
J. Spectr. Theory 14 (2024), 1451–1474
DOI 10.4171/JST/530

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

2-nodal domain theorems for higher-dimensional circle bundles

Junehyuk Jung and Steve Zelditch

Abstract. We prove that the real parts of equivariant (but non-invariant) eigenfunctions of
generic bundle metrics on non-trivial principal S1 bundles over manifolds of any dimension
have connected nodal sets and exactly 2 nodal domains. This generalizes earlier results of the
authors in the 3-dimensional case. The failure of the results on for non-free S1 actions is illus-
trated on even-dimensional spheres by one-parameter subgroups of rotations whose fixed point
set consists of two antipodal points.

1. Introduction

In a recent article [4], the authors proved a novel type of connectivity theorem for
nodal sets of eigenfunctions of certain Laplace operators on Riemannian 3-manifolds
.X; G/ which are non-trivial principal circle bundles � W X ! M over (real) sur-
faces M . The metrics G are known as bundle metrics, Kaluza–Klein metrics, or
connection metrics. (They are also called Sasakian metrics; see [2] for an early study
of them.) They are induced by a choice of Riemannian metric g on M and a connec-
tion 1-form ˛ on the non-trivial principal circle bundle � WX ! M ; see Lemma 2.1.
We denote the free circle S1 action by r� and its infinitesimal generator by Z D @

@�
.

The connection determines an S1 invariant splitting TX D H ˚ V into horizontal
and vertical sub-bundles, with V D RZ, and G is defined so that H ? V , so that
GjH D ��g and so that Gj��1.z/ is the standard metric on S1 D R=Z along the
fibers. The horizontal Laplacian �H commutes with the vertical Laplacian @2

@�2 , so
that there exists an orthonormal basis ¹'m;j º of joint eigenfunctions of �G and @2

@�2 .
We refer to such joint eigenfunctions as equivariant eigenfunctions since they trans-
form by 'm;j .r�x/ D eim�'m;j .x/ under the S1 action r� W S1 � X ! X . They are
called invariant when m D 0. It is proved in [4] that the nodal sets of the real parts
of non-invariant equivariant eigenfunctions are connected for m 6D 0 and that they
divide S3 into exactly two nodal domains if 0 is a regular value of the eigenfunction;
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moreover, it is a generic property of the bundle metrics that all eigenfunctions are
equivariant and that 0 is a regular value of them all. Until this result, sequences of
eigenfunctions with a small number of nodal domains seemed to be rare, and it took
ingenious arguments such as those of Lewy [6] and Stern [7] to construct them; but
the result of [4] shows that the full orthonormal basis of eigenfunctions orthogonal to
invariant functions has this property for generic bundle metrics.

1.1. Higher-dimensional circle bundles

The purpose of this addendum is to generalize the result to bundle Laplacians on non-
trivial principal circle bundles over manifolds of any dimension. The generalization
requires two main changes in the argument. First, our generic bundle metrics are of
two kinds (i) general base metric perturbations, and (ii) perturbations of the connec-
tion 1-form as in [4]. The perturbations (i) bring in new types of equations. Secondly,
the key last step that the single nodal component divides X into precisely two nodal
domains requires a very different argument from [4]. In addition, we illustrate what
goes wrong with the proofs if the S1 action is not free by illustrating the failure of the
result on even-dimensional spheres.

Bundle metrics on principal circle bundles can be defined in both a “top–down”
and a “bottom–up” way. The top–down approach is to start with a principal S1 bundle
� WX ! M and to construct a bundle metric G on it from a metric g on M and
a connection 1-form ˛ on the bundle (see Section 2). The S1 action is generated
by a Killing vector field Z D @

@�
, which commutes with any bundle Laplacian �G .

The norm jZjG is called the lapse function; it is constant along fibers but may vary
with the fiber. For simplicity, when the S1 action is free, we assume it is constant,
in which case the fibers are geodesics. The bottom–up approach is to start with a
suitable Riemannian manifold .M; g/ and a complex line bundle L! M , to endow
L with a Hermitian metric h and to define X as the unit bundle @D�

h
� L� of the

Hermitian metric in the dual line bundle. Given the circle bundle X and a character
of S1, one may define the associated complex line bundle L and Hermitian metric h
so that X D @D�

h
. Although the bottom–up and top–down approaches are equivalent,

it is natural to separate the two approaches since the lead to different perturbation
formulae.

Definition 1.1. Let .X;G/ be any Riemannian manifold with an S1 action by isome-
tries. Let DZ D 1

i
@
@�

be the self-adjoint differential operator corresponding to the
Killing vector field Z generating the S1 action. By an equivariant eigenfunction, we
mean a joint eigenfunction ´

�G'm;j D ��
2
m;j'm;j ;

DZ'm;j D m'm;j :
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Equivariant eigenfunctions are complex-valued and their real and imaginary parts
are (non-equivariant) �G-eigenfunctions. We are mainly interested in the nodal sets
of the real part,

Nm;j ´ ¹Re'm;j D 0º: (1.1)

It is equivalent to study the nodal set of the imaginary part.
Our main result pertains to nodal sets (1.1) for Laplacians of generic bundle met-

rics. To define “generic,” we specify a class of metrics g on M (Section 4.1) and of
connection 1-forms ˛ (Section 4.1.1) in some Banach or Frechet space, and “generic”
will refer to a residual subset of that space. Either we fix the base metric g and vary
the connection, or we fix the connection and allow general variations of base metrics.

Theorem 1.2. For generic data .g; ˛/ of a bundle (Kaluza–Klein) metric G on a
non-trivial principal circle bundle � WX !M , the following facts hold.

• 0 is a regular value of all eigenfunctions of the bundle Laplacian �G .

• All eigenvalues are simple. The eigenfunctions are joint eigenfunctions of @2

@�2 and
of �G .

• Except for pullback (invariant) eigenfunctions, the nodal set (1.1) is connected
and there are exactly two nodal domains.

The nodal domains of pullback eigenfunctions are easily seen to be the inverse
image of the nodal domains in M , so the above theorem is best possible.

The proof of Theorem 1.2 splits up into two distinct parts. The first part is to prove
that eigenfunctions of generic bundle metrics of the two basic types have the stated
properties. The second part is to prove that zero sets (1.1) of real parts of equivariant
eigenfunctions 'm on X have the stated connectivity properties if 0 is a regular value.

