
J. Spectr. Theory 14 (2024), 1647–1660
DOI 10.4171/JST/527

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Weak Hölder continuity of Lyapunov exponent
for Gevrey quasi-periodic Schrödinger cocycles

Licheng Fang and Fengpeng Wang

Abstract. We prove the large deviation theorem (LDT) for quasi-periodic dynamically defined
Gevrey Schrödinger cocycles with weak Liouville frequency. We show that the associated Lya-
punov exponent is log-Hölder continuous, while the frequency satisfies ˇ.!/ D 0.

1. Introduction and the main results

Since the discovery of quasi-crystals by Nobel laureate Schechtman [23], the spectral
problems of the one-dimensional discrete Schrödinger operators with quasi-periodic
potentials have been extensively studied, see [2,10,11,16,22] and references therein.
A one-dimensional discrete Schrödinger operator is the following self-adjoint lattice
operator acting on `2.Z/:

.H�/.n/´ �.nC 1/C �.n � 1/C v.x C n!/�.n/; n 2 Z;

where x 2 T ´ R=2�Z, ! 2 RnQ, and vW T ! R are called phase, frequency,
and potential, respectively. For an energy E 2 R, we consider the associated eigen-
equation

�.nC 1/C �.n � 1/C v.x C n!/�.n/ D E�.n/: (1.1)

It is well known that the properties of the solution � of equation (1.1) are intimately
connected to the spectral properties of the Schrödinger operator with potential v,
see [9] for instance. To be specific, the solution to (1.1) can be expressed via transfer
matrices, �

�.nC 1/

�.n/

�
D

�
E � v.x C n!/ �1

1 0

��
�.n/

�.n � 1/

�
;
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which induces an SL.2;R/-cocycle, called the Schrödinger cocycle, over T as fol-
lows:

.!;AE /WT �R2 ! T �R2; .x; w/ 7! .x C !;AE .x/ � w/;

where the map AE WT ! SL.2;R/ is given by

AE .x/´

�
E � v.x/ �1

1 0

�
: (1.2)

We denote the iterates of .!;AE / by .!;AE /n D .n!;AEn .�//, where, for n � 1,

AEn .x/ D A
E .x C .n � 1/!/ � � �AE .x/;

AE�n.x/ D ŒA
E .x � n!/��1 � � � ŒAE .x � !/��1;

and AE0 .x/ is identity matrix. We are interested in the asymptotic behavior of the
norm of AEn .x/ as n!1. The subadditive ergodic theorem ensures the existence
and almost-sure equivalency of L.!;E/, called Lyapunov exponent,

L.!;E/ W D lim
n!1

1

n

Z
T

log kAEn .x/kdx

D lim
n!1

1

n
log kAEn .!; x/k; a.e. x 2 T : (1.3)

As one of the most basic concepts in mathematics, the Lyapunov exponent is
decisive for the long-term evolution of the system (1.1).

In this paper, we focus on the continuity of the Lyapunov exponent with respect
to the energy, which plays an important role in mathematics. It is well known that the
continuity of the Lyapunov exponentL.!;E/ depends sensitively on the base dynam-
ics. It depends on the smoothness of AE .x/ (see (1.2)) if the base is elliptic. To be
specific, when the base dynamics is quasi-periodic, the Lyapunov exponent is always
continuous for the analytic case, while it could be discontinuous for the smooth case,
even for bounded type frequencies. On the other hand, the arithmetic properties of !
will also influence the dynamics of the Schrödinger cocycles. For a fixed irrational
! 2 T , consider its fraction expansion ! D Œa1; a2; : : : � with convergents pn

qn
for

n 2 N. Define
ˇ D ˇ.!/´ lim sup

n

log qnC1
qn

2 Œ0;1�: (1.4)

