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Three-term asymptotic formula for large eigenvalues
of the two-photon quantum Rabi model

Anne Boutet de Monvel and Lech Zielinski

Abstract. We prove that the spectrum of the two-photon quantum Rabi Hamiltonian consists

of two eigenvalue sequences (E + Yor_gs (E)o0_, satisfying a three-term asymptotic formula

with the remainder estimate O(m ™! Inm) when m tends to infinity. Our asymptotic formula
can be written so that the third term is given by an explicit oscillatory integral and an explicit
remainder estimate.

1. General presentation of the paper

1.1. Introduction

In Section 1.1 we describe briefly the subject of the paper. The simplest version of our
main result is stated in Section 1.2 and its refinements are described in Section 1.3.
An overview of related results is presented in Section 1.4 and the organization of the
paper in Section 1.5.

The simplest interaction between a two-level atom and a classical light field is
described by the semi-classical Rabi model [35,36]. The quantum Rabi model (QRM)
couples a two-level system (TLS) with a quantized single-mode radiation and is
considered as a particularly important model in quantum electrodynamics: we refer
to [11] concerning the historical aspects of the QRM and to the review paper [46] for
a list of research works and experimental realizations of the QRM.

The simplest QRM is defined by the one-photon Hamiltonian H]gL{)i given in Def-
inition 1.2 (c). The operator Hl(zla)bi is a self-adjoint operator depending on two real
parameters: g (the coupling constant) and A (the energy separation in the TLS). Its
spectrum is discrete and the fundamental question is how to find a good approxima-
tion of the corresponding eigenvalues.
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The first step in this direction, is the rotating-wave approximation (RWA) intro-
duced in the famous paper of Jaynes and Cummings [29]. However, the RWA is a
correct approximation only when g is close to 0 and A close to 1 for HI(ilali given in
Definition 1.2 (c). The most popular idea of going beyond the limitations of RWA,
bears the name of the generalized rotating-wave approximation (GRWA) after
E. K. Irish [23]. It appears (see [24]) that the same idea was considered before by
I. D. Feranchuk, L. I. Komarov, and A. P. Ulyanenkov [19], under the name of the
zeroth order approximation of the operator method (see also [18]). According to
[19, (25)], the spectrum of Hl%)bi is composed of two eigenvalue sequences (E,})%_,
and (E,,)o_,., satisfying

Efnm—g?+ry, (1.1)

with

(1.2)

for large values of m. The quality of this approximation were investigated by numer-
ous numerical calculations. In particular, a thorough numerical analysis of 40,000
eigenvalues was performed by L. T. H. Nguyen, C. Reyes-Bustos, D. Braak, and
M. Wakayama [34]. A good approximation of large eigenvalues by (1.1)—(1.2) is
explained by the estimate

E,f =m—g2>+r,+ 0m V) asm — oo, (1.3)

where 15, is given by (1.2) and ¢ > 0 (see [3, 6]). We remark that the three-term
asymptotic formula (1.2)—(1.3) allows one to recover the values of parameters of the
model from its spectrum (see [4]).

In this paper we consider the two-photon QRM defined by the Hamiltonian Hl%)bi
given in Definition 1.2 (d). This model was proposed in [20] to describe a two-level
atom interacting with squeezed light (see [14, 16, 17] and Section 1.4 for more refer-
ences).

In what follows, we assume that the coupling constant satisfies the condition 0 <
g< % which ensures the fact that the spectrum of Hl(fali is discrete (see Section 1.4 for
a discussion of the case g > %). In [5] we proved thatif 0 < g < % then the spectrum

of Hg}i is composed of two eigenvalue sequences (E,5)%_, and (E,,)_,. satisfying
1 1
Ex=(m+ 5)\/1 —4g2— -+ 0m™7) asm — oo,

The purpose of this paper, is to obtain the three-term asymptotic formula

1 1
E;&: <m+E)\/1—4g2—§il‘m+0(m_llnm) asm — oo, (14)
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where 1, is given by (1.9). It is easy to check that the three-term asymptotic for-
mula (1.4) allows one to recover the values of parameters of the model from its
spectrum.

The idea of the proof of Theorem 1.3 was described in [7] and a similar result was
obtained by E. A. Ianovich in [22]. However, in this paper, we describe a different
approach, allowing one to express the third term in the form of an explicit oscillatory
integral and to give explicit constants in the remainder estimates (see Section 7.5).

1.2. The three-term asymptotic formula for the two-photon QRM

Notation 1.1. (a) In what follows, Z is the set of integers and N := {n € Z : n > 0}.
(b) We denote by £2(N) the complex Hilbert space of square-summable sequences
x:N — C equipped with the scalar product

o0

(X, V)@ = D x(m)y(m)

m=0

1/2

2N For s > 0, we denote

and the norm || x| 2y = (x, x)
o0
(25 (N) := {x e C(N): Y (1 + m2)Px(m)]* < oo}.
m=0

(c) The canonical basis of £2(N) is denoted {e, }neN (i.€., €, (m) = 8, m for n,
m € N).
(d) The annihilation and creation operators, @ and a7, are the linear maps

>12(N) > £2(N)
satisfying
ate, = vn + eyt forn € N,
deg =0 and de, = «/ne,_; forn e N\ {0}.

(e) Using (1,0) € C? and (0, 1) € C? as the canonical basis of the Euclidean
space C2, we denote by oy, 02, 1>, the linear operators in C?2 defined by the matrices

o (O (10 (10
*~\1 o) "7 \o 1) 7 \o 1

Definition 1.2. (a) The two-level system (TLS) Hamiltonian is the linear map in C2

defined by the matrix
/A O 1
H = - = —A
™3 (o —A) 27

where A is a real parameter.
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(b) The Hamiltonian of the single-mode radiation is the linear map
Hyag: €' (N) > £2(N)
defined by the formula
Hygen = a'de, = ne, forn e N.

(c) Let g > 0. Then the one-photon quantum Rabi Hamiltonian is defined as the
linear map
H :C?2 @ (21(N) > C2 @ £3(N)
given by
H = 1, ® Hug + His ® Iy + 802 ® (@ + ).

dIfo<g< %, then the two-photon quantum Rabi Hamiltonian is defined as the

linear map
HP :C?2 ® 21 (N) > C2 @ £*(N)
given by
@ _ 22 ATN2
Hi i = 12 ® Hrg + Hris ® L2y + g0x ® (@~ + (@')°) (1.5)

and we let Hgl)zabi denote the operator given by (1.5) with A =0, i.e.,
H(()?l)labi =1, ® Hua + g0x ® (@8> + (@")?).
The case g > % 1s discussed in Section 1.4.

In what follows, we assume that 0 < g < % and introduce

b= VToig2

1-2

o= arctan( g). (1.6)
1+ 2g

f0<g< %, then the spectrum of ng,l)zabi is explicitly known (see [16, 17]): it is

composed of the sequence of eigenvalues

—1
E,?,:mﬁ+T, m=0,1,2,... (1.7)

and each eigenvalue E,?l is of multiplicity 2. Thus, 0 < g < % ensures the fact that
ng,l)zabi is a self-adjoint operator with compact resolvent and the same can be said
about Hl(fali because Hl(égDi - Hg;abi is bounded. The explicit values of the eigen-

values of Hl(fali are not known when A # 0, but we can describe their asymptotic
behavior in the following result.



3-term asymptotic formula for large eigenvalues of the 2-photon QRM 1341

Theorem 1.3. If0 < g < % then one can find {v;} }men U {v;, }men, an orthonormal
basis of C? ® £*>(N), such that

HO vE = EXvE m=0,1.2,...,

m-m?
and the eigenvalue sequences (E,})meN, (E,,)meN, satisfy the large m estimates

-1
EX =mp + ﬁT + 1y + O(m ™ Inm) (1.8)

with 1, given by the formula

P cos((2m + 1)) ifm is even,
\/ Tgm
(1.9)
P sin((2m + D))  if mis odd,
\/ Tgm

where B = /1 — 4g2 and « is given by (1.6).

Remarks. (1) The operator Hl(i)bi, its eigenvalues E ,f, the correction r,,, and the
remainder term O(m ™! Inm) in (1.8), depend on the parameters g and A. For sake of
simplicity, this dependence is not mentioned in the statement of Theorem 1.3, but this

Ty =

R[> D>

issue is discussed in Section 1.3.
(2) In spite of the fact that Hl({za{)i - Hffl)zabi is not compact, the estimate (1.8)
implies

E,f—E,?l—>O as m — oo. (1.10)

A similar property for Hl(zla)bi was first proved by E. A. Tanovich [45] (see also [44]).

