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Real diffusion with complex spectral gap

Jean-François Bony and Laurent Michel

Abstract. The low-lying eigenvalues of the generator of a Langevin process are known to sat-
isfy the Eyring–Kramers law in the low temperature regime under suitable assumptions. These
eigenvalues are generically real. We construct generators whose spectral gap is given by non-
real eigenvalues or by a real eigenvalue having a Jordan block.

1. Introduction

The generator of a diffusion process is generally a differential operator of order two
with real coefficients. In the last decades, the asymptotic of its low-lying eigenvalues
has been obtained [3, 4, 9, 10, 13, 14, 16, 17] in the low temperature regime (Eyring–
Kramers law), see [2] for a general presentation. These results provide sharp infor-
mations on metastability or on return to equilibrium. For reversible processes, the
generator is a self-adjoint operator on an appropriate Hilbert space and then its spec-
trum is always real. For irreversible processes, the generator is no longer self-adjoint
on the natural Hilbert space and one can hope to observe non-real eigenvalues or Jor-
dan’s blocks. But, as recalled at the end of this part, there are strong constrains on the
low-lying spectrum of generators which make such phenomena unlikely and explain
why non-real spectra have not been obtained up to now. The goal of this paper is to
construct generators with pathologic spectral gap.

We first discuss spectral properties of generators in the general setting of [3] and
send the reader to this paper for precise statements and to the references of the pre-
vious paragraph for slightly different settings. In [3], we consider the operator on
L2.Rd /

P D �h div ıA ı hr C 1

2
.b � hr C h div ıb/C c; (1.1)

where the symmetric matrix A D .aj;k.x; h//j;k , the vector field b D .bj .x; h//j

and the function c.x; h/ are smooth and real-valued. Moreover, these functions are
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symbols and have an asymptotic expansion in power of the parameter h, which is pro-
portional to the temperature. We assume that P has an invariant distribution which
has a Gibbs form. More precisely, there exists a confining smooth Morse function f
such that

P.e�f=h/ D P �.e�f=h/ D 0:
Let 1� n0 <C1 denote the number of minima of f . Hypoelliptic and hypocoercive
assumptions are also made. Under these assumptions, P is maximal accretive and has
domain

D.P / D ¹u 2 L2.Rd /I Pu 2 L2.Rd /º;
as proved in [13, Section 3]. The evolution equation naturally associated to P is the
heat (or Fokker–Planck) equation´

h@tu.t; x/ D �Pu.t; x/;
u.0; x/ D u0.x/;

(1.2)

where u0.x/ 2 L2.R2/ is the initial data. The low-lying spectrum of P is given by
the following result (see [3, Theorem 3]).

Theorem 1.1 (Eyring–Kramers law). There exists �� > 0 such that, for h small
enough, P has exactly n0 eigenvalues counted with their algebraic multiplicity
�1.h/; : : : ;�n0.h/ in ¹z 2CIRez���hº. Moreover, �1.h/D 0 is simple with KerP D
e�f=hC. For n D 2; : : : ; n0, the eigenvalue �n.h/ satisfies the asymptotic

�n.h/ D an.h/he�2Sn=h with an.h/ '
X
j�0

ajnh
j ;

Sn D f .sn/ � f .mn/ > 0 for some particular saddle point sn and minimum mn,
a0n ¤ 0 explicitly known and ajn 2 R for all j ¤ 0.

Note that the first eigenvalue �1 D 0 is always real. Since all the coefficients ajn
are real, it is not possible to use the Eyring–Kramers law to construct an operator with
non-real small eigenvalues. Moreover, the imaginary part of �n is always extremely
small. More precisely, the following statement holds true.

Remark 1.2. For all n D 1; : : : ; n0, we have

j Im�nj D O.h1/Re�n: (1.3)

On the other hand, the particular form (1.1) of the generatorP induces symmetries
on its spectrum, as remarked on [17, p. 15]. More precisely, since the coefficients of
P are real-valued and the domain of P is stable by complex conjugation, we get

.P � �/u D .P � N�/ Nu; (1.4)
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Figure 1. The structure of the critical points of f and an example of such a Morse function.

for all �2C and u2D.P /. This implies the following property which is also satisfied
for P T -symmetric operators (see for instance [1] for the bifurcation of eigenvalues
from the real axis to the complex plane).

Remark 1.3. The spectrum of P is invariant by complex conjugation.

In particular, when f has exactly two minima, P has two small eigenvalues
�1 D 0 and �2 by Theorem 1.1. Since �2 D �2 by Remark 1.3, these two small
eigenvalues are always real and simple for h small enough (see [17, Remark 1.10]).

More generally, if the asymptotic expansion of �n given by the Eyring–Kramers
law is different from that of the other eigenvalues, then �n is real and simple for h
small enough. As an example, if the (Arrhenius) exponential factors Sn are all dif-
ferent, then all the small eigenvalues �n are real and simple for h small enough.
This shows that the exponentially small eigenvalues of the generator of a diffusion
as in (1.1) are generically real.

We now construct operators of the form (1.1) with non-real small eigenvalues or
Jordan blocks. From the two previous paragraphs, the associated Morse function f
must have at least 3 minima and some of exponential factors Sn D f .sn/ � f .mn/
must coincide.

2. Statement of the results

On R2, we consider a smooth Morse function f with f .x/ D x2 outside a compact
set and which is invariant underR, the rotation of angle 2�=3 around 0. Moreover, we
assume that the set of critical points of f consists of 3 (global) minima m1; m2; m3,
3 saddle points s1; s2; s3 and 1 (local) maximum M as in Figure 1. Let P0 be the
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Witten Laplacian associated to the function f , that is

P0 D d�f ı df with df D e�f=h ı hr ı ef=h D
�
h@x1 C @x1f
h@x2 C @x2f

�
: (2.1)

A classical computation shows that this operator has the form

P0 D �h2�C jrf j2 � h�f:

Since f is a compactly supported perturbation of x2, P0 is self-adjoint on the domain
of the harmonic oscillator D.P0/ D H 2.R2/ \ hxi�2L2.R2/, has a compact resol-
vent, P0 � 0 and

KerP0 D e�f=hC:
The spectrum of Witten Laplacians in such a geometric configuration has been studied
in [14, Section 7.4], [19, Section 7C3] and [18, Section 9.3]. We send the reader to [12]
or to the second edition of the book [8] for details on Witten Laplacians.

