers–Knörrer’s theorem [9, 10] concerning the
well-known Darboux transformation for the stationary KdV hierarchy.

Theorem 2.4 ([9, 10]). Suppose q.z/ is a genus g KdV potential with the associated
spectral polynomial Qq;2gC1.E/. For any P0 D .E0;C0/ 2 �q , we let y.z/ be any
solution of

y00.z/ D Œq.z/ �E0�y.z/; (2.14)

and define a new potential Qq.z/ via the Darboux transformation

Qq.z/´ q.z/ � 2.lny.z//00: (2.15)

Then Qq.z/ is also a KdV potential. More precisely, the following statements hold.

(1) If y.z/ is not the Baker–Akhiezer function of (2.14), then Qq.z/ is a genus
g C 1 KdV potential with the associated spectral polynomial

Q Qq;2gC3.E/ D .E �E0/
2Qq;2gC1.E/:

(2) If y.z/ D  .P0I z/ is the Baker–Akhiezer function and E0 is not a multiple
zero of Qq;2gC1.E/ (i.e., either Qq;2gC1.E0/ ¤ 0 or E0 is a simple zero of
Qq;2gC1.E/), then Qq.z/ is a genus g KdV potential isospectral to q.z/.

(3) If y.z/ D  .P0I z/ is the Baker–Akhiezer function and E0 is a multiple zero
of Qq;2gC1.E/, then Qq.z/ is a genus g � 1 KdV potential with the associated
spectral polynomial

Q Qq;2g�1.E/ D .E �E0/
�2Qq;2gC1.E/:

2.3. Elliptic KdV potentials and monodromy

In this paper, we are only interested in elliptic KdV potentials, i.e., those solutions of
the stationary KdV hierarchy that are elliptic functions. As explained in Section 1,
they must be of the form (1.8) up to adding a constant.

Fix N 2 N. Let p 2 AN and q.z/ D qp.z/ be the corresponding elliptic KdV
potential given by (1.8). Assume that qp.z/ is of genus g, then the corresponding
ˆqp.zIE/ in (2.3) is an elliptic function because fj .z/’s are differential polynomi-
als of qp.z/. From here and (2.7)–(2.9), we conclude that �.P I z/ D  0.P Iz/

 .P Iz/
is also

elliptic and so the Baker–Akhiezer function  .P Iz/ is elliptic of the second kind, i.e.,

 .P I z C !j / D �j .P / .P I z/; j D 1; 2; (2.16)

for some constants �j .P / 2 C n ¹0º. Then, as explained in Section 1, up to multiply-
ing a nonzero constant,  .P I z/ can be expressed as

 .P I z/ D ec.P /z
Qm
kD1 �.z � ak.P //Qn
kD1 �.z � pk/

mk
; (2.17)
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for some ak.P / 2 E� and some constant c.P / 2 C. For later usage, we define the
couple .r.P /; s.P // 2 C2 by8̂̂̂̂

<̂̂
ˆ̂̂̂:
�2�is.P /´ c.P / � �1

� mX
kD1

ak.P / �

nX
kD1

mkpk

�
2�ir.P /´ c.P /� � �2

� mX
kD1

ak.P / �

nX
kD1

mkpk

�
;

(2.18)

then we see from (2.17) and the transformation law (1.2) that

 .P I z C !j / D e
c.P /!j��j .

Pm
kD1 ak.P /�

Pn
kD1mkpk/ .P I z/

D

´
e�2�is.P / .P I z/ for j D 1;

e2�ir.P / .P I z/ for j D 2:
(2.19)

Note that by the Legendre relation ��1 � �2 D 2�i , (2.18) is equivalent to8̂̂<̂
:̂
r.P /C s.P /� D

mX
kD1

ak.P / �

nX
kD1

mkpk;

r.P /�1 C s.P /�2 D c.P /:

(2.20)

Remark that since  .P I z/ is a solution of the ODE L.qpIE/,

y00.z/ D .qp.z/ �E/y.z/ D
h nX
jD1

mj .mj C 1/}.z � pj / �E
i
y.z/; (2.21)

both the constant c.P / (and so .r.P /; s.P //) and the spectral parameter E can be
expressed in terms of the zeros aj .P /’s; see Lemma 4.1 for example.

On the other hand, since (2.11) says that  .P I z/ .P �I z/ is an elliptic function,
we conclude from (2.19) that

.r.P �/; s.P �// � �.r.P /; s.P // mod Z2: (2.22)

Let us turn to the monodromy of (2.21). As explained in Section 1, since all
solutions of (2.21) are meromorphic in C, the monodromy representation of (2.21)
reduces to a group homomorphism �W�1.E� /! SL.2;C/. Consequently, the mono-
dromy group is abelian and has two generators M1.E/;M2.E/ 2 SL.2;C/, where
Mj .E/ denotes the monodromy matrix under the basic loop z ! z C !j of �1.E� /.
AlthoughMj .E/’s depend on the choice of solutions, they are unique up to a common
conjugation. In particular,

�j .E/´ trMj .E/; j D 1; 2;
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are independent of the choice of solutions. This �j .E/ is called Hill’s discriminant
in the Floquet theory and is known as a non-constant entire function of E (cf. [13]).
Define

Ep ´ ¹E 2 C j �1.E/
2
D �2.E/

2
D 4º;

Then it was proved in [15, Proposition 5.6] that Ep is a finite set. This fact plays a
crucial role in Gesztesy–Weikard’s proof of Theorem A.

According to the monodromy of L.qpIE/, there are two cases in general.

Definition 2.5. (1) L.qpI E/ is completely reducible if the monodromy matrices
M1.E/ and M2.E/ can be diagonalized simultaneously.

(2) L.qpIE/ is not completely reducible if M1.E/ and M2.E/ cannot be diag-
onalized simultaneously.

Recalling (2.13), we have the following two cases.

Case (a): P D .E;C / 2 �qp such that C 2 D Qqp.E/ ¤ 0. Then the two Baker–
Akhiezer functions  .P I z/;  .P �I z/ are linearly independent solutions of (2.21),
and with respect to . .P Iz/; .P �Iz//, the monodromy matrices are given by (recall
(2.19) and (2.22))

M1.E/ D

�
e�2�is.P / 0

0 e2�is.P /

�
; M2.E/ D

�
e2�ir.P / 0

0 e�2�ir.P /

�
; (2.23)

namely L.qpIE/ is completely reducible. Due to (2.23), this .r.P /; s.P // is called
the monodromy data for L.qpIE/. Furthermore, we have the following subcases.

Case (a)-1: E … Ep. We have either e2�is.P / ¤ ˙1 or e2�ir.P / ¤ ˙1. This is the
generic case since Ep is finite. Then if y.z/ is a nontrivial solution of L.qpIE/ that
is elliptic of the second kind, then y.z/ must be one of the two Baker–Akhiezer func-
tions (up to multiplying a constant).