Equivariant functions 'm;j on the circle bundle transforming by eim� correspond
to sections of Lm. There is a canonical lift map s ! Os taking sections of Lm to
equivariant functions on X . Theorem 1.2 can therefore be restated in terms of real
and imaginary parts of equivariant eigensections sm;j of Lm,

ZROsm;j
´ ¹Re Osm;j .�/ D 0; � 2 @D�hº: (1.2)

See Section 3.1 for background. It is often easier to calculate with the associated
eigensections, since connections on Lm are simpler to work with than horizontal
derivatives.

1.2. Non-free S 1 actions on even-dimensional spheres

Odd-dimensional spheres fit into the framework of bundle metrics on circle bun-
dles over Kähler manifolds (namely S2m�1 ! CPm), although the metrics are very
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non-generic: eigenvalues have high multiplicities, 0 is not a regular value of many
eigenfunctions (spherical harmonics) of a given eigenvalue (or, degree), and the there
may exist many nodal domains in the singular case. On the other hand, as in [5], the
real part of a random equivariant spherical harmonic on S2m�1 does have a connected
nodal set with exactly two nodal domains.

If we drop the assumption that X !M is a principal circle bundle and allow the
S1 action to have fixed points, then most of Theorem 1.2 fails. The simplest example
where the conclusion of Theorem 1.2 is false is that of the S1 action by rotations
around an axis for the standard metric on S2. The equivariant eigenfunctions are the
usual spherical harmonics Y mN . The nodal sets of their real parts are connected but
they have mN nodal domains. Moreover, 0 is not a regular value and they have mN
singular points. We show that much of this is true for similar S1 actions on spheres of
any even dimension. The following is proved in Section 7.

Lemma 1.3. Suppose that X D S2n is an even-dimensional sphere and S1 is a
1-parameter subgroup of SO.2nC 1/ with exactly two fixed points. Then,

• for any S1-invariant metric G, the nodal sets of the real parts of the joint eigen-
functions of the S1 action and �G are connected;

• 0 is never a regular value for real parts of the joint eigenfunctions of the S1 action
and �G;

• the set of singular points (critical points on the nodal set) of real parts of the
equivariant eigenfunctions is exactly of co-dimension 2.

1.3. Comments

To avoid duplicating material in [4], we only give a detailed presentation of the new
steps in the generalization and refer to [4] for much of the background and references.
However, for the sake of readability, we do state some overlapping calculations of
Laplacians and their perturbations of connection 1-forms from [4]. As mentioned
above, the generic metric data in higher dimensions is quite different from that in
dimension two, and the calculations are quite different.

We refer the readers to [3], published shortly after the release of our current article.
While there are overlapping results, it is important to note that the two works were
conducted independently, and the proof methods used are different.

2. Geometric background

In this section we introduce the geometric data that goes into the construction of bun-
dle (i.e., connection or Kaluza–Klein) metrics on a circle bundle, and give formulae
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for the associated Bochner connection Laplacians r�r and Kaluza–Klein Laplacians
�G associated to different types of bundle Laplacians.

2.1. Classification of S 1 bundles and bundle metrics

In this section we consider the general top–down approach to constructing bundle
metrics for principal S1 bundles � WX ! M . Let M be a compact manifold. Then
there is a 1–1 correspondence between equivalence classes of circle bundles over M
and elements of H 2.M;Z/. Given an integral closed 2-form ! on M there is a circle
bundle � WX ! M with connection form ˛ such that ��! D d˛. The cohomology
class c1 D Œ!� 2 H 2.M;Z/ of the associated complex line bundle is its Chern class.

A connection 1-form ˛ is an S1-invariant 1-form satisfying ˛.Z/ D 1. The dif-
ference ˛1 � ˛2 of two connections is an S1 invariant 1-form which annihilates Z
and is therefore horizontal. Hence, it descends to M as a real-valued one form. It fol-
lows that the space of connection 1-forms on a fixed circle bundle is parameterized by
�1.M;R/.

The curvature form of the S1 bundle is the S1 horizontal form defined by ! D d˛.
It descends to M as a closed 2-form. When ! is a symplectic form, the connection is
called fat [9] and then .M; !/ is a symplectic manifold; in this case X is odd-dimen-
sional.

Let TX D VX ˚HX; where HX is the horizontal space for ˛. A Riemannian
metric g together with ˛ determines the bundle metric as long asZD @

@�
is a geodesic.

More generally, we can allow the lapse function N.Z/DG.Z;Z/ to be non-constant.
We do not pursue this generalization but summarize the statements in the general
setting.

Lemma 2.1. A bundle metric on a principal circle bundle � WX ! M is defined by
the data .N; ˛; g/ with

G.N; ˛; g/´ N 2˛ ˝ ˛ C ��g

where ˛ is the Killing invariant connection 1-form with ˛.Z/ D 1. The S1 orbits are
geodesics if and only if N � C for some C > 0.

The volume form of the metric is given by

dVG D ˛ ^ �
�dVg :

We often assume N � 1 and then write G D G.˛; g/.
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2.2. Associated line bundles and Hermitian metrics

We assume that X is a principal S1 bundle � WX ! M with action r� WX ! X for
ei� 2 S1. Given any character �k.ei� / D eik� one can form the associated complex
line bundles Lk ´ X ��k

C !M .
Conversely, given a complex line bundle L! M , circle bundles X can be con-

structed using Hermitian metrics h on L. Given h, we define

Xh´ @D�h D ¹.z; �/ 2 L
�
W j�jz D 1º

as the boundary of the unit co-disk bundle in the dual line bundle L�.
We fix a connection,

rWC1.X;L/! C1.X;L˝ T �X/:

Given a connection r on L and a vector field V on X , the covariant derivative of a
section s is defined by rV s D hrs; V i. The curvature is the 2-form �r defined by
�r.V; W / D ŒrV ;rW � � rŒV;W �. If eL is a local frame and reL D ˛ ˝ eL, then
�r D d˛.

