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Unitary braided-enriched monoidal categories
Zachary Dell, Peter Huston, and David Penneys

Abstract. Braided-enriched monoidal categories were introduced in the work of Morrison—
Penneys, where they were characterized using braided central functors. The recent work of
Kong—Yuan—Zhang—Zheng and Dell extended this characterization to an equivalence of 2-cate-
gories. Since their introduction, braided-enriched fusion categories have been used to describe
certain phenomena in topologically ordered systems in theoretical condensed matter physics.
While these systems are unitary, there was previously no general notion of unitarity for enriched
categories in the literature. We supply the notion of unitarity for enriched categories and braided-
enriched monoidal categories and extend the above 2-equivalence to the unitary setting.

1. Introduction

The article [40] introduced the notion of braided-enriched monoidal category and
showed that they are equivalent to rigid module monoidal categories V — Z(A) in
the spirit of [23]. This characterization was recently extended to an equivalence of
2-categories by [12, 33]. The article [33] extends this 2-equivalence even further,
allowing for changes in the enriching braided monoidal category V.

Braided-enriched monoidal categories are part of a larger story of enriched quan-
tum symmetry. Here, by quantum symmetry, we mean that while classical symmetry
is described by the notion of a group, quantum mathematical objects naturally live
in higher categories, and so, their symmetries are better described by tensor cate-
gories. The notion of enriched quantum symmetry describes tensor category sym-
metries of fermionic systems (enriched over sVect) [1,2, 5,8, 9], and tensor category
symmetries of anomalous quantum systems where the anomaly is described by the
braided-enriched category V. Indeed, the recent article [26] uses braided-enriched uni-
tary fusion categories to study generalized symmetries (domain walls) of anomalous
(2+1)D topological orders.

Other uses of braided-enriched monoidal categories include a unified treatment of
gapped and gapless topological domain walls between topologically ordered phases
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of matter [34,35] and an exploration of certain unitary fusion categories arising from
subfactor theory, namely, the Ad(Eg) and Ad(4442) fusion categories [38,39]. Other
notions related to braided-enriched monoidal categories include planar para alge-
bras [27] and anchored planar algebras [24].

While many of these applications are unitary, especially those to theoretical con-
densed matter physics, the notion of unitarity for enriched quantum symmetries is
overlooked in many of these applications, with the exception of [27]. In this article,
we define the notion of unitarity for braided-enriched monoidal categories and we
prove a characterization theorem in the spirit of [12,40]. We leave out an investiga-
tion of the change of enrichment as it would take us too far afield.

Asin [41], we begin one categorical level down with the notion of dagger category
A enriched in an involutive monoidal category (V, =) [16]. We are inspired by H*-
categories and 2-Hilbert spaces from [4], and we define an enriched dagger'

Kasp - AD — a) = Ala — b)

satisfying certain properties analogous to those in an H*-category (see Section 3
below).

To prove a characterization theorem, we focus on the case that V = U is a unitary
monoidal category, i.e., a rigid dagger monoidal category equipped with a unitary
dual functor in the sense of [47]. In this setting, U comes equipped with a canonical
bi-involutive structure (t,=,r, v, ¢) [22]; U is equipped with three involutions T, *, =
which all commute, and composing two in either order produces the third.

Theorem A. Let U be a unitary monoidal category. There is a strict locally isomor-
phic 2-equivalence of strict 2-categories

{Tensored dagger U-categories} = {Tensored dagger U-module categories}.

Here, a U-category + is called tensored if every U-representable functor
Ala—>—-):A—>U

admits a left U-adjoint [32, §1.11], where U is the self-enrichment of U (see Exam-
ples 3.15 and 3.21). A right (strong) U-module category M is called tensored if each
functor m <1 —: U — M admits a right adjoint.

This 2-equivalence is called locally isomorphic [33] as the hom functors on hom
categories are all isomorphisms of categories. Since the 2-category of tensored dagger

! After completing this manuscript, we became aware of a seminar talk of Egger also defin-
ing an enriched dagger structure on an involutive V-category; his convention is inverse to ours
[15, 42:40].
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U-module categories is naturally a dagger 2-category, this allows us to transport a
dagger structure to the 2-category of tensored dagger U-categories along the strict
locally isomorphic 2-equivalence.

After establishing this theorem, we move to the braided-enriched setting, where
our enriched dagger k on 4 must also be compatible with the V-tensor product —® 4 —
(see Section 5.2 below). We prove our main characterization theorem when V = U is
a braided unitary monoidal category, i.e., a unitary monoidal category equipped with
a unitary braiding.

Theorem B. Let U be a braided unitary monoidal category. There is a strict locally
isomorphic 2-equivalence of strict 2-categories

{Tensored rigid dagger U-monoidal categories}

=~ {Tensored rigid dagger U-module monoidal categories}.

Here, arigid U-monoidal category + is called tensored if the underlying U-category
of A is tensored; equivalently, the U-representable functor A(l4 — —) : A — U
admits a left U-adjoint. A dagger U-module monoidal category [23] is a pair (A, FZ)
consisting of a rigid dagger monoidal category A together with a braided dagger
monoidal functor FZ : A — Z T(A), the dagger Drinfeld center of A [42, Def. 6.1].
A rigid dagger U-module monoidal category (A, FZ) is called tensored if F := FZ o
Forget, admits a right adjoint, where Forget, : Z(A) — A is the forgetful functor.

In future applications, we hope to use the notion of unitary enrichment to study
notions of unitarity for higher categories and a unitary version of higher idempotent
completion [13, 18] building on [10, 11, 49]. We also plan on investigating unitarity
for anchored planar algebras building on [23,24].

2. Background

In this article, composition of maps is written in the reverse order; i.e., if f :a — b
and g : b — ¢, then we write f o g :a — c.

2.1. Enriched categories

Suppose that V is a closed monoidal category. We suppress tensor symbols, associa-
tors, and unitors whenever possible.

Definition 2.1 ([32]). A V-category «+ consists of a collection of objects, a hom
object A(a — b) in V for each pair of objects a, b in 4, and a distinguished iden-
tity morphism j, € V(ly — #A(a — a)). Further, there is a distinguished composition
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morphism — oy — € V(A(a — b)A(b — ¢) = A(a — ¢)) for each triple of objects
a, b, c in 4. This data must satisfy the following identity and associativity axioms:

Ala — b) A(a — b) Ala — b)

A(a — b) A(a — b) Ala — b)

and

Ala — d) Ala — d)

Ala —>b) AMb—>c) Alc—>d) Ala > b) AMb—>c) Alc—d)

Example 2.2. Whenever V is a rigid monoidal category (or more generally closed
monoidal), we can form the self-enrichment 'V whose hom objects are V(v — v) :=
u*v and composition and unit morphisms are given by

u* w

*

— oy — 1= = idy* ev, id and j,:= " Y =coevy,.
v //_\\ u v Uy Jv U v

utv v*w
Implicit here are our conventions for duals in V. We make this explicit in Defini-

tion 2.28 below.

Definition 2.3. A V-functor ¥ between V-categories + and B is a function on objects,
and an assignment of a morphism ¥,_,5 € V(A(a — b) - B(F (a) — F (b))) sat-
isfying functoriality and unitality axioms:
B(F@a)—> Flc B(F F (b
(F(a) = F(c)) (F(a) —> ¥ (b)) B(F@) > (@)
B(F (@) — F(a))

)
J 7 (a)

Alad—b) Ab—=>c)  Ala—=b) Ab—c)

Definition 2.4. Given objects a, b in a V-category +, a ly-graded morphism from
a to b is a morphism in V(1y — #A(a — b)). A V-natural transformation between
V-functors ¥,9 : A — B is a collection of 1y-graded morphisms

Aa €V(ly = B(F (a) — F(a)))
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that is natural, i.e.,

B(¥ (a) > $(b) B(¥ (a) > $(b))

Ala — b) Ala — b)

2.2. Mates, the underlying category, and enriched adjunctions

Definition 2.5. Suppose that A, B are categories and L : A — B, R : B — A are functors
such that L I R via the adjunction

B(L(a) — b) = A(a — R(b)). (2.6)

We say that f € B(L(a) — b) and g € A(a — R(b)) are mates if they map to each
other under the isomorphism (2.6). We denote this by f = mate(g) and g = mate( f).
We have the following two important identities for mates, which hold by naturality of
the adjunction (2.6):
(matel) Given f; :a — R(by) and f> : R(b1) — R(b3), mate(f1 o f) =L(f1)o0
mate( f2).
(mate2) Given g; :L(a1) — L(az) and g5 : L(az) — b, mate(g o go) =mate(gq)o
R(g2).
The unit of the adjunction is the natural isomorphism 7 : idy = L o R given by 1, :=
mate(id, 4)). The counit of the adjunction is the natural isomorphism ¢ : idg = Ro L
given by &, := mate(idg(p)). Observe that (matel) and (mate2) give the identities
L(14) © €1(a) = id () and nrp) © R(ep) = idr(p), respectively.

Definition 2.7. Given a V-category +, the underlying category 4" has the same
objects as s, and A'(a — b) := V(1 — A(a — b)). The identity of A'(a — a)
is the identity element j,, and composition of morphisms is given by f oy4v g :=
(fg) o (— o4 —). Whenever possible, we use the sans-serif font A as an abbreviation
for A" for notational simplicity.

Given a V-functor # : A — B, the underlying functor ¥V : AY — B" is given on
feA(a—b)=V(1 — A(a — b)) by FY(f) := f o Fu_p. Again, we use the
sans-serif font F to denote # whenever possible.

Definition 2.8. Suppose that V is a monoidal category, +, B are V-categories, and £ :
A — B is a V-functor. A right V-adjoint £ —y R consists of a V-functor R : B — A
equipped with a family of isomorphisms ¥, 5 € V(B(£(a) = d) = Ala - R(d)))
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fora € A and d € B such that, forall a,b € A and all ¢, d € B, the following two
diagrams commute:

Ala = b)Ab —> R(d)) ——2" 5 Aa > R(d))

—1 —1
lxa—ﬂ’ Yya l\l’a.d

B(L@) > LB)BED) - d) ——2" s B(L(a) — d)

B(£@) = )B(c >d) ——2— 4 B(%(a) — d)

l\lju,ccﬂc—)d l‘l’a,d

Ala — R(EDAR(C) = R(d)) ——2—— Ala — R(d))
By [32, §1.11], the underlying functor
R:B—A
is an ordinary right adjointto L : A — B.

Remark 2.9 ([41, Rem. 2.17]). Without a braiding on V, we are not able to form
product or opposite V-categories. Thus, Definition 2.8 is slightly different from the
definition given in [32, §1.11]; these structures are needed to talk about a V-natural
isomorphism B(£(a) - d) = A(a — R(d)). A consequence is that standard results
for enriched adjunctions, including the enriched Yoneda lemma, may not necessarily
hold under our definitions. However, we use only the ordinary Yoneda lemma and no
results from the theory of enriched adjunctions; [41] uses the definition directly and
proves the conditions of the definition directly, without appealing to other results.