Case (a)-2: E 2 Ep. We have e2�is.P / D ˙1 and e2�ir.P / D ˙1, so

M1.E/ D ˙I2; M2.E/ D ˙I2:

Then any solution of L.qpIE/ is elliptic of the second kind.

Case (b):P D .E;C / 2 �qp such that C 2 DQqp.E/D 0. Then P DP �D .E;0/,
i.e.,  .P I z/D  .P �I z/, and it follows from (2.22) that .r.P /; s.P // 2 1

2
Z2, which

implies
�j .P / D �

�1
j .P / D ˙1; j D 1; 2;

or equivalently,
�j .E/ D ˙2 for j D 1; 2;

i.e., E 2 Ep.
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Case (b)-1: L.qpIE/ is completely reducible. Then

M1.E/ D ˙I2; M2.E/ D ˙I2;

and any solution of L.qpIE/ is elliptic of the second kind.

Case (b)-2: L.qpIE/ is not completely reducible. Then it is not difficult to prove
(see e.g., [6, Theorem 2.4] for qp.z/ being the Darboux–Treibich–Verdier potentials)
that, up to a common conjugation, M1.E/ and M2.E/ can be normalized as

M1.E/ D ˙

�
1 0

1 1

�
; M2.E/ D ˙

�
1 0

D 1

�
; D 2 C [ ¹1º: (2.24)

In this case, the constant D is called the monodromic data for L.qpIE/. Remark that
if D D1, then (2.24) should be understood as

M1.E/ D ˙

�
1 0

0 1

�
; M2.E/ D ˙

�
1 0

1 1

�
:

3. The closure of the elliptic AMM locus LN

This section is denoted to the proof of Theorem 1.1. FixN 2N. Let p 2AN be given
by (1.7) and the corresponding elliptic KdV potential q.z/D qp.z/ be given by (1.8).
Suppose its genus is g � 1. Then the corresponding ˆqp;g.zIE/ in (2.3) is an elliptic
function. Here we recall the following result from [12] for later usage.

Theorem 3.1 ([12, Theorem 2.15]). ˆqp;g.zIE/ admits the following expression:

ˆqp;g.zIE/ D A0.E/C

nX
iD1

miX
jD1

Ai;j .E/}.z � pi /
j

where A0.E/, Ai;j .E/ 2 CŒE� are all polynomials of E with degE A0.E/ D g and
degE Ai;j .E/ < g for any i; j .

Since the Baker–Akhiezer function  .P I z/ is expressed as (2.16), we have

�.P I z/ D
 0.P I z/

 .P I z/
D c.P /C

mX
jD1

�.z � aj .P // �

nX
iD1

mi�.z � pi /; (3.1)

�0.P I z/ D

nX
iD1

mi}.z � pi / �

mX
jD1

}.z � aj .P //:
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Consequently, the new KdV potential given by the Darboux transformation

qP .z/´ qp.z/ � 2.ln .P I z//00 D qp.z/ � 2�
0.P I z/

D

nX
iD1

.mi � 1/mi}.z � pi /C 2

mX
jD1

}.z � aj .P // (3.2)

is also elliptic, and its genus is either g or g � 1 by Theorem 2.4. Furthermore,

1

2

nX
iD1

mi .mi � 1/Cm D
1

2

nX
iD1

mi .mi C 1/ D N;

i.e., the corresponding

pP ´ .

m1.m1�1/=2‚ …„ ƒ
p1; : : : ; p1; : : : ;

mn.mn�1/=2‚ …„ ƒ
pn; : : : ; pn; a1.P /; : : : ; am.P // (3.3)

of the new elliptic KdV potential qP .z/ belongs to the same locus AN as p of the
original potential q.z/ D qp. This is an interesting property for elliptic KdV poten-
tials. Remark that AN might be not connected in general. Our key observation is the
following.

Lemma 3.2. Under the above notations, pP ! p in SymN E� as P ! P1 in the
spectral curve �qp . In particular, pP belongs to the same connected component of
AN as p for any P 2 �qp D �qp n ¹P1º.

Proof. It suffices to prove that up to a subsequence, pP ! p as P D .E;C/! P1,
i.e., as E !1.

Recall a.P / D .a1.P /; : : : ; am.P // 2 Symm E� , where m D
Pn
iD1 mi . Since

SymmE� is compact, up to a subsequence, we may assume

a.P /! a.1/ D .a1.1/; : : : ; am.1// 2 SymmE� as E !1: (3.4)

Recalling (3.1) and (2.8), we have

qp.z/ �E D �
0.P I z/C �.P I z/2 (3.5)

D c.P /2 C 2c.P /D.zI a.P //CD.zI a.P //2 C F.zI a.P //;

where

D.zI a.P //´

mX
jD1

�.z � aj .P // �

nX
iD1

mi�.z � pi /;

F .zI a.P //´

nX
iD1

mi}.z � pi / �

mX
jD1

}.z � aj .P // D D
0.zI a.P //: (3.6)
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By (3.4), we see that both D.zI a.P // and F.zI a.P // converge uniformly for z
outside the singularities ¹aj .1/ºmjD1 [ ¹piº

n
iD1. From here and (3.5), we see that

c.P /!1 () E !1: (3.7)

Differentiating both sides of (3.5), we have

nX
iD1

mi .mi C 1/}
0.z � pi /

D 2c.P /F.zI a.P //C 2D.zI a.P //F.zI a.P //C F 0.zI a.P //: (3.8)

Then the right-hand side of (3.8) converges uniformly outside the singularities ¹piºniD1
as E !1. Since c.P /!1, we obtain

F.zI a.P //! 0 as E !1;

i.e.

a.1/ D .

m1‚ …„ ƒ
p1; : : : ; p1;

m2‚ …„ ƒ
p2; : : : ; p2; : : : ;

mn‚ …„ ƒ
pn; : : : ; pn/: (3.9)

This, together with (3.3), proves pP ! p as E !1.

Lemma 3.2 has the following consequence, which indicates that two elliptic KdV
potentials, with their corresponding p’s belonging to the same connected component
of AN , might have different genera.

Corollary 3.3. Let p 2 AN be given by (1.7) and the corresponding elliptic KdV
potential qp be given by (1.8) such that its genus g � 2. Suppose E0 is a multiple
root of the spectral polynomial Qqp;2gC1.E/. Then the elliptic KdV potential qP0

.z/

(defined in (3.2) with P0 D .E0; 0/) is of genus g � 1 and its spectral polynomial
QqP0

;2g�1.E/ D .E �E0/
�2Qqp;2gC1.E/.

Proof. This assertion follows directly from Theorem 2.4.

For any p 2 AN given by (1.7), we define

].p/´ max
0�i�n

mi � 1:

Then ].p/.].p/C 1/ � 2N and

p 2 LN () ].p/ D 1:

The following lemma is also crucial in the proof of Theorem 1.1.
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Lemma 3.4. Except finitely many P ’s in �qp , the zeros aj .P /’s of  .P I z/ satisfy

¹a1.P /; : : : ; am.P /º \ ¹p1; : : : ; pnº D ; in E� ; (3.10)

and
ai .P / ¤ aj .P / in E� for all i ¤ j: (3.11)

In particular, ].pP / D ].p/ � 1 if ].p/ � 2.

