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Self-similar sets and self-similar measures in the p-adics

Kevin George Hare and Tomás̆ Vávra

Abstract. In this paper, we investigate p-adic self-similar sets and p-adic self-similar mea-
sures. We introduce a condition (C) under which p-adic self-similar sets can be shown to have
a number of nice properties. It is shown that p-adic self-similar sets satisfying condition (C)
are p-adic path set fractals. This allows us to easily compute the Hausdorff dimension of these
sets. We further show that the set of p-adic path set fractals is strictly larger than this set of
p-adic self-similar sets. The directed graph associated to p-adic self-similar sets satisfying con-
dition (C) is shown to have a unique essential class. Moreover, it is shown that almost all points
are eventually in the essential class. For p-adic self-similar measures satisfying this condition,
we show that many results involving local dimension are similar to those of their real counter-
parts, with fewer complications. We next study the more general p-adic path set fractals, first
showing that the existence of an interior point is equivalent to the set having Hausdorff dimen-
sion 1. We further show that often the decimation of p-adic path set fractals results in a set with
maximal Hausdorff dimension.

1. Introduction

Let Qp be the p-adic numbers. We say that

F.x/ D ax C d

with F WQp!Qp is a linear contraction if jF.x/�F.y/jp < jx � yjp for all x ¤ y.
Let

F D ¹F1; F2; : : : ; Fnº

be a finite set of linear contractions. We say that F is a p-adic iterated function
system (p-adic IFS). By [28, Theorem 6], there exists a unique non-empty compact
set K � Qp , called the attractor or p-adic self-similar set, such that

K D
[
i

Fi .K/:

This is based upon the methods introduced in [23].
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We say a p-adic IFS F D ¹Fiº
n
iD1 satisfies condition (C) if

• for each Fi 2 F we have Fi .x/D "ipkixC di , with "i 2 ¹�1; 1º, ki 2 Z, ki � 1,
and di 2 Zp \Q,

• we have n � 2 and there exist i and j such that the fixed points of Fi and Fj are
distinct.

This second requirement is needed to remove degenerate p-adic self-similar set con-
taining only one point. In this paper, we focus on the case where the p-adic IFS
satisfies condition (C). These objects have been studied in [25–28, 30].

Abram and Lagarias explored p-adic path set fractals in [1, 2]. Abram, Lagarias,
and Slonim studied this in a more general setting in [3, 4]. To define a p-adic path
set fractal, first, consider an automaton given by a directed graph G with vertices
v1; : : : ; vm. To each edge of this graph we associate an output from ¹0; 1; : : : ; p � 1º.
Consider the set of p-adic numbers associated to this directed graph from a starting
vertex v1 having p-adic representations given by the set of infinite words accepted by
this automaton. This set of p-adic numbers is called a p-adic path set fractal.

In this paper, we study the relationship between p-adic path set fractals and p-adic
self-similar sets. The notation used through this paper is introduced in Section 2. In
Section 3, we consider p-adic self-similar sets satisfying condition (C). We show in
Theorem 3.3 how to construct a transducer that takes as input a word � D a0a1a2 � � �
with ai 2 ¹1; 2; : : : ; nº! and outputs the p-adic number associated with Fa0 ı Fa1 ı
Fa2 ı � � � . One consequence of this construction is that we are able to compute the
Hausdorff dimension of p-adic self-similar sets satisfying condition (C). See Sec-
tion 2.5 for a precise definition of Hausdorff dimension. Another easy consequence
of Theorem 3.3 is the following proposition.

Proposition 1.1. Let F D ¹Fiº
n
iD1 be a p-adic IFS satisfying condition (C). Let K

be the p-adic self-similar set associated to F . Then, K is a p-adic path set fractal.

In Section 4, we prove the following theorem.

Theorem 1.2. Let F D ¹Fiº
n
iD1 be a p-adic IFS satisfying condition (C). Let K be

the p-adic self-similar set associated to F . Then, there exists a deterministic finite
automaton (DFA) with a unique essential class recognizing the language of p-adic
expansions of F .

The precise definition of a DFA can be found in Section 2.2, and of an essential
class in Section 2.3. As a corollary to this, we get that the set of p-adic self-similar sets
satisfying condition (C) form a strict subset of p-adic path set fractals. In Section 4,
we also show that almost all points in the attractor (with respect to Hausdorff measure)
are associated to paths in the essential class (Theorem 4.10).
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The study of p-adic self-similar measures and local dimensions is given in Sec-
tion 5 and is analogous to self-similar measures and local dimensions on R.

In Sections 6 and 7, we consider more general p-adic path set fractals. Theo-
rem 6.1 shows that the existence of an interior point is equivalent to having positive
Haar measure. This is not true in general for self-similar sets in R2. In Section 7, we
discuss decimation for p-adic path set fractals, showing that often the dimension of
the decimation is maximal. Finally, in Section 8, we make some final comments and
raise some open questions.

2. Notation

2.1. p-adic numbers

Fix a prime number p. The p-adic valuation � W Q� ! Q is defined as �.a
b
/ D r ,

where a
b
D pr a

0

b0
with p being coprime to both a0 and b0. The p-adic absolute value

j � jp W Q! Q is defined as jxjp D p��.x/ with j0jp D 0. The term “absolute value”
refers to certain axioms being satisfied, most notably jxyjpDjxjpjyjp and the (strong)
triangle inequality jx C yjp � max¹jxjp; jyjpº. Moreover, we have that jx C yjp D
max¹jxjp; jyjpº whenever jxjp ¤ jyjp . The p-adic absolute value is an ultra-metric
inducing a topology on Q. The topological completion of Q with respect to j � jp is
called the field of p-adic numbers, denoted by Qp .