Definition 2.10. Suppose that # is a V-category. For each a € A, we get the repre-
sentable functor A(a — —) : A — V given by b > A(a — b) and for f : b — c,

Ala — ¢)

Ala — b)

When V is rigid monoidal (or more generally closed monoidal) so that we may define
the self-enrichment V, this functor can be promoted to a V-functor A(a — —) : A —V
by

Ala — b)* Ala —c)

Ala = —)pse :=
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Definition 2.11. A V-category + is called weakly tensored if every representable
functor A(@ — —) : A — V admits a left adjoint denoted by a <1 — : V. — A. We call +4
tensored if every V-representable functor A(a — —) : A — 'V admits a left V-adjoint,
which we still denote bya <t —: V — wA.

2.3. Module categories and characterization of tensored enriched categories

Suppose that V is a monoidal category. As before, we suppress tensor products, asso-
ciators, and unitors whenever possible.

Definition 2.12. A (right) V-module is a category M equipped with a functor — <1— :
M x V — M together with families of natural isomorphisms {et, 4., : 1 <UL - m <
U <1 V}lmemu,vev and {pm, : m <11 — m}men Which satisfy an obvious pentagon asso-
ciativity axiom and triangle unitality axiom. We refer the reader to [17, §7.1] for the
diagrams. If the a are not necessarily isomorphisms but still satisfy the coherences,
we call M a strongly unital oplax V-module.

A V-module functor (F, i) : M — N consists of a functor F : M — N and modula-
tor natural isomorphisms {wp,  : F(m) <1 v — F(m <1 v)}mem vev Which satisfy the
obvious associativity and unitality conditions. Again, we refer the reader to [17, §7.2]
for the diagrams.

A V-module natural transformation 6 : F = G is a natural transformation such that,
for each m € M and v €V, the following diagram commutes:

wan,v
F(m) <v —— F(m < v)

Om <idvl lem <

Oy
G(m) <v —— G(m < v).

Construction 2.13 (V-category to V-module). Starting with a weakly tensored V-
category <A, the category A has a canonical strongly unital V-module structure

—<1—:AXV—=>A,

where id, <1 g is the functor @ <1 — applied to g : u — v. Taking mates under the
adjunction A(a < u — a < v) = V(u — A(e — a < v)), naturality of n gives the
identity

Ala - a <) Ala —a < v)

mate(id, <1 g) =

(mate2)

= . (2.14)
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The map f < id, is defined as the mate of
w N @ = bYA(b — b <u) —25 Ala — b <)

under the adjunction A(a <u — b < u) = V(u — A(a — b < u)). This yields the
identity
Ala —> b <u) Ala - b <u)

Ce
(2.15)

Nb,u :

u

The exchange relation for — <1 — is now visibly apparent combining (2.14) and (2.15).
The functor — <1 — comes equipped with a strongly unital oplaxitor

Qgup €EAla <uv —a <u <1v)

given by the mate of the map

Na.uNa<u.v

A(a—>a<1u)A(a<1u—>a<1u<1v);°—“A:—>A(a—>a<lu<lv)

under the adjunction A(a <uv —a <u <v) 2 V(uv - Ae - a <<u <v)). The
isomorphism p, € A(a <1 1y — a) is the mate of j, under the adjunction

Ala <1y —> a) = V(ly = A(a — a))

with inverse 74,1, € V(1ly = A(a — a < 1)) = Ala — a < 1y). By [37] or [41, §4],
the map oy, 4 is an isomorphism if and only if the left adjoint a <« — of A(a — —)
can be promoted to a left V-adjoint of A(a — —).

Remark 2.16 ([40]). The mate of the composition map — o 4 — € V(A(a — b)A(b —
¢) — #A(a — ¢)) under adjunction (3.17), which in this case reads

Ala <1 Ala — b)AbD — ¢) — ¢) = V(A(a — b)AD — ¢) > Ala — ¢)),

is given by

Eb—c J

E . (2.17)

Qg A(a—b),Ab—>c)

]
a Ala— b)Ab — c)
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The proof is omitted as it is simpler in our setting than the V-monoidal setting of [40].
Here, we use a graphical calculus for right V-module categories A, where the blue
string on the left indicates the module A, and coupons that meet the blue string are
morphisms in A. The blue strings between the coupons are labeled by objects in A.
Black strings indicate objects in V, and coupons which do not meet the blue string
represent morphisms in V.

Construction 2.18 (V-module to V-category). Conversely, given a strongly unital
oplax V-module A, where each ¢ <1 — : V — A admits a right adjoint, we define a
V-category <+ by defining the hom objects via the adjunction

Ala <v —b) =V(v - A(a > b)), (2.19)

the identity element j, € V(1 — A(a — a)) as the mate of p, € A(a <1 1 — a), and the
composition morphism — o4 — € V(A(a — b)A(b — ¢) = A(a — ¢)) as the mate
of Ug, A(a—b),A(b—c) © (Sa—>b idA(b—)c)) 0 &p—c. Here, e4p 1 a < A(a — b) — bis
the mate of id 4, 5) under adjunction (2.19).

When A is a (strong) V-module (where the associators « are isomorphisms) and V
is rigid monoidal (or more generally closed monoidal), we can promote each functor
a <1 —:V— Ato aV-functor V — #A by defining (a < —)y—y € V(V(u — v) —
A(a <lu — a < v)) as the mate of ! o(l <(evyidy)):ia<u<taV(u—

a,u,Y(u—v)

v) = a < v.Inthis case,eacha <1 —: 'V — A is a left V-adjoint of A(a — —).

Definition 2.20. A strongly unital oplax V-module M is called
* weakly tensored if every functor m <{ — : V — M admits a right adjoint, and

» tensored if M is a weakly tensored strong V-module; i.e., all oplaxitors gy, 1 a <
uv — a < u <1 v are isomorphisms.

Constructions 2.13 and 2.18 prove the following theorem, which was originally
due to [37] (see also [28], [19], [20, Lem. 4.7]). The details on the level of objects can
be found in [41, §3—4],” and some details for higher levels appear in [33], which are
similar to the proof in the V-monoidal setting from [12].

Theorem 2.21. Let V be a closed monoidal category. There is an equivalence of 2-
categories
{Tensored V-categories} =~ {Tensored V-modules}.

2There is an error in the equivalence of objects in [41, §3], namely, in the definition of
the modulator. This error has propagated to [33] which cites [41] for the construction of the
modulator. We fix this error in Appendix A below; see the proof of Proposition 4.17 for more
details.
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2.4. Involutions on monoidal categories and unitary monoidal categories

In this section, we discuss the basic notions of dagger (monoidal) category, involu-
tive monoidal category, and unitary monoidal categories used in this work. General
references for notions in this section include [16,22,30,47,48].

Definition 2.22. A dagger category is a category C equipped with anti-linear maps
+:C(a — b) — C(b —a) foralla,b € Csuch that 7T = £ for all morphisms f and
(fog)t =gTo 7 for all composable morphisms f, g. When C is linear, we require
T to be anti-linear.

A morphism u in a dagger category is called unitary if u is invertible with

A monoidal dagger category is a dagger category (V, T) equipped with a monoidal
structure (®, 1, a, p, A) such that ® : Vx V — V is a f-functor, and «, A, p are all
unitary. When V is linear, we require ® be linear.

Definition 2.23. A dagger functor between dagger categories is a functor between the
underlying categories F : A — B which preserves the dagger structure, i.e., F(fT) =
F(A)T.

A dagger monoidal functor between monoidal dagger categories (F, u) : U — V
is a dagger functor equipped with a unitary monoidal coherence isomorphism p :
F(ab) — F(a)F(b) which satisfies unitality and associativity criteria.

Definition 2.24 ([16, 30]). An involutive category is a category C equipped with a
conjugation functor = : C — C together with a natural isomorphism ¢ : idc — = sat-
isfying
o Qc=q¢;:C— cforallc eC.
When C is linear, we require = be anti-linear.

An involutive monoidal category is an involutive category (V, =, ¢) equipped with
a monoidal structure (®, 1, @, p, A) together with an anti-monoidal coherence isomor-
phism

Vyp  UQUV—>VRU

for = and a real structure isomorphism r : 1 — 1 satisfying the coherence axioms

* (r areal structure) r or = ¢y,

* (¢ :idy — = a monoidal natural isomorphism) ¢,, = (@uPy) © Vii.5 © Vy v,
* (unitality) (idz r) o vy,1, = idz = (ridg) o vy, u,

* (associativity) (Vy,p id) © Vyu,w = (ida Vo,w) © Vuwy-

Above, we have suppressed all associators and unitors in V for convenience.
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Definition 2.25. An involutive functor between involutive categories (F, y) : A— B is
a functor F : A — B equipped with a natural isomorphism y, : F(a) — F(a) satisfying

*  @ra) = F(ga) 0 xa o xq foralla € A.

An involutive monoidal functor (F, i, x) : U — V between involutive monoidal
categories is a monoidal functor (F, i) : U — V such that (F, y) is an involutive functor
between the underlying categories, and the following additional coherence axioms are
satisfied:

s F(ry)oxi, =rv,
* MUpu© F(Vv,u) ° Yuv = (Xv)u)© VFE(w),F(u) © Hu,v-

Again, we suppress all associators and unitors in U, V for convenience.

Definition 2.26 ([22]). A bi-involutive category is a quadruple (A, T, =, ¢), where
(A, T) is a dagger category and (A, =, ¢) is an involutive category such that = is a
dagger functor, and the natural isomorphism ¢ : idy — = is unitary.

A bi-involutive monoidal category is a bi-involutive category (A, T,~, ¢) equipped
with a monoidal structure (®, 1, &, p, A) and coherators (v, r) so that A is simultane-
ously a monoidal dagger category and an involutive monoidal category, with the extra
condition that v, r are unitary.

Definition 2.27. A bi-involutive functor between bi-involutive categories is an invo-
Iutive dagger functor whose coherence natural isomorphism j is unitary.

A bi-involutive monoidal functor is a bi-involutive functor equipped with a unitary
monoidal coherence isomorphism.

Definition 2.28. Suppose that V is a monoidal category. A dual for v € V is a choice
of dual object v* together with evaluation and coevaluation maps

*

v v
) =coevy: 1 —v*v

a =ev,: V0" = 1,

v v*

satisfying the zig-zag/snake equations

v* v

Any two choices of dual are canonically naturally isomorphic, so having a dual is a

property, not additional structure. We call v € V dualizable if v has a dual and v is

isomorphic to the dual of another v, € V. We call V rigid if every v € V is dualizable.
Given a dual (v*, evy, coevy) for each v € V, we get a canonical dual functor

* 1V — VmoP,
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the monoidal and arrow opposite of V, given by

fr= Yfiu—o.

v*

Observe that * comes equipped with a canonical monoidal coherator

Vyv 1= = (COEVyy idy*y*) © (id(uu)*u evyidy*) o (id(vu)* evy).

k| 0k

u v

Again, any two choices of dual functor are canonically monoidally naturally isomor-
phic, so the existence of a dual functor is a property and not really a structure.