Proof. Recalling Theorem 3.1, we defineX
´ ¹P D .E;C/ 2 �qp j Ai;mi

.E/ D 0 for some 1 � i � nº;

which is clearly a finite set. Fix any P D .E;C/ 2 �qp n
P

. Then for any i 2 Œ1; n�,
pi is a pole of ˆqp;g.zIE/ with order 2mi (since the local exponent of ˆqp;g.zIE/

at pi must be one of ¹�2mi ; 1; 2mi C 2º). Since the local exponents of  .P I z/ and
 .P �I z/ at pi are either �mi or mi C 1, and (see (2.11))

 .P I z/ .P �I z/ D
ˆqp;g.zIE/

ˆqp;g.z0IE/
;

we conclude that pi is a pole of  .P I z/ with order mi for any i . Together with the
expression (2.16) of  .P I z/, we have aj .P / ¤ pi in E� for any i; j , namely (3.10)
holds. Consequently, aj .P / is a simple zero of  .P I z/ for any j , so (3.11) holds. In
particular, if ].p/ D max1�i�nmi � 2, then we have ].pP / D max¹1;mi � 1ºniD1 D
].p/ � 1.

The next result shows that AN is closed in SymN E� , i.e., the limit of elliptic KdV
potentials is also an elliptic KdV potential. This natural result might be well known to
experts in this field, but we cannot find an explicit reference, so we would like to give
a proof for completeness.

Lemma 3.5. LN � AN D AN :

Proof. Let ¹pkº be a sequence of points in AN such that pk ! p1. Then

qk.z/´

nkX
iD1

mk;i .mk;i C 1/}.z � pk;i /

! q1.z/´

n1X
iD1

m1;i .m1;i C 1/}.z � p1;i /;

where pk;i ¤ pk;j for any i ¤ j and k 2 N [ ¹1º, and

nkX
iD1

mk;i .mk;i C 1/ D

n1X
iD1

m1;i .m1;i C 1/ D 2N:

Our goal is to prove that q1.z/ is an elliptic KdV potential, i.e., p1 2 AN .
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Take z0 2 E� such that none of z0 C R, z0 C R� cross any singularities of
¹qk.z/º

1
kD1

. Consider the following Hill’s equation:

y00.x/ D Œqk.z0 C x/ �E�y.x/; x 2 R; k 2 N [ ¹1º; (3.12)

where qk.z0C �/ is a complex-valued smooth non-constant periodic function of period
!1 D 1 on R. Let yk;1.x/ and yk;2.x/ be any two linearly independent solutions of
(3.12). Then so are yk;1.x C !1/ and yk;2.x C !1/ and hence there exists a mono-
dromy matrix Mk.E/ 2 SL.2;C/ such that�

yk;1.x C !1/

yk;2.x C !1/

�
DMk.E/

�
yk;1.x/

yk;2.x/

�
:

Define the Hill’s discriminant �k.E/ by

�k.E/´ trMk.E/;

which is clearly an invariant of (3.12), i.e., does not depend on the choice of linearly
independent solutions. This �k.E/ is a non-constant entire function and plays a fun-
damental role since it encodes all the spectrum information of the associated operator;
see e.g., [13, 21] and references therein.

Let ck.xIE/ and sk.xIE/ be the special fundamental system of solutions of (3.12)
satisfying the initial values

ck.0IE/ D s
0
k.0IE/ D 1; c0k.0IE/ D sk.0IE/ D 0:

Then we have
�k.E/ D ck.!1IE/C s

0
k.!1IE/:

From here we easily see that

lim
k!1

�k.E/ D �1.E/:

Now, we fix any E 2 C such that �1.E/ ¤ ˙2. Then �k.E/ ¤ ˙2 for large k.
Consider

y00.z/ D Œqk.z/ �E�y.z/; z 2 C: (3.13)

For large k ¤ 1 such that �k.E/ ¤ ˙2, since qk.z/ is an elliptic KdV poten-
tial, it follows from Section 2.3 that the two Baker–Akhiezer functions (denoted by
Qyk;1.z/; Qyk;2.z/) of (3.13) are linearly independent and satisfy�

Qyk;1.z C !j /

Qyk;2.z C !j /

�
D

�
�k;j 0

0 ��1
k;j

��
Qyk;1.z/

Qyk;2.z/

�
; j D 1; 2; (3.14)
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with
�1;j C �

�1
1;j D �k.E/! �1.E/ ¤ ˙2:

So
�1;1´ lim

k!1
�k;1 ¤ ˙1: (3.15)

Furthermore, Qyk;j .z/ can be expressed as

Qyk;j .z/ D e
ck;j z

QP
i mk;i

jD1 �.z � ak;j /Qnk

iD1 �.z � pk;i /
nk;i

; j D 1; 2:

By using the same argument as (3.4)–(3.7), we have ck;j 6! 1 as k !1. So, up to
a subsequence, Qyk;j .z/ converges to some function

Qy1;j .z/ D e
c1;j z

QP
i m1;i

jD1 �.z � a1;j /Qn1
iD1 �.z � p1;i /

n1;i
; j D 1; 2;

uniformly outside the singularities ¹p1;iºi , and Qy1;j .z/ solves

y00.z/ D Œq1.z/ �E�y.z/; z 2 C: (3.16)

By (3.14)–(3.15), we have�
Qy1;1.z C !1/

Qy1;2.z C !1/

�
D

�
�1;1 0

0 ��11;1

��
Qy1;1.z/

Qy1;2.z/

�
;

with �1;1 ¤ ��11;1. Therefore, Qy1;1.z/; Qy1;2.z/ are linearly independent solutions
of (3.16). This proves that all solutions of (3.16) are meromorphic as long as
�1.E/ ¤ ˙2, i.e., for all E 2 C except for countably many E’s because �1.E/
is a non-constant entire function. However, by the standard Frobenius’ method, it is
easy to see (cf. [32, Lemma 6]) that the set

¹E 2 C j all solutions of (3.16) are meromorphicº

is either a finite set or equal to C. Therefore, we conclude that all solutions of (3.16)
are meromorphic for all E 2 C, i.e., q1.z/ is a Picard potential and hence an elliptic
KdV potential by Theorem A. This proves that p1 2 AN , so AN D AN and
LN � AN .

Now, we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.5, it suffices to prove

AN � LN : (3.17)
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For any 1 � k � k0, where k0 is the largest integer satisfying k0.k0 C 1/ � 2N , we
define

AN;k ´ ¹p 2 AN j ].p/ D kº:

Then

AN D

k0[
kD1

AN;k; AN;1 D LN :

If k0 D 1 we are done. So we consider the general case k0 � 2. Since Lemmas 3.2
and 3.4 together imply

AN;k � AN;k�1 for any 2 � k � k0;

we immediately obtain

AN;k0
� AN;k0�1 � � � � � AN;1 D LN

and so (3.17) holds. This completes the proof.