1.3. Refinements of Theorem 1.3

In this section we assume that 0 < g < % It is easy to check (see [5]) that C2? ® £2(N)
is a direct sum of four subspaces

H, spanned by By = {(1,0) @ eqx : k e N} U{(0,1) ® eap42 : k € N},
Jf(f spanned by .i)’("f ={0,1)®esr : k e N} U{(1,0) ® egr 42 : k € N},
H; spanned by 8] = {(1.0) ® esx+1 : k € N} U{(0,1) ® ear+3: k € N},
J;" spanned by B = {(0,1) ® eqpt+1 : k € N} U{(1,0) ® eqr+3 : k € N},
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which are invariant for Hl(iza{)i' The matrix of Hl(fali in the basis i)’;f is a Jacobi (i.e.,
tridiagonal) matrix,

d¥©) b0 0 0
bE©0) dFf() bE1) 0
0 bp() dp@) b2 (1.11)
0 0  bEQ df(3)

whose diagonal entries are
C?Zt . n" A 1.1
w(m):=2m+p+(-)"— (1.12)

and the off-diagonal entries are

bu(m) = g/@m +1+ w)2m + 2+ ). (1.13)

Clearly, the diagonal part is a lower semi-bounded self-adjoint operator with the
domain £2-!(N) and its spectrum is discrete. Since
1 . dit(my? 1
O0<g<-= Ilim = = =—2>2, (1.14)
2 m—>00 bu(m)z + bu(m)z 2g

the Janas—Naboko criterion [27, Theorem 4.1] implies that the off-diagonal part has
a relative bound ¢ < 1 with respect to the diagonal part, hence J: /it is a lower semi-
bounded self-adjoint operator with the domain £2-!(N) and its spectrum is discrete.
The fact that H}%Li is similar to the direct sum

Jy@JyelreJ,
allows us to label the spectrum of Hl(é)bi, using the sequences {E,, }meN, {E; fmeN,

defined by

E;:n—i-y, = An(f::) forneN, u=0,1,

where A, (fljt) denotes the n-th eigenvalue of JE e, (A, (fj)}neN is the sequence
of eigenvalues of J: ljc ordered so that

M) < < Aa() < Ansa () < -o-

In Section 7.5, we prove that for every 0 < g < % and A € R, the n-th eigenvalue of
J ljc satisfies

An(TE) = (B34, £ v2n10) = O(n™ ' Inn)  asn — oo,
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where EO = mp + % T is given by (1.9), and the remainder estimate O(n~!Inn)
depends on g and A. More precisely, we give an explicit value vg A such that for
n > Vg A, the interval [Egn+M -8, Egn_m + B] contains a single eigenvalue of JE,
which is precisely A, (f Mi) (i.e., precisely the n-th ::igenvalue of J: J—L). Moreover, (see
Section 7.5), we give explicit values of constants Cg A, Cg a, such that for n > vg A
one has the estimate

~ - C A+ Coalnn
() = (B9 iy & Tongp) < =5 ng , (1.15)

where 12,4, is given by an explicit oscillatory integral (see Section 3.3) and the
standard stationary phase method allows one to find a constant C ;,, A such that the
estimate |Tan4p — Tantpu| < Cé’An_1 holds for alln > 1.

We observe that our expressions of vg a, C «.A» Cg A, are continuous functions of
g and A, but they all tend to infinity as g approaches % or 0, which means that the
results of this paper cannot be used to investigate the issues of g approaching % or 0.
We discuss the issues of g approaching % or 0 in Section 1.4.

We remark that the estimate (1.15) can be applied to investigate the spacing
)Ln+1(JA;Lt) — ln(JA;Lt) similarly to L. T. H. Nguyen, C. Reyes-Bustos, D. Braak, and
M. Wakayama investigated the one-photon QRM in [34]. Moreover, similarly to the
work of Z. Rudnick [38], (1.15) can be used to investigate an analogue of Braak’s
G -function conjecture on the location of eigenvalues (see [9]). If % is irrational, then
the sequences {cos((2m + 1)a)}men and {sin((2m + 1)a)}men are dense in [—1, 1]
and one can easily obtain a result of density 1 similarly to Z. Rudnick. If % is ratio-
nal, then these sequences are periodic. If moreover 2% = % with k£ odd and lAeven,
then these sequences never take the value 0 and for n > ng one can locate A, (J+1,,)
either below or above EY, 4+ hence all eigenvalues of Hgﬁ are simple except a finite
number. We remark that double eigenvalues are crucial for the question of the integra-
bility of the model (see [8,9]). Finally, using EY, ., = EJ, + p and (1.15), we get
An(J li) — An (Joi) — B as n — 00, hence large eigenvalues cannot be common for a
couple of operators with different values of u (see Maciejewski and Stachowiak [33],
where the existence of this type of eigenvalue crossing was discovered).

1.4. Overview of related results and comments

1.4.1. Earlier results. We refer to [19, 40], for the earliest investigations of large
eigenvalues of QRM. It is well known (see [4,43]) that H&Li can be expressed as
a direct sum J~ @ J T of two Jacobi operators, i.e., operators defined by infinite
tridiagonal matrices acting in £2(N). A mathematical study of large eigenvalues of
Jacobi matrices was initiated by J. Janas and S. Naboko in the paper [28], which
contains fundamental ideas of the method of approximate diagonalizations.
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The question of the behavior of large eigenvalues of Jacobi matrices J*, was first
posed by E. A. Tur [43,44] and it was mentioned by A. Boutet de Monvel, S. Naboko,
and L. O. Silva in [1,2]. Due to the difficulty of the problem, the papers [1,2] give the
asymptotic estimates for a simpler class of operators (“modified Jaynes—Cummings
models”). However, using the ideas of [28], E. A. Ianovich [45] proved the two-term
asymptotic formula

In(JE)=n—g%+ O(n_1/16) asn — 0o,

where {1, (J )} en denotes the increasing sequence of eigenvalues of J* (see also
[44]). In [3, 6] we proved the three-term asymptotic formula

In(JE)=n—g>+ v, + 0n"?%®) asn - oo, (1.16)

where 1, is given by (1.2), ¢ > 0, and [4] explains how to recover the parameters of
the model from its spectrum. The estimate (1.16) was used to investigate the spacing
Anr1(JE) — A, (JF) in [34] and to consider a Braak’s conjecture in [38].

1.4.2. Problems when g — 0 and g — % The key ingredient of this paper is given
in Lemma 2.6, where the estimate O((8gn)~'/2) is obtained by means of the sta-
tionary phase method with the large parameter Sgn. In particular, no uniform control
is possible when g — 0. It is not a surprise, as the eigenvalues are explicit if g = 0
and (1.10) is not true in the case g = 0, A # 0. If gn is small, then one should choose a
quite different approach. We remark that the paper [13] gives an explicit value cp > 0
such that the n-th eigenvalue of J ,f is an analytic function of g if 0 < gn < ca.
Moreover, [13] describes the algorithm of obtaining the correction terms and gives
the remainder estimates, including the case of the eigenvalue crossing for g = 0.

Similarly, g — % implies 8 — 0 and Bgn cannot be considered as a large param-
eter. In particular, our analysis cannot be used to investigate the case g = % This is
a natural consequence of a drastic change of spectral properties of the model when
g > % (see Section 1.4.3).

1.4.3. Remarks on the case g > % We observe that the off-diagonal entries of the
Jacobi matrix (1.11) satisfy the Carleman condition

o0

1
2. bEm)

which ensures the existence of a self-adjoint extension for every g > 0 (see [42,
Lemma 2.16 and condition (2.165)]). Let J /jc denote this self-adjoint extension and
let Dom(J; i) denote its domain equipped with the graph norm. Then Dom(J. ;it) is
a Banach space and it is easy to see that the map x — x is continuous £>'!(N) —
Dom(f II—L).
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Ifo<g< %, then the ¢! (N)-norm is equivalent to the graph norm of J ch and
Dom(f I;—L) = (%>1(N) by the Janas—Naboko criterion [27, Theorem 4.1].

It appears that the spectrum of J: Mi is the whole R when g > % (see [26, Theo-
rem 6.1]) or a half-line when g = % and A = 0 (see [39]). This implies that Dom(J:f)
is strictly larger than ¢2"!(N) when g > 1. Indeed, in case of the equality £>!(N) =
Dom(J ljt), the ¢£2'1(N)-norm and the graph norm of J: ljt are equivalent by Banach
isomorphism theorem, hence the map x — x is compact from Dom(f ljt) to £2(N)
and the spectrum is discrete for any value of A.

The most interesting case g = % and A # 0 corresponds to the situation called
“the spectral collapse” (see [10, 12, 14]). It appears that the spectrum is a union of a

discrete spectrum and a half-line (see [30]).

1.4.4. Integrability of the model. The fundamental question about the integrability
of the model is related to the presence of double eigenvalues (see [8,9]). The result of
this paper can be applied to prove absence of large double eigenvalues in some cases
(see the end of Section 1.3), but no information about small eigenvalues is available.
We refer to [10, 14,31], where the integrability question was investigated by means of
the spectral determinant and to [32], where a different approach was developed.

1.5. Organization of the paper

Throughout the whole paper we assume 0 < g < % and use the notation 8=/1 — 4g2.
For simplicity, the parameter g is not written for objects and constants depending on g.

Our approach is based on an analysis of operators acting in ¢2(Z). In Theo-
rem 2.3 (a) we consider the operators JO, which are special case of operators con-
sidered by Edward [15]. In Section 2.2 we describe explicit expressions of their
eigenvalues and eigenvectors by means of the discrete Fourier transform. In Theo-
rem 2.3 (b) we give the asymptotic behavior of large eigenvalues of operators Js,
considered as perturbations of f)?

