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Three-term asymptotic formula for large eigenvalues
of the two-photon quantum Rabi model

Anne Boutet de Monvel and Lech Zielinski

Abstract. We prove that the spectrum of the two-photon quantum Rabi Hamiltonian consists
of two eigenvalue sequences .ECm /1mD0, .E�m/

1
mD0

satisfying a three-term asymptotic formula
with the remainder estimate O.m�1 lnm/ when m tends to infinity. Our asymptotic formula
can be written so that the third term is given by an explicit oscillatory integral and an explicit
remainder estimate.

1. General presentation of the paper

1.1. Introduction

In Section 1.1 we describe briefly the subject of the paper. The simplest version of our
main result is stated in Section 1.2 and its refinements are described in Section 1.3.
An overview of related results is presented in Section 1.4 and the organization of the
paper in Section 1.5.

The simplest interaction between a two-level atom and a classical light field is
described by the semi-classical Rabi model [35,36]. The quantum Rabi model (QRM)
couples a two-level system (TLS) with a quantized single-mode radiation and is
considered as a particularly important model in quantum electrodynamics: we refer
to [11] concerning the historical aspects of the QRM and to the review paper [46] for
a list of research works and experimental realizations of the QRM.

The simplest QRM is defined by the one-photon Hamiltonian H
.1/
Rabi given in Def-

inition 1.2 (c). The operator H
.1/
Rabi is a self-adjoint operator depending on two real

parameters: g (the coupling constant) and � (the energy separation in the TLS). Its
spectrum is discrete and the fundamental question is how to find a good approxima-
tion of the corresponding eigenvalues.
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The first step in this direction, is the rotating-wave approximation (RWA) intro-
duced in the famous paper of Jaynes and Cummings [29]. However, the RWA is a
correct approximation only when g is close to 0 and � close to 1 for H

.1/
Rabi given in

Definition 1.2 (c). The most popular idea of going beyond the limitations of RWA,
bears the name of the generalized rotating-wave approximation (GRWA) after
E. K. Irish [23]. It appears (see [24]) that the same idea was considered before by
I. D. Feranchuk, L. I. Komarov, and A. P. Ulyanenkov [19], under the name of the
zeroth order approximation of the operator method (see also [18]). According to
[19, (25)], the spectrum of H

.1/
Rabi is composed of two eigenvalue sequences .ECm /

1
mD0

and .E�m/
1
mD0, satisfying

E˙m � m � g
2
˙ rm (1.1)

with

rm´ .�1/m
�

2

cos
�
4g
p
m � �

4

�p
2�g
p
m

(1.2)

for large values of m. The quality of this approximation were investigated by numer-
ous numerical calculations. In particular, a thorough numerical analysis of 40,000
eigenvalues was performed by L. T. H. Nguyen, C. Reyes-Bustos, D. Braak, and
M. Wakayama [34]. A good approximation of large eigenvalues by (1.1)–(1.2) is
explained by the estimate

E˙m D m � g
2
˙ rm CO.m

�1=2C"/ as m!1; (1.3)

where rm is given by (1.2) and " > 0 (see [3, 6]). We remark that the three-term
asymptotic formula (1.2)–(1.3) allows one to recover the values of parameters of the
model from its spectrum (see [4]).

In this paper we consider the two-photon QRM defined by the Hamiltonian H
.2/
Rabi

given in Definition 1.2 (d). This model was proposed in [20] to describe a two-level
atom interacting with squeezed light (see [14, 16, 17] and Section 1.4 for more refer-
ences).

In what follows, we assume that the coupling constant satisfies the condition 0 <
g < 1

2
, which ensures the fact that the spectrum of H

.2/
Rabi is discrete (see Section 1.4 for

a discussion of the case g � 1
2

). In [5] we proved that if 0 < g < 1
2

, then the spectrum
of H

.2/
Rabi is composed of two eigenvalue sequences .ECm /

1
mD0 and .E�m/

1
mD0, satisfying

E˙m D
�
mC

1

2

�p
1 � 4g2 �

1

2
CO.m�1=3/ as m!1:

The purpose of this paper, is to obtain the three-term asymptotic formula

E˙m D
�
mC

1

2

�p
1 � 4g2 �

1

2
˙ rm CO.m

�1 lnm/ as m!1; (1.4)
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where rm is given by (1.9). It is easy to check that the three-term asymptotic for-
mula (1.4) allows one to recover the values of parameters of the model from its
spectrum.

The idea of the proof of Theorem 1.3 was described in [7] and a similar result was
obtained by E. A. Ianovich in [22]. However, in this paper, we describe a different
approach, allowing one to express the third term in the form of an explicit oscillatory
integral and to give explicit constants in the remainder estimates (see Section 7.5).

1.2. The three-term asymptotic formula for the two-photon QRM

Notation 1.1. (a) In what follows, Z is the set of integers and N´ ¹n 2 Z W n � 0º.
(b) We denote by `2.N/ the complex Hilbert space of square-summable sequences

xWN ! C equipped with the scalar product

hx; yi`2.N/ D

1X
mD0

x.m/y.m/

and the norm kxk`2.N/´ hx; xi
1=2

`2.N/
. For s > 0, we denote

`2;s.N/´
°
x 2 `2.N/W

1X
mD0

.1Cm2/sjx.m/j2 <1
±
:

(c) The canonical basis of `2.N/ is denoted ¹enºn2N (i.e., en.m/ D ın;m for n,
m 2 N).

(d) The annihilation and creation operators, Oa and Oa�, are the linear maps

`2;1=2.N/! `2.N/

satisfying

Oa�en D
p
nC 1enC1 for n 2 N;

Oae0 D 0 and Oaen D
p
nen�1 for n 2 N n ¹0º:

(e) Using .1; 0/ 2 C2 and .0; 1/ 2 C2 as the canonical basis of the Euclidean
space C2, we denote by �x , �z , I2, the linear operators in C2 defined by the matrices

�x ´

�
0 1

1 0

�
; �z ´

�
1 0

0 �1

�
; I2´

�
1 0

0 1

�
Definition 1.2. (a) The two-level system (TLS) Hamiltonian is the linear map in C2

defined by the matrix

HTLS D
1

2

�
� 0

0 ��

�
D
1

2
��z

where � is a real parameter.
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(b) The Hamiltonian of the single-mode radiation is the linear map

HradW `
2;1.N/! `2.N/

defined by the formula

Hraden D Oa
�
Oaen D nen for n 2 N:

(c) Let g > 0. Then the one-photon quantum Rabi Hamiltonian is defined as the
linear map

H
.1/
RabiWC

2
˝ `2;1.N/! C2

˝ `2.N/

given by
H
.1/
Rabi D I2 ˝Hrad CHTLS ˝ I`2.N/ C g�x ˝ . OaC Oa

�/:

(d) If 0 < g < 1
2

, then the two-photon quantum Rabi Hamiltonian is defined as the
linear map

H
.2/
RabiWC

2
˝ `2;1.N/! C2

˝ `2.N/

given by

H
.2/
Rabi D I2 ˝Hrad CHTLS ˝ I`2.N/ C g�x ˝ . Oa

2
C . Oa�/2/ (1.5)

and we let H
.2/
0;Rabi denote the operator given by (1.5) with � D 0, i.e.,

H
.2/
0;Rabi D I2 ˝Hrad C g�x ˝ . Oa

2
C . Oa�/2/:

The case g � 1
2

is discussed in Section 1.4.

In what follows, we assume that 0 < g < 1
2

and introduce

ˇ´
p
1 � 4g2;

˛´ arctan
�s 1 � 2g

1C 2g

�
: (1.6)

If 0 < g < 1
2

, then the spectrum of H
.2/
0;Rabi is explicitly known (see [16, 17]): it is

composed of the sequence of eigenvalues

E0m D mˇ C
ˇ � 1

2
; m D 0; 1; 2; : : : (1.7)

and each eigenvalue E0m is of multiplicity 2. Thus, 0 < g < 1
2

ensures the fact that
H
.2/
0;Rabi is a self-adjoint operator with compact resolvent and the same can be said

about H
.2/
Rabi because H

.2/
Rabi � H

.2/
0;Rabi is bounded. The explicit values of the eigen-

values of H
.2/
Rabi are not known when � ¤ 0, but we can describe their asymptotic

behavior in the following result.
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Theorem 1.3. If 0 < g < 1
2

then one can find ¹vCmºm2N [ ¹v
�
mºm2N , an orthonormal

basis of C2 ˝ `2.N/, such that

H
.2/
Rabiv

˙
m D E

˙
mv
˙
m ; m D 0; 1; 2; : : : ;

and the eigenvalue sequences .ECm /m2N , .E�m/m2N , satisfy the large m estimates

E˙m D mˇ C
ˇ � 1

2
˙ rm CO.m

�1 lnm/ (1.8)

with rm given by the formula

rm D

8̂̂̂̂
<̂
ˆ̂̂:
�

2

s
ˇ

�gm
cos..2mC 1/˛/ if m is even,

�

2

s
ˇ

�gm
sin..2mC 1/˛/ if m is odd,

(1.9)

where ˇ D
p
1 � 4g2 and ˛ is given by (1.6).

Remarks. (1) The operator H
.2/
Rabi, its eigenvalues E˙m , the correction rm, and the

remainder term O.m�1 lnm/ in (1.8), depend on the parameters g and�. For sake of
simplicity, this dependence is not mentioned in the statement of Theorem 1.3, but this
issue is discussed in Section 1.3.

(2) In spite of the fact that H
.2/
Rabi � H

.2/
0;Rabi is not compact, the estimate (1.8)

implies
E˙m �E

0
m ! 0 as m!1: (1.10)

A similar property for H
.1/
Rabi was first proved by E. A. Ianovich [45] (see also [44]).

