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Intersecting the Twin Dragon with rational lines

Shigeki Akiyama, Paul Großkopf, Benoît Loridant, and Wolfgang Steiner

Abstract. The Knuth Twin Dragon is a compact subset of the plane with fractal boundary of
Hausdorff dimension s D .log �/=.log

p
2/, �3 D �2 C 2. Although the intersection with a

generic line has Hausdorff dimension s � 1, we prove that this does not occur for lines with
rational parameters. We further describe the intersection of the Twin Dragon with the two diag-
onals as well as with various axis parallel lines.

Dedicated to Professor Jörg Thuswaldner on the occasion of his 50th birthday

1. Introduction

We investigate the intersections of the Knuth Twin Dragon with rational lines. Let
˛ D �1C i , then

K D

² 1X
kD1

dk

˛k
W dk 2 ¹0; 1º

³
is the Knuth Twin Dragon. The Hausdorff dimension of its boundary @K is s D

log�
log
p
2
� 1:5236, where � is the real number satisfying �3 D �2 C 2. For lines

�p;q;r D ¹x C iy 2 C W px C qy D rº (1.1)

with p; q; r 2 Z, we show that the ˛-expansions of K \�p;q;r are recognized by a
finite automaton.

By a result of John Marstrand [5], the intersection of @K with Lebesgue almost all
lines going through K has Hausdorff dimension s � 1, meaning that in the set of all
parameter triples .p;q; r/ 2R3 for which�p;q;r \K ¤;, the exceptional cases form
a Lebesgue null set. We obtain here that the Hausdorff dimension of the intersection
of the boundary of the Twin Dragon with rational lines is never equal to s � 1.

Further, we revisit results by Akiyama and Scheicher [1] and add uncountably
many examples of horizontal, vertical, and diagonal lines.
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We mention that similar results were obtained in [4] for lines intersecting the
Sierpinski carpet F . The set F has Hausdorff dimension log8

log3 . Manning and Simon
showed that, given a slope ˛ 2 Q, the intersection of F with the line y D ˛x C ˇ is
strictly less than log8

log3 � 1 for Lebesgue almost every ˇ.

2. Main statement and proof

We first recall the notions of a canonical number system and its fundamental domain.
Let ˇ be an algebraic integer and N D ¹0; 1; : : : ; jN.ˇ/j � 1º, where N.x/ denotes
the norm of x over Q.ˇ/=Q. The pair .ˇ;N / is called a canonical number system
(CNS) if each  2 ZŒˇ� admits a representation of the form

 D

nX
kD0

dkˇ
k; dk 2 N : (2.1)

We call ˇ the radix or base and N the set of digits. The representation (2.1) is unique
up to leading zeros.

The Knuth Twin Dragon K appears as the fundamental domain of the CNS .˛;N /,
where ˛ D �1C i is the root of the polynomial x2 � 2x � 2 and N D ¹0; 1º. The
fundamental domain of a CNS is the set of all numbers that can be expressed with
purely negative exponents. Since ˛4 D �4, it is often useful to consider groups of
four digits:

1X
kD1

dk

˛k
D

1X
kD1

P3
jD0 d4k�j˛

j

˛4k
D

1X
kD1

bk

.�4/k
;

with the possibilities for bk D
P3
jD0 d4k�j˛

j being

Œ0000�˛ D 0; Œ0001�˛ D 1; Œ0010�˛ D �1Ci; Œ0011�˛ D i;

Œ0100�˛ D �2i; Œ0101�˛ D 1�2i; Œ0110�˛ D �1�i; Œ0111�˛ D �i;

Œ1000�˛ D 2C2i; Œ1001�˛ D 3C2i; Œ1010�˛ D 1C3i; Œ1011�˛ D 2C3i;

Œ1100�˛ D 2; Œ1101�˛ D 3; Œ1110�˛ D 1Ci; Œ1111�˛ D 2Ci:

In other words, we have

K D

² 1X
kD1

bk

.�4/k
W bk 2 D

³
;

with

D D ¹�1�i;�1Ci;�2i;�i; 0; i; 1�2i; 1; 1Ci; 1C3i; 2; 2Ci; 2C2i; 2C3i; 3; 3C2iº:

Points in the intersection of K with lines�p;q;r D ¹x C iy W px C qy D rº can now
be characterized by their digit expansion in the following way.
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Figure 1. An automaton characterizing @K (in base ˛), where all states are initial and terminal.