4. The degree of the Krichever covering map

4.1. Definition of the Krichever covering map

Let p 2AN be given by (1.7) and the corresponding elliptic KdV potential q.z/ D
qp.z/ be in (1.8). Suppose it is of genus g and recall its associated spectral curve �qp .
As explained in Section 1, �qp can be mapped into Symm E� through iqp W �qp !

SymmE� , which is defined by

iqp.P /´ .a1.P /; : : : ; am.P //; (4.1)

where .a1.P /; : : : ;am.P //2 SymmE� is the zero set of the Baker–Akhiezer function
 .P Iz/ in (2.16). Remark that since the local exponent of .P Iz/ at each pi is either
�mi or mi C 1, and  .P I z/ must have poles at some pi , so the local exponents of
 .P I z/ at such poles pi ’s are �mi , which implies pi … ¹a1.P /; : : : ; am.P /º as long
as pi is a pole of  .P I z/. Therefore, for any P 2 �qp there are i ’s (depending on P )
such that

pi … ¹a1.P /; : : : ; am.P /º: (4.2)

Lemma 4.1. For any i 2 Œ1; n� satisfying (4.2), the zeros aj .P /’s of  .P I z/ satisfy

E D .1 � 2mi /

mX
kD1

}.pi � ak.P //C

nX
jD1;j¤i

mj .mj C 2mi /}.pi � pj /; (4.3)

c.P / D

nX
jD1;j¤i

mj �.pi � pj / �

mX
kD1

�.pi � ak.P //: (4.4)
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Proof. Recall (3.5)–(3.6) that

nX
jD1

mj .mj C 1/}.z � pj / �E D
h
c.P /C

mX
jD1

�.z � aj .P // �

nX
iD1

mi�.z � pi /
i2

C

nX
iD1

mi}.z � pi / �

mX
jD1

}.z � aj .P //:

Fixing any i 2 Œ1;n� such that (4.2) holds, we compute the local expansion of the above
formula at z D pi , then it is easy to see that the coefficient of the term
.z � pi /

�1 gives (4.4) and the coefficient of the term .z � pi /
0 gives (4.3). We omit

the details.

Proposition 4.2. The map iqp W �qp ! Symm E� defined by (4.1) is one-to-one and
hence iqp is an embedding.

Proof. Suppose iqp.P1/ D iqp.P2/ for some P1 D .E1;C1/ and P2 D .E2;C2/ in
�qp . Then (4.3) implies that E1 D E2 and so either C1 D C2 or C1 D �C2 ¤ 0. If
C1D�C2¤ 0, we haveP2DP �1 ¤P1, then the Baker–Akhiezer functions .P1Iz/,
 .P �1 I z/ are linearly independent and so have no common zeros, clearly a contradic-
tion with iqp.P1/D iqp.P2/D iqp.P

�
1 /. Thus, C1DC2, or equivalently,P1DP2.

As explained in Section 1, the above embedding iqp induces the Krichever cover-
ing map �qp W�qp D �qp [ ¹P1º ! E� , which is defined by

�qp.P /´

mX
iD1

ai .P / �

nX
jD1

mjpj for all P 2 �qp ; (4.5a)

�qp.P1/´ lim
P!P1

�qp.P / D lim
P!P1

mX
iD1

ai .P / �

nX
jD1

mjpj D 0 in E� ; (4.5b)

where the last equality follows from (3.4) and (3.9) in Lemma 3.2. Recalling (2.20)
and (2.22), we have

�qp.P
�/ D r.P �/C s.P �/� D �.r.P /C s.P /�/ in E�
D ��qp.P / for all P 2 �qp : (4.6)

Theorem 4.3. The map �qp W�qp ! E� defined by (4.5) is a finite morphism.

Proof. Consider }.�qp.P // D }.�qp.E; C// with P D .E; C/ 2 �qp , i.e., C2 D

Qqp.E/. Since (4.6) implies }.�qp.E; C// D }.�qp.E;�C//, }.�qp.E; C// only
depends on E and is a meromorphic function of E 2 C. From here and

lim
E!1

}.�qp.E;C// D lim
P!P1

}.�qp.P // D1;
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we conclude that }.�qp.E;C// is a rational function of E, i.e.,

}.�qp.P // D }.�qp.E;C// D
P1.E/

P2.E/
(4.7)

for some coprime polynomials P1.E/; P2.E/ 2 CŒE�. This implies that �qp W�qp !

E� is a finite morphism.
A similar argument applies to C}0.�qp.P // and implies

}0.�qp.P //

C
D

C}0.�qp.E;C//

C2
D
P3.E/

P4.E/
(4.8)

for some coprime polynomials P3.E/; P4.E/ 2 CŒE�.

Theorem 4.3 implies that the degree deg �qp is well defined. A basic question
is how to compute it. Our strategy contains two main steps. Step 1 is to compute
the degree for p 2 LN via Krichever’s ansatz [17]. Step 2 is to apply the Darboux
transformation to relate the degree for p 2 AN with the degree for Op 2 LN . For this
purpose, we need to review Krichever’s theory in the following section.

4.2. Computing deg �qp for p 2 LN via Krichever’s theory

In this section, we briefly review Krichever’s construction [17] of the algebraic curve
�N for an elliptic KdV potential qp.z/ with p D .p1; : : : ; pN / 2 LN . As an applic-
ation, we can easily prove deg �qp D N . Since Krichever’s original theory [17] is
for the more general KP equation, we prefer to provide all the necessary details of
Krichever’s theory in the KdV case to make the paper self-contained.

As mentioned in Section 1, for the ODE L.qpIE/,

y00.z/ D .qp.z/ �E/y.z/ D
h
2

NX
jD1

}.z � pj / �E
i
y.z/; (4.9)

Krichever [17] studied the following Krichever’s ansatz:

'.zI �; ˛/´ e��z �

NX
iD1

di‰.z � pi I˛/; (4.10)

where ˛ 2 E� n ¹0º, � 2 C, di 2 C for all i and

‰.zI˛/´ �
�.z � ˛/

�.z/�.˛/
e�.˛/z : (4.11)
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Notice that‰.zI˛/ is doubly periodic in ˛, which implies that‰.zI˛/ is well defined
for ˛ 2 E� . It follows from (1.2) that

e��.zC!k/‰.z C !kI˛/ D e
.�.˛/��/!k��k˛e��z‰.zI˛/; k D 1; 2; (4.12)

so Krichever’s ansatz '.zI �; ˛/ is elliptic of the second kind.
In [17, (15), p. 284], Krichever introduced the following two N � N matrices

L.˛/ and T .˛/:

L.˛/ D .Lij /N�N with Lij D .1 � ıij /‰ij .˛/´

´
0 if i D j;