In Section 3 we show that the assertion of Theorem 2.3 (b) follows from a ZOA
result stated in Proposition 3.1. The proof of Proposition 3.1 begins in Section 4 and
is completed in Section 6. In Section 7 we show how to deduce Theorem 1.3 from
Theorem 2.3. Section 8 contains auxiliary results about oscillatory integrals and per-
turbations of an isolated eigenvalue for self-adjoint operators.
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2. An auxiliary problem in £2(Z)

2.1. Behavior of large eigenvalues for auxiliary operators ff

Notation 2.1. (a) If L: Dom(L) — V is a linear map defined on a dense subspace of
the Banach space V, then spec(L) denotes the spectrum of L. We write L € B(V) if
and only if L has an extension to a bounded operator on 'V and || - || g(v) denotes the
corresponding operator norm.

(b) We denote by £2(Z) the complex Hilbert space of square-summable sequences
x:Z — C equipped with the scalar product

(x.y) = x(k)y(k)

keZ

and the norm ||x|| := (x, x)'/2. The norm || - | (¢2(z)) Will be abbreviated || - .
(c) For s > 0, we denote

(L) = {x € (Z) : | x| 2.5(z) < 00}

where 12
¥y = (D0 A+ KD xR)
keZ

(d) The canonical basis of £2(Z) is denoted {¢; } ez (i.e., one has &; (k) = §; 4 for
Jj.k € Z) and €2 (Z) denotes the set of finite linear combinations of vectors belonging
to{¢j}jez.

(e) If L: Dom(L) — ¢*(Z) is a linear map such that £2 (Z) C Dom(L), then we
use the notation

L(j. k) = (Lex)(j) = (. Le).

® If (0'1~ i)jez is real valued, then D= diag(a’~ i)jez is the self-adjoint operator in

0%(Z) satisfying
Dé; = d;é; forevery j € Z,
and we denote
A = diag(j) ez

(g) We denote by S the shift defined in £2(Z) by the formula (Sx)(j) = x(j — 1).

Definition 2.2. In what follows, y, § and g are fixed real numbers.
(a) We define J)f’ as the linear map ¢! (Z) — ¢?(Z) given by

T =A+gSA+y)+(A+y)SH)=A+g(SA+y)+hec) (1)
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(b) We define f,‘f as the linear map ¢%>!(Z) — £?(Z) given by the formula
T} =T + Ds, (2.2)

where
D = diag(8(~1)")jez. 23)

Using the above definition, we find that the action of ff can be represented by the
tridiagonal 7Z x Z matrix

—244 g(=2+y) 0 0 0
g(=2+7y) —-1-6 g=1+4+1y) 0 0
0 g=1+7y) $ gy 0
0 0 gy 1-6 g(1+y)
0 0 0 g(l+y) 246

whose diagonal entries {czg (J)}jez are given by

ds(j) = j +38(=1) 24)
and whose off-diagonal entries {151, (J)}jez are given by

by (/) =80 + 7).
Theorem 2.3. Let J? be given by (2.1) and J¢ by (2.2)~(2.3). If0 < g < & then

(a) the spectrum of .7)9 is composed of a non-decreasing sequence of eigenvalues
{E;}’j }jez of the form

1
Eyj=Bi + (V - 5)(/3 - D, 2.5)
where B = /1 — 4g2;

(b) the s;zfzctmm of J f is composed of a non-decreasing sequence of eigenvalues
{Aj (J)‘,g)}jez which can be labeled so that
Ai(J)) = Ep; +15,()) + 0( ™ Inj) asj — oo
holds with
B

Siy=46 2 os(daj + 6 2.6
v, (j) = (E) cos(4aj + 6,), (2.6)

0 . . _ _ 2 . .
where Ey,j is given by (2.5), B = /1 —4g2, « is given by (1.6), and

b, = (y — %)(404 )+ %. 2.7)
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Proof. (a) This result was proved in [15]. We describe a simplified proof in Sec-
tion 2.2.
(b) See Sections 3.2-3.3. [ ]

2.2. Diagonalization of J¢

In what follows, T := R/2xZ is identified with | — 7, 7] and L?(T) denotes the
Hilbert space of Lebesgue square integrable functions | — 7, 7] — C equipped with
the scalar product

[ df
(fgha = [ F@®)5

and the norm || f'{| 21y = (/. f )ié%T). We let F1 denote the isometric isomorphism
L%(T) — £*(Z) given by

14 4o
FN06) = [ fO]

and consider the operator

L?, = ?flf)9?T = —i% + g(eie (—i% + y) + h.c.).

Similarly to [5, 15], we observe that the assumption 0 < g < % ensures the fact that
Lg is the first order linear elliptic differential operator,

Lg = %((1 + 2g cos(@))(—id%) + h.c.) + 2y — 1)g cos(0)

and we introduce

0

L pdo’

©0):= / 1 +2gcos(0)) 28
0

An easy calculation allows one to express the right-hand side of (2.8),

d(0) = 2arctan( : -T—Zi tan(%)) if —7m <0 <. 2.9

Moreover, ®(r) = 7 and ® is odd, i.e., D(—60) = —P(H). We can use P to define a
diffeomorphism T — T and consider the change of variable n = ®(6) to define the
unitary operator acting in L?(T) according to the formula

(Us f)(0) = ' (0)'2 f(2(6)).
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A direct computation (see [5]) gives

_ . d
U LOUs = ﬂ(—lﬂ + 4y (n)) (2.10)
with
qy(n) == B~ 2y — g cos(®~" (). (2.11)

In the following, g, is given by (2.11) and
n
ay(n) = / qy(m)dr'.
0

We claim that

3,00 = (y— 5) (O — 7 0(0)) @.12)
Indeed,
a _ oy Qv —Dgeos®) B
3500 = gy @) @(e) = LD P
2y —1 _ 1 _ _l a-lgy
2 (1 1 —|—2gcos(9)) N (V 2)(1 pre®)

implies g, (®(6)) = (y — 1)(6 — B~1®()) + Cp and Co = 0 holds due to (0) =0

and g, (9(0)) = g, (0) = 0.
Using ®(+m) = £ in (2.12), we compute

(g = PO ZHED (g, 2.13)

Further on, we are going to use the function
@y (0) := (gy) D(6) — G, (P(0)). (2.14)
Using (2.13) and (2.12) in (2.14), we find the expression
1
00 = (v - 5) (@) - 6). (2.15)

In what follows, we define ( f4,,;) ez to be the orthonormal basis in L2(T) given by

furi () = elfnailay)n—ay (m)
Vo

We remark that n — (g, )1 — G, (1) is a smooth 27 -periodic function and (see [7,15]),



A. Boutet de Monvel and L. Zielinski 1350

for every j € Z, we get

d
ﬂ<_lﬂ * qy)fqv’f = Ey; fay.i- (2.16)

where EO . = B(j + {qy)) = Bj + (v — 5)(B — 1) is given by (2.5). Combining
(2.16) with (2.10), we obtain

Corollary 2.4. Let { fy(? i}jez be the orthonormal basis of L2(T) given by
71 0) 1= s fg,,)(0) = 9'(8)'/2e 2@ eler @), (2.17)
where @y is given by (2.15). Then
Lloffy?j = E)(/),jfy(,)j (2.18)
holds with Ef,,- given by (2.5).

It is clear that the assertion of Theorem 2.3 (a) follows from Corollary 2.4. Indeed,
using (2.18) and J)) = Fp LI Fy !, we get

70,0 _ -0 .0 . 0 ._ 0
Jyuyjj = Ey’juy,j with Uy ;= ?Tfyjj. (2.19)

2.3. An auxiliary estimate

Notation 2.5. (a) For f € L2(T), we write Ty, f := f o 1, with 7,: T — T given
by
(0 +2n7) =0+ 7+ 277

(b) For j,n € Z, we denote
Vy (o) = 8(fy. Te fynhi2m: (2.20)
where fy?j is given by (2.17).
Lemma 2.6. Let
C, = 8(gv3)"V222y — 1| + 5271).
Then the estimate

sup  |Vi(n+k.n)| <18]Cyn!/?
{keZ:|k|<gn)

holds for every n € N such thatn > (gB)~L.
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Proof. We proeceed in four steps.

Step 1. By definition (2.20),

b4

1) ) . .
Vnn + k) = E/elnCI>—1(n+k)Tn<I>el((py—T7T(py)(@/)I/Z(Tncbl)l/Z.