The standard way of expressing a p-adic number is through its p-adic expansion.
This is an expression of the form

P1
iDk xip

i , where k 2Z and xi 2 ¹0; : : : ;p � 1º for
all i � k. A p-adic expansion is eventually periodic if and only if the expanded num-
ber is rational, in which case the value can be computed through the closed formula
for the sum of geometric series. In particular, Zp \ Q is the set of p-adic integers
with eventually periodic expansions. The set of p-adic integers is

Zp D
°X
i�0

xip
i
W xi 2 ¹0; : : : ; p � 1º

±
:

The integers Z lie in Zp , with non-negative integers having finite representations, and
negative integers having expansions where all but finitely many terms are p � 1.

See [6, 17, 24] for a more complete introduction to p-adic numbers.

2.2. Automata theory

A finite automaton A on the finite set of symbols A is given by a finite set of statesQ,
by transitions E � Q �A �Q, and by an initial state i 2 Q. We denote the set of all
finite words over an alphabet A as A�. A finite word � D a0a1 � � � am 2 A� is said to
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be accepted by A if there exist transitions .i; a0; q0/; .q0; a1; q1/; : : : ; .qm�1; am; qm/
all belonging to E. Finite automata traditionally also specify a set F � Q of accept-
ing states. In this case, we would additionally require the qm above to satisfy qm 2 F .
In this paper, we restrict our attention to finite automata where all states are accepting
states, and the definition simplifies as above. These are also known as path sets [2].
A subset L � A� (usually called a language) is said to be recognized by a finite
automaton A if A accepts precisely the elements of L. A deterministic finite automa-
ton (DFA) has the property that, for every q 2 Q and a 2 A, there is at most one
q0 2 Q such that .q; a; q0/ 2 E. A non-deterministic finite automaton (NDFA) is a
finite automaton that is not deterministic. It is a classical result that if a language is
recognized by a non-deterministic finite automaton, then there exists a deterministic
finite automaton that also recognizes this language [5, Theorem 4.1.3]. We can asso-
ciate to a finite automaton a finite graph on vertices Q. For each .q; a; q0/ 2 E we
associate a directed edge .q; q0/ labeled by a. The automaton is then deterministic if,
for each vertex q and each a 2 A, at most one edge labeled a leaves q.

We next consider what it means for an infinite word to be accepted by a DFA
or an NDFA. These are known as !-automata. See, for instance, [18], in particular,
Chapter 1 for an introduction and Chapter 3 for the relationship between deterministic
and non-deterministic !-automata. The usual notion of an !-automaton requires an
additional acceptance condition. This might be, for instance, that an accepting state
is visited infinitely many times (Büchi automata), or that every infinitely often vis-
ited state belongs to an accepting set (Muller automata). These additional imposed
technical conditions are not needed or studied in this paper. We consider only those
automata where all states are accepting states. As such, these two notations of infinite
words are equivalent and can be simplified. We say an infinite word a0a1 � � � with
ai 2 A is accepted by A if all prefixes a0 � � � am are accepted by A. A deterministic
finite automaton can be constructed from a non-deterministic finite automaton using
a subset construction. This can be found, for example, in [5, Theorem 4.1.3]. Let Q
be the set of states of the NDFA. Each state in the DFA is an element of the power set
of Q. Equivalently, each state in the DFA can be labeled by a subset of Q. We denote
this set of states of the DFA as xQ. For a letter a 2A, the transition from a state Nq1 2 xQ
labeled by a is the state

Nq2 D
[
q2 Nq1

¹q0 2 Q W .q; a; q0/ 2 Eº:

In other words, for any path a0a1 � � � am, the state reached by this path from ¹iº is all
the states of Q that can be reached by this path in the non-deterministic version. It
is not hard to see that the new automaton recognizes the same language. It is worth
noting that the subset construction described above works in greater generality and is
not limited to our restricted notation of NDFA.
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A finite-state transducer is defined similarly to a finite-state automaton. In this
paper, we only consider deterministic transducers. The key difference between a DFA
and a deterministic transducer is that in addition to an alphabet A there is an output
alphabet B . The transitions E satisfy

E � Q � A �Q � B:

For a four-tuple .q1; a; q2; b/, we interpret q1 as the start state of a transition and q2
as an end state of a transition. We interpret a as the input alphabet and b as the output
alphabet. This allows us to “read in” a finite or infinite word accepted by a finite-state
transducer and output a finite or infinite word over the alphabet B .

For a more complete introduction to automata theory with infinite strings, see
[18, 33].

2.3. Loop and essential classes

Let Q be the set of states of a DFA. Following the notation of [12, 19], we say that
L �Q is a loop class if for all q1 and q2 in L there exists a valid path in L from q1 to
q2. We say that L is a maximal loop class if there are no loop classes L0 with L ¨ L0.
We say that EC is an essential class if it is a maximal loop class, and further if all
paths from q 2 EC stay in EC .

In the language of directed graphs, loop classes are also known as strongly con-
nected components, and an essential class is a sink of the condensation of the directed
graph.

2.4. Non-negative matrices

For a DFA A withm states, we define its adjacency matrix T D Ti;j for 1� i , j �m,
where Ti;j is the number of transitions from the state qi to qj . Defined this way, the
i; j -th component of T k is the number of different words s presented by paths of
length k from qi to qj labeled by s. We immediately get that T is non-negative. If the
graph of A is strongly connected, we see that T is irreducible. If A is not irreducible,
we can permute T into a block triangular shape, where the diagonal blocks correspond
to strongly connected components of A.