The value in introducing the line bundle is that S1-equivariant functions trans-
forming by �k on X correspond to sections of Lk ! M . More precisely, there is a
natural lift-map isomorphism,

sk 2 L
2.M;Lk/! Os 2 L2k.@D

�
h/; Osk.z; �/´ �˝k.s.z//

from sections of the k-th tensor power Lk of L to equivariant functions on @D�
h

. The
natural C� action on L� restricts to an S1 action on @D�

h
and Osk.r�x/ D eik� Osk.x/.

It is evident that the zero set of Osk is a circle bundle over the zero set of sk . However,
we are most interested in the zero set of Re Osk .

3. Laplacians

Let G D G.g; ˛/ be a bundle metric on a circle bundle � WX !M as in Lemma 2.1.
The bundle Laplacian �G has the decomposition

�G D �H C�V ; �V D
@2

@�2
;

where �V is the vertical Laplacian and where �H is the horizontal Laplacian. The
equation �V D @2

@�2 holds because we assume that lapse function N equals 1. The
weight spaces are �H -invariant, i.e., �H WHm ! Hm.
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3.1. Equivariant eigenfunctions and eigensections

Under the canonical identification using the lifting map of Section 3.1, �H jHm

restricts to the Bochner connection Laplacians Dm D r�mrm on sections of Lm in
the sense that Hm Š L

2.X;Lm/,�H jHm
ŠDm �m

2I . In the bottom–up approach,
where X is defined as the unit bundle in L� relative to a hermitian metric h, Bochner
Laplacians are defined by r�

h;g
r onL2.X;L/ equipped with the data .g;h;J;JL;r/,

where g is a metric on X , and r is a connection on L. If eL is a local frame for L,
then

5r�mrm.femL / D �H 1.femL /:
An equivariant eigenfunction 'm;j as in Definition 1.1 corresponds under the nat-

ural lifting map to an equivariant eigensection fm;j emL of Lm in a local frame emL .
Let

Refm;j D am;j .z/; Imfm;j D bm;j .z/:

Then,
fm;j .z/e

�im�
D .am;j .z/C ibm;j .z//.cosm� � i sinm�/;

so that, with 'm;j D um;j C ivm;j ,´
um;j D am;j cosm� C bm;j sinm�;

vm;j D bm;j cosm� � am;j sinm�:
(3.1)

3.2. Hilbert spaces of sections

In the top–down approach, the Hilbert space inner product on L2.X; dVG/ is with
respect to the Riemannian volume form dVG . In the bottom–up approach, we let
.L; h/!M be a Hermitian line bundle (which we assume to be holomorphic in the
Kähler setting). We thus have a pair of metrics, h resp. g (with Kähler form !') on L
resp. TM . To each pair .h; g/ of metrics, we associate Hilbert space inner products
Hilbm.h; g/ on sections s 2 L2m'.X;L

m/ of the form

ksk2hm ´

Z
X

js.z/j2hmdVg ;

where js.z/j2
hm is the pointwise Hermitian norm-squared of the section s in the met-

ric hm. In a local frame eL, we write

keLk
2
h D e

� :

In local coordinates z and the local frame emL of Lm, we may write s D femL and then

js.z/j2hm D jf .z/j
2e�m .z/;
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and
kfemL k

2
hm ´

Z
X

jf .z/j2e�m dVg :

3.3. Quadratic forms

The horizontal Laplacian is the Laplacian �H D d�HdH where dH D �Hd is the
horizontal part of the exterior derivative and where d�H is the adjoint with respect to
the bundle metric G. Thus, for F 2 C1.X/, h�HF;F i D

R
X
jdHF j

2
GdVG .

We now trivialize the bundle � WX ! M by choosing a local unitary section
uW U � M ! X (which may be taken to be global on a set of full measure). We
then write x D r�u.y/, and use .y; �/ as local coordinates on X . In these coordi-
nates F.y; �/ D f .y/eim� for the induced local function f .y/ D u�F on U . From
a global viewpoint, f is a section of Lm. Then df D u�dF and dF D .df /eim� C
imfeim�d� . Hence,

jdF � imF˛j2G D j.df /e
im�
C imfeim� .d� � ˛/j2 D jdf C imf .d� � ˛/j2

Further, we define the local connection 1-form u�.˛ � d�/ in the unitary frame u.
Note that .d� � ˛/.Z/ D 0, so .˛ � d�/ is a horizontal 1-form. We claim that on
��1.U /;˛D d� C��u�.˛ � d�/. We first check the equation at the points of u.M/.
Since u ı � D IdWu.M/! u.M/, ˛u.y/ D .d� C �

�u�.˛ � d�//ju.y/. To check it
at a general point r�u.y/ we note that both d� and ��u�.˛ � d�/ are S1-invariant.

Before stating the next result, we summarize the notation and terminology.

Definition 3.1. Let G D G.g; ˛/ be a bundle metric and let �G be its Laplacian.

• An equivariant eigenfunction of�G of equivariant degree (or weight)m is a joint
eigenfunction 'm;j WX ! C transforming by 'm;j .r� .x// D eim�'m;j .x/.

• In a unitary frame uW U � M ! X , and the associated trivialization X jU D
u.M/ � S1, we say that the function fm;j WU ! C defined by fm;j D u�'m;j is
the local expression of the equivariant eigenfunction in the frame u. If we change
the frame from u to a local holomorphic frame emL , then we obtain a local expres-
sion for the holomorphic section of Lm whose lift is 'm;j .