—T
In what follows, I denotes a real interval and, for 4, ¥ € C1(I), we denote

iAW) = / Y@ pg)de.
I

The equality (2.21) can be written in the form

5
] —
Vy (n,n+k)= Er[fn’n](nﬂ\pk/n)

with .
Uegn =7 (0= (14 2)Tx0).
hy () 1= hy, (0)e¥r @,

where

{ﬁy = ()T, )2,
Yy =@y — Troy,

and ¢, given by (2.15). We observe that
|hy(9)| = E;,(@) =B — 4g2 cos? 9)—1/2 <1,

1 1+
1+2gcosf® 1—2gcosh’

\Ij;c/n(e) =

1 1+£
+ n

(14+2gcosh)? (1 —2gcosh)?
Step 2. We claim that if |k| < % and I = [%,2%], then

hy 8 ,
IT7" (nBWk/n)| < W(l +I/|hy|)-

Assume that |k| < % If 6 € [0, ], then sin 6 > 0 and using (2.24), we get

Wy (0) = ( ) -2gsin6.

k>0= lIf,’c’/n(e) > Wy (0) > 4gsin0,

1351

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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due to the convexity inequality 3 ((1 — )2 4 (1 +)72) > 1 for 0 < ¢ < 1. Similarly,

k 1

0> - > _——
“n~ 2

k 1
vy,,0) = ( )mpg(e) = SW3(0) = 2gsinf. (227)

n
If 0 € [£,2%Z], then sin 6 > */75 and (2.26)—(2.27) imply |‘P,Z/n(0)| > g+/3. Thus,

n,8|\ll;(//n| > nfg~/3 and we complete the proof of (2.25), using Lemma 8.1 (b) with

_ lIJk/n
A =nfg/3and ¥ = 5"
Step 3. We claim that if |k| < gn and I = [0, %] then

6 /
IFf-’(nﬁ‘Ifk/n)l < %(1 + / |hy|). (2.28)
I

Indeed, due to (2.23),

4 cos 6 + (1 + 2g cos H)k
g ( g Vu >4gcos9+(1+2gcos@)—
1—4g2cos?6

and ”;—I < g ensures

k
4gcosf + (1 +2gcosh)— > 4gcosf — (1 +2gcosb)g =
n

=(2—g)-2g0050—g2(2—g)g—g2g,

where we used that cos 6 > % holds for 8 € [ ] and g < 5. Since lIJ,’C’ 0) =0
and n,Bllllk/n(H)| > nB<, we complete the proof of (2.28), usmg Lemma 8.1 (a) with

A=np% and ¥ = \Pk/"

Step 4. We first observe that (2.25) holds when I = [ 2’r - ] as well. Similarly,
(2.28) holds when I = [—%,O] and when I = :I:[Z%, 71] Slnce the conditionnfg > 1
implies 6(nBg)~! < 8(nBg~/3)"1/2, we can replace the right-hand side of (2.28) by
the right-hand side of (2.25) and, combining these six estimates, we get

8 ro
|F[ nn]( ﬂ\pk/n)| = W(6 +_[ |hy|)

To complete the proof, it suffices to show the estimate

/|h’y| <4+ 472y —1]. (2.29)

-7t
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We first claim that

/ )| < 4. (2.30)

Indeed, ﬁ,, is monotonic on :I:[O, %] and :I:[% n], hence 0 < ﬁy < 1 implies
|}, <1 and / 7, < 1.
+[0,7/2] +[r/2,7]

We next observe that ¥, = ¢}, — T ¢,, holds with ¢, (0) = (v — %)(CD’ — 1) and

T b1 T

1
[wi=2 [l < [2r=51@ s n=dnpp -1l @3n
—TT -7

-7

The estimate (2.29) follows from |/}, | < |h~;,| + ¥, ], (2.30) and (2.31). [

3. A ZOA remainder estimate with explicit constants

3.1. Statement of the result

The assertion of Theorem 2.3 is a variant of the ZOA (zeroth order approximation)
method considered in [18]. Its idea consists in using the diagonal entries of a per-
turbation as the first correction for eigenvalues of a perturbed diagonal matrix. In
Section 3.2 and 3.3 we will show that Theorem 2.3 follows from.

Proposition 3.1. Let J:{>(Z) — {%(Z) be given by the formula
J=A+7V,

where A = diag(j)jez and V € B(*(Z)) is a self-adjoint operator satisfying the
estimate

sup [V(in + k,n)| < 6|n|_1/2 forn =1, 3.1
{keZ:k|<¢Inl}

where v > 0, C > 0, and 0 < ¢ < 1 are some constants independent of n. Denote
v :=max{D, 64C2, 8|V |>(3 + 2||V|)?(128C2 + ¢~ 1)} (3.2)
Then

(a) the spectrum of J is composed of a non-decreasing sequence of eigenvalues
{Aj(J)}jez which can be labeled so that forn > v + 1 + ||V || one has

n—§<kn(J)<n+§; 3.3)
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b) ifn>v+1+|V

, then the estimate

~ A2
An(J)—n—V(n,n)| < € +4C7°( +1nn) 3.4

n

holds with
C := (16C2 + 8™ H|V|I(1 + 128||V|) + 2|V |*>¢ . (3.5)

Proof. (a) See Section 5.
(b) See Section 6. ]

3.2. Proof of Theorem 2.3 (b)

In what follows, we describe how to deduce the assertion of Theorem 2.3 (b) from
Proposition 3.1. We begin by introducing ﬁ,,, the unitary operator in £2(Z) satisfying
Uyé; =u" ;, where {&;} ez is the canonical basis of £2(Z) and {9, ;}jez is the basis
introduced in (2.19). We claim that the hypotheses of Proposition 3.1 are satisfied if

_ 17877
J=U,"J, Uy,
where ff is as in Definition 2.2. Indeed, if 8 = /1 — 4g2 and

1
By =(r-3)B-D.
then EJ(.) = Bj + By. hence (2.19) gives
U, 700, = BA + B,

and

U, ' T30, = BA + By + V)

holds with
VS = U,"'D;sU,.

where Dg = diag(8(—1)7) jez (see (2.3)). Therefore,

(é]’ Vfék> = (u;),y’ D(gujo’y> = < j?y’ ‘?IVVHTIDS?TJ(}?y>L2(T)9 (36)

where we used u;’,y = Fr j?y and the isometry FT. Since ¥ 1 DsFr = 8T, holds
with T}, introduced in Notation 2.5, (3.6) gives

(€. Viex) = Vi(j.k)
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with V)f (-, -) expressed by (2.20). We observe that Proposition 3.1 can be applied to
V=8 =v)f and
. Jr—1p-1,76 r7 —1y/6
J=U"17"J5 = B)Uy = A+ 71V},
Indeed, Lemma 2.6 ensures that V' = V,f /B satisfies the estimate (3.1) with ¢ = g and
C = Cs,, given by
Cs.p = B7H18IC, = 8181(ev3) 2222y — 1]+ 5271 ()
Taking
M) = BA; () + By, (3.8)
we get the non-decreasing sequence of eigenvalues of jf satisfying

An(T3) = ES, = VE(mn.m)| = Blan(J) —n — VB (n.n). (3.9)

Due to Proposition 3.1, the quantity (3.9) is O(n~! Inn) as n — oo and, to complete
the proof of Theorem 2.3 (b), it remains to prove the estimate

Vf (n,n) = r‘f,(n) +0@m™Y) asn— oo, (3.10)
where r‘f, is given by (2.6)—(2.7). The proof of (3.10) is given in Section 3.3.
Moreover, combining (3.9) with the assertions of Proposition 3.1 we obtain
Corollary 3.2. Let J~1§ and E}?’n be as in Theorem 2.3.
(a) If@g,y is given by (3.7) and

vsy = max{(gB) ", 64Cy,. 8522 (3 + 2/5|8~)(128CF, + ¢~ )},
3.11)

then the spectrum of .71‘,3 is composed of a non-decreasing sequence of eigen-
values {A; (jf)}] ez which can be labeled so that

3 ~ 3
Eyn =3B <2n(J)) < Ep, + 2B (3.12)

holds forn > vg , + 1 + |%|

(b) Ifn>vs, +1+ }% , then the estimate

~ 55,,, + 413682 (1+1nn)
An(Ty) = By = Vy (.0)] = -

(3.13)
holds with

Cs.y 1= (16C7, + (8g) 1)(|18] + 128887 + 28287 1¢™1.  (3.14)
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Proof. We observe that vs ,, is obtained from v expressed by (3.2) with C = 63,),
given by (3.7) and

)
V1= 19721 = 10351l = [ |

Therefore, (3.8) and (3.3) imply (3.12) forn > vs,, + 1+ |%|
Similarly, (3.4) allows us to estimate the quantity (3.9) by the right-hand side of
(3.13) with Cs,, = BC where C is given by (3.5) with C = Cs,, and |V || = |%|. "

3.3. Proof of (3.10)

We can express
T

Vin,n) =38 / ei"‘”‘))hy(e)g, (3.15)
-7
where W := & — T, ® with ® given by (2.8), hy, = O T,Pe¥r =% with ¢,
given by (2.15), and Ty is the translation defined in Notation 2.5.
Using k = 0 in (2.22) and (2.23)—(2.24), we find that ¥ = W, has two non-
degenerated critical points £7. Applying the stationary phase formula, we obtain

h (vl)ein\ll(vzr/Z)+ivn/4
Vi) =58 Y -2 +0m™). (3.16)
el ]
Since @ is odd, we get
T T T T T
w(iz) - <I>(:|:5) — cb(:FE) - 2<I>(:|:5) - :|:2<I>(5) — 440 (3.17)

where (2.9) was used to write ®(%) = 2a with o given by (1.6). Denote
~ b4 1 b4
bi=er(3) = (r=3)(2-3)

0 (+2) = 220 (2) = 20,

(see (2.15)). Then

and

h,,(:l:%) = petiy (3.18)

hence we get two conjugated terms corresponding to v = %1 in (3.16). Therefore,
using (3.18), (3.17), and [W"(+Z)| = 4gB in (3.16), we get

ZRe('Beziéy gldna+in/4)

V2nn-4gp

_s VB cos(4na + 20, + T) Lo Y
J2mng )

Ven,n) =6

» + 0@
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To complete the proof of (3.10), we observe that

~ ~ T 1 b4
by =20, +% = (v—3)4a—m+7

as claimed in (2.7).