The dominant eigenvalue value of a matrix M is known as the spectral radius
and is denoted by �.M/. For M1 and M2 both m �m matrices, we have that if 0 �
M1 <M2, then there is an inequality of the spectral radii �.M1/ � �.M2/, and in the
case thatM2 is irreducible, we have �.M1/ < �.M2/. See, for example, [31, Theorem
4.4.7]. We use this fact later in the proof of Theorem 1.2.
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2.5. Hausdorff dimension

For any subset X � Qp , we define the diameter of X as

diamp.X/ WD sup
x;y2X

jx � yjp:

For any ı > 0 and any d � 0, we define

Hd
ı;p.X/ WD inf

´
1X
iD1

diamp.Xi /d W X �
[
Xi ; diamp.Xi / < ı

µ
:

We define the outer measure Hd
p .X/ as

Hd
p .X/ D lim

ı!0
Hd
ı;p.X/:

The functionHd
p .X/ is decreasing in d . For most d , the value ofHd

p .X/ is either
0 or infinity. In fact, there is at most one value of d , where it can have a non-zero finite
value.

For X � Qp , we define the Hausdorff dimension,

dimH;p.X/ WD inf¹d � 0 W Hd
p .X/ D 0º D sup¹d � 0 W Hd

p .X/ D1º:

Recall thatK is the attractor of a p-adic IFS. For any Y �K, we define the Hausdorff
measure �K;p with respect to K as �K;p.Y / D H

dimH;p.K/
p .Y /. We show that when

K is a p-adic self-similar set, then 0 < �K;p.K/ < 1. These definitions all have
analogs over the real numbers (a field of characteristic 0). We denote these as diam0,
Hd
ı;0

, Hd
0 , dimH;0, and �X;0. See [1, 25] for further details.

2.6. Languages

Let Q be a set of states of a DFA, q 2 Q, and L � Q. Let AL be the sub-automaton
of A, where we restricted the set of allowable states to L. Typically, L is a loop class.
We denote by LL.q/ the language accepted by the sub-automaton AL with initial
state q. If L is not specific, then it is assumed to be Q. That is, L.q/ D LQ.q/. For a
set of states A � Q, we define

L.A/ D
[
q2A

L.q/ and LL.A/ D
[
q2A

LL.q/:

In the second case, if A is not specified, then it is assumed to be L. That is, LL D

LL.L/. We define the dimension of a language L � ¹0; 1; : : : ; p � 1º! as the dimen-
sion of the natural projection of L to the p-adic integers.



Self-similar sets and self-similar measures in the p-adics 253

3. Path set fractals and p-adic self-similar sets

Let F D ¹Fiº
n
iD1 be a p-adic IFS satisfying condition (C). Let K be the p-adic self-

similar set associated to F . For each x 2K, there exists an infinite sequence a0a1 � � �
with ai 2 ¹1; 2; : : : ; nº such that x D limk!1Fa0 ı Fa1 ı � � � ı Fak .0/. This is a stan-
dard construction in the study of self-similar sets. See, for instance, [8, Section 1.1].
We say that � D a0a1a2 � � � is an address of x. It is worth noting that x may have
more than one address. For x having an address a0a1a2 � � � 2 ¹1;2; : : : ; nº! , the reader
can verify that

x D

1X
jD0

 
j�1Y
iD0

"aip
kai

!
daj : (3.1)

Further, every such sum on the right-hand side of (3.1) corresponds to an x 2 K. As
such, we have the following lemma.

Lemma 3.1. The points of K are precisely´
1X
jD0

 
j�1Y
iD0

"aip
kai

!
daj W .aj / 2 ¹1; 2; : : : ; nº

!

µ
:

It is worth noting that the above sums are p-adic expansions only if

di 2 ¹0; 1; : : : ; p � 1º and "i D 1

for all i . Otherwise, the above sums are well defined but need some rewriting to give
a p-adic number in the standard form.

Consider an automaton given by a directed graph G with vertices v1; : : : ; vm. To
each edge of this graph we associate an output from ¹0; 1; : : : ; p � 1º. Then, the set
of p-adic numbers associated to this directed graph from a starting vertex v1 are the
set of infinite words accepted by this automaton. These fractals are known as p-adic
path set fractals, and they were first explored in [1, 2]. It is shown that the Hausdorff
dimension of p-adic path set fractals exists and is equal to log.�/

log.p/ , where � is the
dominant eigenvalue of the adjacency matrix of the p-adic path set fractal.

We first give a simple example when "i D 1 and ki D 1 to show how to rewrite
points inK from an address � into a standard p-adic representation. The setK in this
example is also shown to be a p-adic path set fractal.

Example 3.2. Consider p D 3 and the p-adic IFS ¹F0; F1; F3º with F0.x/ D 3x C
0; F1.x/ D 3x C 1 and F3.x/ D 3x C 3. We have that

K D
°X
i�0

3idi W di 2 ¹0; 1; 3º
±
:
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0start

1

F3=0

F0=0

F1=1

F0=1 F1=2

F3=1

(a) Transducer

0start

1

0

0

1

1 2

1

(b) NDFA

¹0ºstart

¹0; 1º

0

1

2

0

1

(c) DFA

Figure 3.1. Transducer, NDFA, and DFA for Example 3.2.