1.3. Refinements of Theorem 1.3

In this section we assume that 0 < g < 1
2

. It is easy to check (see [5]) that C2˝ `2.N/

is a direct sum of four subspaces

H�0 spanned by B�0 D ¹.1; 0/˝ e4k W k 2 Nº [ ¹.0; 1/˝ e4kC2 W k 2 Nº;

HC0 spanned by BC0 D ¹.0; 1/˝ e4k W k 2 Nº [ ¹.1; 0/˝ e4kC2 W k 2 Nº;

H�1 spanned by B�1 D ¹.1; 0/˝ e4kC1 W k 2 Nº [ ¹.0; 1/˝ e4kC3 W k 2 Nº;

HC1 spanned by BC1 D ¹.0; 1/˝ e4kC1 W k 2 Nº [ ¹.1; 0/˝ e4kC3 W k 2 Nº;
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which are invariant for H
.2/
Rabi. The matrix of H

.2/
Rabi in the basis B˙� is a Jacobi (i.e.,

tridiagonal) matrix, 0BBBBBB@
Od˙� .0/

Ob˙� .0/ 0 0
Ob˙� .0/

Od˙� .1/
Ob˙� .1/ 0

0 Ob˙� .1/
Od˙� .2/

Ob˙� .2/

0 0 Ob˙� .2/
Od˙� .3/

: : :

1CCCCCCA (1.11)

whose diagonal entries are

Od˙� .m/´ 2mC �˙ .�1/m
�

2
(1.12)

and the off-diagonal entries are

Ob�.m/´ g
p
.2mC 1C �/.2mC 2C �/; (1.13)

Clearly, the diagonal part is a lower semi-bounded self-adjoint operator with the
domain `2;1.N/ and its spectrum is discrete. Since

0 < g <
1

2
H) lim

m!1

Od˙� .m/
2

Ob�.m/2 C Ob�.m/2
D

1

2g2
> 2; (1.14)

the Janas–Naboko criterion [27, Theorem 4.1] implies that the off-diagonal part has
a relative bound c < 1 with respect to the diagonal part, hence yJ˙� is a lower semi-
bounded self-adjoint operator with the domain `2;1.N/ and its spectrum is discrete.
The fact that H

.2/
Rabi is similar to the direct sum

yJ�0 ˚
yJC0 ˚

yJ�1 ˚
yJC1 ;

allows us to label the spectrum of H
.2/
Rabi, using the sequences ¹E�mºm2N , ¹ECm ºm2N ,

defined by
E˙2nC� D �n.

yJ˙� / for n 2 N; � D 0; 1;

where �n. yJ˙� / denotes the n-th eigenvalue of yJ˙� , i.e., ¹�n. yJ˙� /ºn2N is the sequence
of eigenvalues of yJ˙� ordered so that

�0. yJ
˙
� / < � � � < �n.

yJ˙� / < �nC1.
yJ˙� / < � � � :

In Section 7.5, we prove that for every 0 < g < 1
2

and � 2 R, the n-th eigenvalue of
yJ˙� satisfies

�n. yJ
˙
� / � .E

0
2nC� ˙ r2nC�/ D O.n

�1 lnn/ as n!1;
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whereE0m DmˇC
ˇ�1
2

, rm is given by (1.9), and the remainder estimateO.n�1 lnn/
depends on g and �. More precisely, we give an explicit value �g;� such that for
n > �g;�, the interval ŒE02nC� � ˇ;E

0
2nC� C ˇ� contains a single eigenvalue of yJ˙� ,

which is precisely �n. yJ˙� / (i.e., precisely the n-th eigenvalue of yJ˙� ). Moreover, (see
Section 7.5), we give explicit values of constants zCg;�, Cg;�, such that for n > �g;�
one has the estimate

j�n. yJ
˙
� / � .E

0
2nC� ˙ Qr2nC�/j �

zCg;� C Cg;� lnn
n

; (1.15)

where Qr2nC� is given by an explicit oscillatory integral (see Section 3.3) and the
standard stationary phase method allows one to find a constant C 0g;� such that the
estimate jQr2nC� � r2nC�j � C

0
g;�n

�1 holds for all n � 1.
We observe that our expressions of �g;�, zCg;�, Cg;�, are continuous functions of

g and �, but they all tend to infinity as g approaches 1
2

or 0, which means that the
results of this paper cannot be used to investigate the issues of g approaching 1

2
or 0.

We discuss the issues of g approaching 1
2

or 0 in Section 1.4.
We remark that the estimate (1.15) can be applied to investigate the spacing

�nC1. yJ
˙
� / � �n.

yJ˙� / similarly to L. T. H. Nguyen, C. Reyes-Bustos, D. Braak, and
M. Wakayama investigated the one-photon QRM in [34]. Moreover, similarly to the
work of Z. Rudnick [38], (1.15) can be used to investigate an analogue of Braak’s
G-function conjecture on the location of eigenvalues (see [9]). If ˛

�
is irrational, then

the sequences ¹cos..2mC 1/˛/ºm2N and ¹sin..2mC 1/˛/ºm2N are dense in Œ�1; 1�
and one can easily obtain a result of density 1 similarly to Z. Rudnick. If ˛

�
is ratio-

nal, then these sequences are periodic. If moreover 2 ˛
�
D

k
l

with k odd and l even,
then these sequences never take the value 0 and for n � n0 one can locate �n. yJ˙1;�/
either below or aboveE02nC�, hence all eigenvalues of H

.2/
Rabi are simple except a finite

number. We remark that double eigenvalues are crucial for the question of the integra-
bility of the model (see [8, 9]). Finally, using E02nC1 D E

0
2n C ˇ and (1.15), we get

�n.J
˙
1 /� �n.J

˙
0 /! ˇ as n!1, hence large eigenvalues cannot be common for a

couple of operators with different values of � (see Maciejewski and Stachowiak [33],
where the existence of this type of eigenvalue crossing was discovered).

1.4. Overview of related results and comments

1.4.1. Earlier results. We refer to [19, 40], for the earliest investigations of large
eigenvalues of QRM. It is well known (see [4, 43]) that H

.1/
Rabi can be expressed as

a direct sum J� ˚ JC of two Jacobi operators, i.e., operators defined by infinite
tridiagonal matrices acting in `2.N/. A mathematical study of large eigenvalues of
Jacobi matrices was initiated by J. Janas and S. Naboko in the paper [28], which
contains fundamental ideas of the method of approximate diagonalizations.
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The question of the behavior of large eigenvalues of Jacobi matrices J˙, was first
posed by E. A. Tur [43,44] and it was mentioned by A. Boutet de Monvel, S. Naboko,
and L. O. Silva in [1,2]. Due to the difficulty of the problem, the papers [1,2] give the
asymptotic estimates for a simpler class of operators (“modified Jaynes–Cummings
models”). However, using the ideas of [28], E. A. Ianovich [45] proved the two-term
asymptotic formula

�n.J
˙/ D n � g2 CO.n�1=16/ as n!1;

where ¹�n.J˙/ºn2N denotes the increasing sequence of eigenvalues of J˙ (see also
[44]). In [3, 6] we proved the three-term asymptotic formula

�n.J
˙/ D n � g2 ˙ rn CO.n

�1=2C"/ as n!1; (1.16)

where rn is given by (1.2), " > 0, and [4] explains how to recover the parameters of
the model from its spectrum. The estimate (1.16) was used to investigate the spacing
�nC1.J

˙/ � �n.J
˙/ in [34] and to consider a Braak’s conjecture in [38].

1.4.2. Problems when g! 0 and g! 1
2

. The key ingredient of this paper is given
in Lemma 2.6, where the estimate O..ˇgn/�1=2/ is obtained by means of the sta-
tionary phase method with the large parameter ˇgn. In particular, no uniform control
is possible when g ! 0. It is not a surprise, as the eigenvalues are explicit if g D 0
and (1.10) is not true in the case gD 0,�¤ 0. If gn is small, then one should choose a
quite different approach. We remark that the paper [13] gives an explicit value c� > 0
such that the n-th eigenvalue of yJ˙� is an analytic function of g if 0 � gn < c�.
Moreover, [13] describes the algorithm of obtaining the correction terms and gives
the remainder estimates, including the case of the eigenvalue crossing for g D 0.

Similarly, g! 1
2

implies ˇ! 0 and ˇgn cannot be considered as a large param-
eter. In particular, our analysis cannot be used to investigate the case g D 1

2
. This is

a natural consequence of a drastic change of spectral properties of the model when
g � 1

2
(see Section 1.4.3).

1.4.3. Remarks on the case g � 1
2

. We observe that the off-diagonal entries of the
Jacobi matrix (1.11) satisfy the Carleman condition

1X
mD0

1

Ob˙� .m/
D1

which ensures the existence of a self-adjoint extension for every g > 0 (see [42,
Lemma 2.16 and condition (2.165)]). Let yJ˙� denote this self-adjoint extension and
let Dom. yJ˙� / denote its domain equipped with the graph norm. Then Dom. yJ˙� / is
a Banach space and it is easy to see that the map x ! x is continuous `2;1.N/!
Dom. yJ˙� /.
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If 0 < g < 1
2

, then the `2;1.N/-norm is equivalent to the graph norm of yJ˙� and
Dom. yJ˙� / D `

2;1.N/ by the Janas–Naboko criterion [27, Theorem 4.1].
It appears that the spectrum of yJ˙� is the whole R when g > 1

2
(see [26, Theo-

rem 6.1]) or a half-line when gD 1
2

and�D 0 (see [39]). This implies that Dom. yJ˙� /
is strictly larger than `2;1.N/ when g � 1

2
. Indeed, in case of the equality `2;1.N/ D

Dom. yJ˙� /, the `2;1.N/-norm and the graph norm of yJ˙� are equivalent by Banach
isomorphism theorem, hence the map x ! x is compact from Dom. yJ˙� / to `2.N/
and the spectrum is discrete for any value of �.

The most interesting case g D 1
2

and � ¤ 0 corresponds to the situation called
“the spectral collapse” (see [10, 12, 14]). It appears that the spectrum is a union of a
discrete spectrum and a half-line (see [30]).

1.4.4. Integrability of the model. The fundamental question about the integrability
of the model is related to the presence of double eigenvalues (see [8,9]). The result of
this paper can be applied to prove absence of large double eigenvalues in some cases
(see the end of Section 1.3), but no information about small eigenvalues is available.
We refer to [10,14,31], where the integrability question was investigated by means of
the spectral determinant and to [32], where a different approach was developed.

1.5. Organization of the paper

Throughout the whole paper we assume 0<g < 1
2

and use the notation ˇD
p
1 � 4g2.

For simplicity, the parameter g is not written for objects and constants depending on g.
Our approach is based on an analysis of operators acting in `2.Z/. In Theo-

rem 2.3 (a) we consider the operators zJ 0
 , which are special case of operators con-
sidered by Edward [15]. In Section 2.2 we describe explicit expressions of their
eigenvalues and eigenvectors by means of the discrete Fourier transform. In Theo-
rem 2.3 (b) we give the asymptotic behavior of large eigenvalues of operators zJ ı
 ,
considered as perturbations of zJ 0
 .

In Section 3 we show that the assertion of Theorem 2.3 (b) follows from a ZOA
result stated in Proposition 3.1. The proof of Proposition 3.1 begins in Section 4 and
is completed in Section 6. In Section 7 we show how to deduce Theorem 1.3 from
Theorem 2.3. Section 8 contains auxiliary results about oscillatory integrals and per-
turbations of an isolated eigenvalue for self-adjoint operators.
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2. An auxiliary problem in `2.Z/

2.1. Behavior of large eigenvalues for auxiliary operators zJ ı


Notation 2.1. (a) If LWDom.L/! V is a linear map defined on a dense subspace of
the Banach space V , then spec.L/ denotes the spectrum of L. We write L 2 B.V/ if
and only if L has an extension to a bounded operator on V and k � kB.V/ denotes the
corresponding operator norm.

(b) We denote by `2.Z/ the complex Hilbert space of square-summable sequences
xWZ! C equipped with the scalar product

hx; yi D
X
k2Z

x.k/y.k/

and the norm kxk ´ hx; xi1=2. The norm k � kB.`2.Z// will be abbreviated k � k.
(c) For s > 0, we denote

`2;s.Z/´ ¹x 2 `2.Z/ W kxk`2;s.Z/ <1º

where

kxk`2;s.Z/´
�X
k2Z

.1C k2/sjx.k/j2
�1=2

:

(d) The canonical basis of `2.Z/ is denoted ¹ Qej ºj2Z (i.e., one has Qej .k/D ıj;k for
j;k 2Z) and `2fin.Z/ denotes the set of finite linear combinations of vectors belonging
to ¹ Qej ºj2Z.