4. Auxiliary operators O, and O, ,

4.1. Definitions

In what follows, we introduce auxiliary self-adjoint bounded operators {Q, }nez (see
Definition 4.2 and Lemma 4.3) and for p > 0, we define

Qo= D, Onti (4.1)

i€ZN[—p,p]
In Section 5, the spectrum of J will be investigated via an analysis of operators
J) = e 0no Jeilnn,
Notation 4.1. For n € Z and p > 0, we consider the orthogonal decomposition
C(Z) = Hnp ® Hnp

where

~

%n,p = Span{én-ﬁ-i}ieZﬂ[—p,p], eg{611,,0 = (jgn,p)J_-

We define ﬁn,p € B(L?(Z)) (respectively ﬁn,p € B({?(Z))) as the orthogonal pro-
jection on ¥, , (respectively on #, ,). If p = 0, then we abbreviate

jgn,o = jén’ j€n,0 = jgn’ 1/_\[n,O = ﬁnv Hn 0= 1_[n-

s

Definition 4.2. Let V € B(£?(Z)) be a self-adjoint operator satisfying the assump-
tions of Proposition 3.1. For n € Z we define the matrix (Q»(j, k))(j x)ez2 by

V(i
iﬂ when j #nand k = n,
j—n
Qn(]’k) iM whenj =nand k 7’5 n, *2)
n—k
0 otherwise.

Then @, (k. j) = Qn(j. k) and

0,(j,k) #0 = (either (j #nandk = n) or (j = n and k # n)). 4.3)
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Lemma 4.3. Under the assumptions of Proposition 3.1, we can define a self-adjoint

operator Q,, € B(L*(Z)) such that (0,éx)(j) = Qn(j, k) holds with (On(j.k))jkez
given by Notation 4.1 and

1Qnll* <4Cn™" + 72|V |?n 2
holds for n > V.
Proof. We first observe that

. . V(.
1QTIa > = [ Qnenll® =D [0n(jm)> < Y ——2 < My + M,

2 =
JEZ JE€Z\{n} (J n)

holds with

_ |V(j,n)? Cn™!  2C%  4C*
M = > GonE = )

) - . m?2 3n n
{j€Z:0<|j—n|<in}

meZ\{0}

due to (3.1) and

M, =

n -

. 2 . 2 5 112 2
) V(j,n)l EZIVJ,n)I _ Vell” _ VI
€z

) . . (] _ n)2 62,12 621’12 - 52n2 :
{j€Z:|j—n|>Cn}

We observe that (4.3) implies

and
Qn = HnQan + HnQan
Therefore,
(x, 0ny) = (Iyx, 0,11, y) + (QnIl,x, I, y)
and

1, Q)| < 1@ T || (I TTux || Ty || 4 (| T || Ey]])
< [1@a T [l Ix 171,

ie., 1012 = [Qn T |1? < My + M. "
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4.2. Properties of 0, and 0, ,

Lemma 4.4. Let Q, € B({*(Z)) be as in Lemma 4.3 and Q,_, given by (4.1). Then
(a) the subspace {*:1(Z) is invariant for Q, and for every x € {*1(Z),

i[Qn, Alx =1(QnA — AQp)x = Vyx 4.4

holds with
V, =1,VI, + I1,VI,; 4.5)

(b) if On,p is given by (4.1), then the subspace (%1(Z) is invariant for e*@n.»
andt — 970 x is of class C°(R; £>1(Z2)) if x € £>V(Z).

Proof. (a) Let V, be given by (4.5). Then one has

V(j,n) when j # nandk = n,
Va(j, k) = (Vuer)(j) = ¢ V(n,k) when j = nandk # n, (4.6)

0 otherwise,
and combining (4.6) with (4.2) we obtain
1(] _k)Qn(.]vk) =_Vn(]7k) forevery jvk € L. (47)
However, (4.7) implies
.1 N . Iy, N, . ~ Ny
i(J +5)(©@e00) =i(0alk +3)a) ) -~ Vo)) @8)
and ensures Q,¢é; € £>1(Z). Moreover, (4.8) ensures the equality
. 1 . 1
1<A + 5) Onx = lQn(A + E)x — Vpx (4.9)

for x € €2,(Z).1f y € €2,(Z), then using (4.9) with x = (A + )"y, we obtain

i(A + %) Q,,(A + %)_ly =iQly (4.10)

with Q, € B({*(Z)) given by
1\ -1
0, =0, +iV,,(A + E) .
Due to (4.10), for every y € {2 (Z) one has

iQn(A—i-%)_ly :i(A—i-%)_lQ;,y @.11)
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and by continuity, (4.11) holds for every y € {?(Z). Consider now x € {>!(Z) and
take y = (A + 1)x in (4.11). This gives

i0px = i(A n %)_IQ;(A + %)x c (21(z)

and

. 1 . 1 ) 1

1(1\ n 5) Opx = 1Q;(A n §>x - 1Qn(A n E)x — Vyx,
implying (4.4) for every x € {>1(Z).

(c) We observe that (4.11) holds for every y € ¢2(Z) and implies (4.10) for every
y € {3(Z). If On.p = 2iczni—p.p] Dnri» then (4.10) implies
1 I\—1
4 m. __ _ m —
(Qn)"y = (A+3)@up"(A+3) ¥

forevery m € N and y € ¢?(Z). Therefore,

— N i m B
0o (A + %) 'y = ngnwr;) (”m)! (Qup)" (A + %) =

> S (1Y g

lim
N—>o0 m!
m=0

1 W i
(A + 5) ethn,ﬁy S KZ’I(Z)

if y € £*(Z) and setting x = (A + %)_ly, we find that 1 — (A + 1)e@nrx =
€'y is C®(R; £2(Z)) for every x € £21(Z). n

5. Proof of Proposition 3.1 (a)

5.1. Taylor’s expansion formula

Assume that B and Q € B8(¢?(Z)) and denote
Fio(B) :=¢"2Be"? fort e R,
adl, (B) := B,
adip(B) := [B,iQ] = i(BQ — 0B).
and
ad’p"! (B) := [adip(B),1Q] form € N*.
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Then
dm
dem
and the Taylor formula gives

o Fip(B) = ¢ "%adlly (B)e"C = Fyo(adl}y(B))

N-—1
F,Q(B):Z;Tad (B) + RV (B) (5.1)
m=0
with
t,N . N \ N-1
R (B) 1= 1)'/ Fyuo(ad® (B))(1 —5)V " ds. (5.2)

We can also consider the case when B is an unbounded symmetric operator in {2(Z),
defined on a dense domain Dom(B). Suppose that Dom(B) is an invariant subspace
for Q and e forevery t € R.Ift — BeCx is C1(R, £?(Z)) for every x € Dom(B),
then

5 (€9, Be'Cy) = (BeOx.iQe"y) + (iQeCx. Be'Cy)

holds for every x, y € Dom(B). If the form (x, y) — (Bx,iQy) 4+ (iQx, By) can
be extended from Dom(B) x Dom(B) to a bounded form on £2(Z) x ¢?(Z), then we
can introduce [B,iQ] € B({*(Z)) defined by this form and we can write

d
dr

and (5.1)—(5.2) still hold for every N € N \ {0}.

t0(B) = e "2[B,i0]e"? = F,o([B.iQ])

5.2. A similarity transformation

In what follows, V}, are as in Lemma 4.4 (a) and

Vip i =—=[AiQupl = Y Vari. (5.3)
i€ZN[-p,p]
Then
V—Vap=Vap®Vup (5.4)
holds with
Vap= > V+in+i),y, (5.5)
i€ZN[—p,p]
and

Vip =T pVaslz, - (5.6)
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We claim that the operator

Iy p = e 0o (A + V)ellrnr (5.7)
can written in the form
Tnp =AM+ Vnp@V0p) + Rap (5.8)
with
[Rnpll =4IV I Qn,pll- (5.9)

To prove this claim, we first observe that (5.1)—(5.2) with N = 1 and N = 2 respec-
tively, imply
e—iQn.p VeiQn.p =V + RE; p(V)7 (5.10)

¢TI0 NI = A 4 [AiQn,] + R (A). (5.11)
and, combining (5.10)—(5.11) with (5.3), we get

Inp=A+V =V, +Rp (V) +Rg2 (M)
Due to (5.4), we get (5.8) with R, , = ‘(RlQi p(V) + ‘RIQZ p(A) and (5.9) follows from
IRGs (NI < V. Quoll < 21V Qo

1
IRG: , (D1 = S 1V0- Quplll < 1Vaollll Qo

and [[Vapll < IV = Vap

+ VI =20V

5.3. A condition for || Ry, |l < }
Let R, , be as is Section 5.2 and
Co :=4C? + (32¢6)"". (5.12)
We claim that || R, || < % holds if p > % and
n — p > max{D, 256(2p + 1)>Co||V||?}. (5.13)