‰ij .˛/ if i ¤ j;

and
T .˛/ D .Tij /N�N with Tij D ıij

X
k¤i

}ik C .1 � ıij /‰
0
ij .˛/;

where we use the notations ‰ij .˛/´ ‰.pi � pj I ˛/, ‰0ij .˛/´
d
dz
‰.pi � pj I ˛/

and }ij ´ }.pi � pj / for i ¤ j .
Let Ed D .d1; : : : ; dN /t ¤ 0. By substituting '.zI�; ˛/ defined by (4.10) into (4.9)

and equating the coefficients of .z � pj /�2 and .z � pj /�1 to zero for all j 2 Œ1;N �,
it was proved in [17, p. 284] that � and Ed satisfy the following two equations:

.L.˛/ � �IN / Ed D 0 and
�
T .˛/ �

1

2
.E � }.˛/ � �2/IN

�
Ed D 0; (4.13)

where IN is the N � N identity matrix. So the vector Ed must be a common eigen-
vector of L.˛/ and T .˛/, and the value � must be an eigenvalue of the matrix L.˛/.
Clearly, the two equations in (4.13) are compatible if and only if the two matrices
commute, i.e.,

ŒL.˛/; T .˛/� D L.˛/T .˛/ � T .˛/L.˛/ D 0: (4.14)

It was proved in [17, Lemma 1] that one has the equality ŒL.˛/; T .˛/�D 0 if and only
if
PN
j¤i }

0.pi � pj / D 0 for all i , or equivalently, p 2 LN .
Consider the characteristic polynomial of L.˛/:

R.�; ˛/ D Rp.�; ˛/´ det.�IN � L.˛//; (4.15)

which will be called the Krichever polynomial in this paper. Although the matrixL.˛/
has essential singularities at ˛ D 0, by introducing a diagonal matrix

G.˛/ D .Gij /N�N ; where Gij D ıij e�.˛/pi ;
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we see that L.˛/ D G.˛/zL.˛/G�1.˛/, where the matrix zL.˛/ does not have any
essential singularities. Consequently, R.�; ˛/ can be written as a polynomial of � as
follows:

R.�; ˛/ D

NX
iD0

ri .˛/�
i
D �N C � � � ;

where ri .˛/ are all elliptic functions with poles only at ˛ D 0. In particular, R.�; ˛/
2 CŒ}.˛/; }0.˛/�Œ��.

Let �N be the algebraic curve defined by

�N ´ ¹.�; ˛/ j R.�; ˛/ D 0º;

then the algebraic curve �N is an N -sheeted covering over E� via the Krichever
covering map

� W�N ! E� ; �.�; ˛/´ ˛;

and the branch points coincide with the zeros of @R
@�
.�; ˛/ on �N . As a meromorphic

function on �N , it was proved by Krichever [17, Lemma 2] that @R
@�
.�; ˛/ has only

2.N � 1/ poles on �N . For any meromorphic function, the number of zeros is equal
to the number of poles by counting multiplicities. Consequently, @R

@�
.�; ˛/ has only

2.N � 1/ zeros on �N , which implies that except finitely many ˛’s in E� , the �-poly-
nomial R.�; ˛/ has no multiple roots. See more detailed arguments of this fact in
[17, Lemma 2]. Therefore, the set

Bp ´ ¹˛ 2 E� j the �-polynomial Rp.�; ˛/ has multiple rootsº

is a finite set.
Denote !0 D 0, !3 D !1 C !2, and define E� Œ2�´

®
!k

2

ˇ̌
0 � k � 3

¯
to be the

set of 2-torsion points in E� . The following result, which will be a consequence of
Krichever’s theory, is crucial for us to compute the degree deg �qp for p 2 LN .

Proposition 4.4. Let p2LN and ˛ …Bp [E� Œ2�. Then for each .�i .˛/;˛/ satisfying
Rp.�; ˛/ D 0, there exists a unique Pi D .Ei ;Ci / 2 �qp such that

�qp.Pi / D ˛; �i .˛/ D �.˛/ � r.Pi /�1 � s.Pi /�2: (4.16)

Moreover,
Ei ¤ Ej for i ¤ j: (4.17)

Proof. Under our assumption ˛ 2 E� n .Bp [E� Œ2�/, the �-polynomial Rp.�; ˛/ has
N distinct roots, namely the matrixL.˛/ hasN distinct eigenvalues �1.˛/; : : : ; �N .˛/
and �i .˛/¤ �j .˛/ for i ¤ j . For each eigenvalue �i .˛/, up to multiplying a constant,
there is a unique nonzero eigenvector

Edi D .di;1; : : : ; di;N /
t
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satisfying L.˛/ Edi D �i .˛/ Edi . Since p 2 LN implies (4.14), we have

L.˛/T .˛/ Edi D T .˛/L.˛/ Edi D �i .˛/T .˛/ Edi ;

so T .˛/ Edi is also an eigenvector ofL.˛/with respect to the eigenvalue �i .˛/. Because
Ed1; : : : ; EdN are linearly independent, we have

T .˛/ Edi D �i .˛/ Edi

for some �i .˛/ 2 C that is uniquely determined by .�i .˛/; ˛/, i.e., Edi is also an
eigenvector of T .˛/ with respect to the eigenvalue �i .˛/. Define Ei by the following
equation:

1

2
.Ei � }.˛/ � �

2
i .˛// D �i .˛/; (4.18)

then Edi solves the equation (4.13) with � D �i .˛/ and E D Ei , i.e.,

.L.˛/ � �i .˛/IN / Edi D 0; (4.19a)�
T .˛/ �

1

2
.Ei � }.˛/ � �

2
i .˛//IN

�
Edi D 0: (4.19b)

Consequently, if we let

'i .z/ D '.zI �i ; ˛; Ei /´ e��i .˛/z �

NX
kD1

di;k‰.z � pkI˛/;

then (4.19) implies that '00i .z/� .qp.z/�Ei /'i .z/ has no poles and satisfies the same
transformation law (4.12) as e��i .˛/z‰.zI˛/. Consequently,

'00i .z/ � .qp.z/ �Ei /'i .z/

e��i .˛/z‰.zI˛/

is an elliptic function with only one simple pole at z D ˛ and so is a constant. Since
it has a zero at z D 0, by using (4.11), this constant must be 0. Therefore, 'i .z/ is a
solution of

y00.z/ D .qp.z/ �Ei /y.z/: (4.20)

Define ri ; si by ´
�2�isi D .�.˛/ � �i .˛// � �1˛;

2�iri D .�.˛/ � �i .˛//� � �2˛;

then we see from (4.12) that

'i .z C !k/ D e
.�.˛/��i .˛//!k��k˛'i .z/ D

´
e�2�isi'i .z/ if k D 1;

e2�iri'i .z/ if k D 2;
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namely e�2�isi (resp. e2�iri ) is an eigenvalue of the monodromy matrix M1.Ei /

(resp. M2.Ei /) of (4.20).
On the other hand, the Legendre relation ��1 � �2 D 2�i implies´

˛ D ri C si�;

�i .˛/ D �.˛/ � ri�1 � si�2:
(4.21)

By ˛ …E� Œ2�, we obtain .ri ; si / … 1
2
Z2, say si … 1

2
Z for example. Then e�2�isi ¤˙1

as an eigenvalue of the monodromy matrix M1.Ei / of (4.20), so it follows from
Case (a)-1 in Section 2.3 that 'i .z/ is one of the two Baker–Akhiezer functions
of (4.20), namely we may assume 'i .z/ D '.Pi I z/ for Pi D .Ei ;Ci / 2 �qp . Then
it follows from Section 2.3 that .ri ; si / D .r.Pi /; s.Pi //, which implies (4.16) by
applying (4.21) and (4.6).