(e) If LWDom.L/! `2.Z/ is a linear map such that `2fin.Z/ � Dom.L/, then we
use the notation

L.j; k/´ .L Qek/.j / D hQej ; L Qeki:

(f) If . Qdj /j2Z is real valued, then zD´ diag. Qdj /j2Z is the self-adjoint operator in
`2.Z/ satisfying

zD Qej D Qdj Qej for every j 2 Z;

and we denote
ƒ WD diag.j /j2Z:

(g) We denote by S the shift defined in `2.Z/ by the formula .Sx/.j /D x.j � 1/.

Definition 2.2. In what follows, 
 , ı and g are fixed real numbers.
(a) We define zJ 0
 as the linear map `2;1.Z/! `2.Z/ given by

zJ 0
 ´ ƒC g.S.ƒC 
/C .ƒC 
/S�1/ D ƒC g.S.ƒC 
/C h.c./ (2.1)
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(b) We define zJ ı
 as the linear map `2;1.Z/! `2.Z/ given by the formula

zJ ı
 ´
zJ 0
 CDı ; (2.2)

where
Dı ´ diag.ı.�1/j /j2Z: (2.3)

Using the above definition, we find that the action of zJ ı
 can be represented by the
tridiagonal Z � Z matrix0BBBBBBBBBBB@

: : :

�2C ı g.�2C 
/ 0 0 0

g.�2C 
/ �1 � ı g.�1C 
/ 0 0

0 g.�1C 
/ ı g
 0

0 0 g
 1 � ı g.1C 
/

0 0 0 g.1C 
/ 2C ı

: : :

1CCCCCCCCCCCA
whose diagonal entries ¹ Qdı.j /ºj2Z are given by

Qdı.j /´ j C ı.�1/j (2.4)

and whose off-diagonal entries ¹ Qb
 .j /ºj2Z are given by

Qb
 .j /´ g.j C 
/:

Theorem 2.3. Let zJ 0
 be given by (2.1) and zJ ı
 by (2.2)–(2.3). If 0 < g < 1
2

then

(a) the spectrum of zJ 0
 is composed of a non-decreasing sequence of eigenvalues
¹E0
;j ºj2Z of the form

E0
;j ´ ǰ C
�

 �

1

2

�
.ˇ � 1/; (2.5)

where ˇ D
p
1 � 4g2;

(b) the spectrum of zJ ı
 is composed of a non-decreasing sequence of eigenvalues
¹�j . zJ

ı

 /ºj2Z which can be labeled so that

�j . zJ
ı

 / D E

0

;j C rı
 .j /CO.j

�1 ln j / as j !1

holds with

rı
 .j / D ı
� ˇ

2�gj

�1=2
cos.4 j̨ C O�
 /; (2.6)

where E0
;j is given by (2.5), ˇ D
p
1 � 4g2, ˛ is given by (1.6), and

O�
 D
�

 �

1

2

�
.4˛ � �/C

�

4
: (2.7)
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Proof. (a) This result was proved in [15]. We describe a simplified proof in Sec-
tion 2.2.

(b) See Sections 3.2–3.3.

2.2. Diagonalization of zJ 0


In what follows, T ´ R=2�Z is identified with � � �; �� and L2.T / denotes the
Hilbert space of Lebesgue square integrable functions � � �; ��! C equipped with
the scalar product

hf; giL2.T/´

�Z
��

f .�/g.�/
d �
2�

and the norm kf kL2.T/ D hf; f i
1=2

L2.T/
. We let FT denote the isometric isomorphism

L2.T /! `2.Z/ given by

.FTf /.j / D

�Z
��

f .�/e�ij� d �
2�

and consider the operator

L0
 ´ F �1T
zJ 0
 FT D �i

d
d �
C g

�
ei�
�
�i

d
d �
C 


�
C h.c.

�
:

Similarly to [5, 15], we observe that the assumption 0 < g < 1
2

ensures the fact that
L0
 is the first order linear elliptic differential operator,

L0
 D
1

2

�
.1C 2g cos.�//

�
�i

d
d �

�
C h:c:

�
C .2
 � 1/g cos.�/

and we introduce

ˆ.�/´

�Z
0

ˇ d � 0

1C 2g cos.� 0/
: (2.8)

An easy calculation allows one to express the right-hand side of (2.8),

ˆ.�/ D 2 arctan
�s 1 � 2g

1C 2g
tan
��
2

��
if � � < � < �: (2.9)

Moreover, ˆ.�/ D � and ˆ is odd, i.e., ˆ.��/ D �ˆ.�/. We can use ˆ to define a
diffeomorphism T ! T and consider the change of variable � D ˆ.�/ to define the
unitary operator acting in L2.T / according to the formula

.Uˆf /.�/ D ˆ
0.�/1=2f .ˆ.�//:
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A direct computation (see [5]) gives

U�1ˆ L0
Uˆ D ˇ
�
�i

d
d �
C q
 .�/

�
(2.10)

with
q
 .�/´ ˇ�1.2
 � 1/g cos.ˆ�1.�//: (2.11)

In the following, q
 is given by (2.11) and

Qq
 .�/´

�Z
0

q
 .�
0/ d �0:

We claim that
Qq
 .ˆ.�// D

�

 �

1

2

�
.� � ˇ�1ˆ.�//: (2.12)

Indeed,

d
d �
. Qq
 .ˆ.�/// D q
 .ˆ.�//ˆ

0.�/ D
.2
 � 1/g cos.�/

ˇ

ˇ

1C 2g cos.�/

D
2
 � 1

2

�
1 �

1

1C 2g cos.�/

�
D

�

 �

1

2

�
.1 � ˇ�1ˆ0.�//

implies Qq
 .ˆ.�//D
�

 � 1

2

�
.� � ˇ�1ˆ.�//CC0 and C0 D 0 holds due toˆ.0/D 0

and Qq
 .ˆ.0// D Qq
 .0/ D 0.
Using ˆ.˙�/ D ˙� in (2.12), we compute

hq
 i ´
Qq
 .�/ � Qq
 .��/

2�
D

�

 �

1

2

�
.1 � ˇ�1/: (2.13)

Further on, we are going to use the function

'
 .�/´ hq
 iˆ.�/ � Qq
 .ˆ.�//: (2.14)

Using (2.13) and (2.12) in (2.14), we find the expression

'
 .�/ D
�

 �

1

2

�
.ˆ.�/ � �/: (2.15)

In what follows, we define .fq
 ;j /j2Z to be the orthonormal basis in L2.T / given by

fq
 ;j .�/ D eij�ei.hq
 i��Qq
 .�//

We remark that �!hq
 i�� Qq
 .�/ is a smooth 2�-periodic function and (see [7,15]),
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for every j 2 Z, we get

ˇ
�
�i

d
d �
C q


�
fq
 ;j D E

0

;jfq
 ;j ; (2.16)

where E0
;j D ˇ.j C hq
 i/ D ǰ C
�

 � 1

2

�
.ˇ � 1/ is given by (2.5). Combining

(2.16) with (2.10), we obtain

Corollary 2.4. Let ¹f 0
;j ºj2Z be the orthonormal basis of L2.T / given by

f 0
;j .�/´ .Uˆfq
 ;j /.�/ D ˆ
0.�/1=2eijˆ.�/ei'
 .�/; (2.17)

where '
 is given by (2.15). Then

L0
f
0

;j D E

0

;jf

0

;j (2.18)

holds with E0
;j given by (2.5).

It is clear that the assertion of Theorem 2.3 (a) follows from Corollary 2.4. Indeed,
using (2.18) and zJ 0
 D FTL

0

F �1T , we get

zJ 0
 u
0

;j D E

0

;ju

0

;j with u0
;j ´ FTf

0

;j : (2.19)

2.3. An auxiliary estimate

Notation 2.5. (a) For f 2 L2.T /, we write T�f ´ f ı �� with �� WT ! T given
by

��.� C 2�Z/´ � C � C 2�Z

(b) For j , n 2 Z, we denote

V ı
 .j; n/´ ıhf 0
;j ; T�f
0

;niL2.T/; (2.20)

where f 0
;j is given by (2.17).

Lemma 2.6. Let

yC
 ´ 8.gˇ
p
3/�1=2.2j2
 � 1j C 5��1/:

Then the estimate

sup
¹k2ZWjkj�gnº

jV ı
 .nC k; n/j � jıj
yC
n
�1=2

holds for every n 2 N such that n � .gˇ/�1.
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Proof. We proeceed in four steps.

Step 1. By definition (2.20),

V ı
 .n; nC k/ D
ı

2�

�Z
��

einˆ�i.nCk/T�ˆei.'
�T�'
 /.ˆ0/1=2.T�ˆ
0/1=2: (2.21)

In what follows, 	 denotes a real interval and, for h;‰ 2 C 1.	/, we denote

�h	 .‰/´

Z
	

ei‰.�/h.�/ d �:

The equality (2.21) can be written in the form

V ı
 .n; nC k/ D
ı

2�
�
h

Œ��;��

.nˇ‰k=n/

with 8<:‰k=n´ ˇ�1
�
ˆ �

�
1C

k

n

�
T�ˆ

�
;

h
 .�/´ Qh
 .�/ei 
 .�/;

(2.22)

where ´
Qh
 ´ .ˆ0/1=2.T�ˆ

0/1=2;

 
 ´ '
 � T�'
 ;

and '
 given by (2.15). We observe that

jh
 .�/j D Qh
 .�/ D ˇ.1 � 4g
2 cos2 �/�1=2 � 1;

‰0k=n.�/ D
1

1C 2g cos �
�

1C k
n

1 � 2g cos �
; (2.23)

‰00k=n.�/ D
� 1

.1C 2g cos �/2
C

1C k
n

.1 � 2g cos �/2

�
� 2g sin �: (2.24)

Step 2. We claim that if jkj < n
2

and 	 D
�
�
3
; 2�

3

�
, then

j�
h

	
.nˇ‰k=n/j �

8

.nˇg
p
3/1=2

�
1C

Z
	

jh0
 j

�
: (2.25)

Assume that jkj < n
2

. If � 2 Œ0; ��, then sin � � 0 and using (2.24), we get

k � 0) ‰00k=n.�/ � ‰
00
0.�/ � 4g sin �; (2.26)
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due to the convexity inequality 1
2
..1 � t /�2 C .1C t /�2/� 1 for 0 < t � 1. Similarly,

0 �
k

n
� �

1

2
H) ‰00k=n.�/ �

�
1C

k

n

�
‰000.�/ �

1

2
‰000.�/ � 2g sin �: (2.27)

If � 2
�
�
3
; 2�

3

�
, then sin � �

p
3
2

and (2.26)–(2.27) imply j‰00
k=n
.�/j � g

p
3. Thus,

nˇj‰00
k=n
j � nˇg

p
3 and we complete the proof of (2.25), using Lemma 8.1 (b) with

� D nˇg
p
3 and ‰ D ‰k=n

�
.