Recall that ! satisfies the Diophantine condition (D.C.) if qnC1 D O.qan/ for some a,
and the strong Diophantine condition (S.D.C) if qnC1 D O.qn.log qn/a/. It is then
clear from (1.4) that S.D.C. ¨ D.C. ¨ ¹! W ˇ.!/D 0º. Those values ! with ˇ.!/ > 0
are usually called Liouville numbers, while super Liouvillean means ˇ.!/ D 1 and
the weak Liouville number satisfies ˇ.!/ <1. It is also clear that ˇ.!/ D 0 if ! is
a Brjuno number.
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In the study of Schrödinger operators, the Schrödinger cocycle turned out to be a
very important tool, which allows us to study Schrödinger operators by using dynam-
ical systems. The Schrödinger cocycle .!; AE / is uniformly hyperbolic if there are
C > 0 and � > 1 such that kAEn .x/k � C�

jnj for every x 2 T and n 2 Z. We
write UH D ¹E 2 R W .!; AE / is uniformly hyperbolicº. Clearly, L.!; E/ > 0 for
every E 2 UH . The converse is in general not true, and hence we denote the set
of energies at which .!; AE / is non-uniformly hyperbolic by N UH D ¹E 2 R W

L.!; E/ > 0 and E … UHº. Therefore, if we set Z D ¹E 2 R W L.!; E/ D 0º, we
have R D Z [N UH [UH .

Since the uniform hyperbolicity of the Schrödinger cocycle is equivalent to E
belonging to the resolvent set as shown by Lenz [21] (see also Johnson [17]), and
the potential v has a bounded norm, i.e., kvkT ´ supx2T jv.x/j < 1, then for
E 2 .�1;�2 C kvkT � [ Œ2 C kvkT ;C1/, the Schrödinger cocycle is uniformly
hyperbolic, thus the continuity of the Lyapunov exponent is not an issue. So, with-
out loss of generality, we assume that jEj � 2 C kvkT . On the other hand, due to
the fact that the Lyapunov exponent is upper semi-continuous, it is continuous in Z.
Therefore, we only need to focus on the continuity of the Lyapunov exponent on the
non-uniformly hyperbolic (N UH ) set.

About the continuity of the Lyapunv exponent, fruitful results have been obtained
recently. For analytic Schrödinger cocycles, i.e., AE 2 C!.T ; SL.2;R//, the Lya-
punov exponent is always continuous. Bourgain and Jitomirskaya [5] proved that
L.!; E/ is continuous in E for any ! and jointly continuous in .!; E/ at every
.!0; E/ with irrational !0, which plays an important role in solving the Ten Mar-
tini Problem, see [1]. For frequency ! satisfying the strong Diophantine condition,
Goldstein and Schlag [14] developed a powerful tool, the avalanche principle, and
proved Hölder continuity in E of L.!; E/ in the regime of L > 0. For all Dio-
phantine frequencies and some weak Liouville frequencies !, You and Zhang [25]
and Han and Zhang [15] proved optimal Hölder regularity of the Lyapunov exponent
L.!; E/ in the regime of L > 0. For irrational rotation, Bochi [3] and Furman [12]
showed that the Lyapunov exponent of the Schrödinger cocycle is never continuous
whenever AE 2 C0.T ; SL.2;R//. Therefore, if one wants to obtain some regular-
ity of the Lyapunov exponent, finer smoothness than C0 is necessary. As for the
smooth Schrödinger cocycles, i.e., AE 2 Ck.T ; SL.2;R// with k D 1; 2; : : : ;1,
what is interesting is whether the Lyapunov exponent is still always continuous just
like AE 2 C!.T ;SL.2;R//. The answer is no, since Wang and You [24] constructed
examples of discontinuity of the Lyapunov expoent in smooth quasi-periodic SL.2;R/
cocycles (including the Schrödinger cocycles) even when ! is of bounded type. How-
ever, if additional conditions are added, the continuity of the Lyapunov exponent is
still valid. For example, Cai, Chavaudret, You, and Zhou [6] showed that if AE 2
Ck.T ;SL.2;R//, the Lyapunov exponent is continuous, even Hölder continuous, pro-
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vided that the base frequency ! satisfies the Diophantine condition and the cocycle is
Ck;k