In order to prove this claim, we first observe that, using Cop > (326)_1 in (5.13) and

p =1 = (204 1)> = 4, we can estimate

n—p>2562p + 1)2Co||V|* = 1024(328) 1|V |17 = 3267V,

hence - )
|V 1
e — < —_—

. 5.14
n—p 32 ( )
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Moreover,

(5.15)

4C2 &2V )2 \1/2
10noll = D0 NOusill = (14 20)(—— + )

_ _ 2
seZniop.o] n—p (n—p)

where the last estimate is due to Lemma 4.3. However, using (5.14) to estimate the
last term of (5.15), we get

1Qnpll* < (1 4+2p)*Co(n — p)~". (5.16)
Combining (5.9) with (5.16), we find

16(1 +2p)*Co|| V|2
1R plI* < 161 Qn ol *IV]1* < P (5.17)

and the assumption (5.13) allows us to estimate the right-hand side of (5.17) by %,
1

i.e., we obtain || R, ,[? < 16

5.4. End of the proof of Proposition 3.1 (a)
Let I//\n,p and 17,1,,, be as in (5.5)—(5.6). Then

A4V —Vop=Jnp® T,
holds with
@mzAbap+%ﬂ md.ﬂmzA@W;k%W

In what follows, we assume p = ||V || + 1. Thus, the assumptionn > v + 1 + || V|| =
v + p implies n — p > v > max{D, 64C?2} and this inequality ensures that

~ A~ 1
|uSp:wwn+mrunfcm—n””scm—m*ﬂsg. (5.18)
However, fn,p is similar to diag(n +i + V(n +1i,n +1i))iezn[—p,p) and (5.18) ensures

spec(JAn,p) N [n — g,n + g] ={n+Vn,n)} C [n — %,n + %]

Moreover, ||V, o|| < || V| implies

spec(up) € | I+i—IVIn+i+ V]
i€Z\[—p,p]

and the choice p = ||V|| + 1 ensures

~ 5 5
Spec(-]n,p) N [” - g,l’l + g] = 0.
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Using spec(fn,p &) f,,,p) = spec(JA,,,p) U spec(fn,p), we get

~ ~ 5 5
spec(Jn,p ® Jn,p) N [n —gn + §] ={n+ V(n,n)}.
Let v be given by (3.2). Then
v > 8 V23 + 2V [)>(128C2 + &) = 256Co(2p + 12|V |2

if p = ||V + 1 and Cy is given by (5.12). Thus, n > v + 1 + || V|| ensures that the
condition (5.13) is satisfied, hence || R, | < % holds. We can write

, ~ ~
Jn,p = Jn,p ® Jn,p + Rn.p,

and apply Lemma 8.2 (a) to the operators L = JA,,,,, @ fn,p, R = R, p, taking A =
n+Vm,n),d =n— %,d” =n+ % and 7 = %.Weobtain

1 1
spec(J,;,p) N [n — E,n + E] = {1}
and
3 , 3
n= S <n Vn) = | Rupl <2 <+ VoLm) + | Rapll <0+ .

Since spec(J,, ,) = spec(J), we can identify A" = A,(J) ifn > v + 1+ [[V].

6. Proof of Proposition 3.1 (b)

6.1. Use of the Kato—Temple estimate

We continue our investigation of the operator J satisfying the assumptions of Proposi-
tion 3.1. In Section 5 we proved the assertion (a) that allows us to label the eigenvalue
sequence {A;(J)},ez so that (3.3) holds for n > v + 1 + [|V]|. In what follows, we
use (5.7) with p = 0 and consider

Iy = e (A + V)el9n,

where Q, = Qu0and J, = J;;,o' We also abbreviate V,, = 17,,,0, V,= 17,,,0, R, =
Ry, o and write
J'=A+V,®Vu+ Ry 6.1)

Werecall thatn > v + 1 + ||V ensures |V (n,n)| < % and we get || R, || < % similarly
to the estimate || R, || < % proved in Section 5. We introduce

M 2= J,(n,n) = (&, J,én)
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and claim that
An(J) = 1n] < 32| Ru |1 (6.2)

In order to prove (6.2), we observe that (6.1) implies
Jyén = (n+V(n,n))é, + Ryéy,
hence
3 3
M =n4+Vm,n)+ R,(n,n) € [n—g,n—kg] (6.3)

dueto |V(n,n)| < % and ||R,| < %. Writing

(J; —nn)en = (n+ V(n,n) —nn)én + Ruén,
we get

”(Jr/z —M)énll < |n+V(n,n)—nu| + |Ra|| = |Ru(n,n)| + | Ru |l < 2||Ru|l. (6.4)

We will complete the proof, using the Kato—Temple estimate stated in Theorem 8.3.
More precisely, writing (8.10) withd’ =n— 1, d" =n + 1,1 = 1,(J;,) and n = n,,
we get

Mn(-]y/;) — Ml = 8”(]4 - Un)€n||2 (6.5)

due to (6.3), which ensures min{n —d’,d"” — n} < . It remains to observe that (6.4)
allows us to estimate the right-hand side of (6.5) by 32||R,||? and A, (J,)) = A,(J).

6.2. An analysis of R,
We will refine the estimate | R, || < 4|V |||| Q|| from Section 5. We claim that
| B
R, = [V - EV,,,lQn] +R,

holds with
IR, I < 411 Qal? V1. (6.6)

In order to prove (6.6), we observe that (5.1)—(5.2) with N = 2 gives
e Vel = V 4 [V.iQ,] + RG2(V) 6.7)
and (5.1)—(5.2) with N = 3 gives
—-iQ i0 . 1 . . 1,3
OGO = A+ [AiQu] + S iQa)iQu] + REIA).  (68)
Using [A,1Q,] = —V, and summing up (6.7) and (6.8), we obtain

S 1
O = AV Vot [V = SVai0] + R,
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with
R, = Rp2 (V) + R (A). (6.9)

However,

1
IR, (M < S ladip, (M < 212al* IV
1 1 2
IRG2 (M) < glladfgn M = gnadian(Vn)H < gllinlzlanll (6.10)
and combining (6.9)—(6.10), we get

2
IR, =< 10aI2(20V 1 + 512l ).

It remains to observe that ||V, || < |V = Vall + IV < 2| V]|

6.3. An estimate of W, = [V — 1V;,,i0,]

We introduce !
W, = [V - EV,,,iQ,,]

and consider W, (n,n) = (W,é,)(n). We claim that

_ 2Vt + 4C2(1 + Inn)

n>v+ 14+ ||V = |Wa(n,n)| " 6.11)
In order to prove (6.11), we denote V) := V — %Vn and observe that
VoG i) < V(). k)l
holds for every j, k € Z. Thus, we can estimate
. . \V(j,m)?
|(V;1/Qn)(”7n)|SZW(”,])Qn(],nNS Z ﬁf:ﬂ'{n-i-d%;
JEZ JEZ\{n} J
with
\V(j,m? Vi.mI? _lIved? V2
M = _— < = < s
" . Z . |j—n] _Z én cn T (n
{j€Z:|j—n|>¢én} JEZ
\V(j,m? C?n! C2
M, = < <2(1+1nn)—
" Z |j —nl Z Im| n

{j€Z:0<|j—n|<én} {meZ:0<|m|<én}

where we used (3.1).
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6.4. End of the proof of Proposition 3.1 (b)
We first write
An(J) —n =V (n,m)| < [An(J) = 0| + [11n —n = V(n,n)]. (6.12)
Using (6.12), (6.2),and n, —n — V(n,n) = Ry(n,n) = Wy (n,n) + R, (n,n), we get
An(J) =n = V(n,n)| < 32| Ry |1> + IRy | + [Wa(n,n)]. (6.13)
Due to (5.9) and (6.6),
32| Rall? + 1R < 3241 QllIVID* + 4l QA IV (6.14)

Since the assumptions of Proposition 3.1 imply that (5.14) holds with p = 0, hence
the estimate (5.16) holds with p = 0, i.e., one has

10, < Con™! forn>v+1+|V]. (6.15)
Using (6.15) in (6.14), we obtain
32| Rull® + 1Ry || < 4Col| VII(1 + 128][V hn " (6.16)

Using (6.16) and (6.11), we find that the right-hand side of (6.13) can be estimated by
the right-hand side of (3.4), which completes the proof of Proposition 3.1.

7. Proof of Theorem 1.3

7.1. Step 1 of the proof of Theorem 1.3

Notation 7.1. (a) We let S € B(£*(N)) denote the shift given by S ej = ejy; and
S* denotes the adjoint of S.

(b) We introduce A = diag(j)jen defined as the linear map £2'(N) — (2(N)
satisfying Xej = jej forevery j € N.

(©)Ifb:N — R, then b(A) := diag(b(j));en is the self-adjoint operator in £?(N)
satisfying b(/A\)ej = D(j)ej forevery j € N.

Definition 7.2. For u = 0, 1, we define JAljvIE (>1(N) — £?(N) by the formula

TE =d*(R) + Sbu(A) + bu(A)S™,

with {c?ff (m)}meN, {ISZ—’ (m)}men given by equations (1.12) and (1.13), respectively.
The matrix ({e;, ffek))(j,k)eNZ is given by (1.11) and (1.14) ensures that fljt is a
lower semi-bounded self-adjoint operator with discrete spectrum due to the Janas—
Naboko criterion [27, Theorem 4.1].
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Lemma 7.3. The operator Hl(fa{,i is similar to the direct sum
el el elr
Proof. See [5, Section 2.2]. [

Notation 7.4. (a) If ¢ C Z, then £2(d) is identified with the closed subspace of £2(Z)
generated by {¢;};eg, i.e., with {x € £2(Z) : x(k) = O fork € Z \ ¢}. Thus, we can
write

(*(Z) = £*(Z \ N) @ £>(N).