Step 3. We claim that if jkj < gn and 	 D
�
0; �

3

�
, then

j�
h

	
.nˇ‰k=n/j �

6

nˇg

�
1C

Z
	

jh0
 j

�
: (2.28)

Indeed, due to (2.23),

�‰0k=n.�/ D
4g cos � C .1C 2g cos �/k

n

1 � 4g2 cos2 �
� 4g cos � C .1C 2g cos �/

k

n
;

and jkj
n
< g ensures

4g cos � C .1C 2g cos �/
k

n
� 4g cos � � .1C 2g cos �/g D

D .2 � g/ � 2g cos � � g � .2 � g/g � g �
g

2
;

where we used that cos � � 1
2

holds for � 2
�
0; �

3

�
and g < 1

2
. Since ‰00

k=n
.�/ � 0

and nˇj‰0
k=n
.�/j � nˇ g

2
, we complete the proof of (2.28), using Lemma 8.1 (a) with

� D nˇ g
2

and ‰ D ‰k=n
�

.

Step 4. We first observe that (2.25) holds when 	 D
�
�2�

3
;��

3

�
as well. Similarly,

(2.28) holds when 	D
�
�
�
3
;0
�

and when 	D˙
�
2�
3
;�
�
. Since the condition nˇg� 1

implies 6.nˇg/�1 < 8.nˇg
p
3/�1=2, we can replace the right-hand side of (2.28) by

the right-hand side of (2.25) and, combining these six estimates, we get

j�
h

Œ��;��

.nˇ‰k=n/j �
8

.nˇg
p
3/1=2

�
6C

�Z
��

jh0
 j

�
:

To complete the proof, it suffices to show the estimate

�Z
��

jh0
 j � 4C 4�j2
 � 1j: (2.29)
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We first claim that
�Z
��

j Qh0
 j � 4: (2.30)

Indeed, Qh
 is monotonic on˙
�
0; �

2

�
and˙

�
�
2
; �
�
, hence 0 < Qh
 � 1 impliesZ

˙Œ0;�=2�

j Qh0
 j � 1 and
Z

˙Œ�=2;��

j Qh0
 j � 1:

We next observe that  0
 D '
0

 � T�'

0

 holds with '0
 .�/ D

�

 � 1

2

�
.ˆ0 � 1/ and

�Z
��

j 0
 j � 2

�Z
��

j'0
 j �

�Z
��

2j
 �
1

2
j.ˆ0 C 1/ D 4�j2
 � 1j: (2.31)

The estimate (2.29) follows from jh0
 j � j Qh
0

 j C j 

0

 j, (2.30) and (2.31).

3. A ZOA remainder estimate with explicit constants

3.1. Statement of the result

The assertion of Theorem 2.3 is a variant of the ZOA (zeroth order approximation)
method considered in [18]. Its idea consists in using the diagonal entries of a per-
turbation as the first correction for eigenvalues of a perturbed diagonal matrix. In
Section 3.2 and 3.3 we will show that Theorem 2.3 follows from.

Proposition 3.1. Let J W `2;1.Z/! `2.Z/ be given by the formula

J D ƒC V;

where ƒ D diag.j /j2Z and V 2 B.`2.Z// is a self-adjoint operator satisfying the
estimate

sup
¹k2ZWjkj� Ocjnjº

jV.nC k; n/j � yC jnj�1=2 for n � O�; (3.1)

where O� > 0, yC > 0, and 0 < Oc < 1 are some constants independent of n. Denote

�´ max¹O�; 64 yC 2; 8kV k2.3C 2kV k/2.128 yC 2 C Oc�1/º: (3.2)

Then

(a) the spectrum of J is composed of a non-decreasing sequence of eigenvalues
¹�j .J /ºj2Z which can be labeled so that for n > � C 1C kV k one has

n �
3

8
< �n.J / < nC

3

8
I (3.3)
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(b) if n > � C 1C kV k, then the estimate

j�n.J / � n � V.n; n/j �
zC C 4 yC 2.1C lnn/

n
(3.4)

holds with

zC ´ .16 yC 2 C .8 Oc/�1/kV k.1C 128kV k/C 2kV k2yc�1: (3.5)

Proof. (a) See Section 5.
(b) See Section 6.

3.2. Proof of Theorem 2.3 (b)

In what follows, we describe how to deduce the assertion of Theorem 2.3 (b) from
Proposition 3.1. We begin by introducing zU
 , the unitary operator in `2.Z/ satisfying
zU
 Qej D u

0

;j , where ¹ Qej ºj2Z is the canonical basis of `2.Z/ and ¹u0
;j ºj2Z is the basis

introduced in (2.19). We claim that the hypotheses of Proposition 3.1 are satisfied if

J D zU�1

zJ ı

zU
 ;

where zJ ı
 is as in Definition 2.2. Indeed, if ˇ D
p
1 � 4g2 and

ˇ
 D
�

 �

1

2

�
.ˇ � 1/;

then E0j D ǰ C ˇ
 , hence (2.19) gives

zU�1

zJ 0

zU
 D ˇƒC ˇ


and
zU�1

zJ ı

zU
 D ˇƒC ˇ
 C V

ı



holds with
V ı
 ´

zU�1
 Dı zU
 ;

where Dı D diag.ı.�1/j /j2Z (see (2.3)). Therefore,

h Qej ; V
ı

 Qeki D hu

0
j;
 ;Dıu

0
j;
 i D hf

0
j;
 ;F

�1
T DıFTf

0
j;
 iL2.T/; (3.6)

where we used u0j;
 D FTf
0
j;
 and the isometry FT . Since F �1T DıFT D ıT� holds

with T� introduced in Notation 2.5, (3.6) gives

h Qej ; V
ı

 Qeki D V

ı

 .j; k/
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with V ı
 .�; �/ expressed by (2.20). We observe that Proposition 3.1 can be applied to

V D ˇ�1V ı
 D V
ı=ˇ

 and

J ´ zU�1
 ˇ�1. zJ ı
 � ˇ
 /
zU
 D ƒC ˇ

�1V ı
 :

Indeed, Lemma 2.6 ensures that V D V ı=ˇ
 satisfies the estimate (3.1) with Oc D g and
yC D yCı;
 given by

yCı;
 D ˇ
�1
jıj yC
 D 8jıj.g

p
3/�1=2ˇ�3=2.2j2
 � 1j C 5��1/: (3.7)

Taking
�j . zJ

ı

 / D ˇ�j .J /C ˇ
 ; (3.8)

we get the non-decreasing sequence of eigenvalues of zJ ı
 satisfying

j�n. zJ
ı

 / �E

0

;n � V

ı

 .n; n/j D ˇj�n.J / � n � V

ı=ˇ

 .n; n/j: (3.9)

Due to Proposition 3.1, the quantity (3.9) is O.n�1 ln n/ as n!1 and, to complete
the proof of Theorem 2.3 (b), it remains to prove the estimate

V ı
 .n; n/ D rı
 .n/CO.n
�1/ as n!1; (3.10)

where rı
 is given by (2.6)–(2.7). The proof of (3.10) is given in Section 3.3.
Moreover, combining (3.9) with the assertions of Proposition 3.1 we obtain

Corollary 3.2. Let zJ ı
 and E0
;n be as in Theorem 2.3.

(a) If yCı;
 is given by (3.7) and

�ı;
 ´ max¹.gˇ/�1; 64 yC 2ı;
 ; 8ı
2ˇ�2.3C 2jıjˇ�1/.128 yC 2ı;
 C g

�1/º;

(3.11)
then the spectrum of zJ ı
 is composed of a non-decreasing sequence of eigen-
values ¹�j . zJ ı
 /ºj2Z which can be labeled so that

E0
;n �
3

8
ˇ < �n. zJ

ı

 / < E

0

;n C

3

8
ˇ (3.12)

holds for n > �ı;
 C 1C
ˇ̌
ı
ˇ

ˇ̌
.

(b) If n > �ı;
 C 1C
ˇ̌
ı
ˇ

ˇ̌
, then the estimate

j�n. zJ
ı

 / �E

0

;n � V

ı

 .n; n/j �

zCı;
 C 4ˇ yC
2
ı;

.1C lnn/

n
(3.13)

holds with

zCı;
 ´ .16 yC 2ı;
 C .8g/
�1/.jıj C 128ı2ˇ�1/C 2ı2ˇ�1g�1: (3.14)
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Proof. We observe that �ı;
 is obtained from � expressed by (3.2) with yC D yCı;

given by (3.7) and

kV k D kV ı=ˇ
 k D kDı=ˇk D
ˇ̌̌ ı
ˇ

ˇ̌̌
:

Therefore, (3.8) and (3.3) imply (3.12) for n > �ı;
 C 1C
ˇ̌
ı
ˇ

ˇ̌
.

Similarly, (3.4) allows us to estimate the quantity (3.9) by the right-hand side of
(3.13) with zCı;
 D ˇ zC where zC is given by (3.5) with yC D yCı;
 and kV k D

ˇ̌
ı
ˇ

ˇ̌
.

3.3. Proof of (3.10)

We can express

V ı
 .n; n/ D ı

�Z
��

ein‰.�/h
 .�/
d �
2�
; (3.15)

where ‰ ´ ˆ � T�ˆ with ˆ given by (2.8), h
 D
p
ˆ0T�ˆ0ei'
�iT�'
 with '


given by (2.15), and T� is the translation defined in Notation 2.5.
Using k D 0 in (2.22) and (2.23)–(2.24), we find that ‰ D ˇ‰0 has two non-

degenerated critical points˙�
2

. Applying the stationary phase formula, we obtain

V ı
 .n; n/ D ı
X
�D˙1

h

�
� �
2

�
ein‰.��=2/Ci��=4q

2�n
ˇ̌
‰00
�
� �
2

�ˇ̌ CO.n�1/: (3.16)

Since ˆ is odd, we get

‰
�
˙
�

2

�
D ˆ

�
˙
�

2

�
�ˆ

�
�
�

2

�
D 2ˆ

�
˙
�

2

�
D ˙2ˆ

��
2

�
D ˙4˛ (3.17)

where (2.9) was used to write ˆ
�
�
2

�
D 2˛ with ˛ given by (1.6). Denote

Q�
 ´ '


��
2

�
D

�

 �

1

2

��
2˛ �

�

2

�
(see (2.15)). Then

 


�
˙
�

2

�
D ˙2'


��
2

�
D ˙2 Q�


and
h


�
˙
�

2

�
D ˇe˙2i Q�
 ; (3.18)

hence we get two conjugated terms corresponding to � D ˙1 in (3.16). Therefore,
using (3.18), (3.17), and j‰00

�
˙
�
2

�
j D 4gˇ in (3.16), we get

V ı
 .n; n/ D ı
2Re.ˇe2i Q�
 ei4n˛Ci�=4/p

2�n � 4gˇ
CO.n�1/

D ı

p
ˇ cos

�
4n˛ C 2 Q�
 C

�
4

�
p
2�ng

CO.n�1/:
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To complete the proof of (3.10), we observe that

O�
 D 2 Q�
 C
�

4
D

�

 �

1

2

�
.4˛ � �/C

�

4

as claimed in (2.7).