0

almost reducible.
In this paper, we consider the Schrödinger cocycles belonging to the Gevrey-class,

i.e., v.x/ 2 Gs.T /, s > 1. The general definition of the Gevrey function is, there are
some constants M;K > 0 such that

sup
x2T
j@mv.x/j �MKm.mŠ/s for all m > 0;

which is equivalent to the following exponential-type decay of the Fourier coefficients
of v, i.e.

j Ov.k/j �M exp.��jkj1=s/ for all k 2 Z (1.5)

for some constants M ; � > 0, see [18, Chapter V.2] for more details. It is clear
from (1.5) that Gevrey-class functions have weaker smoothness than C! (if s D 1,
Gs.T / D C!.T /) and stronger smoothness than C1. There are some continuity
results of the Lyapunov exponent in this class, studied by Klein [19] for the first time.

For example, Klein [19] extended the work by Bourgain [14] and Goldstein and
Schlag [4] from the analytic class to the Gevrey class, proving the continuity of the
associated Lyapunov exponent for any s > 1 in energy E, in the regime of posi-
tive Lyapunov exponent, assuming the frequencies ! satisfying a strong Diophantine
condition. Afterwards, the method developed in [19] has been applied extensively in
dealing with spectral theory of Gevrey Schrödinger operators. Cheng, Ge, You, and
Zhou [7] proved the continuity of the Lyapunov exponent whenever s < 2 and the
frequency is Diophantine. Recently, Ge, Wang, You, and Zhao [13] showed that the
Lyapunov exponent is discontinuous when s > 2 and ! is of bounded type, which
shows thatG2.T / is the transition space for the continuity of the Lyapunov exponent.

In order to prove the continuity of the Lyapunov exponent, the main technical tool
is the so-called large deviation theorem (LDT) for the logarithmic average of transfer
matrices. According to (1.3), by Kingman’s subadditive ergodic theorem (see [8] for
instance), one has for a.e. x 2 T ,

1

n
log kAEn .!; x/k ! L.!;E/ as n!1:

The LDT provides a quantitative version of this convergence:

mes
°
x 2 T W

ˇ̌̌1
n

log kAEn .!; x/k � Ln.!;E/
ˇ̌̌
> "

±
� �.n; "/;

where " D o.1/, �.n; "/! 0 as n!1, and Ln.!;E/ D 1
n

R
T log kAEn .!; x/kdx.

For the sake of our convenience, we set un.!; E; x/ D 1
n

log kAEn .!; x/k. Then
the main result of this paper is as follows.
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Theorem 1.1. For any " > 0, b > 1, s > 1, we denote ı D b.s � 1/, which means
s < 1C ı. Let Cv be a constant depending on v. There exist absolute constants c0, c1
such that if n > N."; Cv/ and ˇ D ˇ.!/ < c0n�ı"=Cv , then

mes.�n."//´ mes¹x 2 T W jun.!;E; x/ � Ln.!;E/j > "º

< exp
°
�
c1

C 3v
"3n1�2ı

±
; (1.6)

where 1 � 2ı > 0, that is, ı < 1
2

.

Remark 1. Due to the positivity of 1 � 2ı, this LDT (1.6) holds for certain Gevrey
potentialsGs.T /, i.e., 1 < s < 1C ı < 3=2, which is a class of potentials that is close
to be analytic.

Remark 2. We should mention that in Theorem 1.1 the frequency ! satisfies ˇ.!/ <
c0n
�ı"=Cv ´ C.v; "; ı; n/, which is a weak Liouville number, and it also depends

on the scale n, in contrast with ˇ.!/ < C.v; "/ in [25, Theorem 1].