Remark 2.29. If (v, {, ®) is a monoidal dagger category and v € V has dual (v*, evy,
coevy), then v* has dual (v, coevz, evz).

Definition 2.30 ([47]). A unitary dual functor on a monoidal dagger category (V, T, ®)
is a choice of dual (v*, ev,, coevy) for each v € V such that the canonical dual functor
* 18 a dagger functor, and the canonical monoidal coherator is unitary. Even though
any two unitary dual functors on V are canonically monoidally naturally isomorphic,
this isomorphism need not be unitary. Thus, a unitary dual functor on V is a structure,
and not just a property.

By [47, §3.5], a unitary dual functor gives rise to a canonical unitary involutive
structure (<, ¢, v, r) such that (V, ¥, =) is a bi-involutive monoidal category. Indeed,
we set 0 := v* and f := (f1)* forall f € V(u — v). The coherence isomorphisms
r, v, and ¢ are given by the unitary isomorphisms

* r = coevy,

* Uy = (coevyy idi5) o (idpuy evy idp) o (idyy evy),

o ¢, = (idy ev:g) o (evy idz) = (coevy idy) o (id; coev;ﬂ).

A monoidal dagger category (V, T, ®) equipped with a unitary dual functor * and its

canonical involutive structure ~ is called a unitary monoidal category. In the sequel,
we reserve the notation U for a unitary monoidal category.

Example 2.31. The most common examples of unitary monoidal categories are uni-
tary tensor categories, i.e., semisimple rigid C* tensor categories with simple unit
object, which arise naturally in subfactor theory [3,31], discrete and compact quantum
groups [44,51], conformal field theory [6,21, 50], and topologically ordered phases
of matter [36,43,46].
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Definition 2.32. Suppose that V is a monoidal dagger category. A dagger right V-
module category is a dagger category M together with a dagger functor <: M XV — M
wom M <ULV —>m <
u ® v and unitor unitary natural isomorphisms p} : m <1 1y — m which satisfy the
obvious pentagon and triangle axioms.

A daggerV-module functor from M to N consists of a dagger functor F : M — N and

equipped with associator unitary natural isomorphisms o

natural unitary isomorphisms 6,, 5, : F(m) << u — F(m <1 u) such that, suppressing
associators in M, N, (6 ., idy) © Ou v = Omuv-

Definition 2.33. We define a 2-category YMod+ with

*  0O-cells tensored dagger V-module categories,

* 1-cells dagger V-module functors with the usual composition, and

e 2-cells V-module natural transformations with the usual horizontal and vertical
compositions.

3. Enriched dagger categories

3.1. Dagger V-categories

Throughout this subsection, let V be an involutive monoidal category. Recall that we
cannot define the op of a V-enriched category without a braiding on V. However, for
V an involutive tensor category with no braiding, there is a canonical involution on
V-categories.

Definition 3;1 (Conjugate of a V-category). Given a V-category +, we can form a new
V-category + with the same objects as # by defining

« hom objects A(a — b) := A(b — a),

* identities jf =r oﬁ e V(ly — A(a — a)), and

* composition
— 0% — 1= VA(—a).Alc—b) © (T A ) 1 Ala > b)Ab — ) — Ala — ).
It is straightforward to verify that Aisa V-category.

Remark 3.2. The map A — A of V-categories can be extended to a 2-functor, con-
travariant on 2-cells, on the 2-category of V-categories. On V-functors ¥ : A — B,
take Fy_p 1= Fp_q, and given a V-natural transformation 0 : ¥ = § : A — B, take
By =100, €V(ly > B(E(a) > F(a))).

Definition 3.3. A weak dagger V-category is a V-category + equipped with a family
of isomorphisms k.5 € V(A(b — a) — A(a — b)) satisfying the following.
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(k1) @a@—b) ©Kasb ©Kp—sa = idp@a—b)-
(k2) (kKp—sgke—p)o(—oy4 —) = (— °ox —) 0 Ke—sq EV(AMD — a) Alc —> b) —
Ala — ¢)).

Before continuing further, we make a couple of remarks on the definition of weak
dagger V-category.

Remark 3.4. Observe that j, =7 0 j, 0 kqsqg:

Thus, similar to how a dagger structure on a category C can be viewed as a functor
t: C°° — C which is the identity on objects satisfying + o ¥ = id¢, a weak dagger V-
category (4, k) can be viewed as a V-category equipped with a V-functor k : A — A
which is the identity on objects satisfying (k 1).

However, just as a dagger structure cannot be transported to an equivalent cate-
gory, a weak enriched dagger structure « on a V-category cannot be transported to
an equivalent V-category. In this sense, just as dagger categories are not merely cate-
gories with extra structure, weak dagger V-categories are not merely V-categories with
extra structure, as this extra structure violates the principle of equivalence [45]. See
[47, Rem. 3.3] for further discussion.

Remark 3.5. Observe that (« 1) implies k,_p is invertible for all a, b € #A. Indeed,
(k1) swapping a and b shows k,_., admits a left inverse. (Remember that we have
swapped the order of composition.) Now, since ¢ is invertible, we see that (« ) implies

- . _
Kasb O Kbsa = Pp(a—sb)y —7 Ka—bOKb—sa = P44 sp)

Now, precomposing with ¢ 4;—p) and using naturality yields

Ka—b © PA(a—b) © Kb—a = PA(a—b) © w;%a_ﬂ,)-
Since the right-hand side is invertible, we see k,_,5 admits a right inverse as well.

Example 3.6. Consider V = Vect with complex conjugation. Observe that V = Vect
is V-enriched but does not admit the structure of a weak dagger V-category.

Now, consider 4 = Hilb, which is also V-enriched. We get a weak dagger V-
category structure on Hilb by defining xg_.x € Hom(B(K — H) — B(H — K))
by T + T* forT € B(K — H).



Unitary braided-enriched monoidal categories 15

Example 3.7. Recall from [4] or [25, §8.2.1] that an H*-category H is a linear dagger
category such that H(a — b) is a finite-dimensional Hilbert space for all @, b € H, and

(g, fT oh)H(b—)c) = <f °og, h)H(a—)c)
=(f,hogT)H(a_,b) Vf:a—-b,g:b—c,h:a—c.

An H*-category H is canonically a weak dagger Hilb-category by defining
Kasp =T :H(b = a) > Hla —b) [ fT.

Remark 3.8. It is straightforward to verify that when + is a weak dagger V-category,
A A

A is also a weak dagger viak)” hsa

=K Moreover, the coherence isomorphism ¢
lifts to a canonical V-equivalence W : A — A defined as the identity on objects and

Vb = Qu@a—b) € V(A — b) — Aa — b)).

Definition 3.9. Suppose that A, B are weak dagger V-categories and ¥ : A — B is
a V-functor. We say ¥ is dagger if the following diagram commutes:

Al S a) 228 BFGD) = F@)

A B .
l/Ka—ﬂ) lKT(a)—).’F(b)

Ala — b) T=8 B(F (a) — F (b))

In order to achieve a correspondence with dagger V-module categories, the concept
of weak dagger V-category is not enough. We now introduce dagger V-categories.

Definition 3.10. A tensored weak dagger V-category 4 is called a dagger V-category
if in addition

(«3) the maps p; € A(@ < 1 — a) are unitary for all a € A, and

(k4) the left V-adjoints (@ <0 —) -y A(a — —) are dagger for all a € A.
Remark 3.11. While the condition («3) feels somewhat artificial, we do not know of
a way to prove Propositions 3.28 and 3.30 below without it. In the proof of Proposi-

tion 3.28, we use (k3) twice to be able to apply unitality of the modulator, and in the
proof of Proposition 3.30, we cancel p~! with (p")~! in a critical way.

Definition 3.12. LetV be arigid involutive monoidal category. We define a 2-category
VCaty with

*  O-cells dagger V-categories,

* 1-cells dagger V-functors with their usual composition, and

e 2-cells V-natural transformations with their usual horizontal and vertical compo-
sitions.
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Construction 3.13. Given a weak dagger V-category (4, k), we get a dagger structure
on the underlying category A as follows. For f € A(a — b) = V(ly — #A(a — b)),
we define T € A(b — a) as the composite
r o — f: — 5~ Kb—a
Iy = 1y > Aa > b)) —— AD — a).
Construction 3.14. Let (A, k**) and (B, k®) be weak dagger V-categories, and let
F : A — B be a V-functor. If F is dagger, then using the dagger structure on the

underlying categories introduced in Construction 3.13, the underlying functor F : A —
B is a dagger functor. Indeed, for f € A(a — b), we compute

B(F(b) » F(a)) B(F(b) = F(a)

FON =

Example 3.15 (Dagger self-enrichment). Starting with a unitary monoidal category U,
we can construct a weak enriched dagger structure on the self-enrichment U from
Example 2.2. First, we use the unitary dual functor of U to construct the self-enrich-
ment, which allows us to identify u* = u for all u € U. We then define

Uu

KM—H)

= vu_% o (id; guv_l) e U(UW — u) » U — v)) = U(vu — uv).

We leave the straightforward verification to the reader. Later on in Example 3.21, we
show that (U, «) is a dagger U-category.

Now, let UY be the underlying category of U, which is equipped with the dagger
structure from Construction 3.13. The functor F : U — UY which is the identity on
objects and has F(f : u — v) := coev, o(id; f) is a dagger isomorphism with dagger
inverse G : UY — U given by

G(g € U(1 — uv)) := (idy g) o (evy idy).

Indeed, it is clear that F, G are isomorphisms of categories, so it suffices to show that
F is dagger. Observe that

<
<
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3.2. 2-functor VCat; to VMod;

Let V be an involutive rigid monoidal category, and let 'V be the self-enrichment from
Example 2.2. We now assume that 'V is equipped with a weak enriched dagger struc-
ture k. There is a canonical isomorphism between V and its underlying category VY
which is the identity on objects. This isomorphism allows us to transport the dagger
structure on VY from Construction 3.13 to V = V" by the formula

We remark that this dagger structure is not necessarily compatible with the original
involutive structure of V, unlike the dagger on a unitary monoidal category. Indeed,
we do not enforce any compatibility between « and the cups and caps of V.

Remark 3.16. Observe that this ¥ on V gives a canonical isomorphism
kus1 V(I > u) =u —->Vu — 1) =u*.

At this time, we do not know if this ke satisfies any additional coherence properties.