We can start rewriting
P
i�0 3

idi from the least significant digits d0; d1; d2; : : : : We
note that the digit 3 is not an allowable digit in a 3-adic representation of a number.
Because

3pk C dkC1p
kC1
D .1C dkC1/p

kC1;

instead of the digit 3 we output 0 at the position of pk , and remember the carry of
1. If dkC1 2 ¹0; 1º, we can resolve the carry. In case dkC1 D 3, the carry propagates
further, and we use

4pkC1 D pkC1 C pkC2;

where pkC2 is the new carry. This procedure is visualized in Figure 3.1a.
Consider an x D

P
i�0 3

idi 2K with di 2 ¹0; 1; 3º. We start in state 0. If d0 D 0,
then we loop from state 0 to state 0 and output 0. If d0 D 1, then we loop from state
0 to state 0 and output 1. If d0 D 3, then we move from state 0 to state 1 and output
0. This last case corresponds to a carry of 1. After reading d0; d1; : : : ; dm�1, we are
either in state 0 or state 1. If we are in state 0, then the reading of 0 or 1 corresponds to
an output of 0 or 1, resp., and remains in state 0. Similar interpretations can be given
if we are in state 1 and/or if we read in a 3.

Each edge of the transducer associated to the 3-adic self-similar set has both an
input and output symbol (see Figure 3.1a). To describe the attractor as a 3-adic path
set fractal, we associate to each edge the output symbol only. From this, we obtain
an NDFA recognizing the 3-adic expansions of elements of K. This is visualized in
Figure 3.1b. We can then use the subset construction to get a DFA recognizing these
3-adic expansions. This is visualized in Figure 3.1c.

The idea from the previous example is the essence behind the following theorem.
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Theorem 3.3. Let F D ¹Fiº
n
iD1 be a p-adic IFS satisfying condition (C). Let K be

the p-adic self-similar set associated to F . There exists a finite-state transducer that
reads in the address of x 2 K and outputs the p-adic expansion of x. In particu-
lar, this transducer takes a sequence a0a1 � � � 2 ¹1; : : : ; nº! and outputs a sequence
x0x1 � � � 2 ¹0; 1; : : : ; p � 1º

! with the property that if x has address a0a1 � � � , then
x D

P
i�0 xip

i .
By applying this finite-state transducer to the language ¹1; : : : ; nº! , we show that

K is recognized by a finite-state automaton. Further, the Hausdorff dimension ofK is
computable.

Proof. We consider three sub-cases, which have subtle differences in how they inter-
act with the transducer.

(1) For all i , Fi .x/ D px C di for di 2 Zp \Q.

(2) For some i , Fi .x/ D pkix C di with ki � 2.

(3) For some i , Fi .x/ D �pkix C di .

Before starting the main proof, we introduce some notation. Let y D
P1
iD0 yip

i 2

Zp with yi 2 ¹0; 1; : : : ; p � 1º. We define D.y/ D y0. For y 2 Zp , let

S.y/ D .y �D.y//=p:

We see by the construction of D.y/ that S.y/ 2 Zp and y D D.y/C pS.y/.
Similarly, for k � 1, defineDk.

P1
iD0 yip

i /D y0C y1pC � � � C yk�1p
k�1. With

abuse of notation, we will also write

Dk

 
1X
iD0

yip
i

!
D y0y1 � � �yk�1 2 ¹0; 1; : : : ; p � 1º

k :

This will be clear from the context. Define

Sk.x/ D .x �Dk.x//=p
k : (3.2)

In particular, x D Dk.x/C pkSk.x/.

Case (1). Assume that all maps are of the form Fi .x/ D px C di for some di 2
Zp \Q. Let x 2 K have address � D a0a1a2 � � � 2 ¹1; 2; : : : ; nº! . As x 2 Zp , we
can write x D

P
i�0 xip

i for some xi 2 ¹0; 1; : : : ; p � 1º. We noticed that the m-
th digit xm depends only on da0 ; da1 ; : : : ; dam�1 . We now construct a transducer.
We set the initial state i D 0 2 Zp \Q. Let s be a state reachable from i. For each
i 2 ¹1; 2; : : : ; nº, we add the state s0 D S.s C di / to the set of states reachable from i.
Note that we may have added s0 at some previous step. We add a transition with input
i and output o from s to s0 (denoted by i=o or Fi=o), where o D D.s C di /.
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For each reachable state s and each i 2 ¹1; 2; : : : ; nº, we repeat this process until
such time as no new states are found. We show below why this set only contains
finitely many states, which shows that this process terminates.

We next show that this transducer has the desired property. That is, this trans-
ducer takes a sequence a0a1 � � � 2 ¹1; : : : ; nº! and outputs a sequence x0x1 � � � 2
¹0;1; : : : ;p� 1º! with the property that if x has address a0a1 � � � , then xD

P
i�0xip

i .
Let � D a0a1 � � � 2 ¹1; 2; : : : ; nº! be an address of x 2 K. Set s0 D i D 0. We

inductively define siC1 D S.si C dai / and xi D D.si C dai /. We note that xi is the
output of the transition from si to siC1 on input ai . By construction, xi 2 ¹0;1; : : : ;p�
1º. Then, x D

P
i�0 daip

i D da0 C s0 C
P
i�1 daip

i . We next write the constant
coefficient in terms of D and S , and using the definition of s1, we get

x D D.da0 C s0/C pS.da0 C s0/C
X
i�1

daip
i
D x0 C ps1 C

X
i�1

daip
i :

We continue in this fashion for the next term in the p-adic expansion to get

x D x0 C pD.da1 C s1/C p
2S.da1 C s1/C

X
i�2

daip
i

D x0 C px1 C p
2s2 C

X
i�2

daip
i :

Repeating this argument, we get x D
P
i�0 xip

i , as required. We see the right-hand
side of this expression is a standard p-adic expansion with digits in ¹0; 1; : : : ; p � 1º.