Once we have the LDT (1.6), we are able to prove the continuity of the Lyapunov
exponent. In order to do that, we need to assume that the Lyapunov exponent is posi-
tive, that is,

L.!;E/ > 
 > 0 for all E 2 ŒE1; E2�: (1.7)

Theorem 1.2. Assume that ˇ.!/ D 0 and suppose (1.7) holds, then

jL.!;E/ � L.!;E 0/j � C expŒ�c.log jE �E 0j�1/1�2ı �; (1.8)

where c and C are some constants depend on v and 
 , and ı is the constant in Theo-
rem 1.1.

Remark 3. Due to the appearance of the constant ı, the continuity of the Lyapunov
exponent is the log-Hölder continuity instead of the sharper � -Hölder continuity in
[25, Theorem 2], where they treat the analytic case, i.e., s D 1.

Remark 4. Inequality (1.8) shows that we improved the results of [7, 19, 25] in the
sense that the Lyapunov exponent is log-Hölder continuous under the Gevrey potential
Gs.T / with s < 3=2 and the frequency satisfies ˇ.!/ D 0, which is a larger set than
D.C.

This paper is organized as follows. In Section 2 we give the basic definitions and
we show rigorously the approximation (truncation) argument, following some ideas
and techniques in [19, Section 2] or [20] along the way. Section 3 is devoted to the
proof of the large deviation theorem, and once the LDT is proved, we are able to
combine it with the avalanche principle ([14, Proposition 2.2]) to prove the log-Hölder
continuity of the Lyapunov exponent.
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2. Description of the approximation process

In this section, we introduce the Fourier truncation and its application to the Gevrey-
class functions. This idea of dealing with Gevrey-class potetials has been originally
developed by Klein in [19].

For a Gevrey-class potential v.x/ 2 Gs.T /, where s > 1, we consider the trunca-
tion of v.x/, i.e.,

vn.x/´
X
jkj�Qn

Ov.k/eikx; (2.1)

where QnD degvn will be determined later. Since vn.x/ is a 2�-periodic, real analytic
function on R, it can be extended to a 2�-periodic holomorphic function on C by

vn.z/ D
X
jkj�Qn

Ov.k/eikz :

In order to get the uniform boundedness in n of vn.z/, we have to restrict vn.z/ to the
strip Œj=zj < �n�, where �n´

�
2
Qn1=s�1. Indeed, if z D x C iy, jyj < �n, then

jvn.z/j D
ˇ̌̌X
jkj�Qn

Ov.k/eikz
ˇ̌̌
�

X
jkj�Qn

j Ov.k/je�ky �M
X
jkj�Qn

e��jkj
1=s

ejkjjyj

� 2M

QnX
kD0

e��jkj
1=sCjkjjyj

� 2M

QnX
kD0

e�
�
2 jkj

1=s

� 2M

1X
kD0

e�
�
2 jkj

1=s

´ B <1

where B is a constant which depends on �, s,M , and we used jyj < �n D
�
2
Qn1=s�1 �

�
2
jkj1=s�1 for jkj � Qn since s > 1.

In view of the truncation (2.1), we have jv.x/� vn.x/j � Ce�c Qn
1=s

for all x 2 R,
where C; c > 0 depend on � and s. We will need a super-exponentially small error in
how vn.x/ approximates v.x/. Hence, Qn should be chosen such that e�c Qn

1=s
� e�n

b

for some b > 1. So if Qn´ nbs , then the width of the holomorphic extension vn.x/
will be �n D

�
2
nbs.�1C1=s/ D �

2
n�b.s�1/´ �

2
n�ı , where ı´ b.s � 1/ > 0, and, to

ensure that b D ı
s�1

> 1, s < ı C 1.
From the description above, we conclude that, for every integer n � 1, we have a

function vn.x/ on T such that

jv.x/ � vn.x/j < e
�cnb ;

and vn.x/ has a holomorphic extension vn.z/ to the strip Œj=zj < �n�, where �n D
�
2
n�ı , for which

jvn.z/j � B for all z 2 Œj=zj < �n�:
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We now substitute vn.x/ for v.x/ in the definition of the transfer matrix AE .x/
(see (1.2)) and get

zAEn .!; x/´

0Y
jDn�1

zAE .x C j!/;

where
zAE .x/´

�
E � vn.x/ �1

1 0

�
:

We denote by
zLn.!;E/´

1

n

Z
T

log k zAEn .!; x/kdx:

The norm k � k of the transfer matrix and the substituted transfer matrix are

kAE .x/k D





�E � v.x/ �11 0

�



 � B C jEj C 2 � 4C 2B´ eCv ;

k zAE .x/k D





�E � vn.x/ �11 0

�



� B C jEj C 2 � 4C 2B´ eCv ;

for any x 2 T , where we used jv.x/j � supx2T jv.x/j � B , jvn.x/j � B and jEj �
2C B . Thus,

1

n
log k zAEn .!; x/k � Cv:

Since
kAE .x/ � zAE .x/k � sup

x2T
jv.x/ � vn.x/j � e

�cnb ;

by Trotter’s formula,

AEn .!; x/ �
zAEn .!; x/ D

n�1X
jD0

AE .x C .n � 1/!/ � � �AE .x C .j C 1/!/

� .AE .x C j!/ � zAE .x C j!//

� zAE .x C .j � 1/!/ � � � zAE .x/I

we then have

kAEn .!; x/ �
zAEn .!; x/k �

n�1X
jD0

eCv � � � eCve�cn
b

eCv � � � eCv

� nenCve�cn
b

:

Since
k zAEn .!; x/k � j det zAEn .!; x/j D 1;
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and b > 1, for large n such that n & Cv
1
b�1 ,ˇ̌̌1

n
log kAEn .!; x/k �

1

n
log k zAEn .!; x/k

ˇ̌̌
D




1
n

log
�
1C
kAEn .!; x/k � k

zAEn .!; x/k

k zAEn .!; x/k

�



�
1

n

kAEn .!; x/ �
zAEn .!; x/k

k zAEn .!; x/k
�
1

n
kAEn .!; x/ �

zAEn .!; x/k � e
�cnb ;

where c may stand for different constants simultaneously and by averaging

jLn.!;E/ � zLn.!;E/j � e
�cnb :

We now summarize all of the above into the following.

Lemma 2.1. For fixed parameters !, E, we have a 2�-periodic function

Qun.!;E; x/´
1

n
log k zAEn .!; x/k;

which extends to the strip Œj=zj < �n�, �n � n�ı , ı D b.s � 1/ to a subharmonic
function Qun.!;E; z/ so that1

j Qun.!;E; z/j � Cv for all z 2 Œj=zj < �n�:

Moreover, for fixed b > 1, i.e., s < 1C ı, if n& Cv
1
b�1 , and recalling that one has

un.!;E; x/ D
1
n

log kAEn .!; x/k and Ln.!;E/ D 1
n

R
T log kAEn .!; x/kdx, they are

well approximated by their substitutes

jun.!;E; x/ � Qun.!;E; x/j < e
�cnb ; (2.2)

jLn.!;E/ � zLn.!;E/j < e
�cnb ; (2.3)

where c is a constant, and zLn.!;E/ D
R

T Qun.!;E; x/dx.

3. Proof of the large deviation theorem and the continuity of the
Lyapunov exponent

Recall that Qun.!;E; x/ D 1
n

log k zAEn .!; x/k. We define

wn´ n�ı Qun.!;E; x/;

1The bound here is uniform in n.
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where ı is the constant in Lemma 2.1. With our variables, we note that wn depends
on !, E, and x. We will write wn.x/ or wn.!;E; x/ whenever we want to make this
dependence explicit.