Lemma 2.1. We have z 2K \�p;q;r if and only if there is a digit sequence b1b2 � � � 2
DN with

z D

1X
kD1

bk

.�4/k
and r D

1X
kD1

pR.bk/C q I .bk/

.�4/k
:

Here, R.b/ denotes the real part and I .b/ denotes the imaginary part of b 2 C.
We show that we can characterize the digit expansion of the points in the intersec-

tion�p;q;r \K via a Büchi automaton, that is a finite automaton that accepts infinite
paths. Using this representation, we are able to calculate the Hausdorff dimension of
the intersection K \�p;q;r as well as the Hausdorff dimension of @K \�p;q;r .

Definition 2.2. A Büchi automaton is a 5-tuple .Q; A; E; I; T /, where the set Q D
¹q1; : : : ; qN º is a finite set of states, A is a finite alphabet, E � Q � A �Q is a set
of edges and I; T � Q the set of initial and terminal states. Let A� denote the set of
all (finite) words and A! denote the set of all (right) infinite words. A word w 2 A�,
w Dw1 � � �wn, is accepted by the automaton if and only if there are states qi0 ; : : : ; qin
such that qi0 2 I , qin 2 T and .qik�1

; wk; qik / 2 E for all k. We call such a finite
path successful, and we call an infinite path successful if and only if infinitely many
subpaths are successful. An infinite word w 2 A! is accepted by the automaton if
there exists an infinite successful path with label w. The set of all w 2 A! that are
accepted by the automaton is called its !-language.

Büchi automata are really helpful to describe self-similar sets. The automaton in
Figure 1 characterizes all infinite sequences of digits 0; 1 in base ˛ that give rise to
boundary points in @K; see [3, 7].
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Let L1; L2 be two !-languages on the same alphabet that are accepted by A;B,
respectively. It can be necessary to create automata accepting the union of the lan-
guages or their intersection. The union is not difficult: one just uses the union of states
and edges, as well as the union of terminal and initial states. The intersection gener-
ally requires heavy computations, especially in the non-deterministic case, where a
larger framework than Büchi automata needs to be used. But it becomes easy in some
cases. We prove one particular case that is useful to prove our main statements.

Lemma 2.3. Let L1; L2 be two !-languages on the same alphabet A accepted by
Büchi automata. If one of the automata has only terminal states, then there is a Büchi
automaton accepting L1 \ L2.

Proof. Define A �B D .QA �QB ; A;E; IA � IB ; TA � TB/, where E consists of

the edges .a; b/
d
! .a0; b0/ with a

d
! a0 and b

d
! b0. Let w 2 A! be a word that is

accepted by A �B. Then there exists an infinite path in the automaton. Projecting to
the first coordinate gives an infinite path through A. Therefore, we have w 2 L1 and
with the same reasoning w 2 L2. Now let w 2 L1 \L2. There exists a path a0a1 � � �
through A and a path b0b1 � � � through B. Then .a0; b0/.a1; b1/ � � � is a path in the
product automaton. Assume w.l.o.g. that all states of A are terminal. Then, for every
finite subpath b0b1 � � � bk accepted by B, the corresponding path a0a1 � � � ak in A is
also accepted, hence .a0; b0/.a1; b1/ � � � is successful.

In general, if �p;q;r \K is described by a Büchi automaton A and the boundary
@K by a Büchi automaton G , then @K \�p;q;r is described by the product automaton
A � G . Interpreting this Büchi automaton as a graph directed construction for the set
@K \ �p;q;r , we have a way to compute the Hausdorff dimension of this set via
results of Mauldin and Williams [6]. Let us state and prove our main statements.

Theorem 2.4. Let p;q; r 2Z,�p;q;r as in (1.1) and K the Knuth Twin Dragon. Then
the intersection K \�p;q;r can be described by a Büchi automaton.