(b) If § C Z, then I14 denotes the orthogonal projection £2(Z) — £*(g).
(c) We identify e; and e; for j > 0.

Definition 7.5. We define J: (21 (N) — ¢2(N) by the formula
768 . 78
T3 = INT 2 v

where J~1§ is given by Definition 2.2. The matrix ({e;, erk))(j,k)eNZ has the form

8 gy 0 0
gy 1-8 gll+y) 0

0 g(1+vy) 246 g2+y)
0 0 g2+ g) 3456

Its diagonal entries, ds (j) = j + (=1)/§ are given by (2.4) and Notation 7.4 gives

f)‘f =ds(A) + gS(A +y) + g(A + y)S*.

(1%

In what follows, we are interested in ff with § = :I:% and either y = % ory =j.

More precisely, we denote
_|_

y(u) = for u € {0, 1} (7.1)

AW
SRS

and we investigate the approximation of J: Mi by Zfii)/ =" . Indeed, if d j is as

in (1.12), then
df(m) = 2dsp/4(m) + 1

and
25 4 = TE = Sru(A) + ru(A)S*
holds with

ru(m) = 2g(m + y (1)) — by (m) (1.2)
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(where 5M is asin (1.13)). We claim that r, (m) = O(m™') as m — oo. Indeed,

ru(m):g\/(2m+u+;)z—g\/(2m+u+1)(2m+u+2) (7.3)

and, using (2m + p + %)2 - (%)2 =C2m+ p+1)2m + p+2), we can rewrite (7.3)

as
g

4
- . (7.4)
") 2m 4+ 3+ /Cm+ p+ HCm+ 1+ 2)

7.2. Step 2 of the proof of Theorem 1.3

Lemma 7.6. Assume that {)tn(f)‘f )}neN is the non-decreasing sequence of eigenval-
ues of the operator ff introduced in Definition 7.5, {A; (j;f)}j ez is as in Theorem 2.3
and either y = % ory = %. We denote

)
1= 24 || maxtusga 7+ 45726 + 1D, @.5)

where vs ,, is given by (3.11). Then there exists k(8) € Z which is independent of n
and such that for n > vg one has

. - 3+18 B

[Antie(8)( V) n( 7’)| ~4(Bn-1) = 16 (70

ES, — LB < Awsey(F) < S, + - 7D
T A R T '

where E)(,)’n = Bn + B, is given by (2.5).
Proof. We introduce Jvf 0>1(Z \ N) — £%(Z \ N) by the formula
jﬁ = HZ\Nf;§|€2(Z\N)'

We observe that the matrix ({e;, jfek))(j,k)e(Z\Nﬁ has the form

-3-6 g(=3+vy) 0
g=3+y) 248 g(=2+vy)
0 g(=2+7y) —1-46

We first claim that

v ~ 5 ~ 5
spec(Jl’,s & Jf) N [|8| + 3 oo) = spec(J;,s) N [|5| + 3’ oo). (7.8)
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Indeed, (7.8) follows from the inclusion
Y 5
8 —
spec(J,) N [|8| + g,oo) =0,
which is an easy consequence of the estimate
supspec(Jy) < sup{—j + (=1)/8 +p; : j € N\ {0}}, (7.9)

where p; = g(ly —jl+ |y —Jj —1]) for j >2and p; = gly — 2| < % due to
the assumption that y = % or %. The estimate (7.9) is well known, see, e.g., [42,
Lemma 1.8].

It remains to compare the eigenvalues of .73 and Jv}‘,g @ ff For this purpose we
consider .73 — ff ® ff = .719 — JAIE’ ® JAJE) and observe that

Ry=T0—JT0@®J) =gy —1)(ST_1 + S~ '), (7.10)
hence : :
IRyl = 2gly =11 = Jg < 7. (7.11)
Our next claim is that _ 9
IRy TN = 16 (7.12)

Indeed, (7.10)~(7.11) imply | JOR, | < F(I7% 1] + [ J2&|)) and (7.12) follows
from 9
IJYe_1]l + )2l <1+ g2—y) +2gly — 1| + gy < e

We will deduce (7.6) from Lemma 8.2 applied to L = j};s Indeed, if n > vg then
Corollary 3.2 ensures

3 ~ 3
EJ, — g,B <)) < Ep, + gﬂ, (7.13)
d" = 0 1 1 A 78
=E,,+ Eﬂ + E'B < Ant1(Jy),
1 1 -
d'i=Ep, = 5B — 1B > dna(J),

i.e., (8.1) holds with 7 := 1’16 and we claim that the condition (8.2) holds for n > v;.

Indeed, we observe that, using || R, || < %, (7.12), B < 1, we get

7 i | o 1 !
Ry (75 +552) | < IR T2+ (1814 3 IR, < 53+ 18D
and it is easy to check that

1 1 1
n>vy = JGH18]) < BB —1) < pd. (7.14)
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where the last estimate follows from
d =E° lﬂ 1;3>,3n 1
o2 16 ‘

Thus, n > vg implies d’ > 1 + || and ||R (J‘g +itg )H < ﬁGd/, i.e., (8.2) holds for

with T = fé and Lemma 8.2 ensures that

R ( +ifg)] 34181 _ 3+18]

~5 . 8
rsswUy) = dn )l = == 4d” " aBn- 1

(7.15)

holds with a certain «(8) € Z independent of n > vg. The right-hand side of (7.15)
can be estimated by % due to (7.14), implying the last inequality of (7.6). Finally,
(7.7) follows from (7.6) and (7.13) . ]

7.3. Step 3 of the proof of Theorem 1.3
Lemma 7.7. The assertion of Lemma 7.6 holds with k (§) = 0.

Proof. Due to Lemma 7.6, there is a constant Cg independent of n such that
An(J}) = An—cy (T < Con™! (7.16)

holds for n > 1. Due to Theorem 2.3, there is a constant C g independent of n such
that

A=) (T}) = Ep sy < Cin™'/? (7.17)
holds for n > 1. Combining (7.16) and (7.17), we get

An(T5) = ED i) < Cin™ /2 (7.18)
with C' := Cs + Cy. Consider 6’ € R. Then the min-max principle ensures

sup |4, (J9) = 4; (T3 <[5 -8 (7.19)
jeN

Using (7.19), (7.18), and an analogical estimate for §’, we obtain
|Ey ) = Eym—cisn) < (C§' + Cin™ 2 + |5 -8|
for n > 1 and consequently

lim sup |E}(/),n—/c(8) — E°

n—>oo

0 een| < 18=8). (7.20)



A. Boutet de Monvel and L. Zielinski 1372

However, combining (7.20) with

im |y, es) = Epncisn] = 1€8) = <(@)1B,

n—>oo

we find |k (8) — k(8")| < B~!|8 — §'|. Thus, k: R — Z is locally constant, hence k (§) =
k(0) and it remains to prove that x(0) = 0. However, the result of Janas and Malejki
[25, Theorem 3.4] says that for every N € N one has

An(T0) = ES, + 0m™) asn — oc. (7.21)
Therefore, using (7.21) and (7.18) with § = 0, we get

E o) — Evnl < Cyn™'/2 (7.22)

and «(0) = 0 follows from (7.22). ]

7.4. Step 4 of the proof of Theorem 1.3

Lemma 7.8. Let {1, (ff)}neN and vg be as in Lemma 7.6. Let {An(fj)}neN be the
non-decreasing sequence of eigenvalues of J f If y(u) is given by (7.1), then

- 2+ 5l

~+A/4 . T
iy )+ 1= AT = 42

Yy (7.23)
holds for n > va 4.
Proof. We will deduce the assertion of Lemma 7.8 from Lemma 8.2 applied to

+ . A7EA/4
LE=2]0 +

We observe that 2/\,,(]7?3)/4) + i = An(L3) and
2ES, 1= Edys (7.24)

where E0 =Bm + ﬂ—;l is given by (1.7). Due to Lemma 7.7, (7.7) holds with x (§) =0
and § = i%, hence n > va 4 = v_p 4 ensures

7 7
Egn-i—u - gﬁ < AH(L?;,:) < Egn-i—u + gﬂv
1
d" = ESyyy+ B+ 5B < A (L),

1
d:=E3 ,—B- Eﬂ > Ano1(L3).
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Thus, (8.1) holds with t := 1 ¢ and it remains to check that the condition (8.2) holds
forn > vp4 with R = R, given by

R, = ru(A)S* + Sru(A),

where ry, (m) was introduced in (7.2). However, using the expression (7.4), we find