In the remainder of this section, we construct a 2-functor ® : VCat; — VMod;.
Recall that, in [41, §4], one constructs a right V-module category A from a tensored
V-category <+ by defining the V-action via the adjunction

Ala <u — b) =V(u — A(a — b)). (3.17)

Let (o4, k) be a dagger V-category, and define ®((+, «)) to be the V-module category
A, equipped with the dagger structure from Construction 3.13. In order to show that A
is a dagger V-module category, we must prove the following three things:

(t <a1) for u €V, the object @ < u € A is determined up to canonical unitary
isomorphism rather than up to canonical isomorphism

(f <2) — <1 — is a dagger functor, and
(f <13) the coherators « and p are unitary.

We begin by proving an essential identity needed to show that ®((+, x)) sat-
isfies (f <11)—(7 <13). The following fact allows us to describe left V-adjoints of
Ala - —).
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Fact 3.18 ([41, §4.3]). Suppose that # is a tensored V-category so that A(a — —)
admits a left V-adjoint @ <1 —. Then, the mate of (¢ <1 —),—, under the adjunction

VV(u - v) > Ala <u > a <v)) =A@ <u 1Vu —>v)—>a<v) (3.19)
is given by oca_b u*p © (idg < evy idy). Observe that when u = 1, we have

oz 0 (ida Qidy) = (pa <idy) © (idasw)
= pg <idy,
and taking mates under the adjunction, we record the identity
Ala <l —>a<u) Ala <l —a<u)
oo
(0a) Na,u

u

(@ <9—)15u = (3.20)

Example 3.21. Suppose that U is a unitary monoidal category. We can now show that
the self-enrichment (U, k%) from Example 3.15 is a dagger U-category. Indeed,

Py ul - u

Uu

v—>w °

is unitary, and (x4 ) follows from the following calculation. Taking the mate of
(¥ < —)y—w and suppressing coherators in U, we have

uw
uw
u v U(w — v)
uv U(w — v) uv U(w — v)
uw uw
g | e |
I T
uv U(w — v) uv  U(w — v)
It is straightforward to check that this is the mate of (u <1 —)y—yp O K2 ..

The following lemma is the essential ingredient in the calculations of this subsec-
tion.
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Lemma 3.22. If A is a dagger \-category, then

Ala <v —a)

Ala <v —a)

Proof. First, take the bar of the claimed identity and postcompose with w;%a avsa)’
Since ¢ is natural, this w;za <v—q) Cancels with the existing ¢,; applying (k1) and
inverting p yields the equivalent equality

Ala<<v—>a<l) Ala v —>a<al)

To prove this equality, we apply («2) to the left-hand side to obtain

Ala <v—>a<l)

Ka<v—a<l

Ala<tv—>a<1)
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Ala <v—>a<l)

(Fact 3.18)

We are now in the position to prove (f <i1). Suppose that £% and a <1 — are two
left V-adjoints of the V-functor A(a — —) : A — V satisfying («3) and (k4), where
V is the self-enrichment from Example 2.2. Consider the two adjunctions

A(LYu) —a<qu)=Vu — Ala - a <u)) 2Ala <u —a <du), (3.23)
ALY (u) > £%(u)) = V(u — Ala —> £%u))) = Ala <u — £%(u)). (3.24)

By the Yoneda lemma, the mate of id,«, under adjunction (3.23) gives a natural
isomorphism of the underlying functors

vl =a<—,

and its inverse is obtained by taking the mate of idga(,) under adjunction (3.24).
We immediately get the following identities between the units %, n< of the two
underlying adjunctions:

Ala —a <u)

Ala —>a <u)
(3.25)

<
r)a,u -

u

Since the coherators «, p for the right module V-category A were defined under adjunc-
tion 3.17, we get two variants a, < and p%, p< depending on which V-functor we
choose. We have the following identities between these coherators:

i"(l)—>a<11 éﬁa(uv)ﬂ)a<1uv—>a<lu<1v

pa l‘x(}xu v /
. a
£4 ) Vi idy

LDV L) < v
(3.26)
The natural isomorphism 1 actually defines a V-natural isomorphism £¢ = a <1 —.
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Lemma 3.27. Suppose that A is a V-category and £%, a <1 — are two left V-adjoints
of Ala — —). Then,

ALY (u) > a Q) ALY (u) > a Q)

V(u —v) =u*v

Proof. Using Fact 3.18 for £¢, the mate on the left-hand side is given by

(@F, yep) "t 0 £ (evyidy) o Y8

a,uu*v

= (af )oYl o (id, < evyidy) (¥ natural)

a,uu*v

£4 . — . . )
= wu*v(") o (Y] <idyxy) o ((x;,'u’u*v) Vo (id, < evyidy)  (3.26).

Now, taking mates again and simplifying, we have

Ala <u —a <v)

Ala <u —a <v)

Yl <idyxy

£ £4
(ni“ (u),u*v) (l/fu*y(u)
[

u*v

By using associativity of — o4 — and Fact 3.18 for a <1 —, the result follows. ]

Proposition 3.28 ((t <i1)). Suppose that A is a dagger V-category and £%,a <1 —
are two left V-adjoints of A(a — —) satisfying (k3) and (k4). Then, the natural iso-
morphism ¥ : £% = a <1 — is unitary.
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Proof. Taking the mate of (y¢)" under the first step of adjunction (3.24) and using
(k1), we obtain

Ala — L))

Ala — £%(u))

(Lem. 3.22)

Observe that the blue part of the above diagram is the bar of a morphism in A. Taking
the bar and working in A, we see that

(Y <Vidyr) 0 (a3, )" 0 (idg < evy) o (o) !

= WE Yo (@f, ) o Yl o (ida < evi) o (BT (3.26)

= (Wji (u))_l ° (“:Eu,u*)_l o £%evy) o Yi o (/O,f])T_1 ¥ natural
£4 — —
= (e )Mo (@f, ) o L evi) 0 Y 0 p] (k3) for p
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= WE ) o (@f, 07 o £%evy) 0 pF (3.26)
= (w,f«a(u))_l o (Olffu,u*)_l o % evy) o (pf)T! (k3) for pT.

Substituting this last map into the blue part of the above diagram, we obtain

Ala — £%(u))
Ala — £%(u))

£ — £
((aa,u,u*) 1) (n.fti” (u),u*)

v

Ala — L9®u))

But this is exactly the mate of ¥, 1 under the first step of adjunction (3.24), and the
result follows. |

Proposition 3.29 ((t <12)). If A is a dagger V-category, then
—<J—:AXV—>A
is a dagger functor.
Proof. First, for g € V(u — v), the statement that
(d, < g)f =id, < ¢f

follows immediately from («4) and Construction 3.14. Then, for f € A(a — b), the
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mate of (f <1 id,)" under adjunction 3.17 is given by the following:
Ab —a <u)

A —a <u) A — a <u)

(7 <id, <id,) (o)

Ku—1

Ab = a <u)

A — a < u)

which is exactly the mate of f1 < id,,. "
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Proposition 3.30 (1 <13)). Suppose now that (V, k") is a dagger \-category, i.e., k¥

satisfies (k3) and (k4). If A is a dagger \-category, then the coherator « is unitary.
Proof. The mate of aZ,u,v, after applying («2), is given by

Ala <u —a < uv)

Ala <u —a <guv)

(Lem. 3.22)

-1

Ala <u —a <uv)

(@ <idev,) C22D)
(au,u,v < idv*Xr]a<uv,v*)

Ky—1

v

Observe that the blue part of the above diagram is again the bar of a morphism in A,

so we can work in A:
. -1 .
(g, <idyx) 0y 4 4+ © (Ida<u < evy)

-1
a,uv,v*

amvor © (idg <Vidy evy) 0 il triangle identity

=« 0 g v+ © (Idg<u €Vy) o associative

=
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Replacing this back into the main calculation and using our assumption (k3) that p is
-1

a,uv,v*’
and use the fact that (¢ <1 —) is a V-functor:

unitary, we recognize the mate of « which can be computed from Fact 3.18,

Ala <u —a <uv)

Ala <u —>a <uv)

Ala <u — a < uv)

(ida < idy evy (_ °4 _) - =
———\ (S id, ev,
(@ < =)uvv*—>u Ny, v*
1 ——
’ -

Ala <u —a < uv)

which, after applying («4), simplifies to exactly the mate of aa_,}l,v. |

In Construction 3.14, we saw that a weak dagger V-functor ¥ : A — B gives a
dagger functor F : A — B. In [41, §4.1], it was shown how to equip F with the structure
of a lax module functor by defining a modulator w, , to be the mate of 14, © Fg—sa<u
under adjunction 3.17. In fact, when 4 and B are both dagger V-categories, wg y is
unitary by Proposition 3.31 below. In this case, we define

O(F) := F.

Proposition 3.31. Let ¥ : A — B be a weak dagger \-functor between dagger
V-categories. Then, the underlying dagger functor F : A — B equipped with the mod-
ulator w defined above is a dagger module functor; i.e., each w, 4y is unitary.

Proof. When U is a unitary monoidal category, U is rigid, so a lax module functor is
automatically a strong module functor by [14, Lem. 2.10]. Thus, w4 is invertible, so
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it suffices to check that a):,r,u is its inverse on only one side. The mate of wy , o a);r,u

1S

B(F(a) = F(a) < u)

(-?;(a—m qu) (KF(a<u)—>F(a) qu)

Na,u Da,u

B(F(a) — F(a) < u) B(F(a) — F(a) < u)

Kr(a)—>F(a)<u

(Lem. 3.22)

Flo
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B(F(a) = Fla) <u)

KF(a)—F(a)<u

Fla

where we noticed that

B(F(a) <u — Fla <u <u*)) B(F(a) <u — Fla <u <u*))

B8
u*

B(F(a) <u — Fla <u <u”*))

Next, the blue portion is the bar of the following morphism in B:

(wa,u <1 idy*) o Wa <qu,u* © F(O‘;,L,u* o(id, <evy)o (pZ)_l)

28

= a;(;)’u,u* 0 Wq,uu* © F((id; < evy) o (,ojl)_l) w associative

= aF_(cll),u,u* o (idrg) < evy) 0 wq,14 © F((p;)_l) o natural
= &y © (@) < eVi) © a1, © F(pa) (k3)
= O‘F_(clt),u,u* o (idr(a) < evu) © Pr(a)  unital

- aF_(lll),u,u* o (idp() < evy) o (P:(a))_l (k3).
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We remark that the above manipulation of morphisms is similar to the proof that a
lax module functor between modules for a rigid monoidal category is automatically
strong [14, Lem. 2.10]. Substituting the bar of this expression back into the large
diagram, we have

B(F(a) = Fla) <u)

KF(a)—F(a)<u

B(F(a) = Fla) < u)

Kr(a)—F(a)<u

!* °F *! (Lem. 3.22)
—1 B
(aF(a),u,u*) (UF(a)<1u,u*]

u

which is the mate of id¢(4) <y, and thus, w, ,, is unitary. ]

Construction 3.32. Given a V-natural transformation 6 : ¥ = §, we get a natural
transformation © : F = G on the underlying functors by taking ®, := 6, € B(F(a) —
G(a)) =V(ly »> B(F (a) — F(a))) [32, §1.3]. We check that ® is a module natural
transformation by taking the mate of (®, < idy,) o @ ,:

G(a < u) G(a < u) G(a < u) G(a < u)

(Gaﬁaqu) = (Faﬁaqu)

u u

which is the mate of @ ,, © ®4«y. The last two equalities used the definition of wg ,
and V-naturality of 6, respectively. Thus, we can now define ® on 2-cells via

d(0) := 6.