Expand wn.x/ into its Fourier series and denote the Fourier coefficient by yw.k/,
that is,

wn.x/ D
X
k2Z

yw.k/eikx; yw.k/ D

Z
x2T

wn.x/e
�ikxdx: (3.1)

Consider the Féjèr averagewR.x/ ofwn.x/ along the orbit and denote the Féjèr kernel
as FR.k/

wR.x/ D
X
jj j<R

R � jj j

R2
wn.x C j!/; FR.k/ D

X
jj j<R

R � jj j

R2
eikj! :

Combining with (3.1), this leads to

wR.x/ D
X
jj j<R

R � jj j

R2

X
k2Z

yw.k/eik.xCj!/ D
X
k2Z

yw.k/FR.k/e
ikx :

We truncate wR.x/ into two parts:

wI.x/ D
X

0<jkj<K

yw.k/FR.k/e
ikx; wII.x/ D

X
jkj�K

yw.k/FR.k/e
ikx
I

this leads to

wR.x/ D hwn.x/i C wI.x/C wII.x/

D n�ı zLn C wI.x/C wII.x/: (3.2)

Before turning to the proof of the LDT, we need the following lemmas. We should
mention that some of these estimates for Gevrey class have been first obtained by [19];
e.g., (3.4) is [19, (1.14)].

Lemma 3.1. For any n, R 2 N, k 2 Z,

jwn.x/ � wR.x/j � 2Cv
R

n1Cı
; (3.3)

j yw.k/j .
n�ı supj=zj<�n j Qun.z/j

�njkj
D
Cv

jkj
; (3.4)

jFR.k/j �
6

1CR2kk!k2
: (3.5)
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Proof. These results were obtained in [25, Lemma 2.2] for Schrödinger cocycles with
analytic potential. We follow the same approach here. Let us point out a small change
in (3.4): since the width of the holomorphic extension Qun.x/ is �n � n�ı , the Fourier
coefficients of Qun.x/ are closely related to �n, we refer to [4, Corollary 4.7] for more
details. This is the reason why we define wn.x/ to be n�ı Qun.x/.

Lemma 3.2. For any � > 0, sufficiently large n, and small ˇDˇ.!/, a specific choice
of R.n; �/;K.n; �/ 2 N implies

jwn.x/ � wR.x/j <
�

3
; (3.6)

jwI j <
�

3
; (3.7)

kwIIk
2
2 � .6Cv/

2 2

K
: (3.8)

Proof. We take

R D
h �

6Cv
n1Cı

i
; K D

h
exp

° �2

200Cv
2
R
±i
; ˇ <

�

40Cv
:

Since qn!C1monotonically, there is anm2N suth that .�=10Cv/R 2 Œqm;qmC1/.
We begin with (3.6). Inequality (3.3) leads to

jwn.x/ � wR.x/j � 2Cv

�
�
6
Cv
�
n1Cı

n1Cı
< �=3:

As for the proof of (3.7), we divide wI into three parts, that is,

wI D
X

1�jkj< qm4

yw.k/FR.k/e
ikx
C

X
qm
4 �jkj<

qmC1
4

yw.k/FR.k/e
ikx
C

X
qmC1
4 �jkj<K

yw.k/FR.k/e
ikx

and we obtain that (see the proof of [25, Lemma 2.1] for more details)

jwIj . Cv

�qm
R
C

log qmC1
qm

C
log qmC1

R
C

logK
qmC1

C
logK
R

�
. Cv

� �

10Cv
C 2

log qmC1
qm

C
logK

�R=10Cv
C

logK
R

�
. Cv

� �

10Cv
C 4ˇ C

20Cv

�

logK
R

�
.
�

10
C
�

10
C
�

10
.
�

3
;

where we used logqmC1
qm

< 2ˇ when ˇ is positive and logqmC1
qm

could be arbitrarily
small if ˇ D 0, provided qm is large enough.
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As for the proof of (3.8), combing with (3.4) and (3.5), we have

kwIIk
2
2 D




 X
jkj�K

yw.k/FR.k/e
ikx



2
2
�

X
jkj�K

j yw.k/FR.k/j
2

�

X
jkj�K

ˇ̌̌Cv
jkj
� 6
ˇ̌̌2
� .6Cv/

2 2

K
:

We now come to the proof of Theorem 1.1.