4. Auxiliary operators Qn and Qn;�

4.1. Definitions

In what follows, we introduce auxiliary self-adjoint bounded operators ¹Qnºn2Z (see
Definition 4.2 and Lemma 4.3) and for � � 0, we define

Qn;� ´
X

i2Z\Œ��;��

QnCi : (4.1)

In Section 5, the spectrum of J will be investigated via an analysis of operators

J 0n;� ´ e�iQn;�J eiQn;� :

Notation 4.1. For n 2 Z and � � 0, we consider the orthogonal decomposition

`2.Z/ D yHn;� ˚
zHn;�

where
yHn;� D span¹ QenCiºi2Z\Œ��;��; zHn;� D . yHn;�/

?:

We define y…n;� 2 B.`2.Z// (respectively z…n;� 2 B.`2.Z//) as the orthogonal pro-
jection on yHn;� (respectively on zHn;�). If � D 0, then we abbreviate

yHn;0 D
yHn; zHn;0 D

zHn; y…n;0 D y…n; z…n;0 D z…n:

Definition 4.2. Let V 2 B.`2.Z// be a self-adjoint operator satisfying the assump-
tions of Proposition 3.1. For n 2 Z we define the matrix .Qn.j; k//.j;k/2Z2 by

Qn.j; k/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

i
V.j; n/

j � n
when j ¤ n and k D n;

i
V.n; k/

n � k
when j D n and k ¤ n;

0 otherwise.

(4.2)

Then Qn.k; j / D Qn.j; k/ and

Qn.j; k/ ¤ 0 H) .either .j ¤ n and k D n/ or .j D n and k ¤ n//: (4.3)
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Lemma 4.3. Under the assumptions of Proposition 3.1, we can define a self-adjoint
operatorQn 2B.`2.Z// such that .Qn Qek/.j /DQn.j;k/ holds with .Qn.j;k//j;k2Z

given by Notation 4.1 and

kQnk
2
� 4 yC 2n�1 C Oc�2kV k2n�2

holds for n � O�.

Proof. We first observe that

kQn y…nk
2
D kQnenk

2
D

X
j2Z

jQn.j; n/j
2
�

X
j2Zn¹nº

jV.j; n/j2

.j � n/2
�Mn CM0n

holds with

Mn´

X
¹j2ZW0<jj�nj� Ocnº

jV.j; n/j2

.j � n/2
�

X
m2Zn¹0º

yC 2n�1

m2
D
�2 yC 2

3n
<
4 yC 2

n

due to (3.1) and

M0n´
X

¹j2ZWjj�nj> Ocnº

jV.j; n/j2

.j � n/2
�

X
j2Z

jV.j; n/j2

yc2n2
D
kV Qenk

2

Oc2n2
�
kV k2

Oc2n2
:

We observe that (4.3) implies

y…nQn y…n D 0 D z…nQn z…n

and
Qn D z…nQn y…n C y…nQn z…n:

Therefore,
hx;Qnyi D h z…nx;Qn y…nyi C hQn y…nx; z…nyi

and

jhx;Qnyij � kQn y…nk.k z…nxkk y…nyk C k y…nxkk z…nyk/

� kQn y…nkkxkkyk;

i.e., kQnk2 D kQn y…nk
2 �Mn CM0n.
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4.2. Properties of Qn and Qn;�

Lemma 4.4. Let Qn 2 B.`2.Z// be as in Lemma 4.3 and Qn;� given by (4.1). Then

(a) the subspace `2;1.Z/ is invariant for Qn and for every x 2 `2;1.Z/,

iŒQn; ƒ�x D i.Qnƒ �ƒQn/x D Vnx (4.4)

holds with
Vn´ z…nV y…n C y…nV z…nI (4.5)

(b) if Qn;� is given by (4.1), then the subspace `2;1.Z/ is invariant for eitQn;�

and t ! eitQn;�x is of class C1.RI `2;1.Z// if x 2 `2;1.Z/.

Proof. (a) Let Vn be given by (4.5). Then one has

Vn.j; k/ D .Vn Qek/.j / D

8̂<̂
:
V.j; n/ when j ¤ n and k D n;

V .n; k/ when j D n and k ¤ n;

0 otherwise,

(4.6)

and combining (4.6) with (4.2) we obtain

i.j � k/Qn.j; k/ D �Vn.j; k/ for every j; k 2 Z: (4.7)

However, (4.7) implies

i
�
j C

1

2

�
.Qn Qek/.j / D i

�
Qn

�
k C

1

2

�
Qek

�
.j / � .Vn Qek/.j / (4.8)

and ensures Qn Qek 2 `2;1.Z/. Moreover, (4.8) ensures the equality

i
�
ƒC

1

2

�
Qnx D iQn

�
ƒC

1

2

�
x � Vnx (4.9)

for x 2 `2fin.Z/. If y 2 `2fin.Z/, then using (4.9) with x D
�
ƒC 1

2

��1
y, we obtain

i
�
ƒC

1

2

�
Qn

�
ƒC

1

2

��1
y D iQ0ny (4.10)

with Q0n 2 B.`2.Z// given by

Q0n´ Qn C iVn
�
ƒC

1

2

��1
:

Due to (4.10), for every y 2 `2fin.Z/ one has

iQn
�
ƒC

1

2

��1
y D i

�
ƒC

1

2

��1
Q0ny (4.11)
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and by continuity, (4.11) holds for every y 2 `2.Z/. Consider now x 2 `2;1.Z/ and
take y D

�
ƒC 1

2

�
x in (4.11). This gives

iQnx D i
�
ƒC

1

2

��1
Q0n

�
ƒC

1

2

�
x 2 `2;1.Z/

and
i
�
ƒC

1

2

�
Qnx D iQ0n

�
ƒC

1

2

�
x D iQn

�
ƒC

1

2

�
x � Vnx;

implying (4.4) for every x 2 `2;1.Z/.
(c) We observe that (4.11) holds for every y 2 `2.Z/ and implies (4.10) for every

y 2 `2.Z/. If Q0n;� ´
P
i2Z\Œ��;��Q

0
nCi , then (4.10) implies

.Q0n;�/
my D

�
ƒC

1

2

�
.Qn;�/

m
�
ƒC

1

2

��1
y

for every m 2 N and y 2 `2.Z/. Therefore,

eitQn;�
�
ƒC

1

2

��1
y D lim

N!1

NX
mD0

.it /m

mŠ
.Qn;�/

m
�
ƒC

1

2

��1
y D

D lim
N!1

NX
mD0

.it /m

mŠ

�
ƒC

1

2

��1
.Q0n;�/

my

D

�
ƒC

1

2

��1
eitQ0n;�y 2 `2;1.Z/

if y 2 `2.Z/ and setting x D
�
ƒ C 1

2

��1
y, we find that t !

�
ƒ C 1

2

�
eitQn;�x D

eitQ0n;�y is C1.RI `2.Z// for every x 2 `2;1.Z/.

5. Proof of Proposition 3.1 (a)

5.1. Taylor’s expansion formula

Assume that B and Q 2 B.`2.Z// and denote

FtQ.B/´ e�itQBeitQ for t 2 R;

ad0iQ.B/´ B;

ad1iQ.B/´ ŒB; iQ� D i.BQ �QB/;

and

admC1iQ .B/´ ŒadmiQ.B/; iQ� for m 2 N�:
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Then
dm

d tm
FtQ.B/ D e�itQadmiQ.B/e

itQ
D FtQ.admiQ.B//

and the Taylor formula gives

FtQ.B/ D

N�1X
mD0

tm

mŠ
admiQ.B/CR

t;N
Q .B/ (5.1)

with

R
t;N
Q .B/´

tN

.N � 1/Š

1Z
0

FstQ.adNiQ.B//.1 � s/
N�1 d s: (5.2)

We can also consider the case when B is an unbounded symmetric operator in `2.Z/,
defined on a dense domain Dom.B/. Suppose that Dom.B/ is an invariant subspace
forQ and eitQ for every t 2R. If t!BeitQx isC 1.R; `2.Z// for every x 2Dom.B/,
then

d
d t
heitQx;BeitQyi D hBeitQx; iQeitQyi C hiQeitQx;BeitQyi

holds for every x, y 2 Dom.B/. If the form .x; y/! hBx; iQyi C hiQx; Byi can
be extended from Dom.B/ �Dom.B/ to a bounded form on `2.Z/ � `2.Z/, then we
can introduce ŒB; iQ� 2 B.`2.Z// defined by this form and we can write

d
d t
FtQ.B/ D e�itQŒB; iQ�eitQ

D FtQ.ŒB; iQ�/

and (5.1)–(5.2) still hold for every N 2 N n ¹0º.

5.2. A similarity transformation

In what follows, Vn are as in Lemma 4.4 (a) and

Vn;� ´ �Œƒ; iQn;�� D
X

i2Z\Œ��;��

VnCi : (5.3)

Then
V � Vn;� D yVn;� ˚ zV n;� (5.4)

holds with
yVn;� WD

X
i2Z\Œ��;��

V.nC i; nC i/ y…nCi (5.5)

and
zV n;� ´ z…n;�Vn;�j zHn;�

: (5.6)
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We claim that the operator

J 0n;� ´ e�iQn;�.ƒC V /eiQn;� (5.7)

can written in the form

J 0n;� D ƒC .
yVn;� ˚ zV n;�/CRn;� (5.8)

with
kRn;�k � 4kV kkQn;�k: (5.9)

To prove this claim, we first observe that (5.1)–(5.2) with N D 1 and N D 2 respec-
tively, imply

e�iQn;�V eiQn;� D V CR
1;1
Qn;�

.V /; (5.10)

e�iQn;�ƒeiQn;� D ƒC Œƒ; iQn;��CR
1;2
Qn;�

.ƒ/; (5.11)

and, combining (5.10)–(5.11) with (5.3), we get

J 0n;� D ƒC V � Vn;� CR
1;1
Qn;�

.V /CR
1;2
Qn;�

.ƒ/:

Due to (5.4), we get (5.8) withRn;� DR
1;1
Qn;�

.V /CR
1;2
Qn;�

.ƒ/ and (5.9) follows from

kR
1;1
Qn;�

.V /k � kŒV;Qn;��k � 2kV kkQn;�k

kR
1;2
Qn;�

.ƒ/k �
1

2
kŒVn;�;Qn;��k � kVn;�kkQn;�k

and kVn;�k � kV � Vn;�k C kV k � 2kV k.

5.3. A condition for kRn;�k < 1
4

Let Rn;� be as is Section 5.2 and

C0´ 4 yC 2 C .32 Oc/�1: (5.12)

We claim that kRn;�k < 1
4

holds if � � 1
2

and

n � � > max¹O�; 256.2�C 1/2C0kV k2º: (5.13)

In order to prove this claim, we first observe that, using C0 � .32 Oc/�1 in (5.13) and
� � 1

2
) .2�C 1/2 � 4, we can estimate

n � � > 256.2�C 1/2C0kV k
2
� 1024.32 Oc/�1kV k2 D 32 Oc�1kV k2;

hence
Oc�1kV k2

n � �
<
1

32
: (5.14)
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Moreover,

kQn;�k �
X

i2Z\Œ��;��

kQnCik � .1C 2�/
� 4 yC 2
n � �

C
Oc�2kV k2

.n � �/2

�1=2
(5.15)

where the last estimate is due to Lemma 4.3. However, using (5.14) to estimate the
last term of (5.15), we get

kQn;�k
2
� .1C 2�/2C0.n � �/

�1: (5.16)

Combining (5.9) with (5.16), we find

kRn;�k
2
� 16kQn;�k

2
kV k2 �

16.1C 2�/2C0kV k
2

n � �
(5.17)

and the assumption (5.13) allows us to estimate the right-hand side of (5.17) by 1
16

,
i.e., we obtain kRn;�k2 < 1

16
.