Construction 3.33. Let V be a rigid involutive monoidal category equipped with an
enriched dagger structure «V. Define ® : VCat; — VMods on O-cells as in the start
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of the subsection, on 1-cells as in Proposition 3.31, and on 2-cells as in Construc-
tion 3.32. To check that ® is a (strict) 2-functor, all steps are straightforward except
that composition of 1-cells is preserved.

The composite modulator a)%fyog) is the mate of 74,y © (Fa—a<v © Fr(a)—>Fa<wv))

under adjunction (3.17), which is given by

G(F(a <1 v)) G(F(a < v))
G(F(a < v)) G(&‘F(a)_>p(a<1v)) ] G(SF(a)—>F(a<1v)) ]
T I
mate(Fr(q)—r(a<v)) ] DFa). B(F(@)>F(av)) ] 6lidra) < 37“"‘“'”}
_ I
fa%a<v G(idF(a) < 7]“’”) ]
I
Na,v w?(a),v J
I
G(F(@)) v G(F(@) v 6(F(@) !
G(F(a < v))
G(F(Saﬁa<1v)) J
I
G(w;’A(GHEQU)) ]
_ I
Lem. 3.34 G(F(ida) <1 7a,v) }’
I
wg(a),v J

G(F(a)) ll)

where we made use of Lemma 3.34 below. After using V-module-naturality of " and
that (id; <1 74.0) © €4—a<v = idg <y, this is exactly equal to @®*°%) := ©° o G(wF).
Note that this proof is similar to (and much simpler than) the proof of [12, Prop. 5.8].

Lemma 3.34. Given a V-functor ¥ : A — B, the mate of ¥, under adjunc-
tion 3.17 is

F(b)

F(ea—b)

Wq, A(a—b)

F(a) A(a — b)
with w as defined in the discussion before Proposition 3.31.

Proof. The result follows immediately from taking the mate of the given expression
and using functoriality of ¥ . |
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4. Equivalence

In this section, we prove that when our enriching involutive monoidal category V is
replaced with a unitary monoidal category U, the 2-functor @ : UCat; — UMody is
a 2-equivalence. As in Example 3.21, we denote the dagger self-enrichment by U.
Since U is equipped with a unitary dual functor * and the induced involutive structure
=, we may identity, # with u* and k1 = id;.

To show that @ is a 2-equivalence, we need constructions in the reverse direction
to show that ® is essentially surjective on O-cells, essentially surjective on 1-cells, and
fully faithful on 2-cells. We first give constructions in the reverse direction to ¢ and
then use them to check the corresponding properties for .

4.1. The reverse constructions

Let U! denote the involutive rigid linear monoidal category obtained from U by for-
getting the dagger structure T but remembering the involutive structure ~.

Construction 4.1. Let A be a O-cell in UMod+, i.e., a tensored dagger U-module cate-
gory. Recall from [41] that we get a U"-enriched category # with the same objects as
A and hom objects A(a — b) determined up to unique isomorphism by the Yoneda
lemma via the adjunction

Ala <u — b) = U (u — Aa — b)). 4.2)

Since # is enriched in UY, the hom objects #A(a — b) are only determined up to
isomorphism, and not unitary isomorphism in U.
As explained in Fact 3.18 above, since A is a strong right U!-module, we get a U!-

functor a <1 —: U — 4 by defining (a < —)y,—y as the mate ofaa_L Uu—v) © (id, <
u

u—>v

To get a dagger U-category from +4, we define Ka'A’_)b A — a) > Ala — b)
via

e ) under adjunction (3.17).

b
[ )

-1
A P aa,A(b%a),A(baa)
mate(k)’, ;) :=

4.3)

a AD = a)



Z. Dell, P. Huston, and D. Penneys 32
In the remainder of this subsection, we will suppress the unitary coherators p, o« when-
ever possible.
Proposition 4.4. The pair (4, k™) from Construction 4.1 is a dagger U-category.

Proof. To show that (4, 1) is a dagger U-category, we need to check («1)—(«x4). Note
that since we assumed that the unitors p were unitary, («3) is automatic. The remain-
ing three requirements are checked in Lemmas 4.5, 4.6, and 4.7 below. [

Lemma 4.5. The «** defined in (4.3) satisfies (« 1).

Proof. We take mates:

b
b
T
Kp—sa
mate = e = il
43) [b>a Eb—a
a Ala — b) a Aa — b)

The dagger of this morphism is

a Ala — b)

Taking dagger of this gives the mate of gol (a—b)’ which proves (k' 1). |
Lemma 4.6. The k** defined in (4.3) satisfies (k2).

Proof. Taking the mate of (— o g —) o k4—s¢, we find the mate of — o —:

_ _ c—b
.17 ’
VA(b—>a),A(c—b)
£hsa
a Ab—>a) Ac=b) a A —>a) Ac—b) a A —>a) Ac—b)

which is exactly the mate of (k,—pkp—c) © (— 0 —). [
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Lemma 4.7. The U-functors a <1 —: U — A are dagger; i.e., (k4) holds.
Uu

u—>v
nitions of k¥, v, and ¢ to get

Proof. Taking the mate of « o (a <1 —)y—y, we use naturality of o and the defi-

-1
aa,u,‘d(v»u) ]
T

a u U —u) a u U —u)

a”l
a,pvu,vu

a u

vu

On the other side, after taking the mate of (@ <I —)y—yu © K, 1<y Via (4.3), we
have
a<v a<v
a<lv
Pa<v Pa<w
Pa<w
N LN
-1

m _ ol _ _ o —
a<w,vu,vu a<v,vu,vu

-1
o -
a<v,.A(a<lv4>a<lu),,x$(a<lv~>a<u)}

I I
62<v~>a<lu] [ (@ < —)ysu ]

T

a<u Tu
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Now, we can use associativity of « and simplify to see that this is exactly the same as
the expression we have for the mate of K;E"_)v o(a <1 —)y—y- [

Construction 4.8. Given dagger U-categories + and B and a dagger module functor
(F,®) : P(A) — O(B), we construct a U-functor F : A — B via F (a) := F(a) on
objects and

F(b)

F(ea—b)

Fa_p := mate 4.9)

Wg, A(a—b)

F(a) A(a —b)
under B(F(a) < A(a — b) — F(b)) = U(A(a — b) —> B(F (a) — F(b))).

Proposition 4.10. [f A, B € VCat are 0-cells and (F, w) is a 1-cell in VMod(D(A) —
O(B)), then F as defined in Construction 4.8 is a U-functor.

Proof. 1t is straightforward to check that ¥ preserves identities, i.e.,
Ao . B
Ja ©Fasa = J% (@)’

so we only check that ¥ is functorial:

B(F(a) > F(c)) B(F(a) > F(c))

Ala — b)

A — ¢)

Ala - b) A —c)

Writing u = A(a — b) and v = A(b — ¢), the mate of the left-hand side under
adjunction 3.17 is, using Remark 4.15,

F(c) F(c)

F(e)

F(eb—c) ] F(eb—c)

Wp v ]

—

F(ea—p < idy)

Feq—p < idy)

Wq,u

F(ea—b) =

Wa,u

Ok (a),u,v

OF(a),u,v

T
F(a) uv

T
F(a) uv

Wa<qu,v ==

F(Qa,u.v)

Fla) wuv
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F(c) F(o)

F(eqa—c) ] F(ea—c) ]
I I
- Fido < (—0-) | = 0. Aa—e)
(Rem. 2.16) 1T I ]
Wa,uv F(idg) < (—o0—)
F(a) u"U F(a) u"v

This is exactly the mate of the right-hand side under the same adjunction via Remark

2.16.

To show that ¥ is also dagger, we first prove the following lemma.

35

Lemma 4.11. Suppose that U is a unitary monoidal category and 4 is a dagger U-
category. The mate of kq_sp € U(A(b — a) — A(a — b)) under adjunction (3.17)

is given by

mate(k,_sp) 1=

a A — a)

Proof. We show that the mate on the right-hand side is equal to x,_5. Setting

u=Ala—>b)

for readability, the mate is

Aa — b)




Z. Dell, P. Huston, and D. Penneys 36

(Kt;—l>a<ﬁ) (Eb—m < idﬁ)

Na,u

i

where we used the fact that f o k™1 = F, that « is unitary, and that — < — is a
dagger functor. Next, as in the previous proofs of (f <i1), (f <12), and (f <13), we
apply Lemma 3.22 to replace the bottom 1 o k™!, and we apply the bar of (2.15) to
move the blue morphisms on the top right to the left-hand side, which yields the bar
of a morphism in the underlying category A sandwiched between a ¢ o 77 and a k. This
morphism in A is given by

(,ol:1 <idz) o (idp < evl <idz) o (apy,u <id3) o (ep—q < idy < idz)
o a;lﬁj o (id, < evy) o pg

L =0(6p—>q <1 €Vii)Opq

= (p, ' <idz)o(idp < ev] <idz)o(ap,q < idg)oa, L =

(o natural)
= ('Ol;l < idﬁ) o (idb < CVZ{ < id;) o (a;’;ﬁj) o ab,u,ﬁft o (Sb—m < evﬁ) 0 g
(a associative)
= (o' <idz) o (@, =)o (idp <evl <idg) o (idy <idu < evi) 0 e,
0 (6p—>q <id1,) © pa (o natural)
= (o' Qidz) o (e =)o (idp <9, 0Pyl © (Epsa < idy,) 0 pa
(definition of ¢)

= (pp" <idz) o (pp <idg) o (idp < ¢, ") 0 Pyl © (ep—a <Vidy,) © pa
(triangle identity)

= (,olj1 <idz) o (pp <idz) o (idp < (pu_l) 0 Ephsq © p;l 0 Pa (p natural)

= (idp < ¢, 1) 0 epsa. (simplify)
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Note that the steps above depend on the unitarity of p. Substituting the bar of this
morphism back between ¢ o 7 and « above, we obtain

which we see is k,_,p, after recognizing the mate of an identity. ]

Remark 4.12. A modified version of Lemma 4.11 actually holds in the slightly
more general setting of V being a rigid involutive monoidal category where the self-
enrichment 'V is equipped with an enriched dagger structure « and

u* Ly

K1—u

Lemma 4.13. The U-functor ¥ from (4.9) above is dagger.
Proof. The mate of /ca"*_)b o Fu_pis

F(b) F(b)

F(b) F(b) F(Pb) F(/.)b)

F(ldb < CV,A,(béa)) F(idp < CVA(béa)) ]

F(ea—b) T

F(ea—b)

-
F(ab,,ﬁe(b»a),./%(bﬁa)) ]
I I

Wa,A(a—b) F(ida < Kaﬁb)

Dp 9h(b—a), Alb—a)
I

Fe),) |

T “4.3) F(Eb—m < ld.A(b—m))

@, JAb—a)

J
o i)
)
J

Fl@) A = a) Fla) A = a) |
Fla) A(b — a) F(a) A(b — a)
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F(b) F(b)

F(/.)b)

F(idpy < eva@p—a)) ]
|
Dp A(b—a) Ab—a) ]
I

)

= ()[T =
F(b),A(b—a),A(b—a)

F(a) Ab — a) F(a) Ab — a)
F(b)

PF(b)

F(b)

-
= ] - ] N I O W O ¥ () ]
49) - ==
ErB)>F(a) Fa—sb
-
€ —
F(b)—>F(@) o e
F@) Ab — a) F(a) A= a)
which is the mate of Fj—, o KFi(;a)—>F(b) by Lemma 4.11. .