Proof. For s; s0 2 Z, we define an edge relation by

s
b
! s0” s0 D pR.b/C q I .b/ � 4s: (2.2)

Now consider a path �r D s0
b1
! s1

b2
! � � �

bn
! sn. Then

sn D .�4/
n.�r/C

nX
kD1

.�4/n�k
�
pR.bk/C q I .bk/

�
;

i.e.,
sn

.�4/n
D �r C

nX
kD1

pR.bk/C q I .bk/

.�4/k
:
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Using Lemma 2.1, we immediately get that

.x; y/ D Œ0:b1b2b3 � � � ��4 2K \�p;q;r if and only if lim
n!1

sn

.�4/n
D 0:

We now show that the elements sn lying on paths starting with s0 D�r and satisfying
limn!1

sn
.�4/n

D 0 are bounded by a constant c.p; q/. Indeed, we have

sn

.�4/n
D �r C

nX
kD1

pR.bk/C q I .bk/

.�4/k
D �

1X
kDnC1

pR.bk/C q I .bk/

.�4/k
;

and therefore

jsnjD 4
n

ˇ̌̌̌ 1X
kDnC1

pR.bk/C q I .bk/

.�4/k

ˇ̌̌̌
�

max¹jpR.b/C q I .b/j W b 2 Dº

3
D c.p;q/:

Defining the set of statesQ D ¹s 2 Z W jsj � c.p; q/º [ ¹�rº, I D ¹�rº, T DQ and
edges as in 2.2, gives us the desired Büchi automaton.

Theorem 2.5. Let p; q; r 2 Z, �p;q;r as in (1.1) and K the Knuth Twin Dragon.
Then, the Hausdorff dimension of the intersection @K \�p;q;r is never s � 1, where
s is the Hausdorff dimension of @K .

Proof. The Büchi automaton of Theorem 2.4 gives rise to a description of the inter-
section K \ �p;q;r as one of the attractors of a graph directed construction (GIFS)
with attractors .Ks/s2Q:

K�r DK \�p;q;r ; with Ks D
[

s
b
!s02A

Ks0 C b

�4
.s 2 Q/:

As mentioned above, @K is also the attractor of a GIFS:

@K D
[
g2Q0

Kg ; with Kg D
[

g
b
!g02G

Kg0 C b

�4
.g 2 Q0/;

where G is the automaton characterizing @K in base �4. The automaton G can be
obtained from the automaton G 0 of Figure 1 as follows.

• The set of states Q0 is the same as for G 0; all states are initial and terminal.

• There is an edge from g to g0 in G whenever there is a path of length 4 from g to
g0 in G 0. The label of this edge in G is the digit vector Œd1d2d3d4�˛ corresponding
to the labels d1; d2; d3; d4 in G 0 along the path of length 4.
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In that way, A and G are built on the same alphabet. By Lemma 2.3, the intersection
A � G is a Büchi automaton describing the intersection �p;q;r \ @K . By Mauldin
and Williams [6], the Hausdorff dimension of a GIFS attractor can be computed from
the spectral radius ˇ of the incidence matrix of a strongly connected component of
the associated automaton; see further details in Remark 2.6. In particular, in our case,

dimH .@K \�p;q;r/ D
logˇ
log 4

;

where the involved number ˇ is an algebraic integer.
Now, the dimension of the boundary of the Twin Dragon is sD log�

log
p
2

, with �3 D

�2 C 2. To have logˇ
log4 D s � 1, we need ˇ D �4

4
. However, the minimal polynomial

of �
4

4
is 4x3 � 9x2 C 2x � 1, thus �

4

4
is not an algebraic integer.

Remark 2.6. We shortly explain why the results of Mauldin and Williams [6] indeed
apply to our setting. All the similarities in our graphs are contractions of the form
T .x/ D xCb

�4
, with the same ratio �1

4
. Therefore, if G denotes any of our graphs, we

only need to check the existence of nonoverlapping compact sets J1; : : : ; Jn (one for
each node 1; : : : ; n of G) with the property

8 i 2 ¹1; : : : ; nº; Ji �
[

i
T
�!j2G

T .Jj /;

each union being nonoverlapping.
For the graph G D G of our paper (with states g 2 Q0), the intersections of K

with its six neighboring tiles in the plane tiling generated by K are compact sets
playing the role of the Ji ’s, that is, satisfying the above nonoverlapping conditions;
see for example [2]. These intersections are exactly the sets Kg defined in the proof
of Theorem 2.5.