5.4. End of the proof of Proposition 3.1 (a)

Let yVn;� and zVn;� be as in (5.5)–(5.6). Then

ƒC V � Vn;� D yJn;� ˚ zJn;�

holds with

yJn;� D ƒj yHn;�
C yVn;� and zJn;� D ƒj zHn;� C

zVn;�:

In what follows, we assume � D kV k C 1. Thus, the assumption n > � C 1C kV k D
� C � implies n � � > � � max¹O�; 64 yC 2º and this inequality ensures that

ji j � �) jV.nC i; nC i/j � yC.n � i/�1=2 � yC.n � �/�1=2 �
1

8
: (5.18)

However, yJn;� is similar to diag.nC i CV.nC i;nC i//i2Z\Œ��;�� and (5.18) ensures

spec. yJn;�/ \
h
n �

5

8
; nC

5

8

i
D ¹nC V.n; n/º �

h
n �

1

8
; nC

1

8

i
:

Moreover, k zVn;�k � kV k implies

spec. zJn;�/ �
[

i2ZnŒ��;��

ŒnC i � kV k; nC i C kV k�

and the choice � D kV k C 1 ensures

spec. zJ n;�/ \
h
n �

5

8
; nC

5

8

i
D ;:
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Using spec. yJn;� ˚ zJ n;�/ D spec. yJn;�/ [ spec. zJ n;�/, we get

spec. yJn;� ˚ zJ n;�/ \
h
n �

5

8
; nC

5

8

i
D ¹nC V.n; n/º:

Let � be given by (3.2). Then

� � 8kV k2.3C 2kV k/2.128 yC 2 C Oc�1/ D 256C0.2�C 1/
2
kV k2

if � D kV k C 1 and C0 is given by (5.12). Thus, n > � C 1C kV k ensures that the
condition (5.13) is satisfied, hence kRn;�k < 1

4
holds. We can write

J 0n;� D
yJn;� ˚ zJn;� CRn;�;

and apply Lemma 8.2 (a) to the operators L D yJn;� ˚ zJ n;�, R D Rn;�, taking � D
nC V.n; n/, d 0 D n � 5

8
, d 00 D nC 5

8
and � D 1

4
. We obtain

spec.J 0n;�/ \
h
n �

1

2
; nC

1

2

i
D ¹�0º

and

n �
3

8
< nC V.n; n/ � kRn;�k � �

0
� nC V.n; n/C kRn;�k < nC

3

8
:

Since spec.J 0n;�/ D spec.J /, we can identify �0 D �n.J / if n > � C 1C kV k.

6. Proof of Proposition 3.1 (b)

6.1. Use of the Kato–Temple estimate

We continue our investigation of the operator J satisfying the assumptions of Proposi-
tion 3.1. In Section 5 we proved the assertion (a) that allows us to label the eigenvalue
sequence ¹�j .J /ºj2Z so that (3.3) holds for n > � C 1C kV k. In what follows, we
use (5.7) with � D 0 and consider

J 0n´ e�iQn.ƒC V /eiQn ;

where Qn D Qn;0 and J 0n D J
0
n;0. We also abbreviate yVn D yVn;0, zV n D zV n;0, Rn D

Rn;0 and write
J 0n D ƒC

yVn ˚ zV n CRn: (6.1)

We recall that n > �C 1CkV k ensures jV.n;n/j< 1
8

and we get kRnk< 1
4

similarly
to the estimate kRn;�k < 1

4
proved in Section 5. We introduce

�n´ J 0n.n; n/ D hQen; J
0
n Qeni
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and claim that
j�n.J / � �nj � 32kRnk

2: (6.2)

In order to prove (6.2), we observe that (6.1) implies

J 0n Qen D .nC V.n; n// Qen CRn Qen;

hence
�n D nC V.n; n/CRn.n; n/ 2

h
n �

3

8
; nC

3

8

i
(6.3)

due to jV.n; n/j � 1
8

and kRnk < 1
4

. Writing

.J 0n � �n/ Qen D .nC V.n; n/ � �n/ Qen CRn Qen;

we get

k.J 0n � �n/ Qenk � jnC V.n;n/� �nj C kRnk D jRn.n;n/j C kRnk � 2kRnk: (6.4)

We will complete the proof, using the Kato–Temple estimate stated in Theorem 8.3.
More precisely, writing (8.10) with d 0 D n� 1

2
, d 00 D nC 1

2
, �D �n.J 0n/ and �D �n,

we get
j�n.J

0
n/ � �nj � 8k.J

0
n � �n/enk

2 (6.5)

due to (6.3), which ensures min¹� � d 0; d 00 � �º � 1
8

. It remains to observe that (6.4)
allows us to estimate the right-hand side of (6.5) by 32kRnk2 and �n.J 0n/ D �n.J /.

6.2. An analysis of Rn

We will refine the estimate kRnk � 4kV kkQnk from Section 5. We claim that

Rn D
h
V �

1

2
Vn; iQn

i
CR0n

holds with
kR0nk � 4kQnk

2
kV k: (6.6)

In order to prove (6.6), we observe that (5.1)–(5.2) with N D 2 gives

e�iQnV eiQn D V C ŒV; iQn�CR
1;2
Qn
.V / (6.7)

and (5.1)–(5.2) with N D 3 gives

e�iQnƒeiQn D ƒC Œƒ; iQn�C
1

2
ŒŒƒ; iQn�; iQn�CR

1;3
Qn
.ƒ/: (6.8)

Using Œƒ; iQn� D �Vn and summing up (6.7) and (6.8), we obtain

e�iQnJ eiQn D ƒC V � Vn C
h
V �

1

2
Vn; iQn

i
CR0n
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with
R0n D R

1;2
Qn
.V /CR

1;3
Qn
.ƒ/: (6.9)

However,

kR
1;2
Qn
.V /k �

1

2
kad2iQn.V /k � 2kQnk

2
kV k;

kR
1;3
Qn
.ƒ/k �

1

6
kad3iQn.ƒ/k D

1

6
kad2iQn.Vn/k �

2

3
kQnk

2
kVnk (6.10)

and combining (6.9)–(6.10), we get

kR0nk � kQnk
2
�
2kV k C

2

3
kVnk

�
:

It remains to observe that kVnk � kV � Vnk C kV k � 2kV k.

6.3. An estimate of Wn D
�
V � 1

2
Vn; iQn

�
We introduce

Wn´
h
V �

1

2
Vn; iQn

i
and consider Wn.n; n/ D .Wn Qen/.n/. We claim that

n > � C 1C kV k ) jWn.n; n/j �
2kV k2 Oc�1 C 4 yC 2.1C lnn/

n
: (6.11)

In order to prove (6.11), we denote V 0n´ V � 1
2
Vn and observe that

jV 0n.j; k/j � jV.j; k/j

holds for every j; k 2 Z. Thus, we can estimate

j.V 0nQn/.n; n/j �
X
j2Z

jV.n; j /Qn.j; n/j �
X

j2Zn¹nº

jV.j; n/j2

jj � nj
�Mn CM0n

with

Mn´

X
¹j2ZWjj�nj> Ocnº

jV.j; n/j2

jj � nj
�

X
j2Z

jV.j; n/j2

Ocn
D
kV Qenk

2

Ocn
�
kV k2

Ocn
;

M0n´
X

¹j2ZW0<jj�nj� Ocnº

jV.j; n/j2

jj � nj
�

X
¹m2ZW0<jmj� Ocnº

yC 2n�1

jmj
� 2.1C lnn/

yC 2

n

where we used (3.1).
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6.4. End of the proof of Proposition 3.1 (b)

We first write

j�n.J / � n � V.n; n/j � j�n.J / � �nj C j�n � n � V.n; n/j: (6.12)

Using (6.12), (6.2), and �n � n� V.n;n/D Rn.n; n/DWn.n; n/CR0n.n; n/, we get

j�n.J / � n � V.n; n/j � 32kRnk
2
C kR0nk C jWn.n; n/j: (6.13)

Due to (5.9) and (6.6),

32kRnk
2
C kR0nk � 32.4kQnkkV k/

2
C 4kQnk

2
kV k (6.14)

Since the assumptions of Proposition 3.1 imply that (5.14) holds with � D 0, hence
the estimate (5.16) holds with � D 0, i.e., one has

kQnk
2
� C0n

�1 for n > � C 1C kV k: (6.15)

Using (6.15) in (6.14), we obtain

32kRnk
2
C kR0nk � 4C0kV k.1C 128kV k/n

�1: (6.16)

Using (6.16) and (6.11), we find that the right-hand side of (6.13) can be estimated by
the right-hand side of (3.4), which completes the proof of Proposition 3.1.

7. Proof of Theorem 1.3

7.1. Step 1 of the proof of Theorem 1.3

Notation 7.1. (a) We let yS 2 B.`2.N// denote the shift given by ySej D ejC1 and
yS� denotes the adjoint of yS .

(b) We introduce yƒ D diag.j /j2N defined as the linear map `2;1.N/! `2.N/

satisfying yƒej D jej for every j 2 N.
(c) If bWN!R, then b.yƒ/´ diag.b.j //j2N is the self-adjoint operator in `2.N/

satisfying b.yƒ/ej D b.j /ej for every j 2 N.

Definition 7.2. For � D 0, 1, we define yJ˙� W `
2;1.N/! `2.N/ by the formula

yJ˙� D
Od˙� .
yƒ/C yS Ob�.yƒ/C Ob�.yƒ/ yS

�;

with ¹ Od˙� .m/ºm2N , ¹ Ob˙� .m/ºm2N given by equations (1.12) and (1.13), respectively.
The matrix .hej ; yJ˙� eki/.j;k/2N2 is given by (1.11) and (1.14) ensures that yJ˙� is a
lower semi-bounded self-adjoint operator with discrete spectrum due to the Janas–
Naboko criterion [27, Theorem 4.1].
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Lemma 7.3. The operator H
.2/
Rabi is similar to the direct sum

yJC0 ˚
yJ�0 ˚

yJC1 ˚
yJ�1

Proof. See [5, Section 2.2].

Notation 7.4. (a) If J �Z, then `2.J/ is identified with the closed subspace of `2.Z/
generated by ¹ Qej ºj2J , i.e., with ¹x 2 `2.Z/ W x.k/ D 0 for k 2 Z n Jº. Thus, we can
write

`2.Z/ D `2.Z nN/˚ `2.N/:

(b) If J � Z, then …J denotes the orthogonal projection `2.Z/! `2.J/.
(c) We identify Qej and ej for j � 0.