Throughout the paper, we set S D f .s/ � f .m/ > 0 and �.s/ < 0 denotes the
unique negative eigenvalue of Hessf .s/. Since f is invariant by rotation, these quan-
tities do not depend on the minimum m and the saddle point s where they are com-
puted. The bottom of the spectrum of P0 is given by the following result.

Proposition 2.1 (Low eigenvalues of P0). There exists �� > 0 such that, for h small
enough,P0 has exactly three eigenvalues counted with multiplicity �1.h/;�2.h/;�3.h/
in � �1; ��h�. Moreover,

�1 D 0; �2 D �3 and �2 � 3j�.s/jj det Hessf .m/j1=2
�j det Hessf .s/j1=2 he�2S=h:

This proposition is mainly a consequence of previous results (see [14, 19]). The
unique novelty is that �2 has multiplicity two. This point and other spectral properties
of P0 are proved in Section 3. Since f is invariant under R, so are P0 and all its
eigenspaces.

We now construct an operator having a non-real spectral gap. For that, we perturb
the operator P0 by an anti-adjoint differential operator of order one. More precisely,
we consider the operator

Pcom D P0 C B with B D 1

2
.b � hr C h div ıb/: (2.2)

We require that the vector-valued function b.x; h/ 2 C10 .R2IR2/ is a compactly
supported real symbol of class S.h1/, where

S.r/ D ¹b.x; h/ 2 C1.R2/I 8˛ 2 N2; 9C˛ > 0;
8x 2 R2; 8h 2 �0; 1�; j@˛xb.x; h/j � C˛r.h/º;
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Figure 2. The low-lying eigenvalues of P0 and Pcom.

and b 2 S.h1/ means that b 2 S.hj / for all j 2 N. In particular, Pcom is closed on
the domain D.P0/. We also assume that

B.e�f=h/ D 0: (2.3)

Then, the operator Pcom enters into the setting of (1.1).

Theorem 2.2 (Non-real eigenvalues). Let r.h/DO.h1/ be a positive function. There
exists a function b.x; h/ 2 C10 .R2IR2/ \ S.r/ with (2.3) such that the spectrum of
Pcom satisfies

�.Pcom/ \ ¹z 2 CI Re z < ��h=2º D ¹�1.h/; �2.h/; �3.h/º;

for h small enough, with �1 D 0, �2 D �2 CO.r/, �3 D �2 and

Im�2 ¤ 0:

Here and in the sequel, �.T / denotes the spectrum of the operator T and the
eigenvalues ��.h/ are simple for h small enough. The setting of Theorem 2.2 is illus-
trated in Figure 2. The symbol b.x; h/ is only partially explicit (see Lemma 4.1, (4.6)
and (5.1)). In particular, its size may be way more smaller than r . Then, the imaginary
part of �2 and �3 is very small. But, as explained in (1.3), it is always the case in the
general setting.

Theorem 2.2 is proved using the perturbation theory at fixed h small enough. In
particular, its proof shows that operators as in (2.2) with a small enough anti-adjoint
part B have a non-real spectral gap as soon as the leading term coming from the
perturbation theory does not vanish (see Lemma 4.4). In this sense, the situation of
Theorem 2.2 is generic.

For h small enough, let …�j denote the spectral projection of Pcom associated to
the eigenvalue �j . Using the Cauchy formula, it can be written

…�j D
1

2i�

I



.z � Pcom/
�1dz;
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where 
 is a sufficiently small loop around �j positively oriented. Relations (1.1)
and (2.3) give

…�1 D
e�f .x/=h

ke�f=hk2 he
�f=h; �i and …�2u D …�3 Nu: (2.4)

Let u.x; h/ be an eigenvector of Pcom associated to the eigenvalue �2. From (2.4),
Nu is an eigenvector associated to the eigenvalue �3. Then, .Re u; Im u/ is a basis
of Im…�2 ˚ Im…�3 D Ker.Pcom � �2/˚ Ker.Pcom � �3/. In particular, u cannot
be a real (or purely imaginary) function. From [3, Corollary 1.6] and Theorem 2.2,
the solution of the evolution equation (1.2) associated to Pcom satisfies the following
metastable behavior.

Corollary 2.3. Consider Pcom as in Theorem 2.2 with h small enough. For all u0 2
L2.R2/, the solution u D e�tPcom=hu0 of (1.2) can be written

e�tPcom=hu0 D u1 C e�t�2=hu2 C e�t�3=hu3 C ".t/
D u1 C e�t Re�2=h

�
cos
�
t Im

�2

h

�
uc C sin

�
t Im

�2

h

�
us

�
C ".t/;

(2.5)

with uj D …�j u0 for j D 1; 2; 3, uc D u2 C u3, us D iu3 � iu2 and

k".t/kL2.R2/ � Ce�t=Cku0kL2.R2/;

for some constant C > 0 independent of t; h; u0.

If the function u0 is real-valued, (2.4) implies that u2 D u3 and then uc and us

are also real-valued. If in addition u2, u3, uc or us does not vanish identically, the
discussion below (2.4) shows that .uc; us/ is a basis of Im…�2 ˚ Im…�3 . In that
case,

t 7! cos
�
t Im

�2

h

�
uc C sin

�
t Im

�2

h

�
us;

is a non-vanishing periodic function of period 2�hj Im�2j�1 which reaches all the
directions of Im…�2 ˚ Im…�3 . Then, the subprincipal term in (2.5), which measures
the return to equilibrium, is oscillating. Nevertheless, this phenomenon may be dif-
ficult to see in the applications since (1.3) implies that this subprincipal term decays
more quickly than it oscillates.

We now construct an operator having a spectral gap with a Jordan block. For that,
we consider perturbations of P0 of the form

PJor D d�f ı .1C �.x; h// Id ıdf C B where B D 1

2
.b � hr C h div ıb/;
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Id denotes the 2� 2 identity matrix, �2C10 .R2IR/\S.h1/ and b 2C10 .R2IR2/\
S.h1/. For h small enough, such an operator falls within the general framework
of (1.1).

Theorem 2.4 (Jordan block). Let r.h/ D O.h1/ be a positive function. There exist
functions �.x;h/ 2 C10 .R2IR/\ S.r/ and b.x;h/ 2 C10 .R2IR2/\ S.r/ with (2.3)
such that, for h small enough,

�.PJor/ \ ¹z 2 CI Re z < ��h=2º D ¹�1; �2º of multiplicity 1 and 2 respectively,

and PJor has a non-trivial Jordan block associated with the eigenvalue �2.