Finally, supposeEi DEj for some i ¤ j , thenPi DPj orPi DP �j . IfPi DPj , it
follows from (4.16) that �i .˛/ D �j .˛/, a contradiction. So Pi D P �j , which together
with (4.6) imply

˛ D �qp.Pi / D �qp.P
�
j / D ��qp.Pj / D �˛; (4.22)

a contradiction to ˛ … E� Œ2�. This proves (4.17).

Theorem 4.5. For any p 2LN , there holds deg �qp D N .

Proof. Denote d ´ deg�qp . We want to prove d D N . Choose ˛ … B [E� Œ2� such
that the �-polynomialRp.�;˛/ hasN distinct roots, denoted by �1.˛/; : : : ; �N .˛/. By
Proposition 4.4, for each �i .˛/, there associates a unique point Pi D .Ei ;Ci / 2 �qp

such that �qp.Pi / D ˛ and Ei ¤ Ej for i ¤ j . This implies #��1qp
.˛/ � N and so

d � N .
Conversely, to prove d � N , we can also choose ˛ … B [E� Œ2� such that

��1qp
.˛/ D ¹Pi D .Ei ;Ci / j i D 1; : : : ; dº with Pi ¤ Pj for i ¤ j:

For each Pi , we define

�.Pi /´ �.˛/ � r.Pi /�1 � s.Pi /�2; (4.23)

then we claim that there are dj 2 C’s such that up to multiplying a nonzero constant,
the Baker–Akhiezer function  .Pi I z/ can be expressed as

 .Pi I z/ D e
��.Pi /z �

NX
jD1

dj‰.z � pj I˛/: (4.24)
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Indeed, we can choose dj 2 C’s such that

 .Pi I z/ � e
��.Pi /z �

NX
jD1

dj‰.z � pj I˛/

has no poles. Furthermore, by ˛ D �qp.Pi /D r.Pi /C s.Pi /� and (4.23), we see that

e��.Pi /.zC1/‰.z C 1I˛/ D e�2�is.Pi /e��.Pi /z‰.zI˛/;

e��.Pi /.zC�/‰.z C � I˛/ D e2�ir.Pi /e��.Pi /z‰.zI˛/;

namely e��.Pi /z‰.zI˛/ satisfies the same transformation law as  .Pi I z/, so

 .Pi I z/ � e
��.Pi /z �

PN
jD1 dj‰.z � pj I˛/

e��.Pi /z‰.zI˛/

is an elliptic function, which has only one simple pole at zD˛ and also a zero at zD 0,
so as before we conclude that it is identically 0. This proves (4.24). Consequently,
� D �.Pi /, E D Ei , and Ed D .d1; : : : ; dN /t solve (4.13), so

Rp.�.Pi /; ˛/ D 0; i D 1; : : : ; d:

Recall that Pi ¤ Pj for i ¤ j . Suppose �.Pi / D �.Pj / for some i ¤ j . Then it
is seen from (4.18) that Ei D Ej and so Pi D P �j . Again, this leads to (4.22), which
contradicts with ˛ … E� Œ2�. Thus,

�.Pi / ¤ �.Pj / for 1 � i ¤ j � d;

which finally implies d � N D deg� Rp.�; ˛/ and so d D N . The proof is complete.

Proposition 4.4 and Theorem 4.5 say that for any ˛ …B [E� Œ2�, the fiber ��1qp
.˛/

is one-to-one and onto the fiber ��1.˛/, which induces a birational map # such that
�qp D � ı # as follows. Define

# W�qp ! �N ; #.P /´ .�; }.˛/; }0.˛//; (4.25)

where (note m D N for p 2 LN )

˛´ �qp.P / D

mX
jD1

aj .P / �

NX
jD1

pj D r.P /C s.P /�;

� D �.P /´ �.�qp.P // � r.P /�1 � s.P /�2

D �.r.P /C s.P /�/ � r.P /�1 � s.P /�2: (4.26)
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Recall (4.7)–(4.8) that}.˛/D}.�qp.P // and}0.˛/=C D}0.�qp.P //=C are rational
functions of E. Since (1.1), (2.22), and (4.26) together imply

�.P �/ D ��.P /;

C�.P / is a meromorphic function ofE in C. Since limP!P1 C�.P /D1 by (4.26),
we conclude that �.P /=C is also a rational function of E.

Note from (4.26) that the poles of � are precisely the fiber ��1qp
.0/, i.e.,

��1qp
.0/ D ��1.1/;

so the map # can be extended from �qp to �N . In conclusion, we have the following
result.

Theorem 4.6. The map # W �qp ! �N defined by (4.25)–(4.26) is a birational map
as follows:

}.˛/ D
P1.E/

P2.E/
; }0.˛/ D C

P3.E/

P4.E/
; � D C

P5.E/

P6.E/
;

where Pj .E/ 2 CŒE�. In particular, �qp D � ı # .

4.3. Proof of Theorem 1.3 for p 2 AN

Now, we consider

p.

m1.m1C1/=2‚ …„ ƒ
p1; : : : ; p1 ; : : : ;

mn.mnC1/=2‚ …„ ƒ
pn; : : : ; pn/ 2 AN with ].p/ D max

0�i�n
mi � 2:

Let q.z/ D qp.z/ be the corresponding elliptic KdV potential in (1.8) and suppose
its genus is g. To prove Theorem 1.3 for such p, we need to relate this elliptic
KdV potential qp.z/ with another elliptic KdV potential q Op.z/ with Op 2 LN via the
Darboux transformation, and show that the degrees of their Krichever covering maps
are the same.

By Lemma 3.4, we can take P0 D .E0;C0/ 2 �qp with C0 ¤ 0 such that

¹a1.P0/; : : : ; am.P0/º \ ¹p1; : : : ; pnº D ;:

Recalling (3.1)–(3.3), we obtain the following new elliptic KdV potential via the
Darboux transformation:

qP0
.z/ D qpP0

.z/´ q.z/ � 2.ln .P0I z//00

D

nX
iD1

.mi � 1/mi}.z � pi /C 2

mX
jD1

}.z � aj .P0// (4.27)
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with the corresponding

pP0
D .

m1.m1�1/=2‚ …„ ƒ
p1; : : : ; p1; : : : ;

mn.mn�1/=2‚ …„ ƒ
pn; : : : ; pn; a1.P0/; : : : ; am.P0// 2 AN

satisfying ].pP0
/ D ].p/ � 1. Furthermore, it follows from Theorem 2.4 and C0 ¤ 0

that qP0
.z/ is also of genus g and has the same spectral polynomial as qp, namely

their spectral curve are the same: �qP0
D �qp .