Lemma 3.2. LetG DG.g;˛/ be a bundle metric for a circle bundle � WX!M as in
Lemma 2.1. Let F 2 Hm.X/ and as above express F.y; �/ D f .y/eim� in the local
unitary frame uWU ! X and local trivialization X jU ' U � S1. Then, the quadratic
form Qm.F / D h�HF;F i on F 2 L2m.X; dVG/ equals Qm.F / D hLmf; f iL2.M/,
where

Lmf D ��gf Cm
2
ju�.˛ � d�/j2gf � imd

�
g .u

�.˛ � d�//f: (3.2)
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Proof. Note that for any covector � 2 T �x X , �H .�/D � � h�;Z[iZ[ D � � �.Z/Z[ 2
Hx.X/, where Z[ is the 1-form dual to Z in the sense that Z[ is vertical, Z[.Z/ D 1
and Z[jH.X/ D 0. Clearly, Z[ D ˛ so that

�H .�/ D � � �.Z/˛:

Hence,

h�HF;F i D

Z
X

jdF � dF.Z/˛j2GdVG :

If F 2 Hm.X/, then dF.Z/ D imF and we get

h�HF;F i D

Z
X

jdF � imF˛j2GdVG

D

Z
M

� Z
��1.y/

jdF � imF˛j2Gd�

�
dVg.y/:

It follows that jdF � imF˛j2G D jdf � imf u�.˛ � d�/j2 and

h�HF;F i D

Z
M

jdf � imf u�.˛ � d�/j2gdVg.y/

D

Z
M

�
jdf j2g C imhdf; f u�.˛ � d�/i

� imhf u�.˛ � d�/; df i Cm2jf j2ju�.˛ � d�/j2g
�
dVg

D hLmf; f iL2.M/;

where

Lmf D ��gf Cm
2
ju�.˛ � d�/j2gf C imhdf;u

�.˛ � d�/i

� imd�g .f u�.˛ � d�//

D ��gf Cm
2
ju�.˛ � d�/j2gf � imd

�
g .u

�.˛ � d�//f:

In the last equation, we used

d�g .'w/ D g
�.d';w/C 'd�gw

for any 0-form ' and any 1-form w.
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4. Perturbation formulae

In this section, we prepare for the proof of the first two statements of Theorem 1.2
in the next section (See Theorem 5.1) by calculating variations of the relevant Lapla-
cians and their associated quadratic forms. The main Laplacian is �G , but only its
horizontal part �H varies as the data .g; ˛/ is varied and so we concentrate on that.
In turn, �H D

L
m Lm, where Lm is defined in (3.2); hence, it suffices to calculate

variations of Lm under variations of the base metric or the connection. It is simpler to
calculate variations of operators on sections of Lm than their lifts to X .

Under any variation (i.e., along a curve of data), we have by (3.2),

PLmf D� P�gf Cm
2
Pg�hu�.˛ � d�/;u�.˛ � d�/if � im Pd�g .u

�.˛ � d�//f: (4.1)

Here we use the notation PF D d
dt

ˇ̌
tD0
Ft for the infinitesimal deformation (or varia-

tion) of F along a curve.

Remark 4.1. It is sometimes notationally inconvenient to use the “dot” notation and
we also use the notation ıF for PF .

We now calculate how the various terms deform when g or ˛ is deformed. When
applying the results to prove generic properties, we need to move the derivatives on the
metric or connection data onto the other factors; hence it is advantageous to evaluate
the variation of the quadratic form associated to (4.1) rather than the operator PLm with
derivatives applied to factors not being varied.

4.1. General metric perturbations

Lemma 4.2. Let g.t/ be a 1-parameter deformation of g with g.0/ D g and
b.t/g�1 D g.t/�1. Then, for f 2 C1.M/ and W 2 L1.M/, we have

h PLmf;W iL2.g/ D

Z
M

.df C imf �; dW C imW�/bg�dVg

C
1

2

Z
M

.df C imf �;Wd Tr.b//g�dVg ;

where b D b0.0/.

Proof. Denote by Lm.t/ the horizontal Laplacian corresponding to g.t/ with
Lm.0/ D Lm. Let � D u�.˛ � d�/. For any f 2 C1.M/ and W 2 L1.M/, we
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have

hLm.t/f;W iL2.g/

D hLm.t/f;W
p

det b.t/iL2.g.t//

D

Z
M

.df C imf �; d.W
p

det b.t//C imW
p

det b.t/�/g�.t/dVg.t/

D

Z
M

.df C imf �; dW C imW�/g�.t/dVg

C

Z
M

.df C imf �;Wd
p

det b.t//g�.t/dVg.t/:

Here dW is the distribution derivative of W 2 L1. The second integral isZ
M

.df C imf �;Wd
p

det b.t//g�.t/dVg.t/

D

Z
M

�
df C imf �;W

d
p

det b.t/p
det b.t/

�
g�.t/

dVg

D

Z
M

.df C imf �;Wd log
p

det b.t//g�.t/dVg

D
1

2

Z
M

.df C imf �;Wd log det b.t//g�.t/dVg :

Therefore,

h PLmf;W iL2.g/

D
d

dt
hLm.t/f;W iL2.g/

ˇ̌̌
tD0

D

Z
M

.df C imf �; dW C imW�/bg�dVg

C
1

2

Z
M

.df C imf �;Wd log det b.0//bg�dVg

C
1

2

Z
M

�
df C imf �;Wd

� d
dt

log det b.t/
ˇ̌̌
tD0

��
g�
dVg

D

Z
M

.df C imf �; dW C imW�/bg�dVg

C
1

2

Z
M

�
df C imf �;Wd

� d
dt

det b.t/
ˇ̌̌
tD0

��
g�
dVg ;
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where we used det b.0/ D 1 to eliminate the second term and simplify the third term.
Now, because b.0/ is the identity matrix, we see that

d

dt
det b.t/

ˇ̌̌
tD0
D Tr.b/;

and so we have

h PLmf;W iL2.g/ D

Z
M

.df C imf �; dW C imW�/bg�dVg

C
1

2

Z
M

.df C imf �;Wd Tr.b//g�dVg :

4.1.1. Varying the connection. We now vary ˛ or equivalently its local expression
u�.˛ � d�/ in the unitary frame u. The deformation equation is essentially the same
as in [4].

Lemma 4.3. The variation PLm under a variation of the connection 1-form ˛ is given
by

PLmf D .�2iG.df; P̨ /C ifd
�
g P̨ C 2G. P̨ ; ˛/f /eL:

This calculation is precisely the same as in [4], so only briefly review it:

r
�
r.feL/ D .��gf � 2ig

�.df; ˛/C ifd�g˛ C g
�.˛; ˛/f /eL;

where�gf is the scalar Laplace operator. Taking the variation with respect to ˛ gives

ır�r.feL/ D .�2iG.df; P̨ /C ifd
�
g P̨ C 2G. P̨ ; ˛/f /eL:

5. Generic properties of eigenvalues and eigenfunctions of general
prinicipal S 1 bundle Laplacians

In this section we prove the first two statements of Theorem 1.2, which we reformulate
as Theorem 5.1. We prove the third statement about nodal sets in the next section.