Now, the graph G D A � G of our paper can be interpreted as a subgraph of G :
taking the product of A and G means to select paths of G . The states of A � G are of
the form .r; g/, for some integers r and g 2 Q0. Defining

Kr;g WD �p;q;�r \Kg ;

we obtain compact sets fulfilling the nonoverlapping requirements mentioned above.

3. Further results on intersections of the Twin Dragon with rational
lines

In this section, we want to extend the work of [1], where the intersections with the
x-and the y-axis are calculated. The intersections of these lines with @K are signi-
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�1

�1

Figure 2. The Knuth Twin Dragon K and its intersection with �1;0;r for some r as in Theo-
rem 3.1 (red) and with �1;0;�1=5 (blue).

ficatively different from the expected result for intersections of fractals and lines, as
they consist only of two points. First, we show that their result extends to uncountably
many axis-parallel lines (where we do not have finite automata), and using the self-
similar structure, to diagonal lines. Then, we give one example of a more complicated
intersection.

Theorem 3.1. Let a1a2 � � � be a sequence in ¹0; 1º! not ending in .01/! , and

r D

1X
kD1

2ak

.�4/k
:

Then
@K \�1;0;r D

®
r C

�
r � 2

5

�
i; r C

�
r C 3

5

�
i
¯
;

and K \�1;0;r is the closed line segment r C
�
r � 2

5
; r C 3

5

�
i .

Proof. We first use Lemma 2.1 to describe K \ �1;0;r , that is, we determine the
sequences b1b2 � � � 2 D such that R

�P1
kD1 bk.�4/

�k
�
D r , i.e.,
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1X
kD1

2ak �R.bk/

.�4/k
D 0:

Since R.bk/ 2 ¹�1; 0; 1; 2; 3º, we have 2ak �R.bk/ 2 ¹�3;�2; : : : ; 2; 3º and thusˇ̌̌̌ 1X
kDnC1

2ak �R.bk/

.�4/k

ˇ̌̌̌
�
1

4n
for all n � 0:

Moreover, equality holds if and only if 2ak �R.bk/ is alternately 3 and �3, which
implies that ak is alternately 1 and 0, which we have excluded. This gives thatˇ̌̌̌ 1X
kDnC1

2ak �R.bk/

.�4/k

ˇ̌̌̌
<
1

4n
and

1X
kDnC1

2ak �R.bk/

.�4/k
D

nX
kD1

R.bk/ � 2ak

.�4/k
2

Z

4n

for all n � 1, hence R.bk/ D 2ak for all k � 1. For the corresponding sequences
d1d2 � � � (with

P3
jD0 d4k�j˛

j D bk) this implies that

d4k�3d4k�2d4k�1d4k 2 ¹ak000; ak011; ak100; ak111º for all k � 1: (3.1)

Now consider sequences d1d2 � � � of the form (3.1) in the boundary automaton G

given in Figure 1. The only paths labeled by abcc, a; b; c 2 ¹0; 1º, starting from g1,
g2, g5 and g6, respectively, are

g1
0000
�! g6; g1

0011
�! g2; g2

1000
�! g5; g2

1011
�! g1;

g5
0100
�! g6; g5

0111
�! g2; g6

1100
�! g5; g6

1111
�! g1:

Therefore, for an infinite successful path of the form (3.1) starting from g1, g2, g5
or g6, the sequence a1a2 � � � is alternately 0 and 1, which we have excluded. Hence,
it suffices to consider paths that are in g3 and g4 after 4k steps for all k � 0. From

g3
a100
�! g4 and g4

a011
�! g3 .a 2 ¹0; 1º/;

we see that the only points in @K \�1;0;r are

1X
kD1

ak˛
3

.�4/k
C

1X
kD1

˛6 C ˛ C 1

16k
D r .1C i/C

3i

5
;

1X
kD1

ak˛
3

.�4/k
C

1X
kD1

˛5 C ˛4 C ˛2

16k
D r .1C i/ �

2i

5
:

Since r .1C i/ 2K , K \�1;0;r is the line segment between these points.
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�1

�1

Figure 3. The intersection of K D ˛�1
�
K [ .K C 1/

�
with lines �0;1;r=2, �1;1;�r , and

�1;�1;r=2 for some r as in Theorem 3.1.