Let…�1 and…�2 be the spectral projectors of PJor associated to �1 and �2 respec-
tively. From Theorem 2.4 and (1.4), there exists an orthonormal basis of real-valued
functions, denoted .e1; e2/, of Im…�2 such that …�2PJor…�2 expressed in the basis
.e1; e2/ writes �

�2 �

0 �2

�
;

for some �.h/ 2 R n ¹0º (see (6.25)). Note that e1 and e2 are unique modulo multi-
plication by˙1. By construction, the constant � is very small. More precisely,

j�.h/j D O.h1�2/ D O.h1e�2S=h/: (2.6)

But, as for the imaginary part of the eigenvalues (1.3), this is a general fact: any Jordan
block associated with a small eigenvalue of an operator of the form (1.1) satisfies an
estimate similar to (2.6). Indeed, all the terms in the asymptotic expansion of the
interaction matrices are self-adjoint (see [3, Section 6]).

It is difficult to construct by perturbation theory an operator of the form (2.2)
satisfying Theorem 2.4. Indeed, Lemma 4.4 shows that such operators enter into the
setting of Theorem 2.2 as soon as the leading term in the perturbation theory does
not vanish. This is why we consider here more general perturbations which allow
to “generate all the possible” leading terms (see [20, Section 4] for similar ideas in
resonances theory).

Contrary to Theorem 2.2, the spectral situation of Theorem 2.4 is unstable. Gener-
ically, a small perturbation (in the setting of (1.1)) splits the double eigenvalue �2 into
two non-real conjugate eigenvalues. This is general fact concerning the Jordan blocks.
Moreover, the second eigenvalue ofP0 andPJor is the same. The proof of Theorem 2.4
allows to change slightly the second eigenvalue of PJor, but the actual statement sim-
plifies the result.

Combining with [3, Corollary 1.6], the time evolution equation associated to PJor

satisfies the following property.
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Corollary 2.5. Consider PJor as in Theorem 2.4 with h small enough. For all u0 2
L2.R2/, the solution u D e�tPJor=hu0 of (1.2) can be written

e�tPJor=hu0 D u1 C te�t�2=hu2 C e�t�2=hu3 C ".t/;

with u1 D …�1u0, u2 D ��he2;…�2u0ie1, u3 D …�2u0 and

k".t/kL2.R2/ � Ce�t=Cku0kL2.R2/;

for some constant C > 0 independent of t; h; u0.

In particular, we have the sharp return to equilibrium result

ke�tPJor=h �…�1k � ˛te�t�2=h;

in the limit t ! C1 for h small enough and some positive constant ˛.h/ > 0. This
estimate shows that the return to equilibrium is not purely exponentially decreasing
in general and that some powers of t may appear.

Until now, we have only considered the spectral gap given by exponentially small
eigenvalues, corresponding to several minima. But, if we study higher eigenvalues, it
is more simple to have non-real spectrum. For " 2 R, consider the operator

P D �h2�C x2 � 2hC ".x1h@x2 � x2h@x1/:

It enters in the setting of (1.1) with the Morse function f .x/ D x2=2 which has a
unique minimum at x D 0. The bottom of its spectrum is given as follows.

Proposition 2.6. For h > 0 and " ¤ 0, we have

�.P / \ ¹z 2 CI Re z < 4hº D ¹0; 2hC i"h; 2h � i"hº;

and these eigenvalues are simple.

Then, this operator has a non-real spectral gap. Nevertheless, it is not given by
exponentially small eigenvalues responsible of metastable dynamics. In this simple
well situation, the Eyring–Kramers law only provides the asymptotic of 0, the first
eigenvalue of P . Note also that, for " ¤ 0 fixed, these eigenvalues do no longer sat-
isfy (1.3).

The rest of the paper is organized as follows. In the next section, we collect some
properties of the reference operator P0 used in the sequel. Section 4 is devoted to
the construction of the anti-adjoint perturbation B based on properties of nodal sets.
This construction allows to prove Theorem 2.2 (resp. Theorem 2.4) in Section 5 (resp.
Section 6) combining perturbation theory and previous results of [3]. Lastly, Proposi-
tion 2.6 is obtained in Section 7 by direct computations.
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3. Spectral properties of P0

This part is devoted to the proof of Proposition 2.1 and to other technical results
on P0. From Theorem 1.1, there exists �� > 0 such that, for h small enough, P0 has
exactly three eigenvalues counted with multiplicity 0 D �1.h/ < �2.h/ � �3.h/ in
��1; ��h�. Moreover, �2 and �3 are exponentially small. Eventually, the asymptotic

�2; �3 � 3j�.s/jj det Hessf .m/j1=2
�j det Hessf .s/j1=2 he�2S=h;

is a direct consequence of [19, Section 7C3] (see also [3, 14]). We denote

… D 1Œ�1;�3�.P0/; …1 D 1¹�1º.P0/; …23 D 1Œ�2;�3�.P0/;

the spectral projectors of P0. They satisfy … D …1 C…23,

…�u D …� Nu and R…� D …�R; (3.1)

since P0 commutes with R and the complex conjugation. Here, R is viewed as the
rotation acting on functions (i.e., R.f / D f ıR for f 2 L2.Rd /).

Let � 2 C10 .R2I Œ0; 1�/ be supported near m1 with � D 1 near m1. We set

 1 D �.x/e�f .x/=h

k�e�f=hk ;  2 D  1 ıR;  3 D  1 ıR2; (3.2)

with the estimates

k�e�f=hk �
p
�h.det Hessf .m//�1=4 (3.3a)

and

ke�f=hk �
p
3�h.det Hessf .m//�1=4: (3.3b)

Since f is invariant by rotation, these quantities do not depend on the minimum m

where they are computed. The function  j is localized near mj from Figure 1, and
the family . j /j is orthonormal. We then set

'j D … j :

We have  j 2 C10 .R2/ and 'j 2 �.R2/ since 'j 2D.PN0 / for allN 2N. A classical
result (see the proof of [11, Proposition 2.5]) yields

'j D  j CO.e�ı=h/; (3.4)

showing that the family .'j /j is an almost orthonormal basis of Im…. Furthermore,
(3.1) implies that

the function 'j is real for all j and 'j D 'kRj�k for all j; k: (3.5)
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Eventually, (3.2)–(3.4) give
p
3

ke�f=hke
�f=h D '1 C '2 C '3 CO.e�ı=h/: (3.6)

We can now show that �2 D �3.

Lemma 3.1. For h small enough, the second eigenvalue �2 of P0 has multiplicity 2.