~ 1
Iy oy (M1 = sup [ru(m)] = ru(0) < 5.
meN

g
||ry(u)(A)A|| = sup |ru(mym| = 11m ru(m)m == < —.
meN 16 32

Using SA = (A — 1)S and S*A = (A + 1)S*, we find
J0=A+gAS + 8% +g(y — DS + gyS*,
S*J0 = AS* + gAS*(S + 5%+ 5* +g5*(S +§*) + g(y — 1) + gy(S*)~
and ||RMJA)9|| < ||rﬂ(//§)f)9|| + ||rM(K)§*fJ9|| can be estimated by
Ira IR + 48) + R+ 4g +4gy) < 5.
hence

ot +12)] <218, o 42 <1+ 3]

and

1o 1 A
1P > 5B -1 > 5(3+ |3

where the last inequality is ensured by 7 > v /4 (see (7.14) with § = j:%). Since the
right-hand side of (7.25) is greater than 1 + | 7|,
and T = %. Therefore, Lemma 8.2 ensures that

), (7.25)

[Ru(L3 +ige)| _ 1+ 5]

2hn (Jﬂ;j)/“) +u S 2n—1)

(7.26)

An(LE) = Apeay T <

holds for n > v /4 with a certain  (A) € Z independent of n. In order to complete the
proof of (7.23), it remains to show that k (A) = 0. However, Lemma 8.2 (c) ensures

An(TE) =2 (LE) + 0(™") asn — o0 (7.27)
and, combining (7.27) with (7.26), we get
(T = Ay (Jg) = 0(™") asn — oo,

hence k(A) = 0. ]
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7.5. End of the proof of Theorem 1.3

Combining Lemma 7.6 and 7.8, we get the estimate

23+ 15 +2+ |5

T+A/4 TH <
124, (J )+ —An(JO] = 4(Bn —1)

v (1)

forn > vass, (7.28)

where vg is given by (7.5). Using (7.28), (7.24), and the approximation of /\n(f)‘f )
givenin (3.13)—(3.14) in the case § = :I:%, y(0) = %, y(l) = %, we obtain the estimate

An(T3E) = By = 2V ()| < Ripn) forn > vaya,

where vg is given by (7.5), Vf (n, n) is given by the explicit integral (3.15) and

8 +055A] Cazayu +4BC3 (1 +1nn)
4(Bn —1) n ’

where y(0) = 3, y(1) = 3, Cs, is given by (3.7), and Cs,,, by (3.14).

. +A/4 kA2
Due to (3.10), the correction term ZVV(M) (n,n) = Vy(u)

gated by a standard stationary phase method as indicated in Section 3.3. In particular,

RE (n) ==

(n, n) can be investi-

one can find a constant C > 0 such that

VA2 nm) =002 < Cn ™!

y(1) y(1)
and (2.7) gives
by = Ouys = 2 (40 —m) + = =
y(0) = 3/4—4 o—T 4_01,
H T
01’(1) = 95/4 = 2(4“ —m)+ Z =30 — E,
hence
+A +A Ay B \1/2 B
I‘y(o)/z(n) = 1‘3/4/2(71) = :I:E(z”gn) cos((4n + Da) + O(n 1)’
A B \1/2
+A +A . _
vy ) =) = i?(zn gn) sin((4n + 3)a) + 0(n~Y).  (7.29)

Due to Lemma 7.3,

spec(ngza)bi) = spec(fo_) U spec(fOJr) u spec(fl_) U spec(fl_)
and we complete the proof of Theorem 1.3, combining (7.24)—(7.29) with the notation

EE = A(J§) ifm=2n,
EE =2,(JF) ifm=2n+1.
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8. Appendix

8.1. Estimates of oscillatory integrals

Lemma 8.1. Assume that h € C'([0y, 01]) and that ¥ € C?([0y, 01]) is real-valued.

(1)  Ifthe derivative 0 — V' (0) is monotonic and |V’ (0)| > 1 for all 6 € [0y, 01],
then one has

0, 01

) 3
[ Oneran| < 2aneor+ [weran sora>o.
o )

@)  If|¥(0)| = 1 forall 6 € [0y, 01], then one has

0, 61
. 8
‘/e‘“’(@)h(@)de < W(W@O)' +/|h/(9)|d9) for A > 0.
9() 9()
Proof. See [41, Section VIII.1.2]. [ ]

8.2. General estimates of perturbed eigenvalues

In this section L is a self-adjoint operator in the Hilbert space J and || - || denotes the
norm of B(H). We assume that A is an isolated simple eigenvalue of a self-adjoint
operator L and consider the spectrum of L + R near A, assuming that R is self-adjoint
and bounded.

Lemma 8.2. Let L be a self-adjoint operator in the Hilbert space H. Assume that
0 <d' <d"” and t > 0 are such that

spec(L) N[d',d"] ={A} C [d' + 2t,d" —21], (8.1)
where A is a simple eigenvalue of L. Let R be bounded and self-adjoint in .
@ If||R| <, then
spec(L + R)N[d"+1.d" —t] = {1} C[A—|IR]. A + [IR]]],

where A’ is a simple eigenvalue of L + R.

(b) If RL is bounded and
IR(L +it)|| < td’, (8.2)

then

spec(L+R)N[d' +7,d"—<t]={}}CA—11, A + 4]
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holds with
7 = AT R(L + in)|| (8.3)
and A is a simple eigenvalue of L + R.

(¢) If RL is bounded, L has a discrete spectrum and is bounded below, then one
has
An(L+R)=X,(L)+ O (L)Y asn — oo,

where {A,(L)}nen (respectively {An(L 4+ R)}nen ) is the non-decreasing
sequence of eigenvalues of L (respectively L + R ), counting multiplicities.

Proof. (a) Assume that z € C \ {A}is suchthat d’ + v < |z| < d” — 7. Since

1 1

-1 _
I =271 = GstGopectDy 2) = minglz =21, )

the estimate

R
IREL =27 = IR =27 | s max{ e} s

holds with ; = I8l < 1.1f z € [d’ + 7,d” — 7] \ [A — | RI|l, A + || R||], then |z — A| >
| R| and (8.4) ensures || R(L —z)~!|| < 1, hence

(L+R-z2)""=(L-2""I+RL—-2"""
is well defined, i.e.,
spec(L+R)N[d +t,d"—t] C[A—|R|.A+|R]]
To end the proof, consider z € C satisfying |z — A| = 7. Then
lzZleA—t,A+1]C[d +1,d" —1] (8.5)

and for ¢ € [0, 1] we can define (L —z)~'(/ +tR(L —z)™)™' = (L, — z)~! where
L; = L + tR. The spectral projector of L; associated to [A — 7, A 4 7] has the form
i _
Pr=1p—cisa(Le) = / (L —z)"'dz (8.6)
|z—Al=t

and t — P; is continuous [0, 1] — B(H), hence rank(P;) = rank(Py) = 1.
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(b) We proceed in three steps.

Step 1. We assume that z € C \ {1} satisfies d’ + 7 < |z| < d” — t and we claim

that
1

L+it)y WL -2 < )
IE +iny (L =2l = e o wan

8.7)

In order to show (8.7), we observe that

1

L+ L= = sup |— | = wp —,
sespec(L) (S + IT)(S - Z) sespec(L) Vi,z (S)

where v, (s) := V12 + 52|s — z|.

Ifd + 1t <|z]| <d” —tands € spec(L), then we can consider four cases:
(i) ifs=>d" thenvy(s) > s(s—|z]) >d"(d" —|z|) > d";

@) ifs = A, then vy ;(A) > AL —z|;

(i) ift <s <d’,thenv,,(s) > s(|z| —s) >s(d +1t—35)>1d;

(iv) ifs <z, thenvy(s) > t(|z| —s) > t(]z] — 1) > ©d’".

Thus, v,z (s) > min{A|A — z|, 7d’} holds in all cases.

Step 2. Let 1), be given by (8.3). We claim that
spec(L+R)N[d' +1,d"—t]C[A—11, A + 11]. (8.8)
Consider z € C such thatd’ + v < |z| < d” — 7. Due to (8.7),

IR(L —2)7M | < [IR(L + i) (L + i) (L —2)7"|

R(L +1i
< max [ LEEHON

T (8.9)

where R(L i
_IRL+iD] _,

.
d't

due to (8.2). If |z — A| > T, then the right-hand side of (8.9) is strictly less than 1,

hence |[R(L —z) | <land (L+ R—z)'= (L —-2z)"'(U +R(L—-z)"Hlis

well defined, i.e., (8.8) holds.

Step 3. To end the proof, consider z € C satisfying |z — A| = t. Then (8.5) holds
and (8.2) implies 7, < td’A~! < 7, hence M = % < 1. Therefore, the right-
hand side of (8.9) is strictly less than 1 and, for ¢ € [0, 1], we can define (L, — z)™!
with L; = L + tR similarly to (b) and its spectral projector is given by (8.6), hence
rank(P;) = rank(Py) = 1.

(c) See Rozenblum [37, Theorem 1.1]. ]
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8.3. Kato—-Temple estimate

Theorem 8.3 (Kato—Temple). Assume that the operator L is self-adjoint in the Hilbert
space H and has exactly one eigenvalue A in the interval [d', d"). If x is an element
of the domain of L such that || x| g = 1 and n := (x, Lx) g belongs to]d’,d"|, then

(L —n)x]|? I(L — n)x]|?
n—— + —
n— d’ d’ — n
Proof. See [21]. [

<A=<n (8.10)
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