Definition 7.5. We define yJ ı
 W `
2;1.N/! `2.N/ by the formula

yJ ı
 ´ …N zJ
ı

 j`2.N/;

where zJ ı
 is given by Definition 2.2. The matrix .hej ; yJ ı
 eki/.j;k/2N2 has the form0BBBBBB@
ı g
 0 0

g
 1 � ı g.1C 
/ 0

0 g.1C 
/ 2C ı g.2C 
/

0 0 g.2C g/ 3C ı

: : :

1CCCCCCA
Its diagonal entries, Qdı.j / D j C .�1/j ı are given by (2.4) and Notation 7.4 gives

yJ ı
 D
Qdı.yƒ/C g yS.yƒC 
/C g.yƒC 
/ yS

�:

In what follows, we are interested in yJ ı
 with ı D˙�
4

and either 
 D 3
4

or 
 D 5
4

.
More precisely, we denote


.�/´
3

4
C
�

2
for � 2 ¹0; 1º (7.1)

and we investigate the approximation of yJ˙� by 2 yJ˙�=4

.�/

C �. Indeed, if Od˙� is as
in (1.12), then

Od˙� .m/ D 2
Qd˙�=4.m/C �

and
2 yJ
˙�=4


.�/
C � � yJ˙� D

ySr�.yƒ/C r�.yƒ/ yS
�

holds with
r�.m/´ 2g.mC 
.�// � Ob�.m/ (7.2)
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(where Ob� is as in (1.13)). We claim that r�.m/ D O.m�1/ as m!1. Indeed,

r�.m/ D g

r�
2mC �C

3

2

�2
� g

p
.2mC �C 1/.2mC �C 2/ (7.3)

and, using
�
2mC�C 3

2

�2
�
�
1
2

�2
D .2mC�C 1/.2mC�C 2/, we can rewrite (7.3)

as

r�.m/ D

g
4

2mC �C 3
2
C
p
.2mC �C 1/.2mC �C 2/

: (7.4)

7.2. Step 2 of the proof of Theorem 1.3

Lemma 7.6. Assume that ¹�n. yJ ı
 /ºn2N is the non-decreasing sequence of eigenval-
ues of the operator yJ ı
 introduced in Definition 7.5, ¹�j . zJ ı
 /ºj2Z is as in Theorem 2.3
and either 
 D 3

4
or 
 D 5

4
. We denote

�ı ´ 2C
ˇ̌̌ ı
ˇ

ˇ̌̌
Cmax¹�ı;5=4; ˇ�1 C 4ˇ�2.3C jıj/º; (7.5)

where �ı;
 is given by (3.11). Then there exists �.ı/ 2 Z which is independent of n
and such that for n > �ı one has

j�nC�.ı/. yJ
ı

 / � �n.

zJ ı
 /j �
3C jıj

4.ˇn � 1/
<
ˇ

16
; (7.6)

E0
;n �
7

16
ˇ < �nC�.ı/. yJ

ı

 / < E

0

;n C

7

16
ˇ; (7.7)

where E0
;n D ˇnC ˇ
 is given by (2.5).

Proof. We introduce LJ ı
 W `
2;1.Z nN/! `2.Z nN/ by the formula

LJ ı
 ´ …ZnN
zJ ı
 j`2.ZnN/:

We observe that the matrix .hej ; LJ ı
 eki/.j;k/2.ZnN/2 has the form0BBB@
: : :

�3 � ı g.�3C 
/ 0

g.�3C 
/ �2C ı g.�2C 
/

0 g.�2C 
/ �1 � ı

1CCCA
We first claim that

spec. LJ ı
 ˚ yJ
ı

 / \

h
jıj C

5

8
;1

�
D spec. yJ ı
 / \

h
jıj C

5

8
;1

�
: (7.8)
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Indeed, (7.8) follows from the inclusion

spec. LJ ı
 / \
h
jıj C

5

8
;1

�
D ;;

which is an easy consequence of the estimate

sup spec. LJ ı
 / � sup¹�j C .�1/j ı C �j W j 2 N n ¹0ºº; (7.9)

where �j D g.j
 � j j C j
 � j � 1j/ for j � 2 and �1 D gj
 � 2j < 5
8

due to
the assumption that 
 D 3

4
or 5

4
. The estimate (7.9) is well known, see, e.g., [42,

Lemma 1.8].
It remains to compare the eigenvalues of zJ ı
 and LJ ı
 ˚ yJ

ı

 . For this purpose we

consider zJ ı
 � yJ
ı

 ˚

yJ ı
 D
zJ 0
 �

yJ 0
 ˚
yJ 0
 and observe that

R
 D zJ
0

 �
yJ 0
 ˚

yJ 0
 D g.
 � 1/.S…�1 C S
�1…0/; (7.10)

hence
kR
k D 2gj
 � 1j D

1

2
g <

1

4
: (7.11)

Our next claim is that
kR
 zJ

0

 k �

9

16
: (7.12)

Indeed, (7.10)–(7.11) imply k zJ 0
R
k �
1
4
.k zJ 0
 Qe�1k C k

zJ 0
 Qe0k/ and (7.12) follows
from

k zJ 0
 Qe�1k C k
zJ 0
 Qe0k � 1C g.2 � 
/C 2gj
 � 1j C g
 <

9

4
:

We will deduce (7.6) from Lemma 8.2 applied to L D zJ ı
 . Indeed, if n > �ı then
Corollary 3.2 ensures

E0
;n �
3

8
ˇ < �n. zJ

ı

 / < E

0

;n C

3

8
ˇ; (7.13)

d 00´ E0
;n C
1

2
ˇ C

1

16
ˇ < �nC1. zJ

ı

 /;

d 0´ E0
;n �
1

2
ˇ �

1

16
ˇ > �n�1. zJ

ı

 /;

i.e., (8.1) holds with � ´ ˇ
16

and we claim that the condition (8.2) holds for n > �ı .
Indeed, we observe that, using kR
k < 1

4
, (7.12), ˇ < 1, we get


R
� zJ ı
 C i

ˇ

16

�


 � kR
 zJ 0
 k C �jıj C 1

16

�
kR
k <

1

4
.3C jıj/

and it is easy to check that

n > �ı H)
1

4
.3C jıj/ <

1

16
ˇ.ˇn � 1/ <

1

16
ˇd 0; (7.14)
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where the last estimate follows from

d 0 D E0
;n �
1

2
ˇ �

1

16
ˇ > ˇn � 1:

Thus, n > �ı implies d 0 � 1C jıj and


R
� zJ ı
 C i ˇ

16

�

 < ˇ
16
d 0, i.e., (8.2) holds for

with � D ˇ
16

and Lemma 8.2 ensures that

j�nC�.ı/. yJ
ı

 / � �n.

zJ ı
 /j �



R
� zJ ı
 C i ˇ
16

�


�n. zJ ı
 /

<
3C jıj

4d 0
<

3C jıj

4.ˇn � 1/
(7.15)

holds with a certain �.ı/ 2 Z independent of n > �ı . The right-hand side of (7.15)
can be estimated by ˇ

16
due to (7.14), implying the last inequality of (7.6). Finally,

(7.7) follows from (7.6) and (7.13) .

7.3. Step 3 of the proof of Theorem 1.3

Lemma 7.7. The assertion of Lemma 7.6 holds with �.ı/ D 0.

Proof. Due to Lemma 7.6, there is a constant Cı independent of n such that

j�n. yJ
ı

 / � �n��.ı/.

zJ ı
 /j � Cın
�1 (7.16)

holds for n � 1. Due to Theorem 2.3, there is a constant C 0
ı

independent of n such
that

j�n��.ı/. zJ
ı

 / �E

0

;n��.ı/j � C

0
ın
�1=2 (7.17)

holds for n � 1. Combining (7.16) and (7.17), we get

j�n. yJ
ı

 / �E

0

;n��.ı/j � C

00
ı n
�1=2 (7.18)

with C 00
ı
´ Cı C C

0
ı
. Consider ı0 2 R. Then the min-max principle ensures

sup
j2N
j�j . yJ

ı

 / � �j .

yJ ı
0


 /j � jı � ı
0
j: (7.19)

Using (7.19), (7.18), and an analogical estimate for ı0, we obtain

jE0
;n��.ı/ �E
0

;n��.ı0/j � .C

00
ı C C

00
ı0/n

�1=2
C jı � ı0j

for n � 1 and consequently

lim sup
n!1

jE0
;n��.ı/ �E
0

;n��.ı0/j � jı � ı

0
j: (7.20)
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However, combining (7.20) with

lim
n!1

jE0
;n��.ı/ �E
0

;n��.ı0/j D j�.ı/ � �.ı

0/jˇ;

we find j�.ı/� �.ı0/j � ˇ�1jı� ı0j. Thus, �WR!Z is locally constant, hence �.ı/D
�.0/ and it remains to prove that �.0/ D 0. However, the result of Janas and Malejki
[25, Theorem 3.4] says that for every N 2 N one has

�n. yJ
0

 / D E

0

;n CO.n

�N / as n!1: (7.21)

Therefore, using (7.21) and (7.18) with ı D 0, we get

jE0
;n��.0/ �E
0

;nj �

zC ı0n
�1=2 (7.22)

and �.0/ D 0 follows from (7.22).

7.4. Step 4 of the proof of Theorem 1.3

Lemma 7.8. Let ¹�n. yJ ı
 /ºn2N and �ı be as in Lemma 7.6. Let ¹�n. yJ˙� /ºn2N be the
non-decreasing sequence of eigenvalues of yJ˙� . If 
.�/ is given by (7.1), then

j2�n. yJ
˙�=4


.�/
/C � � �n. yJ

˙
� /j �

2C
ˇ̌
�
20

ˇ̌
4.ˇn � 1/

(7.23)

holds for n > ��=4.

Proof. We will deduce the assertion of Lemma 7.8 from Lemma 8.2 applied to

L˙� ´ 2 yJ
˙�=4


.�/
C �:

We observe that 2�n. yJ
˙�=4


.�/
/C � D �n.L

˙
� / and

2E0
.�/;n C � D E
0
2nC�; (7.24)

whereE0mDˇmC
ˇ�1
2

is given by (1.7). Due to Lemma 7.7, (7.7) holds with �.ı/D0
and ı D ˙�

4
, hence n > ��=4 D ���=4 ensures

E02nC� �
7

8
ˇ < �n.L

˙
� / < E

0
2nC� C

7

8
ˇ;

d 00´ E02nC� C ˇ C
1

16
ˇ < �nC1.L

˙
� /;

d 0´ E02nC� � ˇ �
1

16
ˇ > �n�1.L

˙
� /:
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Thus, (8.1) holds with � ´ ˇ
16

and it remains to check that the condition (8.2) holds
for n > ��=4 with R D R� given by

R�´ r�.yƒ/ yS
�
C ySr�.yƒ/;

where r
 .m/ was introduced in (7.2). However, using the expression (7.4), we find

kr
.�/.yƒ/k D sup
m2N
jr�.m/j D r�.0/ <

1

20
;

kr
.�/.yƒ/yƒk D sup
m2N
jr�.m/mj D lim

m!1
r�.m/m D

g

16
<
1

32
:

Using yS yƒ D .yƒ � I / yS and yS� yƒ D .yƒC I / yS�, we find

yJ 0
 D
yƒC g yƒ. yS C yS�/C g.
 � 1/ yS C g
 yS�;

yS� yJ 0
 D
yƒ yS� C gƒ yS�. yS C yS�/C yS� C g yS�. yS C yS�/C g.
 � 1/C g
.S�/2;

and kR� yJ 0
 k � kr�.yƒ/ yJ
0

 k C kr�.