Proof. We prove this result by contradiction. Assume that �2 has multiplicity one and
let u be a normalized eigenvector. From (1.4), we can always choose u real-valued. In
the basis .'j /j of Im…, this function can be written

u D u1'1 C u2'2 C u3'3; (3.7)

for some uj 2 R. Since .'j /j is almost orthonormal,

1 D kuk2 D u21 C u22 C u23 CO.e�ı=h/: (3.8)

Applying the rotation R, (3.5) and (3.7) gives

u ıR D u1'2 C u2'3 C u3'1:

On the other hand, we have P.u ı R/ D .Pu/ ı R D �2u ı R. Since �2 is simple,
there exists ˛ 2 C such that u ıR D ˛u, that is

u1 D ˛u2; u2 D ˛u3; u3 D ˛u1: (3.9)

Since u and u ıR are real valued, we necessarily have ˛ 2 R. Relation (3.9) implies
uj D ˛3uj for j D 1; 2; 3. Since at least one of the uj is non-zero from (3.8), we get
˛3 D 1 and then ˛ D 1. Thus, u1 D u2 D u3 and ju1j D 3�1=2 C O.e�ı=h/. On the
other hand, u and e�f=h are orthogonal since they belong to two different eigenspaces
of the self-adjoint operator P0. Combining the previous properties with (3.6), it comes

0 D jh
p
3ke�f=hk�1e�f=h; uij

D ju1jjh'1 C '2 C '3; '1 C '2 C '3ij CO.e�ı=h/

D
p
3CO.e�ı=h/;

which provides a contradiction for h small enough. We have just proved that �2 has
multiplicity at least two. Since this multiplicity ccannot be larger than two, we get the
lemma.
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4. Construction of the anti-adjoint perturbation B

The anti-adjoint part of P is chosen of the form B D "B with

B D d�f ıG ı df with G D
�
0 g

�g 0

�
; (4.1)

with df defined in equation (2.1), for some constant ".h/ 2 �0;C1Œ and some func-
tion g.x; h/ 2 C10 .R2IR/ fixed in the sequel.

Lemma 4.1. The operator B is formally anti-adjoint, Be�f=h D 0 and

B D 1

2
.b � hr C h div ıb/ with b.x; h/ D

�
h@x2g � 2g@x2f
�h@x1g C 2g@x1f

�
2 C10 .R2IR2/:

Proof. The definition of B given in (4.1) immediately implies that B is formally anti-
adjoint and that Be�f=h D 0. Moreover, a direct computation gives

B D .�h@x1 C @x1f;�h@x2 C @x2f /
�
0 g

�g 0

��
h@x1 C @x1f
h@x2 C @x2f

�
D .�h@x1 C @x1f /g.h@x2 C @x2f / � .�h@x2 C @x2f /g.h@x1 C @x1f /
D .@x1f /g.h@x2/C .h@x2/g.@x1f / � .@x2f /g.h@x1/ � .h@x1/g.@x2f /
� .h@x1/g.h@x2/C .h@x2/g.h@x1/

D 1

2
.b � hr C h div b/;

and the lemma follows.

Since we see B as a perturbation of P0 and want to use the Kato’s theory, we
seek the function g 2 C10 .R2IR/ such that …23B…23 ¤ 0. For that, let .u; v/ be a
real-valued orthonormal basis of Im…23. From (4.1), we have

hBu; vi D
Z

R2

Ge�f=hhref=hu � e�f=hhref=hv dx

D
Z

R2

Qg.@x2 Qu@x1 Qv � @x1 Qu@x2 Qv/ dx; (4.2)

with
Qu D ef=hu; Qv D ef=hv; Qg D h2e�2f=hg: (4.3)

Thus, if @x2 Qu@x1 Qv � @x1 Qu@x2 Qv does not vanish identically, it is possible to find g such
that hBu; vi ¤ 0. This justify the next intermediate result.

Lemma 4.2. For h small enough, we have @x2 Qu@x1 Qv � @x1 Qu@x2 Qv ¥ 0.
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Proof. We prove this lemma by contradiction. If it does not hold true, we have

@x2 Qu@x1 Qv � @x1 Qu@x2 Qv � 0; (4.4)

for a sequence of positive h which goes to 0. Roughly speaking, this equation means
that the level sets of Qu and Qv are the same. This leads to consider the nodal sets of u
and v whose we recall now the general properties.

Proposition 4.3. Let w be a real-valued eigenvector of P0 associated to the eigen-
value �2 (in particular, w 2 �.R2IR/ and w ¥ 0). Then,

(1) the open set R2 n w�1.0/ has precisely two connected components �w
˙

on
which˙w > 0,

(2) the nodal set w�1.0/ is a (unique) smooth curve without crossing on which
rw ¤ 0,

(3) if w1 and w2 are two of such eigenvectors, then w�11 .0/ \ w�12 .0/ ¤ ;.
Proof of Proposition 4.3. This result collects classical properties of nodal sets and we
send the reader to the corresponding papers for the proofs. First, [7, Section VI.6] (see
also [6]) shows that R2 nw�1.0/ has at most two connected components. This result,
originally stated in domains, extends to our setting since the potential jrf j2 � h�f
is confining because f .x/ D x2 outside a compact set. Moreover, if R2 n w�1.0/
has only one connected component, this function has a constant sign and cannot be
orthogonal to the positive function e�f=h, an eigenvector of P0 associated to its first
eigenvalue �1. Summing up, R2 n w�1.0/ has precisely two connected components.

The structure of the nodal set w�1.0/ is described in [5, Theorem 2.5] in the
present two-dimensional case (see also [5, Theorem 2.2] in the general case). Outside
of isolated critical points,w�1.0/ is the reunion of smooth curves without crossing on
which rw ¤ 0. At the critical points, a finite number of nodal curves cross and form
an equiangular system. If such a critical point exists, then there will be more than two
connected components in R2 n w�1.0/. Thus, there is no critical point and w�1.0/
is the reunion of smooth curves without crossing. Consider such a curve t 7! x.t/

and assume that x.t/ does not go to infinity as t ! C1. Then, it comes back in a
bounded set for a sequence of arbitrarily large times. By compactness, there exist a
sequence .tk/k2N with tk !C1 as k !C1 and x1 2 R2 such that x.tk/! x1

as k ! 1. Therefore, x1 2 w�1.0/ and w�1.0/ is a piece of curve C near x1.
Eventually, x.tk/ 2 C for k large enough and t 7! x.t/ is periodical. We have just
proved that a curve inw�1.0/ is either periodical or goes to infinity. In particular, each
curve in w�1.0/ generates a connected component in R2 nw�1.0/. Since this set has
precisely two connected components,w�1.0/must be composed of a unique curve on
which rw ¤ 0. Since w changes sign across w�1.0/, the connected components of
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R2 n w�1.0/ can be labeled �w
˙

in a such way that ˙w > 0 on �w
˙

. This proves (1)
and (2).