Assume for a contradiction that there exists an infinite number of distinct states.
Then, there exists an infinite sequence a1a2 � � � 2 ¹1; 2; : : : ; nº! and an infinite set of
distinct states ¹s1 D 0; s2; s3; s4; : : :º such that siC1 D S.si C dai /. We see that each
di is both a rational number and a p-adic integer. Hence, we can write di D `i=d for
some `i 2 Z and d a positive integer not divisible by p.

As siC1 D S.si C dai /, we see that each si is also both a rational number and a
p-adic integer. Further, we can write each si D ti=d for some ti 2 Z and d the same
positive integer as above. By assumption, the ti ’s are distinct.

Let dmax D max.0; d1; d2; : : : ; dn/, where the maximum is taken with respect to
the natural ordering on R. As each di is a rational number, this is well defined. We
claim that si � dmax for all i . To see this, we note that s1D 0� dmax, and by induction,

siCi D S.si C dai / �
si C dmax

p
�
2dmax

p
� dmax:

In a similar, way we can show that si � min.0; d1; d2; : : : ; dn/ DW dmin for all i .
As there are only a finite number of rationals in Q with denominator d and dmin �

si � dmax, we see that there are a finite number of states.
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Case (2). The above technique needs to be slightly modified when some maps are of
the form Fi .x/ D p

kix C di for ki � 2.

From equation (3.1), we see that the kai -block of
P
i�0 p

Pi�1
jD0 kaj dai starting at

position 1C
Pi�1
jD0 kaj is determined by da1 ; da2 ; : : : ; dai only.

As before, we add the initial state iD 0 2 Zp \Q. Let s be a state reachable from
i. As before, for each i 2 ¹1; 2; : : : ; nº, we add the state

s0 D Skdi
.s C di /

to the set of states reachable from i and a transition with input i and output o from s

to s0, where o D Dki .s C di /.
We repeat this process until such time as no new states are found.
Similar to before, we can show that this transducer has the desired properties, and

that there are only a finite number of states.

Case (3). The above technique again needs a modification if some of the maps have
negative contractions. In this case, we keep track in a state s if we have had an even
or odd number of maps with negative contractions before reaching this state. Those
states with an even number of such maps are said to be in the positive orientation and
those with an odd number are said to be in the negative orientation. This results in a
doubling of the number of states, those of the form .s; 1/ in the positive orientation
and those of the form .s;�1/ in the negative orientation.

We set the initial state iD .0; 1/. Here, the “1” is indicating a positive orientation,
which is the case for the initial state. Let s D .u; "/ be a state reachable from i. If
" D 1, then, for each i 2 ¹1; 2; : : : ; nº, we add the state s0 D Skdi .uC di ; "i / to the
set of states reachable from i and a transition with input i and output o from s to s0,
where o D Dki .uC di /. If " D �1, then, for each i 2 ¹1; 2; : : : ; nº, we add the state

s0 D Skdi
.�u � di ;�"i /

to the set of states reachable from i and a transition with input i and output o from s

to s0, where o D Dki .�u � di /.
We repeat this process until such time as no new states are found.
Similar to before, we can show this transducer has the desired properties, and that

there are only a finite number of states.
We can use standard techniques for converting a non-deterministic automaton to

a minimal deterministic automaton. See, for example, [5].

Proof of Proposition 1.1. From Theorem 3.3, we get a transducer. By removing the
input, we get an NDFA that accepts the language of the p-adic self-similar set. This
NDFA defines a p-adic path set fractal.
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Example 3.4. Consider a 5-adic self-similar set given by the two maps

A W x 7! �5x;

B W x 7! 52x C 1=2:

To construct our non-deterministic transducer, we start in state iD .0; 1/ and con-
sider the actions of maps A and B acting on this state.

In the case of the map A, we see that the output is 0 and the new state is .0;�1/.
The “�1” is a change of signs that is a result of the map being a negative contraction.

We indicate this on Figure 3.2a as a directed edge from .0; 1/ to .0; �1/ and
labeling the edge A=0. That is, input A results in output 0 and a change of state from
.0; 1/ to .0;�1/.

Next, we consider the action of B on state .0; 1/. It is worth noting that

1=2 D 3C 2 � 5C .�1=2/ � 52:

This means that the output is 3; 2 (as we have a block of length 2), and the new state
is .�1=2; 1/.

In a similar fashion, we consider the action of A and B on the two new states
.0;�1/ and .�1=2; 1/. This results in four more directed edges and one new state to
consider, namely, .�1=2;�1/. We repeat this process on any new states, until such
time as no new states are found.

These are summarized in Figure 3.2a.
To produce the p-adic path set fractal (via an automata), we replace input/output

combinations on an edge with the output only. In addition, for any output which is
a block of length k, we insert k � 1 vertices to expand this out to a automaton with
output of length one for each edge. In general, this resulting automaton need not be
deterministic (although in this case it is). If it is a non-deterministic automaton, we
can convert this to the minimal deterministic automaton using a standard process. See
Figure 3.2b.

Labeling the vertices of the DFA in the order .0; 1/, .0;�1/, .1=2; 1/, .�1=2;�1/,
a, b, c, d , we can next create an 8 � 8 adjacency matrix M for this automaton;

M D

2666666666664

0 1 0 0 0 1 0 0

1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0

0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

3777777777775
:
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Figure 3.2. Transducer and DFA for Example 3.4.