Construction 4.14. Given l-cells ¥,9 : A — B in UCat; and a module natural
transformation ® : ®(F) = ®(¥), we construct a U-natural transformation 6 by
defining ©, := 0, € U(ly — B(F (a) — §(a))) = B(F(a) — G(a)). The same proof
as for the naturality half of [12, Prop. 6.11] applies to show that 8 is a U-natural
transformation.

4.2. Essentially surjective on 0-cells

Starting with a dagger U-module category (A, <1), we can construct a dagger U-category
(s, k) as in the previous subsection. We write (A, <) for ®(+A). The following iden-
tity appears repeatedly throughout our calculations, so we record it here.

Remark 4.15. Suppose that 4 is a weakly tensored V-category with A its under-
lying V-module category from Construction 4.1. For f € V(u — #4(a — b)) and
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g eV(v — A(b — ¢)), it follows from naturality and Remark 2.16 that as morphisms
in A,

(4.16)

If instead we have a strongly unital lax V-module A, with A the V-category from Con-
struction 2.18, then the above equation still holds in A, this time by the definition of
— o4 — instead of Remark 2.16. We also remind the reader that a4 1,5, = p;l < idy

— o1
and Yau,ly = Pa<u-

Proposition 4.17. The dagger U-module categories A and A are isomorphic; i.e.,
there are strong dagger module functors (G,w’) : A — AN and (H, w) : N — A that
witness an isomorphism of dagger module categories.

Proof. Define functors G : A — A’ and H : A’ — A to be the identity on objects. For a
morphism g € A(a — b), we define G(g) as the mate of p); o g under adjunction (4.2).
To see G is a functor, we take the mate of G(g;) o G(gz) forg;:a —band g, : b — c:

o

82
c

)
mate(G(g2)) :
: : g1 < idp
mate _ mate:(G(gl):) < idy, ) _ j
. <id
a ®g,1y,1y

a

C
82
—

a,l1y,1y

T

S

which is exactly the mate of G(g; o g2). That G(id,) = id, is straightforward.
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For a morphism 2 € A'(a — b) = U(1 — A(a — b)), we define
H(h) := (102)_1 o (idg < h) o eg-p.

To see that H is a functor, for 4; : a — b and h, : b — ¢, we see that

o
o

.
N
o

,
@ Ea—b Easc
ey

H(h1) o H(h2) = = = ) — = H(hy o hy).
a<ily o
g o a
a a
Again, the proof that
H(id,) = id,

is straightforward. Noting that H(%) is p;l composed with the mate of £, it follows
immediately that

G(H(h)) =h and H(G(g)) = g.

Therefore, G, H witness an isomorphism of categories.

Lastly, we must construct unitary modulators for G and H that are inverse to each
other. In [41, §3.3], it was stated that these modulators could be taken to be the
identity; this is not true because the module actions need not agree. Define w,,, €
A(H(a) <v — H(a €4v)) =A@ <v —a «v)andw, , €A(a 4v —a <v)via

a 4v a<lv
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where 7;, , and &/, _, are the unit and counit, respectively, of adjunction 3.17 for A".
Note that w,_, and a);,v are the unit and counit, respectively, of the adjunction formed
by composing adjunction 3.17 and adjunction (4.2):

A(H(a 4v) > a <v) =A(a 4v — Gla <v)).

As the proofs that @ and ' are modulators for H and G, respectively, are fairly
tedious, we defer them to Appendix A. We also prove in the appendix that ' is a
U-natural transformation between (a¢ <1 —) and (¢ <« —). These proofs (Lemmas A.2,
A.3, and A .4) and the subsequent Remark A.5 are used in the proof that the modulator
w is unitary, which is shown in Lemma 4.18 below. ]

Lemma 4.18. The modulator w is unitary.

Proof. Since the mate of w,, under adjunction 3.17 is 77:1,1;’ we are able to closely
follow many of the steps in the proof of Proposition 3.31, with each ¥,_,; being the
identity. We are unable to directly apply the lemma because we only have (2.15) and
Lemma 3.22 using 7" and not 7, since A is not the underlying category of . (A’ is the
underlying category of +.)

Working with a)t’lu instead of w, , allows us to only directly use (2.15) in A’, and
then, there is just one application of Lemma 3.22 in A. We claim the following as an
analog of Lemma 3.22 using 7 instead of #’, with which we complete the proof as
follows:

Ala - a < u)

Ala <u — a)

Using this at the first application of Lemma 3.22 in the proof of Proposition 3.31, the
rest of the proof follows exactly the same, with G in place of F and the remaining uses
of (2.15) and Lemma 3.22 taking place in A'.
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Finally, to prove the above identity, we take the same steps as in the proof of
Lemma 3.22, so it suffices to prove the equivalent identity:

Ala<tv—>a<l)
Ala v —>a<l)

Starting with the left-hand side, using the fact that G is a dagger functor, and applying
(k2) give

Ala <v—>a<l)

Ka<v—>a<l

Ala v —>a<al)

Ka<v—a<l

v

<

(Rem. A.5)
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which, by Lemma A.4, is equal to (@ <1 —)1-y © Kg<v—a<1- Meanwhile, starting
with the right-hand side gives

Ala<tv—>a<l)

Ala<<v—>a<l)

(Rem. A.5)

(teaver) (02 <) &

v
v

Ala <v—>a<l)

Proposition 3.31 tells us that this is equal to K;v_)l o (a < —)y—1; the result follows
because (a <1 —) is dagger. [

4.3. 2-Equivalence

The following lemma is used to show essential surjectivity of ® on 1-cells.
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Lemma 4.19. Let A be a weakly tensored V-category with underlying category A,
and f e V(ly = A(a — b)) = A(a — b). Then, f is equal to

Proof. By (matel) and (mate2), f € V(1y — A(a — b)) is the mate of both p; o f
and (id;, < f) o 4,5 under the adjunction

Ala <1 - b) =V(ly —> A(a — b)) = A(a — b).
The result follows by invertibility of p,. ]
Theorem 4.20. The 2-functor ® from Construction 3.33 is a 2-equivalence.

Proof. The fact that ® is essentially surjective on O-cells is exactly the content of
Proposition 4.17.

Next, take two O-cells A, B € UCat; and a 1-cell (F, ) € VMod(P(A) — O(B)).
We have a 1-cell ¥ in UCat;(+4 — B) from Construction 4.8 and write

(F,0") = &(F);

we show that (F, »F) and (F, »"') are equal. Note that this is very similar to the
proof of [12, Prop. 6.9], but the presentation here is simplified and more precise. By
definition, F'(a) = F(a) for all objects a € ®(+4). On morphisms f € ®(A)(a — b),
F'(f) is defined as f o #,_,5, which by Lemma 4.19 is equal to

{0 F(b) {0
Er(@) ) | Feas) | | Feams) | FO)
faeon | |Fida< )]
- ) [
Py Py
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and another use of Lemma 4.19 shows that this is equal to F( ). Finally, to check the
modulators are equal, a);/_) p 18 defined as the mate of 1,4,y © F4—4<v under adjunc-
tion 3.17, which is equal to

Fla <v) Fla < v)
Fla < v)

F(£a~>a<v) F(£a~>a<1v)

mate(Fy—>a<wv)

Fla) < v Flay <« v

Lastly, on 2-cells, ® takes a U-natural transformation 8 € U(1y — B(F (a) —
G(a))) to itself, viewed as a natural transformation in B(F(a) — G(a)), so @ is fully
faithful on 2-cells. u

5. Characterization of unitary braided-enriched monoidal categories

In this section, we extend Theorem A to the unitary braided-enriched setting to prove
Theorem B. We first recall definitions from [40] in the non-unitary setting.

5.1. Characterization of braided-enriched monoidal categories

Suppose that V is a braided monoidal category. As before, we suppress tensor symbols,
associators, and unitors whenever possible.

5.1.1. Braided-enriched monoidal categories.

Definition 5.1 ([40]). A (strict) V-monoidal category is a V-category +4 along with
the additional structure of

e atensor unit 1 4,

* atensor product on objects; that is, for all @, b € A, an object ab € #, and

* a distinguished tensor product morphism — ® 4 — € V(A(@ — c)Ab — d) —
Alab — cd)) foralla,b,c,d € A.

The above data must satisfy for all a, b, c,d, e, f € A the following:

e Tensorunit: lya = a = al 4,

* Object associativity: (ab)c = a(bc),

*  Unitality: (j1,4 id@—b)) © (— ®u —) =1da@a—b) = (ida@—b) J1,4) © (— @t —),
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* Associativity:

(= ®a ) ida@—b)) © (— @4 —) = ida@—n)
(ida@—sb)(— ®sp =) 0 (— R —),

* Braided interchange:

Alad — cf) Alad — cf)

Alad — be) A(be — cf) Ala = ¢) Ald — f)

Aa—b) Ad—>e) Ab—=c) Ae— f) Ma—b) Ad—e) Ab—c) Ale— f)
(5.2)

Example 5.3 ([40, §2.3]). Suppose that V is a rigid monoidal category. The self-
enrichment V from Example 2.2 has a 'V-monoidal structure given as follows, where
we identify w*u* = (uw)*:

’V(uw — UX)

B K

Vu — v) V(w — x)

Definition 5.4. Given V-monoidal categories A, B, a V-monoidal functor ¥ : A — B
is a V-functor ¥ along with a family of natural isomorphisms

Hap €V(y = B(F (a)F (b) — F (ab)))

such that

B(F (a)F (b) — F(cd)) B(F(a)F (b) — F(cd))
(Z°8 ) (Ce8 )
@ o - CED) @

Fa—sc Fo—d

Aad—c) Ab—>d)  Ala—c)  AbD—d)
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and

B(F (a)F (b)F (¢c) = F (abc)) B(F (@)F (b)F (c) — F (abc))

For convenience, we further assume that all V-monoidal functors are strictly unital,
ie, F(ly) = 1g, jl”; oFl 1y = jlﬂﬂ, and p, . = idy = pg,1,,. Given two
V-monoidal functors

F ' A—>B and §:8 — €,

the composite laxitor [M?(a),?(b) (,uib © 9% (a)F (b)—F (ab))] © (— 0 —) gives the
composite F o § of V-monoidal functors the structure of a V-monoidal functor.