It remains to show (3). For that, we follow the proof of [5, Lemma 4.2]. Assume
that w�11 .0/ \ w�12 .0/ D ;. Since w�11 .0/ is a single curve, we have w�11 .0/ � �w2�
orw�11 .0/��w2C . We can suppose thatw�11 .0/��w2� . Then,�w1�  �w2� or�w1C  
�w2� . We can suppose that �w1�   �w2� . Eventually, by Courant’s minimum princi-
ple, the first eigenvalue of the operator P0 restricted to �w1� with Dirichlet boundary
condition is greater than the first eigenvalue of the operator P0 restricted to �w2� with
Dirichlet boundary condition, whereas these two quantity are equal to �2. This is a
contradiction and (3) follows.

We now come back to the proof of Lemma 4.2. From (4.3), the zeros of Qu (resp. Qv)
are those of u (resp. v). Moreover, Proposition 4.3 (2) shows that

r Qu D ef=hruC uref=h D ef=hru ¤ 0; (4.5)

on Qu�1.0/. Let x0 be a point of Qu�1.0/ \ Qv�1.0/ which is not empty from Proposi-
tion 4.3 (3), and consider the curve x.t/ 2 R2 solution of8̂̂<̂

:̂
@tx.t/ D

�
@x2 Qu.x.t//
�@x1 Qu.x.t//

�
;

x.0/ D x0:
The definition of x.t/ gives @t Qu.x.t//D .@x1 Qu@x2 Qu� @x2 Qu@x1 Qu/.x.t//D 0, showing
that Qu.x.t//D 0 for all t 2 R. Combined with Proposition 4.3 (2) and (4.5), it implies
that x.t/ is a parametrization of Qu�1.0/. On the other hand, (4.4) yields

@t Qv.x.t// D .@x1 Qv@x2 Qu � @x2 Qv@x1 Qu/.x.t// D 0;

showing as before that Qv.x.t// D Qv.x0/ D 0 for all t 2 R. This proves u�1.0/ D
v�1.0/ from Proposition 4.3 (2). Using Proposition 4.3 (1), we deduce �u

˙
D �v

˙
or

�u
˙
D �v�. It implies hu; vi > 0 or hu; vi < 0 respectively. On the other hand, we

have hu; vi D 0 since .u; v/ is orthogonal. This contradiction finishes the proof of
Lemma 4.2.

Let � 2 C10 .R2I Œ0; 1�/ with supp � � B.0; 1/ and � D 1 on B.0; 1=2/. From
Lemma 4.2, there exists x0 D x0.h/ 2 R2 for h small enough such that

.@x2 Qu@x1 Qv � @x1 Qu@x2 Qv/.x0/ ¤ 0:

By continuity ( Qu; Qv 2 C1.R2/), there exists � D �.h/ 2 �0; 1� such that @x2 Qu@x1 Qv �
@x1 Qu@x2 Qv does not change it sign in B.x0; �/. We then set

g.x; h/ D hx0i�1e�1=��
�x � x0

�

�
2 C10 .R2IR/; (4.6)
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which satisfies, for h small enough and ˛ 2 N2,

8x 2 R2 j@˛xg.x; h/j D hx0i�1��j˛je�1=�
ˇ̌̌
�.˛/

�x � x0
�

�ˇ̌̌
�M˛hx0i�1 (4.7)

for some constantM˛ >0. Combining with Lemma 4.1 and f D x2 outside a compact
set, it shows that b.x; h/ is a symbol of class S.1/. Moreover, using Qg D h2e�2f=hg
and (4.2), this construction yields

hBu; vi D ˇ; (4.8)

for h small enough and some constant ˇ.h/ ¤ 0.

Lemma 4.4. In any real-valued orthonormal basis of Im…23, the operator…23B…23

writes

…23B…23 D
�
0 


�
 0

�
;

for h small enough and some constant 
.h/ 2 R n ¹0º.
Proof. In a real-valued orthonormal basis .e1; e2/ of Im…23, we have

…23B…23 D
�he1;Be1i he1;Be2i
he2;Be1i he2;Be2i

�
:

Since e1; e2 are real-valued, (4.1) gives he1;Be1i D he2;Be2i D 0 and he2;Be1i D
�he1;Be2i. Let us assume that he1;Be2i D 0 for a sequence of positive h which goes
to 0. In that case, the previous relations imply hej ;Beki D 0 for all j; k 2 ¹1; 2º.
Since .e1; e2/ is a basis of Im…23, it yields hBu; vi D 0 in contradiction with (4.8).
Summing up, 
.h/ WD he1;Be2i ¤ 0 for h small enough.

5. Proof of Theorem 2.2

We now apply the perturbation theory for all h fixed small enough. LetPcomDP0CB
with

B D "B;
where B has been constructed in Section 4.

Proposition 5.1. The operator Pcom is closed on the domain of P0. Moreover, for h
small enough, there exist "0.h/ > 0 and three analytic functions

" 7! �1."; h/; �2."; h/; �3."; h/
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defined for " 2 Œ�"0; "0� with �1."; h/ D 0,´
�2."; h/ D �2.h/C i
.h/"COh."

2/;

�3."; h/ D �2.h/ � i
.h/"COh."
2/;

such that
�.Pcom/ \ ¹z 2 CI Re z < h��=2º D ¹�1; �2; �3º;

for h small enough and " 2 Œ�"0; "0�.
In this statement, the notation Oh.1/ designs a function bounded by a constant

which may depend on h, and the eigenvalues are counted with multiplicity. The con-
stant 
.h/ 2 R n ¹0º is whose of Lemma 4.4.