This has a dominant eigenvalue of 1C
p
5

2
. Hence, utilizing the techniques of [1], we

have that the Hausdorff dimension of this 5-adic self-similar set is

log
�
1C
p
5

2

�
log.5/

� 0:298994:

Let us conclude this section with the following remark. If one is interested only
in the dimension of the attractor (and not, for instance, in the language of its points),
there is an easier approach than that given by Theorem 3.3. One can modify the con-
tractions by linear transformations to get an “easy case” with the same dimension.
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Theorem 3.5. Let F D ¹Fiº
n
iD1 be a p-adic IFS satisfying condition (C). Let K be

the p-adic self-similar set associated to F . Then, there exists a linear map L so that
L ı Fi ı L

�1.x/ D "ip
kix C d 0i with the following conditions.

(1) d 0i 2 Zp \ Z.

(2) If "i D 1, then d 0i � 0, and if "i D �1, then d 0i � 0.

(3) There exists an i such that d 0i D 0.

The attractor for ¹L ı Fi ı L�1º is L.K/ and dimH;p.K/ D dimH;p.L.K//.

In practice, such presentations often have fewer states. It is not immediately clear
why this is the case, but we give a few heuristic reasons below. Condition (1) ensures
that all states and di are integers, instead of rational numbers. Often when we have
non-integer rational di , we need multiple states to handle the fact that rationals have
periodic p-adic expansions. Conditions (2) and (3) combine to show that every state
has a path back to the initial state i. This has implications for the essential class (see
Section 4).

Proof of Theorem 3.5. Let L1.x/ D x C a and F.x/ D "pkx C d with " 2 ¹�1; 1º.
One can check that L1 ı F ıL�11 .x/D "p

kxC d C .1� "pk/a. Let c";k D 1� "pk .
We notice that if "D�1, then c";k > 0, and otherwise, c";k < 0. There exists an a such
that L1 ı Fi ı L�11 .x/ D "ip

kix C d 0i with d 0i 2 D 0 � Qp finite, d 0i � 0 for "i D 1,
d 0i � 0 for "i D �1, and at least one d 0i D 0. To see this, we see for large enough
a 2 Q we get that d 0i � 0 for "i D 1 and d 0i � 0 for "i D �1. By taking the minimal
such a with this property, we see that at least one d 0i D 0.

We note that we do not at the moment have d 0i 2 Zp \ Z. That is, L1 satisfies
property (2) and (3), but not necessary (1).

Let L2.x/D cx and F.x/D "pkx C d 0. One can check that L2 ı F ıL�12 .x/D
"pkx C cd 0. By choosing c as the lcm of the denominators of the d 0i from above, we
see that L2 ıL1 ı Fi ıL�11 L

�1
2 .x/D "ip

kix C d 00i with d 00i 2 Zp \Z. That is, these
d 00i satisfy condition (1). Further, we see that d 00i continues to satisfy (2) and (3).

Setting L WD L2 ı L1 gives the desired result.
To see that the attractor of ¹L ı Fi ı L�1º is L.K/, first note that K D

S
Fi .K/

by definition. This gives that[
L ı Fi ı L

�1.L.K// D L
�[

Fi .K/
�
D L.K/;

as required. Nondegenerate linear maps preserve Hausdorff dimension, and hence,
dimH;p.K/ D dimH;p.L.K//. To see this, apply L to the cover Xi in the definition of
Hd
ı;p

in Section 2.5. Following through the calculations, we haveHd
p .K/D1 if and

only if Hd
p .L.K// D1. Similarly, Hd

p .K/ D 0 if and only if Hd
p .L.K// D 0. This

gives the desired result.
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(a) DFA for Example 3.6 (unsimplified).

0start

0

1

(b) DFA for Example 3.6
(simplified).

Figure 3.3. DFAs for Example 3.6.

Example 3.6. Consider the 5-adic self-similar set given by the two maps A W x !
5x C 1

2
and B W x ! 5x C 1

3
. Taking L1 W x ! x C 1

12
, we get

L1 ı A ı L
�1
1 .x/ D 5x C

1

6
;

L1 ı B ı L
�1
1 .x/ D 5x:

Taking L2 W x ! 6x gives

A0.x/ WD L2 ı L1 ı A ı L
�1
1 L

�1
2 .x/ D 5x C 1;

B 0.x/ WD L2 ı L1 ı B ı L
�1
1 L

�1
2 .x/ D 5x:

Using [1, Theorem 3.1], we see that the Hausdorff dimension of this fractal is log2
log5 .

The DFA for the self-similar set given by ¹A; Bº and by ¹A0; B 0º are given in Fig-
ure 3.3.

4. The Essential class

In Section 3, we constructed a transducer that outputs the language of expansions of
points of a given p-adic self-similar set. From this transducer, we then constructed a
deterministic finite automaton that accepts this language.
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Figure 4.1. Path set fractal for Remark 4.3.

Recall that an essential class is a sink of the condensation of a directed graph
associated to a DFA.

Essential classes have great impact on the study of self-similar sets in R, especially
self-similar measures (Section 5). An important and key result is that the minimal
directed graph constructed from a self-similar set in R satisfying the finite type con-
dition has a unique essential class. See [21] and the references therein for a precise
definition of finite type condition and proof of this result in R. In this section, we
prove Theorem 1.2, the analogous result for p-adic self-similar sets.

Definition 4.1. Let X be a p-adic path set fractal recognized by a DFA. We say that
a point x 2 X is essential or an essential point if the path associated to this point
through the minimal DFA is eventually in an essential class. We say a point x 2 X is
non-essential if it is not essential.