Theorem 3.2. For � 8
15
< r < 2

15
, we have

�2i .K \�0;1;r=2/ D .K \�1;0;r/C ¹0; iº;

.�1C i/ .K \�1;1;�r/ DK \�1;0;r ;

.�1C i/ .K \�1;�1;r=2/ D .K \�0;1;r=2/C ¹0; 1º;

2 .1C i/ .K \�1;�1;r=2/ D .K \�1;0;r/C ¹�2i;�i; 0; iº:

In particular, for r as in Theorem 3.1, the intersections K \�0;1;r=2, K \�1;1;�r

and K \�1;�1;r=2 are closed line segments with endpoints

@K \�0;1;r=2 D @.K \�0;1;r=2/ D
®
�
4
5
�
r
2
C

r
2
i; 1
5
�
r
2
C

r
2
i
¯
;

@K \�1;1;�r D @.K \�1;1;�r/ D
®
�
1
5
C
�
1
5
� r

�
i; 3
10
�
�
3
10
C r

�
i
¯
;

@K \�1;�1;r=2 D @.K \�1;�1;r=2/ D
®
�
3
5
C

r
2
�
3
5
i; 2
5
C

r
2
C

2
5
i
¯
:

Proof. Note that ˛K DK [ .K C 1/ and

˛ �1;1;�r D �1;0;�r ; ˛ �0;1;r=2 D �1;1;�r ; ˛ �1;�1;r=2 D �0;1;r=2:
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Moreover, we have

.K C 1/ \�1;0;r D ; D .K � 1/ \�1;0;r D .K C ˛/ \�1;0;r

since � 8
15
< r < 2

15
and

min¹x W x C iy 2Kº D

1X
kD1

�
3

.�4/2k�1
C
�1

.�4/2k

�
D �

1X
kD1

13

16k
D �

13

15
;

max¹x W x C iy 2Kº D

1X
kD1

�
�1

.�4/2k�1
C

3

.�4/2k

�
D

1X
kD1

7

16k
D

7

15
:

Using these geometric properties, we obtain that

˛ .K \�1;1;�r/ D
�
K [ .K C 1/

�
\�1;0;r DK \�1;0;r ;

˛2 .K \�0;1;r=2/ D
�
K [ .K C 1/ [ .K C ˛/ [ .K C ˛ C 1/

�
\�1;0;r

D .K \�1;0;r/ [
�
.K C i/ \�1;0;r

�
D .K \�1;0;r/C ¹0; iº;

˛ .K \�1;�1;r=2/ D
�
K [ .K C 1/

�
\�0;1;r=2 D .K \�0;1;r=2/C ¹0; 1º;

˛3 .K \�1;�1;r=2/ D ˛
2 .K \�0;1;r=2/ � ¹0; 2iº

D .K \�1;0;r/C ¹�2i;�i; 0; iº:

For r as in Theorem 3.1, we have � 8
15
< r < 2

15
since

min
² 1X
kD1

2ak

.�4/k
W a1a2 � � � 2 ¹0; 1º

!

³
D �

1X
kD1

8

16k
D �

8

15
;

max
² 1X
kD1

2ak

.�4/k
W a1a2 � � � 2 ¹0; 1º

!

³
D

1X
kD1

2

16k
D

2

15
;

and the minimum and maximum are attained only for the sequences .10/! and .01/! ,
which we have excluded. Therefore, Theorem 3.1 and the formulae above give that

K \�1;1;�r D �
1Ci
2

�
r .1C i/C

�
�
2
5
; 3
5

�
i
�
D �r i C

�
�
1
5
; 3
10

�
.1 � i/;

K \�0;1;r=2 D
i
2

�
r .1C i/C

�
�
2
5
; 8
5

�
i
�
D r �1Ci

2
C
�
�
4
5
; 1
5

�
;

K \�1;�1;r=2 D
1�i
4

�
r .1C i/C

�
�
12
5
; 8
5

�
i
�
D

r
2
C
�
�
3
5
; 2
5

�
.1C i/;

which proves the statements for the intersection of K with lines. For the intersections
of @K with lines, it only remains to check that the points in