Theorem 5.1. For generic bundle metrics G D G.g; ˛/ with g; ˛ generic data in
one of the ways listed below, all of the eigenvalues of �G are simple and all of the
equivariant eigenfunctions have 0 as a regular value. Equivalently, for every m, the
spectrum of the operator Lm (3.2) is simple, the spectra of Lm and Lm0 are disjoint if
m 6D m0, and all of its eigensections have zero as a regular value. Moreover, if we lift
sections to equivariant eigenfunctions ', then Re ' and Im ' have zero as a regular
value.

The generic admissible data is of the following kinds:
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(i) we fix ˛ and vary g among all metrics on M ;

(ii) we fix g and vary ˛ among connection 1-forms on � WX !M .

As in [4] we prove Theorem 5.1 using the approach of Uhlenbeck [8]. We review
this method before giving the proof.

5.1. Review of Uhlenbeck’s transversality and genericity results

K. Uhlenbeck has given a general set-up for proving that the spectra of generic ellip-
tic operators are simple and that the eigenfunctions have 0 as a regular value [8].
The proofs are based on the Thom–Smale infinite-dimensional transversality theorem
rather than on the Kato–Rellich perturbation theory as in [1].We adapted her approach
to S1 bundle Laplacians over surfaces in [4]. For the sake of completeness, we briefly
review the proof that for generic metrics on compact C rRiemannian manifolds, all
eigenvalues are simple and all eigenfunctions have 0 as a regular value.

One considers a family Lb of elliptic operators depending on data b in a Banach
spaceB . One mainly needs thatB is a Baire space, i.e., that residual subsets are dense.
As in [4], we defineB to be a C k space of data .g;˛/ needed to define a bundle metric
as in Lemma 2.1. The candidate eigenfunctions are denoted by u.

As in [8, Section 2], we study the map ˆWC k.X/ �R � B ! R given by

ˆ.u; �; b/ D .Lb C �/u: (5.1)

The zeros of the map correspond to Laplace-type operators Lb together with their
eigenvalues � and eigenfunctions u. This map is sufficient to prove generic simplicity
of eigenvalues. To prove the more difficult fact that 0 is a regular value of all eigen-
functions, Uhlenbeck introduces the additional maps

• Q´ ¹.u; �; g/ 2 C k.X/ �RC � B/; ˆ.u; �; b/ D 0º,

• ˛WQ �M ! C, ˛.u; �; b; x/ D u.x/.

We use the following “abstract genericity” result of [8, Theorem 1] and [8, Lem-
mas 2.7 and 2.8].

Theorem 5.2. Assume that ˆ (5.1) is C k and has zero as a regular value. Then the
eigenspaces of Lb are one-dimensional. If, additionally, ˛WQ �M ! C has zero as
a regular value, then

¹b 2 B W the eigenfunctions of Lb have 0 as a regular valueº is residual in B:

The next two propositions give a tool to verify the first hypothesis of Theorem 5.2
(see [8, Propositions 2.4 and 2.10]).
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Proposition 5.3. The following facts hold.

(1) If at points of ˆ�1.0/, D2ˆW TbB ! H
p

k�2
.X/ � H

q
�1.X/ has dense image

in H q
�1.M/; 1 < q <1, then 0 is a regular value of ˆ.

(2) Let J D imD2ˆ and assume that for W 2 L1.M/ and W 2 C 2.M � ¹yº/,
the property Z

M

W.x/j.x/d�x D 0

for all j 2 J implies W D 0. Then ˆ is C k and has zero as a regular value.

The second statement follows from [8, Lemma 2.7]. Let � WQ ! B be a C k

Fredholm map of index 0. Then if f WQ � X ! Y is a C k map for k sufficiently
large and if f is transverse to Y 0 then ¹b 2 B W fb ´ f j��1.b/ is transverse to Y 0º is
residual in B . Let

˛Wf �1.Y 0/! B

be
˛Wf �1.Y 0/ � Q! B:

Lemma 5.4. The eigenfunctions of Lb have zero as a regular value if b is a regular
value of � and if 0 is a regular value of ˛j��1.b/ �M ´ ˛b .

In the following, we use that

Tu;�;bQ D

²
.v; �; s/ 2 H 1;0.X/ �C � TbB WZ
X

uvdVg D 0; .Lb C �/v C �uCD2's D 0

³
:

and that the image of D2ˆ is given by

J D ImageD2ˆ.u;�;b/ D ¹ P�u W P� is a variation of � along a curve of metricsº:

We often write

v D Pu; � D P�;D2.ˆ/s D � P�u; .�C �/ PuC . P�C P�/u D 0:

Further, let D1˛ denote the derivative of ˛ along Q. Then,

D.u;�;b/˛.v; 0; c; 0/ D v.x/ D Pu.x/:
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5.2. Generic simplicity of eigenvalues

In this section, we sketch the proof that the eigenvalues of �G are of multiplicity
one for generic bundle metrics; the details are similar to those in [4] once the vari-
ations are calculated and we do not repeat the overlapping arguments. According to
Theorem 5.2, we need to prove that the map ˆ (5.1) is C k and has zero as a reg-
ular value. By Proposition 5.3 (b), it suffices to show that W 2 L1.M/ and W 2
C 2.M �¹yº/, the property

R
M
W.x/j.x/d�x D 0 for all j 2 J impliesW D 0. In our

problem, j D ImD2ˆ is given by j D P�Gu where .�G C �/u D 0 for some �, and
where P�G arises from variations from (i) general perturbations of metrics on M , or
(ii) the space of connection 1-forms ˛ on � WX !M . In the calculations, we use that
�G D

L
mLm where Lm operates on equivariant functions. Not only is the spectrum

of each Lm (3.2) simple, but the spectra of Lm and Lm0 are disjoint sets ifm 6Dm0 for
generic bundle metrics G. This last step is proved in [4, Lemma 4.9]; the same proofs
works in the present higher-dimensional setting and will not be repeated here.