A V-monoidal natural transformation is a V-natural transformation 6 : ¥ = §
such that

B(F (a)F (b) — G(ab))
B(F (a)F (b) — §(ab))

Definition 5.5. Given a V-monoidal category #, the underlying monoidal category
A = A is the underlying category equipped with the same tensor product on objects,
and the tensor product f ® g := (fg) o (— ®4 —) on morphisms. We call a V-
monoidal category « rigid if the underlying monoidal category A is rigid.

Given a V-monoidal functor ¥ : A — B, we obtain the underlying monoidal func-
tor F = FV of ¥ by equipping the underlying functor with the tensorator

1Yy o= fap € V(ly — B(F (ab) — F(a)F (b)) = B(F (ab) — F (a)F (b)).

Under this definition, F is an ordinary monoidal functor.
Similarly, a V-monoidal natural transformation 6 : ¥ = § gives an ordinary
monoidal natural transformation F = G.

5.1.2. Module monoidal categories. The definitions in this section are originally
from [23, §3.2] under the name of module tensor category.
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Definition 5.6. A V-module monoidal category is a pair (A, FZ) consisting of a
monoidal category A and a braided monoidal functor (FZ, u*) : V. — Z(A). We denote
by Fa := FZ o Forget,, where Forget, : Z(A) — A is the forgetful functor. We call a
V-module monoidal category (A, FZ)

* rigid if Ais rigid, and

* tensored if F5 : V — A admits a right adjoint.

Definition 5.7. A 1-morphism between V-module monoidal categories is a monoidal
functor (H, u™) : A — B equipped with an action coherence natural transformation

h : Fg = Fa o H that is compatible with u*, u®, and the half-braidings e, ¢(y). That is,
we require

H(F4(v)a) H(F4(v)a) H(F4(u)F4(v))

H(FA(u)F4(v)) (MH o ))
Fqa(u),Fa(v

CH(a),F3 (v)

H@)  Fp(v) H(@)  Fg(v) Fp(uv)

Fp(uv)

We define 2-morphisms between such 1-morphisms as monoidal natural transforma-
tions © : (H, u", h) = (W, u"', I’) that are compatible with the action coherence
transformations, that is, i, 0 O,y = hj,.

With these definitions, [12,33] show the following result. The details on the level
of objects appear in [40], with [41] providing some simplifications.

Theorem 5.8 ([12,33,40,41]). Let V be a closed braided monoidal category. There
is an equivalence of 2-categories
{Tensored rigid V-monoidal categories}

=~ {Tensored rigid V-module monoidal categories}.

In [12], the 2-equivalence is also carried to the setting of G-graded V-categories
and G-extensions of V-categories which were studied in [29], while in [33] changes
in the enriching category were considered.

5.2. Dagger braided-enriched monoidal categories and dagger module
monoidal categories

We now require that our enriching category V be both braided and involutive. Natu-
rally, this leads to a compatibility condition between the braiding 8 and the involutive
structure v.
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Definition 5.9. A braided involutive category V is a braided monoidal category
equipped with an involutive structure (-, v, ¢, r) as in Definition 2.24 such that

(5.10)

Definition 5.11 (Conjugate of a monoidal V-category). Given a monoidal V-category
4, we can equip the V-category 4 with a monoidal structure by defining

~® 3 — = Bresma@ss © VAUd—b A © (F® )
€ Aa — ¢)Ab — d) — Aab — cd)

with the same tensor unit, 1z := 14. It is straightforward to check that this gives A
the structure of a V-monoidal category.

Definition 5.12. A weak dagger V-monoidal category is a V-monoidal category +4

with an involutive structure « as in Definition 3.3 such that « is compatible with
—® e (- ®5 ) 0k = (k) o (— B4 —):
Alab — cd)

Alab — cd)

(CN))

Alc > a) A(d —b)

P

Alc > a) Ad = b)

We call A a dagger V-monoidal category if in addition #4 satisfies («3) and (k4) so
that 4 satisfies all of («1)—(x5).

Remark 5.13. One could view such a « : A — A, when equipped with the identity
tensorator ;L;’f’ p ‘= Jab, as a V-monoidal functor that is the identity on objects. As in
Remark 3.4, such a structure violates the principle of equivalence.

Example 5.14. Let U be a braided unitary monoidal category, i.e., a unitary monoidal
category equipped with a unitary braiding. The dagger self-enrichment (U, k) from
Example 3.15 equipped with the U-monoidal structure from Example 5.3 satisfies
(k5).



Z. Dell, P. Huston, and D. Penneys 50

Definition 5.15. A V-monoidal functor (&, 1¥) : 4 — B between dagger V-monoidal
categories is called a dagger V-monoidal functor if § is a dagger V-functor and

1E o Ksaby>g@em) = (g p) "

Definition 5.16. LetV be a rigid involutive monoidal category. We define a 2-category
VMonCaty with

*  0-cells dagger V-monoidal categories,
* 1-cells dagger V-monoidal functors with their usual composition, and

¢ 2-cells V-monoidal natural transformations with their usual horizontal and vertical
compositions.

Definition 5.17. A dagger V-module monoidal category is a pair (A, FZ), where A is
a dagger tensor category and FAZ :V — ZT(A) is a braided monoidal dagger functor
which equips A with the structure of a tensored V-module monoidal category.

Here, ZT(A) denotes the dagger Drinfeld center of A whose objects are pairs
(a,eq), wherea e Aand e, = {e,p : b ® a — a ® b}pep is a unitary half-braiding
for a [42, Def. 6.1].

We call (A, FZ) rigid/tensored if the underlying V-module monoidal category is
rigid/tensored, respectively.

Definition 5.18. We define a 2-category VModMony with

*  O-cells tensored dagger V-module monoidal categories,

* 1-cells dagger V-module monoidal functors with the usual composition, i.e., 1-
morphisms (H, u") as in Definition 5.7 such that

H,u)y:A—B
is a dagger monoidal functor and / : Fg = Fa o H is a unitary natural isomorphism,

and

e 2-cells monoidal natural transformations as in Definition 5.7 with the usual hori-
zontal and vertical compositions.

5.3. 2-functor VMonCat; to VModMon;

For this subsection, we assume that V is a rigid braided involutive monoidal category,

and the self-enrichment 'V is equipped with a dagger structure k.

Construction 5.19. Suppose that we have a rigid dagger V-monoidal category +4 such
that a > A(1 — a) admits a left adjoint, denoted by F : V — A. We denote the unit
of this adjunction by 71, € V(v — #A(l — F(v))). Then, A is endowed with a right
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V-module structure given by @ <1 u := aF(u). Moreover, for alla € Aand u € V, we
have an adjunction [40, (4.1)]:

A(aF(v) - b) = V(v — A(a — b)).

We denote the unit of this adjunction by 74, € V(v — A(a — aF(v))). In [40,
Lem. 4.4], it was shown how to equip F with a tensorator 1y, € A(F(uv) — F(u)F(v))
defined as the mate of (1,7y) o (— ® —) under adjunction 5.19 to obtain an oplax
monoidal functor. This tensorator is an isomorphism for all u, v € V if and only if
A(1 — —) admits a right V-adjoint ¥ : 'V — A such that F is the underlying functor
of ¥ [41, Cor. 7.3]. We assume this in the sequel.

By [40, §5.1], F can be lifted to a braided monoidal functor FZ :V — Z(A) by
defining the half-braiding e, () € A(aF(v) — F(v)a) as the mate of (1, j4) o (— ® —)
under adjunction 5.19, and each e, g(y) is invertible.’

Several proofs were omitted in [40]:

» The proof that, for every f € V(u — v), F(f) € Z(A)(F(u) — F(v)) was omitted.
This proof appears in [12, Rem. 5.1].

*  The proof that the tensorator of FZ actually lives in Z(A) was omitted. This proof
is supplied in the next lemma below.

Lemma 5.20. The tensorator [Lyy : F(u)F(v) — F(uv) is a morphism in Z(A). In
diagrams,
F(u) F(v) a F(u) F(v) a

a F(uv) a F(uv)

3In [41], it was incorrectly claimed that, for a closed V-monoidal category <, the half-
braidings e, r(y) are invertible. The proof there says that this result is similar to [40, Lem. 5.2]
which uses rigidity in an essential way. This is similar to how a lax module functor between
modules for a rigid monoidal category is automatically strong [14, Lem. 2.10]. The V-monoidal
results of [41] can be amended by one of the two options below. (1) Only use (oplax) monoidal
functors to Z'#(A), the lax center of the underlying monoidal category whose half-braidings are
not required to be invertible. (2) Use rigid V-monoidal categories instead of closed V-monoidal
categories. In this article, we stay in the rigid setting, thus avoiding this issue.
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Proof. On the left-hand side, taking mates gives

Ala — F(u)F(v)a)

Ala — F(u)F(v)a)

[40, Cor. 4.7)

Ala — F(u)F(v)a) Aa — F(u)F(v)a)

Ala — F(u)F(v)a)

[40, Cor. 4.7

which is exactly the mate on the right-hand side.

52

The goal of the remainder of this section is to construct a tensored dagger V-
module monoidal category A from a dagger V-monoidal category +, extending the
constructions of [40, 41] to the dagger setting. (This can also be seen as extending
Construction 3.13 for dagger enriched categories to the dagger V-monoidal setting.)

This extension amounts to proving the following:
(Z*1) the left adjoint F is a dagger monoidal functor, and
(Z*2) the half-braidings e, r(y) are unitary.
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To prove these, we further assume that (V,« ") is a dagger V-category so that (+ <13)
holds for A as a right V-module by Proposition 3.30.

Lemma 5.21 (Z*1)). If A is a dagger 'V-monoidal category, then the left adjoint F
is a dagger monoidal functor.

Proof. Since 4 is a dagger V-category and the right V-action on A is given by a <
u = aF(u), the result follows by taking a = 1y in (1 <12). Since py,y = 1 4,u,0 bY
[7, Rem. 6.13], unitarity of u follows from unitarity of o from (7 <13). ]

Proposition 5.22 ((Z*2)). Suppose that 4 is a dagger V-monoidal category. For all
a € Aand v €V, ey p(y) Is unitary.