Remark 4.2. In the case of p-adic self-similar sets satisfying condition (C), we will
show that the essential class is unique. As this is not in general true for p-adic path set
fractals, we say “an essential class” in the above definition, instead of “the essential
class”.

Letting � be the Hausdorff measure on this p-adic self-similar setK, we will also
show that almost all x 2 K are essential points.

In Theorem 1.2, we show that for a p-adic self-similar set satisfying condition
(C) that there is a unique essential class. In Theorem 4.10, we show that almost all
points are essential points. Theorem 4.10 is needed to prove Theorem 1.2, and at the
same time makes the result from Theorem 1.2 stronger. Combined we are showing
that there is only one essential class, and that almost everything is associated to it.

Remark 4.3. It is worth noting that this property does not translate for a general path
set fractal, as is illustrated in Figure 4.1. This p-adic path set fractal has two essen-
tial classes, namely, ¹Bº and ¹C º. Further, the dimension of this path set fractal is
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log.3/= log.p/, whereas the dimension of the set of essential points is log.2/= log.p/.
Hence, almost no points (with respect to the Hausdorff measure) are essential points.

We first give a technical lemma that will be useful in the next proof. Recall, in
the construction of the states of the transducer, we keep track if we have had an even
or odd number of maps with negative contractions before reaching this state. Those
states with an even number of such maps are said to be in the positive orientation and
those with an odd number are said to be in the negative orientation. The reader can
verify that the following lemma.

Lemma 4.4. Let F D ¹Fiº be a p-adic IFS satisfying condition (C) with the added
restriction that di 2 Zp \ Z. Let Q be the set of states of the transducer and q 2 Q
a state in positive orientation. Let � D a0a1 � � � am and F� D Fa0 ı � � � ı Fam , where
F� is a map with a positive contraction. Then, F� .x/ D pk�x C d� for some d� and
k� D

P
kai . Let Sk be defined as in (3.2). If the transducer reads a0a1 � � �am starting

in state q, then the final state will be Sk� .q C d� /.

We next show that the NDFA constructed in the proof of Theorem 3.3 has a unique
essential class under certain conditions.

Lemma 4.5. Let F D ¹Fiº be a p-adic IFS satisfying condition (C) with the added
restriction that di 2 Zp \ Z. Let K be the p-adic self-similar set associated to F .
Then, there exists an NDFA with a unique essential class recognizing the language of
p-adic expansions of F .

Proof. Let Q be the set of states of the transducer associated to F . Here, F may
contain maps with both positive and negative contractions. Let QC � Q be the set
of states in the positive orientation and Q� � Q be the set of states in the negative
orientation. If QC D ¹.0; 1/º, we are done. To see this, we note that any combination
of maps with an even number of maps with "i D �1 is in QC. Hence, .0; 1/ is a
descendant of all states, and hence in every essential class. Further, all descendants of
.0; 1/ are in every essential class. As .0; 1/ is the initial state, this shows that Q is the
essential class.

Let qmax D maxq and qmin D minq, where the maximum and minimum are taken
over all .q; 1/ 2 QC. We may assume that one of qmax or qmin is non-zero. Assume
that qmax > 0, the case where qmin < 0 is similar. There exists a sequence of maps,
Fa0 ;Fa1 ; : : : ;Fam , such that Fa0 ı � � � ıFam acting on .0; 1/ has a final state .qmax; 1/.
Call this map F� , and define k� and d� such that

F� .x/ D p
k�x C d� :

Let .q1; 1/; .q2; 1/ 2QC. Let .q0i ; 1/ be the resulting state when applying F� to .qi ; 1/.
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We note that if q1 < q2, then q01 � q
0
2. To see this, we note that Sk� is a non-

decreasing function, and q0i D Sk� .d� C qi /.
For all k, we note that Sk is superadditive. That is, for all a; b 2 Zp , we have

Sk.aC b/ � Sk.a/C Sk.b/. To see this, we note that, for all a; b 2 Zp ,

Dk.aC b/ � Dk.a/CDk.b/;

and further that

aC b D Dk.aC b/C p
kSk.aC b/ D Dk.a/CDk.b/C p

k.Sk.a/C Sk.b//:

We see by construction of d� that Sk� .d� / D qmax > 0. For all q < 0; q 2 Zp \ Z,
there exists a k0 such that Sk.q/ D �1 for all k � k0. Choose ` such that

k�` D k� C � � � C k�„ ƒ‚ …
`

� k0:

Let q0 be the state after applying �` to q. Note that S�`.x/ D p
k
�`x C d�` for some

d�` > 0, and that Sk
�`
.d�`/ D qmax. This gives

Sk
�`
.q C d�`/ � Sk�`

.q/C qmax � �1C qmax � 0:

This implies that repeated applications of F� to any state in QC eventually result
in the state .qmax; 1/.

Let .q;�1/ 2 Q�. Let Fi be any map with " D �1. We see that the application
of Fi to .q;�1/ is in QC. Hence, by the previous comment, all states in Q� have
.qmax; 1/ as a descendant.

As .qmax; 1/ is a descendant of all states, it is the descendant of all states in every
essential class. Hence, it is in every essential class. Hence, all descendants of .qmax; 1/

are in the same essential class. Hence, the essential class is unique.

Lemma 4.6. Let F D ¹Fiº
n
iD1 be a p-adic IFS satisfying condition (C). Let K be

the p-adic self-similar set associated to F . Then, there exists an NDFA with a unique
essential class recognizing the language of p-adic expansions of F .