5.3. Generic base metrics

The following Lemma proves that the criterion in Proposition 5.3

Lemma 5.5. Let f be an eigenfunction of Lm with the non-zero eigenvalue � ¤ 0.
Let g.t/ be a 1-parameter deformation of g with g.0/ D g and b.t/g�1 D g.t/�1.
Then the image of P�f is dense.

Proof. We continue the perturbation calculation of Lemma 4.2. In local coordinates,
let

df C imf � D aidxi dW C imW� D widxi ;

and let
d�g .
SW.df C imf �// D F:

Then
h PLmf;W iL2.g/ D 0

is equivalent to Z
M

aib
ijgjkwk C

F

2
Tr.b/dVg D 0: (5.2)

We now assume for contradiction that PLmf does not have dense image, and W is a
non-zero section of Lm which is orthogonal to PLmf under any variation. For (5.2) to
hold for all b, we must have

aig
jkwk C ajg

ikwk D 0
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for all fixed i ¤ j , and

aig
ikwk D �

F

2

for all fixed i . In particular, we have

.aidxi / ^ .g
jkwkdxj / D �

F

2
.dxi _ dxi /:

Observe that the left-hand side of the equation has rank at most 2, while the right-hand
side has rank n if F ¤ 0, or 0 if F D 0. Because n � 3, we have

F D 0

and
.aidxi / ^ .g

jkwkdxj / D 0

on M . Because g is clearly invertible, this implies that the support of

df C imf � and dW C imW�

are disjoint, and
d�g .
SW.df C imf �// D 0

on M . Now, we use the assumption that f is an eigenfunction of Lm, i.e.,

�f D Lmf D d
�
g .df C imf �/ � im.df C imf �; �/g� (5.3)

Then we have

0 D d�g .
SW.df C imf �//

D �.df C imf �; dW /g� C SWd
�
g .df C imf �/

D .df C imf �; imW�/g� C SW.�f C im.df C imf �; �/g�/

D �SWf;

where we used dW C imW� D 0 on the support of df C imf � and (5.3) in the
third equation. This forces W D 0 on an open set, and the Lemma follows from [8,
Proposition 2.10].

5.3.1. Generic connection 1-forms

Lemma 5.6. For generic connection 1-forms ˛, the spectrum of�G is of multiplicity
one.
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Proof. The variation of�G induced by varying ˛ is calculated Section 4.1.1. Assume
for purposes of contradiction of Proposition 5.3, that there exists W 2 L1.M/ and
W 2 C 2.M � ¹yº/ with the property

R
M
W.x/ P�Gud�x D 0 some �-eigensection

u D femL and all variations. We need to prove that W D 0. The argument is almost
identical to that in [4], so we only briefly summarize it.

We prove this by representing equivariant functions on X as sections of the asso-
ciated bundle, and write sections relative to a local frame eL. Exactly as in [4], if the
image is not dense, there exists W D FeL 6D 0 so that (by Lemma 4.1.1),Z

X

�
�2iG.df; P̨ /C ifd�g P̨ C 2G. P̨ ; ˛/f

�
xFe� dVg D 0

()

Z
X

�
.�2iG.df; P̨ /C 2G. P̨ ; ˛/f / xF C iG. P̨ ; d.f xF //

�
e� dVg D 0;

for all P̨ 2 �1.X/. Here, we integrated d�g by parts to remove it from P̨ . As in [4],
this boils down to

.�2idf C 2 f̨ / xF C id.f xF / D 0 () .�idf C 2 f̨ / xF C ifd xF D 0

H) d˛ D 0:

on a dense open set; but a generic C k 1-form does not satisfy d˛ D 0.

5.4. For generic bundle metrics the eigenfunctions have regular nodal sets

To prove this statement we again use Theorem 5.2. To establish the hypothesis, we
now use Lemma 5.4.

Let
Q´ ¹.u; �; b/ 2 C k.X/ �RC � B W ˆ.u; �; b/ D 0º;

and let
˛WQ �M ! C; ˛.u; �; b; x/ D u.x/:

To complete the proof of Theorem 5.1 it suffices to recall the following Proposi-
tion, proved in [4, Proposition 4.8].

Proposition 5.7. For eachm,D1˛m is surjective to C. We need to show that for each
x 2M ,

˛mWQ � ¹xº ! C; ˛.u; �; g; x/ D u.x/

has 0 2 C as a regular value, i.e., that

D1˛.�; x/WTu;�;b.Q/! C; D1˛.�; x/.u;�;g/.ıu.x/; 0; c; 0/ D ıu.x/

is surjective to C, where D1 is the differential along Q with x 2M held fixed.
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The proof is very similar to that in [4, Proposition 4.8], so we only sketch enough
of it to ensure that the argument used there applies to our new types of deformations.

The proof is based on general features of the Green’s function

Gm;�W Œker.Dm C �/�? ! Œker.Dm C �/�?;

for, i.e., the Schwartz kernel of the resolvent .Dm.g/C �/�1 on the space where it is
well defined.

We need to show that, for each x 2M ,

˛mWQ � ¹xº ! C; ˛.u; �; g; x/ D u.x/

has 0 2 C as a regular value, i.e., that

D1˛.�; x/WTu;�;b.Q/! C; D1˛.�; x/.u;�;g/.ıu.x/; 0; c; 0/ D ıu.x/

is surjective to C, where D1 is the differential along Q with x 2M held fixed.
As in the proof of [4, Proposition 4.8], D1˛ is surjective to C unless for all

j? ker.Dm.g/C �/, either the real or imaginary parts of

Gm;�.j /.x/ D

Z
M

Gm;�.x; y/j.y/dV.y/

vanishes for every such j . Since j D ŒDm.g/C ��f where
R
f D 0 we would get

the absurd conclusion that

f .x/ D 0; for all f ? ker.Dm.g/C �/:

This is impossible, concluding the proof.