Proof. In view of (3.6)–(3.8), and taking (3.2) into account, we have

mes¹x 2 T W jwn.x/ � hwn.x/ij > �º

� mes
°
x 2 T W jwn.x/ � wR.x/j >

�

3

±
Cmes

°
x 2 T W jwI j >

�

3

±
Cmes

°
x 2 T W jwIIj >

�

3

±
�

1�
�
3

�2 kwIIk
2
2 �

9

�2
.6Cv/

2 2

K

�
18

�2
.6Cv/

2
� exp

�
�

�3

3000C 3v
n1Cı

�
� exp

�
�

�3

6000C 3v
n1Cı

�
;

where we used K > exp¹.�3=3000C 3v /n
1Cıº in the last line but one. We recall that

wn.!;E; x/ D n
�ı Qun.!;E; x/, which leads to

mes¹x 2 T W j Qun.!;E; x/ � zLn.!;E/j > n
ı�º � exp

°
�

�3

6000C 3v
n1Cı

±
:

Now, taking � D n�ı"
3

, then forˇ < �
40Cv

D
n�ı"
120Cv

, we have

mes
°
x 2 T W j Qun.!;E; x/ � zLn.!;E/j >

"

3

±
� exp

°
�

"3

2 � 105C 3v
n1�2ı

±
: (3.9)

In view of (2.2) and (2.3), and we choose large n such that e�cn
b
< "=3, combing

with (3.9) leads to

mes.�n."//´ mes¹x 2 T W jun.!;E; x/ � Ln.!;E/j > "º

� mes
°
x 2 T W jun.!;E; x/ � Qun.!;E; x/j >

"

3

±
Cmes

°
x 2 T W j Qun.!;E; x/ � zLn.!;E/j >

"

3

±
Cmes

°
x 2 T W jLn.!;E/ � zLn.!;E/j >

"

3

±
� mes

°
x 2 T W j Qun.!;E; x/ � zLn.!;E/j >

"

3

±
� exp

°
�

"3

2 � 105C 3v
n1�2ı

±
:
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As for the proof of Theorem 1.2. Firstly, we show the following lemma.

Lemma 3.3. Assume that ˇ.!/ D 0 and suppose that L.!; E/ > 
 > 0 for E 2
ŒE1; E2�. Then for all n 2 N large enough

jL.!;E/C Ln.!;E/ � 2L2n.!;E/j < exp.�cn1�2ı/; (3.10)

where ı is the constant in Theorem 1.1 and c D c.
/ > 0.

Proof. The proof of the result (3.10) uses the LDT we established in Theorem 1.1 and
the avalanche principle (see [14, Proposition 2.2]), and follows the same pattern (the
standard iteration approach) as the proof of the corresponding result for the analytic
case, where at each iteration process, the ˇ.!/ has something to do with iteration
scale since ˇ.!/ < c0n�ı"=Cv . We obtain this result (3.10) as the iteration continues,
while ˇ.!/ converges to zero. For more details, the reader is referred to [25, Proposi-
tion A.3] or [4, Chapter VII].

Secondly, it is obvious that for any n 2 N,

k@EA
E
n k � n.e

Cv /n�1;

and then
jLn.!;E/ � Ln.!;E

0/j � enCv jE �E 0j: (3.11)

In view of (3.10) and (3.11), for any jE �E 0j � 1, E, E 0 2 ŒE1;E2�, we finally have

jL.!;E/ � L.!;E 0/j � jL.!;E/C Ln.!;E/ � 2L2n.!;E/j

C jL.!;E 0/C Ln.!;E
0/ � 2L2n.!;E

0/j

C jLn.!;E/ � Ln.!;E
0/j

C 2jL2n.!;E/ � L2n.!;E
0/j

� 2 exp.�cn1�2ı/C 3e2nCv jE �E 0j

� C expŒ�c.log jE �E 0j�1/1�2ı �;

where the last step follows from n � log 1
jE�E 0j

. This proves Theorem 1.2.
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