For each E 2 C, we consider the two linear equations:

y00.z/ D .qp.z/ �E/y.z/; (4.28)

y00.z/ D .qP0
.z/ �E/y.z/: (4.29)

We denote the two Baker–Akhiezer functions of (4.28) by  .P I z/,  .P �I z/ as
before, while the two Baker–Akhiezer functions of (4.29) by O .P I z/, O .P �I z/.
Recalling (2.19), we denote the corresponding monodromy data of .P Iz/ and O .P Iz/
by .r.P /; s.P // and . Or.P /; Os.P //, respectively.

Proposition 4.7. Under the above notations,

¹.r.P /; s.P //; .r.P �/; s.P �//º D ¹. Or.P /; Os.P //; . Or.P �/; Os.P �//º (4.30)

holds for any P D .E;C/ 2 �qp D �qP0
.

Proof. Define a linear differential operator AP0
with its potential being an elliptic

function as follows:

AP0
´

d

dz
�
 0.P0I z/

 .P0I z/
:

Then it is classical (cf. [10]) that AP0
y.z/ solves (4.29) as long as y.z/ solves (4.28).

Consider any P D .E;C/ 2 �qp , there are two cases.

Case 1: E ¤ E0. Recalling the Baker–Akhiezer functions  .P I z/,  .P �I z/ of
(4.28), we see that AP0

 .P I z/; AP0
 .P �I z/ are nontrivial solutions of (4.29) and

satisfy the same transformation law (2.19) as  .P I z/ and  .P �I z/, respectively!
Indeed, it was proved in [10] that AP0

 .P I z/, AP0
 .P �I z/ are precisely the two

Baker–Akhiezer functions O .P I z/, O .P �I z/ of (4.29). Thus, (4.30) holds.

Case 2:E DE0. Since C0 ¤ 0 implies that  .P0I z/ and  .P �0 I z/ are linearly inde-
pendent, there is a constant c ¤ 0 such thatAP0

 .P �0 Iz/D
c

 .P�
0
Iz/

, soAP0
 .P �0 Iz/

is again a nontrivial solution of (4.29) with E D E0 and satisfies the same trans-
formation law (2.19) as  .P0I z/ (because (2.22) implies that  .P �0 I z/

�1 satisfies
the same transformation law (2.19) as  .P0I z/). Again, it was proved in [10] that
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this AP0
 .P �I z/ is one of the two Baker–Akhiezer functions O .P I z/, O .P �I z/

of (4.29), so
.r.P /; s.P // 2 ¹. Or.P /; Os.P //; . Or.P �/; Os.P �//º:

Clearly, (4.30) follows from here and (2.22).

With the help of Proposition 4.7, we can compare the degree of the covering maps
of qp.z/ with that of qP0

.z/ in (4.27).

Proposition 4.8. There holds

deg �qp D deg �qP0
;

where �qp and �qP0
are the Krichever covering maps of qp.z/ and qP0

.z/ respect-
ively.

Proof. Denote d D deg �qp . We choose ˛ 2 E� nE� Œ2� such that

��1qp
.˛/ D ¹Pi D .Ei ;Ci / j i D 1; : : : ; dº with Pi ¤ Pj for i ¤ j:

Then it follows from (4.6) that

˛ D r.Pj /C s.Pj /� for all j:

Since ˛ … E� Œ2�, the same argument as the proof of Theorem 4.5 implies Ei ¤ Ej for
any i ¤ j .

For each such Pj , it follows from Proposition 4.7 that there is OPj 2 ¹Pj ;P �j º such
that . Or. OPj /; Os. OPj // D .r.Pj /; s.Pj // and so

�qP0
. OPj / D Or. OPj /C Os. OP

�
j /� D r.Pj /C s.Pj /� D ˛:

Since Ei ¤ Ej implies OPi ¤ OPj for any i ¤ j , we obtain deg �qp � deg �qP0
.

On the other hand, the Darboux transformation is invertible, namely qp.z/ can be
obtained from qP0

.z/ via the Darboux transformation by the Baker–Akhiezer function
of (4.29) with E D E0, Therefore, the same argument also shows that deg �qP0

�

deg �qp . This completes the proof.

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let p 2 AN . The case ].p/ D 1, i.e., p 2 LN was proved in
Theorem 4.5. Thus, we may assume ].p/ � 2. Then the above argument implies the
existence of p0 D pP0

2 AN with ].p0/ D ].p/ � 1 such that deg �qp D deg �qp0
.

Clearly, we can repeat this argument finite times and finally obtain Op 2 AN with
]. Op/ D 1, i.e., Op 2 LN , such that deg �qp D deg �q Op . Since Theorem 4.5 proves
deg �q Op D N , we conclude deg �qp D N . This completes the proof.
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Remark that since Lemma 3.2 says that p0 D pP0
belongs to the same connected

component of AN as p, the Op 2 Ln can be chosen to belong to the same connected
component of AN as p.

5. Proof of Theorem 1.4

The purpose of this section is to prove Theorem 1.4. Let p 2AN be given by (1.7)
and the corresponding elliptic KdV potential q.z/ D qp.z/ be in (1.8). Suppose it is
of genus g and recall its associated spectral curve �qp . LetK.E� / andK.�qp/ be the
field of rational functions on E� and �qp , respectively. Then Theorem 1.3 indicates
that K.�qp/ is a finite field extension over K.E� / with

ŒK.�qp/ W K.E� /� D deg �qp D N: (5.1)

In order to find a primitive generator of this field extension, as mentioned in Sec-
tion 1, we define zpW�qp ! C [ ¹1º by

zp.P /´ �
� mX
kD1

ak.P / �

nX
jD1

mjpj

�
�

mX
kD1

�.ak.P / � pn/

C

n�1X
jD1

mj �.pj � pn/ for all P 2 �qp :

The reason of defining this function is clear from the following results.

Lemma 5.1. For any P D .E;C/ 2 �qp , we have

zp.P / D �.�qp.P // � r.P /�1 � s.P /�2: (5.2)

Consequently, the poles of zp on �qp are precisely the fiber ��1qp
.0/.

Proof. Define

B0´ ¹P 2 �qp j ¹a1.P /; : : : ; am.P /º \ ¹p1; : : : ; pnº ¤ ; in E�º:

Then Lemma 3.4 says that B0 is finite. For any P 2 �qp n B0, we can apply (4.4)
with i D n and (2.20) to obtain (5.2). Then (5.2) also holds for P 2B0 by continuity.
Consequently, the last statement follows from (5.2).

Remark 5.2. By (4.4) and the proof of Lemma 5.1, clearly we can replace pn with
any fixed pi in the definition of zp.