6. Proof of connectivity and smoothness of nodal sets and the 2 nodal
domain theorem for equivariant eigenfunctions with regular nodal
set

In this section, we prove the main result on connectivity. The proof is entirely dif-
ferent, and much simpler than, the proof of the analogous statement in [4] and in
particular does not use a local study of eigenfunctions as in [4, Section 5]. Recall
from (1.2) that

ZRe Os ´ ¹Re Os.�/ D 0; � 2 @D�hº:

Proposition 6.1. If Os 2 Hm.X/ is an equivariant eigenfunction, then natural projec-
tion � WZRe Os ! M is an 2m-fold covering map on the complement of the complex
zero set ¹z W fm;j .z/emL D 0º �M .
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Proof. The proof is almost the same as in [4] and consists of a sequence of Lemmas.
In the notation of Section 3.1, we denote by Zfm;j

the zero set of the eigensection
fm;j e

m
L on M :

Zfm;j
D ¹z 2M W fm;j .z/ D 0º:

We denote by Z'm;j
the nodal set of the (complex-valued) equivariant eigenfunction

'm;j on X . Under the natural projection � WX !M ,

Z'm;j
D ��1Zfm;j

:

Lemma 6.2. For z 2M such that fm;j .z/ ¤ 0, there exist 2m distinct solutions v of
Refm;j emL .v/ D 0 with v 2 L�zX .

Proof. We trivialize L�z using the dual frame e�L � C and use polar coordinates
.r; '/ on C. Since the equations are homogeneous, we set r D 1 and identify v D
.cos �; sin �/. In the notation of (3.1), the equation for a nodal point is

.am;j cm � bm;jsm/.cos �; sin �/ D 0:

Here cm D Re.cos � C i sin �/m D cosm� , and the equation is

am;j .z/ cosm� � bm;j .z/ sinm� D 0 () tanm� D
am;j

bm;j
;

where am;j ; bm;j 2 R and where we assume with no loss of generality that bm;j 6D 0.
For 0� � < 2� , we have 0�m� <2m� , and so there are exactly 2m choices of � .

The following is an immediate consequence of Lemma 6.2.

Lemma 6.3. If 0 is a regular value, then the nodal set Nm;j � X of Re 'm;j is
a singular 2m-fold cover of M with blow-down singularities over points where
fm;j .z/e

m
L D 0.

Indeed, the 2m zeros of Re !m;j .v/ D 0 in SzX give 2m points on the fiber
��1.z/ in Ph. Since locally there exist 2m smooth determinations of the zeros, the
nodal set is a covering map away from the singular points. This completes the proof
of Proposition 6.1.

We prove the connectivity statement of Theorem 1.2.

Proposition 6.4. If there exists z0 such that fm;j .z0/emL D 0, then the nodal set of
Re'm;j is connected.

Proof. Let ;¤†�M be the zero set of fm;j emL . By Proposition 6.1, Nm;j n.Nm;j \

��1.†//!Mn† is an 2m-sheeted cover. BecauseM is connected, any point onM
is connected to a point in †. Therefore, any point on Nm;j is connected to a lift of a
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point in †. Because the lift of a point in † is a circle, this proves the connectivity of
any two points in the lift of a point in Mn†. Now, again by the connectivity of M ,
for any given p; q 2 M , we see that any lift of a point p is connected to some lift of
point q. This concludes that any lift of p is connected to any lift of q, which shows
that Nm;j is connected.

We now prove that the nodal set is smooth.

Lemma 6.5. If 0 is a regular value of fm;j , then Nm;j � X is a smooth submanifold
of X .

Proof. Assume that fm;j .z0/ D 0 is a regular zero. Then

Dfm;j .z0/WTz0
.M/! C

is a surjection. Now, for any 0 � � < 2� ,

Dum;j .z0; �/WTz0;� .X/! C

restricted to the vectors tangent to M is given by

cosm�Dam;j .z0/ � sinm�Dbm;j .z0/; (6.1)

which is the same as multiplying Dfm;j .z0/ by eim� and then taking the real part.
Since the image of Dfm;j .z0/ is entire C, it is clear that (6.1) surjects onto R. This
implies that Dum;j .z0; �/ is surjective for any � , and therefore Nm;j � SX is a
smooth submanifold, by Proposition 6.1.

Finally, we complete the proof of Theorem 1.2. Note that the existence of z0 such
that fm;j .z0/ D 0 follows from the non-triviality of the principal bundle.

Proposition 6.6. If 0 is a regular value of 'm;j and there exists z0 such that one has
fm;j .z0/ D 0, then SXnNm;j has exactly two connected components.

Proof. By Proposition 6.4, if 0 is a regular value then Nm;j is a connected, embedded
hypersurface. To prove that it separates X into two connected components, note first
that any connected embedded hypersurface ofX may either separateX into two com-
ponents, or XnNm;j is connected. Since Re 'm;j is a non-constant eigenfunction of
the Laplacian, it integrates to 0, and so there are at least two non-empty nodal domains
one in ¹Re 'm;j > 0º and the other one in ¹Re 'm;j < 0º. Therefore, Nm;j separates
X into exactly two connected components.
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7. Even-dimensional spheres with effective S 1 actions: Proof of
Lemma 1.3

The results above do not apply to even-dimensional spheres, or any manifold with an
effective S1 action whose Euler characteristic is non-zero, since thenZ has zeros and
S1 cannot act freely. An obvious question is, what can be said of nodal sets of real
parts of equivariant eigenfunctions in this case? For a non-free S1 actions by isome-
tries of a Riemannian manifold .X;G/, the lapse function jZj is never constant in this
case and of course equals zero at the fixed points. It is still the case that Œ�G ;DZ �D 0
and there still exists an orthonormal basis ¹'m;j º of joint (equivariant) eigenfunctions.
There are many possible types of examples which depend, for instance, on the nature
of the fixed point set of S1.

The simple reason why nodal sets are singular in even dimensions is the exis-
tence of fixed points of the S1 action and that, at the fixed points p, every equivariant
eigenfunction withm 6D 0 must vanish, since 'm;j .p/ D 'm;j .r�p/ D eim�'m;j .p/.
Moreover, each fixed point is a critical point since d'm;j .p/ D d'm;j .p/ ıDr� D
eim�d'm;j .p/ where Dpr� W TpX ! TpX . Thus, each fixed point is a singular point
of 'm;j (a critical nodal point), i.e., 0 is not a regular value of any equivariant eigen-
function or of Re'm;j and obviously Theorem 1.2 does not hold for any bundle metric
in this case.