Proof of Proposition 5.1. Since B is a relatively compact perturbation of P0 from
Lemma 4.1, the operatorPcom is well defined and closed on the domain ofP0 (see [15,
Theorem IV.1.11]). Moreover, " 7! P0 C "B is a holomorphic family of unbounded
operators in the sense of [15, Section VII]. Recall that �1 D 0 is a simple eigenvalue
of P0. From Lemma 3.1, �2 is a double eigenvalue which is semisimple since P0 is
self-adjoint. On the other hand, Lemma 4.4 shows that the eigenvalues of …23B…23

are˙i
 . Since 
 ¤ 0, these eigenvalues are different. Then, by the perturbation theory
of spectrum, more precisely the perturbation theory of finite systems of eigenvalues
(see [15, Section VII.1.3]) and the reduction process for semisimple eigenvalues (see
[15, Section II.2.3]), there exist analytic functions " 7! �1."; h/; �2."; h/; �3."; h/

defined for " 2 Œ�"0; "0� with "0.h/ > 0 such that8̂̂<̂
:̂
�1.0; h/ D 0;
�2."; h/ D �2.h/C i
.h/"COh."

2/;

�3."; h/ D �2.h/ � i
.h/"COh."
2/;

and �.Pcom/\ ¹z 2CI Rez < h��=2ºD ¹�1;�2;�3º. Since 0 is always an eigenvalue
of Pcom by Lemma 4.1, we have �1."; h/ D 0 for all " 2 Œ�"0; "0� after a possible
shrinking of "0.

The asymptotic expansions in Proposition 5.1 and 
.h/ 2 R n ¹0º yield that

Im�2."; h/ ¤ 0 and Im�3."; h/ ¤ 0;

for all " 2 Œ�"1; "1� n ¹0º with "1.h/ > 0 small enough. We eventually choose

".h/ D min."0.h/; "1.h/; r.h//: (5.1)

Thus, b.x; h/ is a symbol of order at most r.h/ from Lemma 4.1 and (4.7). In the
domain ¹z 2 CI Re z < ��h=2º, Pcom has three eigenvalues �1.h/ D 0, �2.h/ D
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�2.".h/; h/, and �3.h/D �3.".h/; h/ with Im�2 ¤ 0 and Im�3 ¤ 0. From (1.4), we
automatically have �3 D �2. Finally, we can write

Pcom � z D .B.P0 � z/�1 � 1/.P0 � z/;
for z 2 B.0; 1/ n �.P0/ with

B.P0 � z/�1 D B.P0 C i/�1.1C .z C i/.P0 � z/�1/ D O.r dist.z; �.P0//�1/;

from Lemma 4.1. If dist.z; �.P0//�Mr withM > 1 large enough, then one has that
kB.P0 � z/�1k � 1=2 and Pcom � z is invertible. It implies that �2 D �2CO.r/ and
finishes the proof of Theorem 2.2.

6. Proof of Theorem 2.4

To find a setting with a Jordan block, we consider operators of the form

P� D P0 C �1P1 C �2P2 C �3P3 C �4B;
where � D .�1; �2; �3; �4/ 2 R4, B has been constructed in Section 4 and P� is as
follows. For � D 1; 2; 3, let �� 2 C10 .R2IR/ be supported near s� and equal to 1
in a neighborhood of s� . We also assume that �2 D �1 ı R and �3 D �1 ı R2 (see
Figure 1). Then, P� is defined by

P� D d�f ı �� ı df : (6.1)

Summing up, P� can be written

P� D d�f ı � ı df C �4B;
with � D 1 C �1�1 C �2�2 C �3�3. Thus, for � small enough, P� enters into the
setting of (1.1).

For j D 1; 2; 3, let �j .x/ denote the global quasimode of P0 supported near the
connected component of ¹f < f .s/º containingmj constructed in [3, Section 4] (see
also [17]). More precisely, this real-valued function can be written

�j .x/ D �j .x/.vj .x/C 1/e�f .x/=h D Qvj .x/e�f .x/=h; (6.2)

where �j 2 C10 .R2/ is a plateau function near the connected component of ¹f <

f .s/º containing mj and vj 2 C1.R2/ is given near the support of �j by

vj .x/ D

8̂̂<̂
:̂
C�10

`
j
s .x;h/Z
0

�.r/e�r
2=2hdr near s; one of the two

saddle points close to mj :

1 outside,

(6.3)
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Here, we say that a saddle point s is “close to a minimum m” if s is in the closure of
the connected component of ¹f < f .s/º containing m (see Figure 1). The function
� 2 C10 .RI Œ0; 1�/ is even and satisfies �.r/ D 1 for r near 0,

C0 D
C1Z
0

�.r/e�r
2=2hdr D

r
�h

2
.1CO.e�ı=h//:

The function `js .x; h/ ' `
j
s;0.x/ C `js;1.x/h C � � � is smooth with `js;0.s/ D 0 and

r`js;0.s/ ¤ 0. As in (3.2), we can make these constructions so that

�2 D �1 ıR and �3 D �1 ıR2: (6.4)

We choose �� in (6.1) such that �� D 1 near the support of �jrvj if s� is close tomj .
By comparison with Section 3, we have �j D 2 j C O.e�ı=h/ for some ı > 0, but
�j is a better quasimode than  j (see Lemma 6.1 below).

We define the geometric quantities S D f .s/ � f .m/ and

C1 D 2j�.s/j
j det Hessf .s/j1=2 ;

where �.s/ is given above Proposition 2.1. The quasimodes �j ’s satisfy the following
property.

Lemma 6.1. For all �; j; k 2 ¹1; 2; 3º, we have

hP��j ; �ki �

8̂̂<̂
:̂
C1h

2e�2S=h if s� is close to mj D mk;
�C1h2e�2S=h if s� is close to mj ¤ mk;
0 otherwise,

(6.5)

kP0�j k2 D O.h1/e�2S=h and kP��j k2 D O.h1/e�2S=h: (6.6)

Here, the notation “s� is close to mj ¤ mk” means that j ¤ k and that s� is
close to mj and mk . Roughly speaking, it means that s� is between mj and mk (see
Figure 1).

Proof. This result is similar to [3, Proposition 5.1] (see also [17, Section 4B]). We
only explain here the ideas of the proof and the necessary changes, and we send the
reader to [3] for the details.