˛�2
�
.K \�1;0;r/ \ ..K \�1;0;r/C i/

�
D

°
1
˛2

�
r .1C i/C 3i

5

�±
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and

˛�1
�
.K \�0;1;r=2/ \ ..K \�0;1;r=2/C 1/

�
D
®
1
˛3

�
r .1C i/ � 2

5
i
�¯

are not in @K. By the proof of Theorem 3.1, the digit expansion

Œ:a1100a2011a3100a4011 � � � �˛ D r .1C i/C
3
5
i

is given by a path starting only from g3 in the boundary automaton G . Dividing
by ˛2 adds 00 in front of the expansion, but g3 cannot be reached by 00, hence
1
˛2

�
r .1C i/C 3i

5

�
is not on the boundary of K. Similarly, the digit expansion

Œ:a1011a2100a3011a4100 � � � �˛ D r .1C i/ �
2
5
i

is given by a path starting from g4 in the boundary automaton G , and g4 cannot be
reached by 000, thus 1

˛3

�
r .1C i/ � 2

5
i
�

is not on the boundary of K. This proves
that all intersections of K with the given lines are line segments.

We can use this method to find a vertical line with a more interesting intersection.
For example, if we look at �1;0;�1=4, we see that the only expansion

P1
kD1

bk

.�4/k

with bk 2D having real part �1=4 is b1b2 � � � D 100 � � � . In base ˛, we must therefore
have d1d2d3d4 2 ¹0001; 0101; 1010; 1110º, which correspond to the digits 1, 1� 2i ,
1 C 3i , 1 C i 2 D . The remaining digit sequences d5d6 � � � give points in the set
1
˛4 .K \�1;0;0/, thus

K \�1;0;�1=4 D �
1
4
C
��
�
9
10
;�13

20

�
[
�
�
2
5
; 1
10

�
[
�
7
20
; 3
5

��
i:

We go on with �1;0;�1=4C1=16 and see that points in the intersection have imag-
inary part with an expansion in base �4 starting with two digits in ¹�2; 0; 1; 3º and
ending with digits in ¹�1; 0; 1; 2º. For the limit �1;0;�1=5 of lines of this form, we
obtain the following intersection with K , see Figure 2.

Theorem 3.3. We have

K \�1;0;�1=5 D

²
�
1

5
C

1X
kD1

dk

.�4/k
i W dk 2 ¹�2; 0; 1; 3º for all k � 1

³
;

and a point is in @K \�1;0;�1=5 if and only if it is of the form�1
5
C
P1
kD1dk.�4/

�ki ,
where d1d2 � � � is a path in the automaton in Figure 4.

Proof. Since �1
5
D
P1
kD1.�4/

�k , we obtain in the same way as in the proof of The-
orem 3.1 that R

�P1
kD1 bk.�4/

�k
�
D �

1
5

with bk 2 D if and only if R.bk/ D 1 for
all k � 1, i.e., bk 2 ¹1�2i; 1; 1Ci; 1C3iº. The corresponding 4-digit blocks in base ˛
are 0101, 0001, 1110, and 1010. This proves the characterization of K \�1;0;�1=5.
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g3 g4-2

-2,0

3

1,3

Figure 4. Automaton recognizing the imaginary parts of points in @K \�1;0;�1=5 in base �4.

In the boundary automaton, the digit blocks 0101, 0001, 1110, and 1010 are
accepted only from g3 and g4, and we have the transitions

g3
0101
�! g3; g3

0001
�! g4; g3

0101
�! g4; g4

1010
�! g4; g4

1010
�! g3; g4

1110
�! g3:

Taking imaginary parts of the corresponding numbers in D gives the automaton in
Figure 4.

Theorem 3.4. The Hausdorff dimension of K \�1;0;�1=5 is 1 and

dimH .@K \�1;0;�1=5/ D
log3
log4 � 0:7925 > s � 1:

Proof. We can interpret the intersection with �1;0;�1=5 as the self-similar digit tile
in R with A D �4 and D D ¹�2; 0; 1; 3º. Since D is a complete residue system
modulo 4, this tile has non-empty interior and therefore is of dimension 1.

For the boundary, we have @K \�1;0;�1=5 D K3 [K4, with

�4K3 D .K3 � 2/ [ .K4 � 2/ [K4; �4K4 D .K3 C 1/ [ .K3 C 3/ [ .K4 C 3/:

Therefore, by [6], the Hausdorff dimension of @K \�1;0;�1=5 is logˇ= log 4, where
ˇ is the Perron–Frobenius eigenvalue of the matrix

�
1 2
2 1

�
, i.e., ˇ D 3.
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