We now consider in more detail the case of even-dimensional spheres S2n �

R2nC1 and assume that the S1 action is a one-parameter subgroup of SO.2n C 1/
and that it has precisely two fixed points on S2n, which we assume to be ˙e2nC1
where ej is the standard basis. We denote the N -th degree equivariant spherical har-
monics by 'mN . These form a � N d�2-dimensional subspace and to uniquely specify
the harmonic we could use an orthonormal basis of joint eigenfunctions of the Lapla-
cian and a Cartan subgroup. But we stick to this simple but ambiguous notation, since
the claims hold for any element of the subspace.

Let G D SO.2nC 1/ and let Gp denote the isotropy group of p 2 S2n. If p D
e2nC1, then the Gp induces a derived action on Te2nC1

S2n. We define S1 to be a
one-parameter subgroup of Gp which has precisely two fixed points p;�p (in the
sense that S1p D S

1 or Z.p/ D 0). For instance, we can let S1 be the direct sum of
2 � 2 blocks

�
cos � sin �
� sin � cos �

�
plus a 1 � 1 block with entry 1 corresponding to e2nC1.

The S1 action preserves R2n ´ .Re2nC1/? and therefore the equatorial subsphere
S2n�1 � R2n. The quotient S2nC1=S1 is not a smooth manifold due to the fixed
points, but the standard metric is bundle-like with respect to the natural projection
� W S2nC1 ! S2nC1=S1 since the map � W S2nC1n¹p;�pº ! .S2nC1n¹p;�pº/=S1

is a smooth projection. It also preserves all “latitude spheres” defined as level sets
of x2nC1WS2n ! R and acts freely on each. It follows that one has S2nn¹p;�pº '�
�
�
2
; �
2

�
� S2n�1 and the quotient by the S1 action is given by the diffeomorphism
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S2nn¹p;�pº=S1 '
�
�
�
2
; �
2

�
� .S2n�1=S1/. We may therefore consider equivari-

ant eigenfunctions in a similar spirit to the case of odd-dimensional spheres. A key
difference is that Z is not of constant norm, so the bundle metric necessarily has
a non-constant lapse function N depending on (and only on) x2nC1; it is given by
N.x2nC1/ D sin r.x2nC1/ where r is the distance of the latitude sphere of height
x2nC1 to p.

The free S1 action on S2nn¹p;�pº determines a complex line bundle Lm !�
�
�
2
; �
2

�
� .S2n�1=S1/ associated to characters �m and as in the bundle case, the

equivariant eigenfunctions of �S2n correspond to complex eigensections of this line
bundle for the induced operators Lm (3.2). Note that .S2n�1=S1/ ' CPn�1.

We now prove Lemma 1.3.

Proof. For n > 1, on S2n one has a map qWS2mn¹˙e2nC1º ! S2n�1 where S2n�1

is the equatorial sphere, obtained by following the orthogonal geodesics to S2n�1

to the poles. The second map is again x2nC1W S2n ! .�1; 1/. Together we have a
1-parameter family of latitude spheres and a 2n � 1-parameter family of orthogonal
longitude lines. There is a third map S2nn¹p;�pº=S1 '

�
�
�
2
; �
2

�
� .S2n�1=S1/ to

the orbit space. Since x2nC1 is constant on S1 orbits, the third map and second map
coincide when n D 2.

A unitary section uW S2nn¹p;�pº=S1 ! S2n is an inverse of the map S2n !

S2nn¹p;�pº=S1 giving a cross section to the S1 action. When n D 2, a section is
given by a meridian line. This would be a section of the SO.2n� 1/ action stabilizing
the poles. Now, it is given by a family .2n � 2/-dimensional family of meridian lines
which is the flowout of the transversal to the S1 orbit in S�pS2n. An equivariant func-
tion has the form 'mN .ue

i� / D eim�'mN .u/. The real part is Re 'mN D u
m
N .u/ cosm� ,

where we assume that umN .u/ is real valued If we consider the 2m zeros �m;j of
cosm� , we get the union

S2m
jD1¹�m;j º � S2nn¹p; �pº=S1, disjoint union of 2m

hypersurfaces. When m 6D 0 the submanifolds meet at the poles. There also exist
S1 invariant transverse components of the nodal set coming from the factor 'mN .u/.

In the notation of Section 3.1, the S1 fibers of the zero set of 'mN over the com-
plex zero set ¹f mN D 0º � S2nn¹p;�pº=S1 of the sections of Lm intersect the setS2m
jD1¹�m;j º � S2nn¹p;�pº=S1. For n � 2, f Nm is complex valued, and this set is of

real codimension 3.
The nodal set of 'mN is S1 � ¹f mN D 0º and it obviously intersects

S2m
jD1¹�m;j º �

S2nn¹p;�pº=S1 in the set
S2m
jD1¹�m;j º � ¹f

m
N D 0º.

This completes the proof of Lemma 1.3.

The most familiar case n D 1 is very special and we pause to contrast it with the
case n > 1. In this case, the quotient is simply

�
�
�
2
; �
2

�
. The equivariant eigenfunc-

tions form the standard basis Y mN .�; '/ D
p
2N C 1eim�PmN .cos '/. Here, PmN are
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the standard associated Legendre polynomials and (3.2) is themth Legendre operator.
The real part of Y mN is

p
2N C 1PmN .cos '/ cosm� . Its nodal set is the union of the

nodal sets ¹PmN D 0º [ ¹cosm� D 0º, and it has a singular set of mN points given
by the Cartesian product of the zero set of cosm' and the zero set of PmN .cos'/. The
complex line bundle Lm is the product bundle

�
�
�
2
; �
2

�
� C. In the constant frame,

the eigensections are all real-valued and are the Legendre factors PmN .cos '/. The
inverse image of their zero sets thus has real codimension one rather than 2. Over the
complement of ¹PmN D 0º, the zero set of Re Y mN is still an m-fold cover of the base,
indeed consists of the m zeros of cosm� on each latitude circle and the real zero set
consists of m longitude geodesics through these zeros. The special features are that
the complex zero set of Y mN is a union of N latitude circles rather than being of real
codimension 2 and that the m longitude circles all meet at the poles. The nodal set is
connected but has Nm singular points and Nm nodal domains.

Notes added in proof. The second author passed away before the paper got pub-
lished. All edits made thereafter are minor edits in order to improve the readability
and make the paper self-contained.
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