Combining (6.1) and (6.2) leads to

hP��j ; �ki D h��df �j ; df �ki D h��e�f=hhr Qvj ; e�f=hhr Qvki: (6.7)
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Using r Qvj D .vj C 1/r�j C �jrvj and e�f=h D O.e�.SCı/=h/ on the support of
.vj C 1/r�j , the previous equation becomes

hP��j ; �ki D h2
Z
���j �krvj � rvke�2f=hdx CO.e�2.SCı/=h/: (6.8)

From (6.3), we have on the support of �j

rvj D
X

s close tomj

C�10 �.`js /e
�.`

j
s /
2=2hr`js :

If s� is close to mj D mk , (6.8) writes

hP��j ; �ki D h2C�20
Z
�2j �.`

j
s�
/2jr`js� j2e�2.fC

.`
j
s� /

2

2 /=hdx CO.e�2.SCı/=h/:

The asymptotic of such an integral has been obtained in [3, equation (5.5)] using the
Laplace method. This computation gives

hP��j ; �ki � C1h2e�2S=h; (6.9)

when s� is close to mj D mk . Assume now that s� is close to mj and mk with mj ¤
mk . In this case, we have `js� D�`ks� (see [3, discussion below equation (4.6)]). Then,
(6.8) and the parity of � give

hP��j ; �ki D �h2C�20
Z
�j �k�.`

j
s�
/2jr`js� j2e�2.fC

.`
j
s� /

2

2 /=hdx CO.e�2.SCı/=h/:

As before, the Laplace method implies

hP��j ; �ki � �C1h2e�2S=h; (6.10)

when s� is close to mj ¤ mk . Finally, if s� is not close to mj or mk , we directly get
from (6.7) and the support properties of �� , �j and �k that

hP��j ; �ki D 0; (6.11)

in that case. Summing up, (6.5) follows from (6.9), (6.10), and (6.11).
It remains to show (6.6). The first estimate is a direct consequence of [3, Proposi-

tion 5.1 (ii) and (iii)]. On the other hand, using (6.2) and P�e�f=h D 0, we deduce

P��j D ŒP� ; �j �.vj C 1/e�f=h C �jP�.vj e�f=h/:

Since e�f=h D O.e�.SCı/=h/ on the support of .vj C 1/r�j , the first term is
O.e�.SCı/=h/ in L2 norm. Concerning the second term, we remark that �� is con-
stant (equal to 0 or 1) near each connected component of the support of �jrvj if
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the support of �j has been chosen sufficiently close to the connected component of
¹f < f .s/º containing mj . Then, (6.1) and (6.3) lead to

�jP�.vj e
�f=h/ D �jd�f ��df vj e�f=h D �jd�f ��e�f=hhrvj

D ���jd�f e�f=hhrvj D ���jP0.vj e�f=h/:
It is proved in [3, below equation (5.6)] that �jP0.vj e�f=h/ D O.h1/e�S=h. Sum-
ming up,

P��j D O.h1/e�S=h;

and (6.6) follows.

We construct a basis of the 2-dimensional spectral space of P� associated to the
eigenvalues close to �2. We set8̂̂̂<̂

ˆ̂:
Qe1.x/ D 1p

8ke�f=hk .2�1.x/ � �2.x/ � �3.x//;

Qe2.x/ D
p
3p

8ke�f=hk .�2.x/ � �3.x//;
(6.12)

with ke�f=hk estimated in (3.3b). The idea behind this choice of functions is that

1p
3

 1
1

1

!
;

1p
6

 2

�1
�1

!
;

1p
2

 0

1

�1

!
; (6.13)

form an orthonormal basis of R3 (the first vector corresponding to ke�f=hk�1e�f=h).
For � 2 ¹1; 2; 3º, let zP� 2M2�2.R/ be the matrix of coefficients

. zP�/j;k D C�12 h�1e2S=hhP� Qej ; Qeki with C2 D j�.s/jj det Hessf .m/j1=2
4�j det Hessf .s/j1=2 :

The asymptotic of these matrices are provided by the next result.

Lemma 6.2. For all j; k 2 ¹1; 2º, we have

h Qej ; zeki D ıj;k CO.e�ı=h/: (6.14)

Moreover, the matrices zP� satisfy modulo o.1/ terms

zP1 D
�

3 �p3
�p3 1

�
; zP2 D

�
0 0

0 4

�
; zP3 D

�
3
p
3p

3 1

�
: (6.15)

Proof. From (6.2), we have �� D 2e�f=h near m� and �� D O.e�ı=h/ outside. It
implies

ke�f=hk�2h�j ; �ki D
4

3
ıj;k CO.e�ı=h/;

thanks to (3.3). Combining this relation with (6.12), we get (6.14).



J.-F. Bony and L. Michel 1402

To show (6.15), it is enough to combine (6.5) and (6.12). For instance,

hP3 Qe1; Qe2i D
p
3

8ke�f=hk2 hP3.2�1 � �2 � �3/; .�2 � �3/i

D
p
3

8ke�f=hk2
�
2hP3�1; �2i � 2hP3�1; �3i � hP3�2; �2i
C hP3�2; �3i � hP3�3; �2i C hP3�3; �3i

�
D
p
3C1h

2e�2S=h

8ke�f=hk2 .0C 2C 0C 0C 0C 1/C o.he�2S=h/

D
p
3C2he

�2S=h C o.he�2S=h/;
thanks to (3.3) and

C2 D C1j det Hessf .m/j1=2
8�

:

This provides the desired asymptotic of . zP3/1;2. The other coefficients can be com-
puted the same way.

We now apply perturbation theory for h fixed small enough. For � small enough
(depending on h), P� has 3 small eigenvalues counted with multiplicity: ��1 D 0 asso-
ciated to the eigenspace ef=hC and ��2; �

�
3 such that ��j ! �2 as � ! 0 for j D 2; 3.

Mimicking Section 3, we introduce the spectral projectors

…� D 1¹�1;�2;�3º.P� /; …�
1 D 1¹�1º.P� /; …�

23 D 1¹�2;�3º.P� /;

which satisfy …� D …�
1 C…�

23, …�
1 D …1 and …�

�u D …�
� Nu as in (3.1). Moreover,

� ! …�
� is analytic in a real neighborhood of 0 which may depend on h. We define

Oe�1 D …�
23 Qe1 and Oe�2 D …�

23 Qe2:
for j D 1; 2. These real-valued functions satisfy the following property.

Lemma 6.3. For j D 1; 2 and � small enough (depending on h), we have

Oe�j D Qej CO.h1/e�S=h;

in H 2.R2/.