If p 2 LN , it follows from (5.2) that this zp is precisely the rational function
�.P / 2 K.�qp/ given in (4.26) and Theorem 4.6.
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For general p 2 AN , thanks to (5.2), the same argument as Theorem 4.6 implies
that

zp.P / D C
P7.E/

P8.E/

for some coprime polynomials P7.E/; P8.E/ 2 CŒE�.

Thus, zp 2 K.�qp/, then the minimal polynomial Wp.z/ 2 K.E� /Œz� of zp exists
with degree

dp ´ degWp.z/:

Lemma 5.1 shows that zqp has no poles over E�� ´ E� n ¹0º, which implies that the
minimal polynomialWp.z/with �qp D ˛ is a monic polynomial in CŒ}.˛/;}0.˛/�Œz�,
and we write Wp.z/ D Wp.z; ˛/ to emphasize this fact.

Since degzWp.z; ˛/j deg �qp and deg �qp D N , we have dpjN . Clearly, to prove
that zp is a primitive generator is equivalent to prove dp D N . The following result
proves this result for p 2 LN . Recall (4.15) that the Krichever polynomial Rp.�; ˛/

is well defined for p 2 LN .

Lemma 5.3. Let p 2LN . Then for any ˛ 2 E� ,

Wp.z; ˛/ D Rp.z; ˛/; (5.3)

Here Rp.�; ˛/ is the Krichever polynomial defined in (4.15). In particular, zp.P / D

�.P / is a primitive generator of the finite field extension (5.1).

Proof. Since p 2 LN , Remark 5.2 says zp.P / D �.P /.
It suffices to prove (5.3) for any ˛ … Bp [ E� Œ2�. For such ˛, the �-polynomial

Rp.�; ˛/ has N distinct roots, denoted by �1.˛/; : : : ; �N .˛/. For each �i .˛/, we
see from Proposition 4.4 that there is a unique point Pi D .Ei ;Ci / 2 �qp such that
�qp.Pi / D ˛,

�i .˛/ D �.˛/ � r.Pi /�1 � s.Pi /�2 D zp.Pi /;

and Ei ¤ Ej for i ¤ j . This implies

Wp.�i .˛/; ˛/ D 0 for all 1 � i � N: (5.4)

Since the z-polynomial Rp.z; ˛/ has no multiple roots for such ˛, we conclude
from (5.4) that Rp.z; ˛/jWp.z; ˛/: This implies

N D degzRp.z; ˛/ � degzWp.z;˛/ � N;

so degzWp.z;˛/ D N and (5.3) holds.

Now, we are ready to prove Theorem 1.4.
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Proof of Theorem 1.4. Let p 2 AN . The case ].p/ D 1, i.e., p 2 LN , was proved in
Lemma 5.3. Thus, we may assume ].p/ � 2. Recalling the argument in Section 4.3,
we conclude the existence of Op 2 LN which belongs to the same component of AN

as p such that the following statement hold:

(1) deg �qp D deg �q Op D N ;

(2) the spectral curves are the same, i.e., �qp D �q Op ;

(3) the conclusion of Proposition 4.7 still holds after replacing pP0
with Op.

Again, let ˛ … B Op [E� Œ2� such that

��1q Op .˛/ D ¹Pi D .Ei ;Ci / j i D 1; : : : ; N º with Pi ¤ Pj for i ¤ j;

andEi ¤Ej for all i ¤ j . Then Lemma 5.3 implies that z Op.Pi /’s areN distinct roots
of its minimal polynomial W Op.z; ˛/.

By Proposition 4.7, there exists zPi 2 ¹Pi ; P �i º such that

.r. zPi /; s. zPi // D . Or.Pi /; Os.Pi //: (5.5)

where .r.P /; s.P //, . Or.P /; Os.P // denote the corresponding monodromy data for the
associated Baker–Akhiezer functions of qp and q Op, respectively. Then

��1qp
.˛/ D ¹ zPi j 1 � i � N º;

and it follows from (5.2) and (5.5) that

z Op.Pi / D �.˛/ � Or.Pi /�1 � Os.Pi /�2

D �.˛/ � r. zPi /�1 � s. zPi /�2 D zp. zPi /;

so z Op.Pi /’s are also the N distinct roots of Wp.z; ˛/. Since degz Wp.z;˛/ � N , we
conclude that

degWp.z;˛/ D N D degW Op.z;˛/

and
Wp.z;˛/ D W Op.z;˛/:

In particular, zp is a primitive generator of the field extention (5.1).

For any .r; s/ 2 C2 n
1
2
Z2, we define

Zr;s.�/´ �.r C s�/ � r�1 � s�2:

Here we note that Zr;s.�/ � 1 if .r; s/ 2 Z2 and Zr;s.�/ � 0 if .r; s/ 2 1
2
Z2 n Z2.

Define Zp.r; s/ by
Zp.r; s/´ Wp.Zr;s.�/; r C s�/:
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Given .r; s/ 2 C2 n
1
2
Z2 and ˛ D r C s� , we see from Lemma 5.1 that for P 2

��1qp
.˛/,

zp.P / D Zr;s.�/; (5.6)

so Zp.r; s/ D 0.
Conversely, suppose .r; s/ 2 C2 n

1
2
Z2 satisfies Zp.r; s/ D 0. Then Zr;s.�/ is a

root ofWp.z; ˛/with ˛ D r C s� , so there is P 2 ��1qp
.˛/ such that (5.6) holds, which

implies .r; s/ D .r.P /; s.P //: Therefore, the following result holds.

Theorem 5.4. Let p 2AN and .r; s/ 2 C2 n
1
2
Z2. Then .r; s/ D .r.P /; s.P // for

some P 2 �qp if and only if Zp.r; s/ D 0:

We conclude this section with the following remark.

Remark 5.5. (1) Note that the original Krichever polynomial Rp.�; ˛/ is well
defined only for p 2 LN , while the minimal polynomial Wp.zp; ˛/ and the cor-
responding quantity Zp.r; s/ are well defined for all p 2 AN . Lemma 5.3 shows
Wp.z; ˛/ D Rp.z; ˛/ for p 2 LN .

(2) When qp.z/ is the Lamé potential or the general Darboux–Treibich–Verdier
potential

P3
iD0mi .mi C 1/}

�
z � !i

2

�
, the quantityZp.r; s/was already studied in [5,

20], where it was proved that Zp.r; s/ is a modular form as a holomorphic function
of � for .r; s/ 2 Q2 n

1
2
Z2, which has important applications to PDE problems.

(3) The proof of Theorem 1.4 implies Wp.z; ˛/ D W Op.z; ˛/, where Op 2 LN

belongs to the same component of AN as p. This leads to a natural question.

Is the minimal polynomial Wp.z; ˛/ invariant for all p in a connected com-
ponent A0

N of AN ? Is the monodromy representation of the ODE L.qpIE/

invariant for all p 2 A0
N ?

It seems that this question has not been settled in the literature. We would like to study
this question elsewhere.
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