Proof. By Proposition 3.31, it suffices to find a dagger V functor ¢ : A — # for each

a

object a in A such that e, (y) is the mate of 7, o ﬁlﬁ_ﬁ(v)

under the adjunction
A(aF(v) — F(v)a) = V(v — A(a — F(v)a)).

Define §4(b) := ba and

A(ba — ca)

a L—
‘gb_)c .—

Ab — ¢)

Clearly, the mate of eq r(v) is given by 71,5 0 87, 1 , o, The fact that §¢ is a
V-functor follows immediately from the braided interchange relation, and that §¢ is

dagger follows immediately from («5). ]

Construction 5.23. Let (¢, u¥%) : 4 — B be a dagger V-monoidal functor. Then,
as in [12, §5.2], we get a morphism (G, ®, g) : (A, Fy) — (B, Fg) of the underlying
V-module monoidal categories. First, we take G to be the underlying functor of §; it
follows as in Construction 3.14 that G is a dagger functor. Second, we take u® to be
componentwise equal to ¥ under

B(G(a)G(b) — G(ab)) = V(ly = B(§(a)g(b) — &(ab))).

Observe that the dagger condition for a dagger V-monoidal functor (€, u¥) is exactly
unitarity of «°. Finally, we take g, to be the mate of 1, o §; A4—>F(v) under

Fe(v) = §(Fa(v)) = V(v — B(lg — F(Fa(v)))).
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This g, is unitary by Proposition 3.31; indeed, defining the right V-module structure
on A, Bbya <y v :=aFa(v) and b <1 v := bFp(v), respectively, g, is exactly equal
to the modulator w;, , from Proposition 3.31. Thus, (G, u®, g) is a 1-morphism of
dagger V-module monoidal categories.

Construction 5.24. Given dagger V-monoidal functors (€, u%), (¥, u*) : A - B
and a V-monoidal natural transformation 6 : § — J, we construct a monoidal natural
transformation ® : G — H via

®, = 0, € B(G(a) > H(a)) = V(ly = B(G(a) — H(a))).

Construction 5.25. Using Constructions 5.19, 5.23, and 5.24, we can construct a
map Pg : VMonCat; — VModMon+. The fact that ®g is a 2-functor is completely
analogous to that ® is a 2-functor from Construction 3.33.

5.4. Equivalence
For the remainder of the section, U is a braided unitary monoidal category.

Construction 5.26. We now construct a rigid dagger U-monoidal category 4 from a
dagger U-module monoidal category (A, FZ). We first define a dagger U-category s
as in Construction 4.1 above by considering A as an ordinary right U-module where
the action is given by a <1 v := aFa(v), where F4 = FZ o Forget,, where Forget, :
Z(A) — A is the forgetful functor. We further add the tensor product morphism from
[40, §6.3], which equips # with the structure of a rigid tensored U-monoidal cate-
gory; — ® 4 — is defined as the mate under adjunction 5.19 of

a ¢ Fa(Al@ = b)A(c — d))

Definition 5.27. Recall that, given a monoidal functor F : A — B between rigid
monoidal categories, we have a canonical natural isomorphism

Fla)*
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Remark 5.28. In the context of the specific action a <1 v := a ¥ (v), the definition of
K4—sp In (4.3) becomes

mate(k,_p) 1=

e . } [&A(b—m)]
w

a F(AMb — a)*)

a F(AMD — a)*)

Lemma 5.29. Let U be a unitary monoidal category and (A, F) a dagger U-module
monoidal category. Then,

F(ou)* Fou)*

F(u*v*) F(u*v*)
Proof. The right-hand side in the statement of the lemma is given by

F(vu)*

F(vu)*

F(u*v*)
F(u*v*)
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F(vu)*

F(vu)*

F(u*v*)

F(vu)*

|
F(idy evy, idy=)

F(u*v*)

F(vu)*

F(u*v*)

where we added a zigzag in the second to last equality. Since p is natural, this is
exactly the left-hand side in the statement of the lemma.

Proposition 5.30. A equipped with — ® 4 — is a tensored rigid dagger U-monoidal
category; i.e., (A, k, Q) satisfies (k5).

Proof. Setu = A(c — a) and v = A(d — b) for clarity of notation. Taking mates,

we have

mate

Alab — cd)

cd

'ezd»ab ' ;S.A(cd%ab) )

cd

—®—>

F(Vo.u)

ab F(u*v*)

T
( Ecd—ab ]

ab

F(u*v*)
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cd

—~
[

ab F(u*v™)

(F braided)

57
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Using Lemma 5.29 and unitarity of u followed by naturality of the half-braiding, this
becomes

a b F(u*v*)
which simplifies to exactly the mate of (k;—ckp—q) © (— ® —). The last equality
above uses the well-known identity

a F(u)

+

_ -1 _
€a,Fu) (ij) Cafu) =

F(u) a

Construction 5.31. Given a morphism (G, u®, g) : (A, Fa) — (B, Fg) of dagger U-
module monoidal categories, we get a dagger U-functor § as in Construction 4.8.
This (¢, 1¥) was shown to be a U-monoidal functor in [12, Prop. 6.8] using the same
tensorator ¥ := 1. Finally, it is clear that (§, u¥) is dagger as u® is unitary.

Theorem 5.32. The 2-functor ®g from Construction 5.25 is a 2-equivalence.
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Proof. As before, we need to show that ®g is essentially surjective on 0-cells and
1-cells and fully faithful on 2-cells. For O-cells, given a O-cell (A, Fy) € UModMony,
we construct a 0-cell A € UMonCat; via Construction 5.26. It suffices to show that

(N, Fy) := Qg ()

is isomorphic to (A, Fy) as dagger U-module monoidal categories. By the proof of
Proposition 4.17, we have an isomorphism of dagger categories (G, w’) : A — A/,
and in [40, Thm. 7.3], it was shown that G equipped with an identity tensorator
and action coherence morphism is an isomorphism of U-module monoidal categories.
Since identities are unitary, it follows that (G, id, id) is isomorphism of dagger U-
module monoidal categories between g (+A4) and (A, Fa).

Suppose that +4, B € UMonCat; are O-cells, and

(G, u®, g) € UModMon(®g(A) — Pg(B))

is a 1-cell. We get a 1-cell (¢, u%) UMonCat; (4 — B) via Construction 5.31. It
is shown in [12, Prop. 6.9] that ®g (&, u¥) and (G, u°, g) are equal as U-module
monoidal functors. Being a dagger U-module monoidal functor is a property of a
U-module monoidal functor, so they are also equal as dagger U-module monoidal
functors.

The 2-cells in UMonCat; and UModMon; are identical to those in VMonCat and
VModMon, respectively, so proving that ®g is fully faithful on 2-cells is identical to
the proof of Theorem [12, Prop. 6.12]. ]

A. Modulator construction

In this appendix, we construct the previously omitted modulators from [41, §3.3] for
the isomorphisms in Proposition 4.17. Note that the proofs are similar to those of
[41, Lem. 4.1], but there is no clear way to define a V-functor that allows us to use that
result directly.

As shown in Lemma A.1 below,

-1
Wg oy = H(a);’v).

Thus, if w is a modulator for H, then ’ is a modulator for G, and the composites
(H,w) o (G, w") and (G, w’) o (H, w) are identity module functors. The proof that w is
unital is straightforward; proofs for naturality and associativity appear in Lemmas A.2
and A.3 below.

Lemma A.1. The modulator wa,y has inverse H(w}, ,,).
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Proof. Settingu = A(a — a <1 v) for readability, wq,» o H(wy, ,) is given by

a<lv
a<v |

Eaqu—a<v J

Eaqv—a< ]

Eaqv—aau
= ] =
[ ida < Nay J [‘9:1~m<1vj

[ (id, - Ua,v)8:1—>a<1v J

Pa'e ) a6

Eaqu—a<v ]

Eaqv—aau

I
[ida < na,u] [dz»aqu]

’
€a—a<w —

. (4.16)

which simplifies to idg <y -

—1
Paav<iy ]

Eqqu—a<v ]

Ea—aau ]
I

( —°- J (‘%—»adv]
=

Patw ]

60
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Lemma A.2. The modulator w is natural, i.e., g 4 o H(f € g) = (H(f) < g)owp .

Proof. Take f € A'(a — b) and g € V(u — v). Then, (H(f) < g) o wp, is equal to

4.16)

This is exactly w, |, o H(f <« g). [

Lemma A.3. The modulator w is associative:

ad4u 4v ad4u 4v

Wa <au,v

Wq,u -
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Proof. Starting with 0y 4,4 © Wg,u © Wg<u,v. W€ have

ad4u 4v

a4u 4v a 44U 4v
Eaqu—aduav J “ “

( ] ) € &
Na<uw a—>a<4u<v a—>a<4u<4v

—

I I

- |

I I

[ ’ ’ ] ’ ’
Nau"la<au,w Nauv%a,uw

a < uv a < uv
ad4u 4v

a 4u 4v
“ ‘ Eqquv—a<u<a

Eaquv—a<au<a }
’
’
5a9a<uv] [ %guw ] .

I

41 —1 =
(4.16) pa<1A(a»a<uv) ]
a < uv
o /
which is exactly wa,uy © H(atg 4 4,)- m

Finally, the following lemma and remark are used in Lemma 4.18 in the main text.

Lemma A.4. The modulator @' is a U-natural transformation between (a <1 —) and
(a €—).

Proof. We check that

a<lu—a<v

=(a < —)u>v-
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Taking mates into A" under adjunction 3.17, the left-hand side becomes

a<v a<v a<v
/ / ’
€a<u4>a<1v ] Eaaqv—a<w ] @a,v ]
I
/ ’ /
qqu—aav @ 'a Eaqu—raav
I I = I I
Slzqu»a«t} [(a < _)u%vj UJ/,;L ] [(a < —)uﬁvj
o) |
u Vu — v) a<lu V(u — v)
a<v a<v
®'an 6(idy <1 evy idy) ] 6(idy <1 evy idy) ]
IT IT
A o' auV(u->v) ] (0l V(usr) ]
= = | = IT .
(3.19) — (Lem. A.2) = (Lem. A.3) -
o a,u,V(u—v) o a,u,V(u—v) @ a<u,V(u—>v)
@ @ g ‘
a<lu V(u — v) a<lu V(u — v) a<lu V(u — v)

Next, it follows from (mate1) that the mate of g € A(la <u < V(u - v) > a < v) =

ANla <u <V(u —v)—a<v)isw,, oG(g), so the last diagram here is the mate
-1

a,u,V(u—v)
adjunction 3.17, we have proven the lemma. ]

of o o (id,; < evy idy). Since this is exactly the mate of (¢ <1 —),—, under

Remark A.5. When we consider w/ . as an element of V(1y — A(c €4 v — a <

a,v

v)) = A'(a 4 v — a <v),itis adirect consequence of (2.14) that
(n;,va)g,v) o(—o4—) = Na,v-
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