yƒ/ yS� yJ 0
 k can be estimated by

kr�.yƒ/yƒk.2C 4g/C kr�.yƒ/k.1C 4g C 4g
/ <
1

3
;

hence 


R��L˙� C i
ˇ

16

�


 � 2kR� yJ 0
 k C kR�k��C 1

16
C

ˇ̌̌�
4

ˇ̌̌�
< 1C

ˇ̌̌�
40

ˇ̌̌
and

1

16
ˇd 0 >

1

8
ˇ.ˇn � 1/ >

1

2

�
3C

ˇ̌̌�
4

ˇ̌̌�
; (7.25)

where the last inequality is ensured by n > ��=4 (see (7.14) with ı D ˙�
4

). Since the
right-hand side of (7.25) is greater than 1C

ˇ̌
�
4

ˇ̌
, the condition (8.2) holds if n > ��=4

and � D ˇ
16

. Therefore, Lemma 8.2 ensures that

j�n.L
˙
� / � �nC�.�/.

yJ˙� /j �



R��L˙� C i ˇ
16

�


2�n. yJ

˙�=4


.�/
/C �

<
1C

ˇ̌
�
40

ˇ̌
2.ˇn � 1/

(7.26)

holds for n > ��=4 with a certain �.�/ 2Z independent of n. In order to complete the
proof of (7.23), it remains to show that �.�/ D 0. However, Lemma 8.2 (c) ensures

�n. yJ
˙
� / D �n.L

˙
� /CO.n

�1/ as n!1 (7.27)

and, combining (7.27) with (7.26), we get

�n. yJ
˙
� / � �nC�.�/.

yJ˙� / D O.n
�1/ as n!1;

hence �.�/ D 0.
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7.5. End of the proof of Theorem 1.3

Combining Lemma 7.6 and 7.8, we get the estimate

j2�n. zJ
˙�=4


.�/
/C � � �n. yJ

˙
� /j �

2
�
3C

ˇ̌
�
4

ˇ̌�
C 2C

ˇ̌
�
20

ˇ̌
4.ˇn � 1/

for n > ��=4; (7.28)

where �ı is given by (7.5). Using (7.28), (7.24), and the approximation of �n. zJ ı
 /
given in (3.13)–(3.14) in the case ıD˙�

4
, 
.0/D 3

4
, 
.1/D 5

4
, we obtain the estimate

j�n. yJ
˙
� / �E

0
2nC� � 2V

˙�=4


.�/
.n; n/j � R�

� .n/ for n > ��=4;

where �ı is given by (7.5), V ı
 .n; n/ is given by the explicit integral (3.15) and

R�
� .n/´

8C 0:55j�j

4.ˇn � 1/
C 2
zC�=4;
.�/ C 4ˇ yC

2
�=4;
.�/

.1C lnn/

n
;

where 
.0/ D 3
4

, 
.1/ D 5
4

, yCı;
 is given by (3.7), and zCı;
 by (3.14).
Due to (3.10), the correction term 2V

˙�=4


.�/
.n; n/ D V

˙�=2


.�/
.n; n/ can be investi-

gated by a standard stationary phase method as indicated in Section 3.3. In particular,
one can find a constant C > 0 such that

jV
˙�=2


.�/
.n; n/ � r

˙�=2


.�/
.n/j � Cn�1

and (2.7) gives
O�
.0/ D O�3=4 D

1

4
.4˛ � �/C

�

4
D ˛;

O�
.1/ D O�5=4 D
3

4
.4˛ � �/C

�

4
D 3˛ �

�

2
;

hence

r
˙�=2


.0/
.n/ D r

˙�=2

3=4
.n/ D ˙

�

2

� ˇ

2�gn

�1=2
cos..4nC 1/˛/CO.n�1/;

r
˙�=2


.1/
.n/ D r

˙�=2

5=4
.n/ D ˙

�

2

� ˇ

2�gn

�1=2
sin..4nC 3/˛/CO.n�1/: (7.29)

Due to Lemma 7.3,

spec.H.2/
Rabi/ D spec. yJ�0 / [ spec. yJC0 / [ spec. yJ�1 / [ spec. yJ�1 /

and we complete the proof of Theorem 1.3, combining (7.24)–(7.29) with the notation´
E˙m D �n.

yJ˙0 / if m D 2n;

E˙m D �n.
yJ˙1 / if m D 2nC 1:
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8. Appendix

8.1. Estimates of oscillatory integrals

Lemma 8.1. Assume that h 2 C 1.Œ�0; �1�/ and that ‰ 2 C 2.Œ�0; �1�/ is real-valued.

(i) If the derivative �!‰0.�/ is monotonic and j‰0.�/j � 1 for all � 2 Œ�0; �1�,
then one hasˇ̌̌̌ �1Z

�0

ei�‰.�/h.�/ d �
ˇ̌̌̌
�
3

�
.jh.�0/j C

�1Z
�0

jh0.�/j d �/ for � > 0:

(ii) If j‰00.�/j � 1 for all � 2 Œ�0; �1�, then one hasˇ̌̌̌ �1Z
�0

ei�‰.�/h.�/ d �
ˇ̌̌̌
�

8

�1=2
.jh.�0/j C

�1Z
�0

jh0.�/j d �/ for � > 0:

Proof. See [41, Section VIII.1.2].

8.2. General estimates of perturbed eigenvalues

In this section L is a self-adjoint operator in the Hilbert space H and k � k denotes the
norm of B.H /. We assume that � is an isolated simple eigenvalue of a self-adjoint
operatorL and consider the spectrum ofLCR near �, assuming thatR is self-adjoint
and bounded.

Lemma 8.2. Let L be a self-adjoint operator in the Hilbert space H . Assume that
0 < d 0 < d 00 and � > 0 are such that

spec.L/ \ Œd 0; d 00� D ¹�º � Œd 0 C 2�; d 00 � 2��; (8.1)

where � is a simple eigenvalue of L. Let R be bounded and self-adjoint in H .

(a) If kRk < � , then

spec.LCR/ \ Œd 0 C �; d 00 � �� D ¹�0º � Œ� � kRk; �C kRk�;

where �0 is a simple eigenvalue of LCR.

(b) If RL is bounded and
kR.LC i�/k < �d 0; (8.2)

then

spec.LCR/ \ Œd 0 C �; d 00 � �� D ¹�0º � Œ� � ��; �C ���
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holds with
��´ ��1kR.LC i�/k (8.3)

and �0 is a simple eigenvalue of LCR.

(c) If RL is bounded; L has a discrete spectrum and is bounded below, then one
has

�n.LCR/ D �n.L/CO.�n.L/
�1/ as n!1;

where ¹�n.L/ºn2N (respectively ¹�n.L C R/ºn2N ) is the non-decreasing
sequence of eigenvalues of L (respectively LCR ), counting multiplicities.

Proof. (a) Assume that z 2 C n ¹�º is such that d 0 C � � jzj � d 00 � � . Since

k.L � z/�1k D
1

dist.spec.L/; z/
�

1

min¹jz � �j; �º
;

the estimate

kR.L � z/�1k � kRkk.L � z/�1k � max
°
kRk

j� � zj
; ��

±
(8.4)

holds with�� D
kRk
�
< 1. If z 2 Œd 0C �;d 00 � �� n Œ��kRk;�CkRk�, then jz � �j>

kRk and (8.4) ensures kR.L � z/�1k < 1, hence

.LCR � z/�1 D .L � z/�1.I CR.L � z/�1/�1

is well defined, i.e.,

spec.LCR/ \ Œd 0 C �; d 00 � �� � Œ� � kRk; �C kRk�:

To end the proof, consider z 2 C satisfying jz � �j D � . Then

jzj 2 Œ� � �; �C �� � Œd 0 C �; d 00 � �� (8.5)

and for t 2 Œ0; 1� we can define .L� z/�1.I C tR.L� z/�1/�1 D .Lt � z/�1 where
Lt D LC tR. The spectral projector of Lt associated to Œ� � �; �C �� has the form

Pt D 1Œ���;�C��.Lt / D
i
2�

Z
jz��jD�

.Lt � z/
�1dz (8.6)

and t ! Pt is continuous Œ0; 1�! B.H /, hence rank.Pt / D rank.P0/ D 1.
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(b) We proceed in three steps.

Step 1. We assume that z 2 C n ¹�º satisfies d 0 C � � jzj � d 00 � � and we claim
that

k.LC i�/�1.L � z/�1k �
1

min¹�j� � zj; �d 0º
: (8.7)

In order to show (8.7), we observe that

k.LC i�/�1.L � z/�1k D sup
s2spec.L/

ˇ̌̌ 1

.s C i�/.s � z/

ˇ̌̌
D sup
s2spec.L/

1

��;z.s/
;

where ��;z.s/´
p
�2 C s2js � zj.

If d 0 C � � jzj � d 00 � � and s 2 spec.L/, then we can consider four cases:

(i) if s � d 00, then ��;z.s/ � s.s � jzj/ � d 00.d 00 � jzj/ > d 00� ;

(ii) if s D �, then ��;z.�/ � �j� � zj;

(iii) if � � s � d 0, then ��;z.s/ � s.jzj � s/ � s.d 0 C � � s/ � �d 0;

(iv) if s < � , then ��;z.s/ � �.jzj � s/ � �.jzj � �/ � �d 0.

Thus; ��;z.s/ � min¹�j� � zj; �d 0º holds in all cases.

Step 2. Let �� be given by (8.3). We claim that

spec.LCR/ \ Œd 0 C �; d 00 � �� � Œ� � ��; �C ���: (8.8)

Consider z 2 C such that d 0 C � � jzj � d 00 � � . Due to (8.7),

kR.L � z/�1k � kR.LC i�/kk.LC i�/�1.L � z/�1k

� max
°
kR.LC i�/k
�j� � zj

; ��

±
; (8.9)

where

�� ´
kR.LC i�/k

d 0�
< 1

due to (8.2). If jz � �j > ��, then the right-hand side of (8.9) is strictly less than 1,
hence kR.L � z/�1k < 1 and .LC R � z/�1 D .L � z/�1.I C R.L � z/�1/�1 is
well defined, i.e., (8.8) holds.

Step 3. To end the proof, consider z 2 C satisfying jz � �j D � . Then (8.5) holds
and (8.2) implies �� < �d 0��1 < � , hence kR.LCi�/k

��
D

��
�
< 1. Therefore, the right-

hand side of (8.9) is strictly less than 1 and, for t 2 Œ0; 1�, we can define .Lt � z/�1

with Lt D LC tR similarly to (b) and its spectral projector is given by (8.6), hence
rank.Pt / D rank.P0/ D 1.

(c) See Rozenblum [37, Theorem 1.1].
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8.3. Kato–Temple estimate

Theorem 8.3 (Kato–Temple). Assume that the operatorL is self-adjoint in the Hilbert
space H and has exactly one eigenvalue � in the interval Œd 0; d 00�. If x is an element
of the domain of L such that kxkH D 1 and �´ hx;LxiH belongs to �d 0; d 00Œ , then

� �
k.L � �/xk2

� � d 0
� � � �C

k.L � �/xk2

d 00 � �
: (8.10)

Proof. See [21].
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