Proof. Using the Cauchy formula, we can write

Oe�j D …23 Qej � 1

2i�

I



.P� � z/�1 dz Qej C 1

2i�

I



.P0 � z/�1 dz Qej

D …23 Qej C 1

2i�

I



.P� � z/�1.P� � P0/.P0 � z/�1 dz Qej ;
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where 
 is a simple loop around �2, oriented counterclockwise, which depends on h
but not on � . This implies

Oe�j D …23 Qej COh.�/ D …23 Qej CO.h1/e�S=h; (6.16)

in H 2.R2/ for � small enough.
Since …23 D … �…1, (6.16) gives

Oe�j D … Qej �…1 Qej CO.h1/e�S=h:

Using (6.4) and that f is invariant under R, we get

…1 Qe1 D e�f=h 1p
8ke�f=hk3 he

�f=h; 2�1 � �2 � �3i

D e�f=h 1p
8ke�f=hk3 he

�f=h; 2�1 � �1R � �1R2i

D e�f=h 1p
8ke�f=hk3 he

�f=h; 2�1 � �1 � �1i D 0:

The same way, …1 Qe2 D 0. These relations follow in fact from (6.13). Summing up,

Oe�j D … Qej CO.h1/e�S=h; (6.17)

in H 2.R2/ for � small enough.
Finally, we work as in [17, Lemma 4.9] to remove the projector … (see also [3,

equation (5.13)]). The Cauchy formula gives

… Qej D Qej � 1

2i�

I
@B.0;��h=2/

.P0 � z/�1 dz Qej � 1

2i�

I
@B.0;��h=2/

z�1 dz Qej

D Qej � 1

2i�

I
@B.0;��h=2/

z.P0 � z/�1 dz P0 Qej :

Combining with (6.6), (6.12), and (6.17), the lemma follows.

From (6.12), (6.13), and Lemma 6.3, . Oe�1; Oe�2/ is almost orthonormal and then is
a basis of Im…�

23. We orthonormalize . Oe�1; Oe�2/ into .e�1; e
�
2/ by the Gram–Schmidt

process. It means

e�1 D kOe�1k�1 Oe�1 and e�2 D kOe�2 � he�1; Oe�2ie�1k�1. Oe�2 � he�1; Oe�2ie�1/: (6.18)

In particular, .e�1; e
�
2/ is a orthonormal basis of Im…�

23, e�j is real-valued and � ! e�j
is analytic for j D 1;2 and � near 0. We now define the interaction matrixQ.�/. More
precisely,

let Q.�/ be the matrix of the operator …�
23P�…

�
23 expressed in the basis .e�1; e

�
2/:
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More prosaically, it means that Qj;k.�/ D he�j ; P�e�ki. From the previous discussion,
Q.�/ is well defined for � small,

Q 2 C1.R4IM2�2.R//; (6.19)

and Q.0/ D �2 Id. Moreover, its partial derivatives satisfy the following property.

Lemma 6.4. We have

@��Q.0/ D C2he�2S=h. zP� C o.1//; (6.20)

for � D 1; 2; 3 and

@�4Q.0/ D
�
0 


�
 0

�
; (6.21)

where the zP�’s are defined in Lemma 6.2 and 
.h/ 2 R n ¹0º is the constant given by
Lemma 4.4 and associated to the basis .e01 ; e

0
2/ of Im…23.

Proof. We compute these derivatives using the classical trick in the reduction process
(see [15, Section II.2.3]). We can write

@��Qj;k.0/ D @�� .Qj;k � ıj;k�2/.0/ D @�� he�j ; .P� � �2/e�ki.0/
D h.@��e0j /; .P0 � �2/e0ki C he0j ; .@��P� /.0/e0ki
C he0j ; .P0 � �2/.@��e0k/i
D he0j ; .@��P� /.0/e0ki; (6.22)

since .P0 � �2/e0j D .P0 � �2/e0k D 0. For � D 1; 2; 3, (6.22) gives

@��Qj;k.0/ D he0j ; P�e0ki; (6.23)

with P� defined in (6.1).
From (6.14) and Lemma 6.3, we have

kOe�1k D 1CO.e�ı=h/ and kOe�2 � he�1; Oe�2ie�1k D 1CO.e�ı=h/:

Using again Lemma 6.3, (6.18) becomes´
e�1 D Qe1 CO.e�ı=h/ Qe1 CO.h1/e�S=h;

e�2 D Qe2 CO.e�ı=h/ Qe1 CO.e�ı=h/ Qe2 CO.h1/e�S=h;
(6.24)

where the O.e�ı=h/’s are constants. Then, equation (6.20) follows from (6.15), (6.23),
and (6.24).

On the other hand, (6.23) gives @�4Qj;k.0/ D he0j ;Be0ki. In other words, @�4Q.0/
is the operator …23B…23 expressed in the basis .e01 ; e

0
2/ of Im…23. Then, (6.21)

follows directly from Lemma 4.4.
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Proof of Theorem 2.4. From Lemma 6.4 and (6.15), .@��Q.0//�D1;2;3;4 is a basis of
M2�2.R/. Thus,

d0QWR4 ' T0R4 ! T�2 IdM2�2.R/ 'M2�2.R/;

is an isomorphism. By the inverse function theorem, � 7! Q.�/ is a local diffeomor-
phism from a neighborhood of 0 to a neighborhood of �2 Id, for h small enough. Note
that the neighborhoods may depend on h. Then, there exists �.h/ 2 R4 with j� j < r
such that

Q.�/ D
�
�2 �

0 �2

�
; (6.25)

for some �.h/ ¤ 0. Since Q is the operator P� restricted to its stable eigenspace
Im…�

23 in the basis .e�1; e
�
2/, (6.25) shows that PJor WD P� has a non-trivial Jordan

block associated with the eigenvalue �2 and Theorem 2.4 follows.

7. Proof of Proposition 2.6

We write P D P0 C "B with

P0 D �h2�C x2 � 2 and B D x1h@x2 � x2h@x1 :
The operator P0 is the harmonic oscillator

P0 D d�f ı df D a�1 ı a1 C a�2 ı a2 � 2;
with the creation operators

a�j D �h@xj C xj
and annihilation operators

aj D h@xj C xj :
The spectrum of P0 is 2hN and the eigenspace associated to 2nh is the .nC 1/-dimen-
sional space

En D Vect¹a�1ka�2n�ke�f=hI k D 0; : : : ; nº:
A direct computation gives

ŒB; a�1 � D �ha�2 and ŒB; a�2 � D ha�1 ;
showing that En is stable by B. Let Bn denote the restriction of B to En. Summing
up the previous arguments, we deduce

�.P / D
C1[
nD0

2nhC "�.Bn/; (7.1)

where �.Bn/ � iR since Bn is anti-adjoint as B.
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To get the spectral gap of P , it remains to compute �.B1/. In the basis .x1e�f=h;
x2e
�f=h/ of E1, the matrix of B1 takes the form

B1 D
�
0 h

�h 0

�
:

Thus, �.B1/ D ¹ih;�ihº and Proposition 2.6 follows from (7.1).
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