Remark 4.7. Note that Lemma 4.5 restricts di 2 Zp \ Z, whereas Lemma 4.6 only
restricts di 2 Zp \Q.

Proof of Lemma 4.6. All directed graphs with positive out-degree for every vertex
have at least one essential class. As this is the case we are dealing with, it suffices to
show that the essential class is unique.

Assume that q1 and q2 are states in possibly different essential classes. If there
exists a map Fi W x 7! "ip

kix C di with "i D �1, the child of a state under this map
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has the opposite orientation of its parent. As such, we can assume without loss of
generality that both q1 and q2 have positive orientation.

We first show that both q1 and q2 have descendants q01 D .u1; 1/ and q02 D .u2; 1/,
where u1; u2 2 Z.

If q1 or q2 are initially of the form .u; 1/ for u 2 Z, we take q01 D q1 and q02 D q2,
as appropriate.

Otherwise, consider a path from the initial state i to q1. This path is the image
of the transducer acting on some word � 2 ¹1; 2; : : : ; nº�. As q1 is in the positive
orientation, we see that the word � acting on a state preserves orientation. Assume
that q1 D .r1; 1/ is a state labeled by a non-integer rational r1 D m1

n1
. It is worth

noting that p − n1. As q1 is a non-integer in Zp \Q, we see that q1 has an eventually
periodic p-adic expansion. Assume that this expansion has period of length s1 and
pre-period of length t1.

Consider the state q01 given by the image of �n1s1 D �� � � � �„ ƒ‚ …
n1s1

under the transducer.

As this is a descendant of q1, we see that it is in the same essential class as q1. We
next show that q01, a descendant of q1, is an integer.

We adopt the notation Œx0; x1; x2; : : : ; xm� with xi 2 ¹0; 1; : : : ; p � 1º to meanPm
iD0 xip

i , and the analogous notation for infinite p-adic expansions. For eventually
periodic p-adic expansions, we use the notation

Œx0; x1; : : : ; xt�1; xt ; : : : ; xtCs�1 �;

where the x0; : : : ; xt�1 is the pre-periodic component of length t and xt ; : : : ; xtCs�1
is the periodic component of length s. We can also consider different periods (of the
same length) and longer pre-periods (containing parts of the period, or even repeated
period). Namely, we can write q1 as

q1D Œx0;x1; : : : ;xt1�1;xt1 ; : : : ;xN�1�Cp
N Œxt1Cj ; : : : ; xt1Cs1�1; xt1 ; : : : ; xt1Cj�1 �

for some N 2 N, j 2 ¹0; 1; 2; : : : ; s1 � 1º, and where the indices of the periodic part
are taken modulo s1 in the range ¹t1; : : : ; t1 C s1 � 1º. We note that

Œ xt1Cj ; : : : ; xt1Cs1�1; xt1 ; : : : ; xt1Cj�1 �

is a rational number with denominator n1. Hence, we can write q1 as

q1 D c0 C p
N e0

n1
; c0; e0 2 Z:

Let � D a0a1 � � � am 2 ¹1; 2; : : : ; nº�. We write `.�/ for the length of the output
of � from the transducer. In particular, we have `.�/ D

P
kai .
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We can similarly write

p`.�/q1 D c1 C p
N e1

n1
; c1; e1 2 Z;

and, in general,
p`.�/iq1 D ci C p

N ei

n1
; ci ; ei 2 Z

for i 2 0; 1; : : : ; n1s1 � 1.
We see that ei D eiCs1 for i D 0; 1; : : : ; n1s1 � 1. Hence, for any particular choice

of e� 2 ¹e0; e1; : : : ; en1s1�1º, the number of i 2 ¹0; 1; : : : ; n1s1 � 1º such that ei D e�

is divisible by n1. Hence, the sum of the fractions with ei D e� is an integer. As this
is true for all e�, we have that

q1 C p
`.�/q1 C � � � C p

`.�/.n1s1�1/q1 (4.1)

is an integer, and also, is precisely equal to q01 defined above as the image of �n1s1 .
To see the latter, remember that q1 is encoded by � (in the input alphabet); thus,
q1 C p

`.�/q1 is encoded by �2. In conclusion, (4.1) is encoded by �n1s1 .
We similarly construct q02 D .u2; 1/, a descendant of q2 and u2 2 Z.
This gives us two paths from the initial state i to two states q01 and q02 in (possibly

two different) essential classes. Further, q01 and q02 are both of the form .u1; 1/ and
.u2; 1/ for some (possibly different) integers u1 and u2. We next show that q01 and q02
have a common descendant, say, q�. If q01 D q

0
2, we are done; hence, we can assume

that they are not equal. We can now use an argument similar to Lemma 4.5 to find a
common descendant of q01 and q02. As q1 and q2 are both descendants of all of their
descendants (by the definition of an essential class), we see that q1 and q2 are in the
same essential class.

This proves that the essential class is unique.

Example 4.8. Consider the self-similar set given by p D 5 and the maps A W x! 5x

andB W x! 5x � 1=3. The transducer for this self-similar set is given in Figure 4.2. It
is clear from Figure 4.2 that there is one essential class. We show here how the proof
of Lemma 4.6 can be applied to this example.

As both A and B preserve orientation, we see that all states have positive ori-
entation. Consider the two states, �1=3 and �2=3, both in essential classes of the
transducer. We see that �1=3 is the image of �1 D BA under the transducer, and
�2=3 is the image of �2 D B .

As before, we adopt the notation Œx0; x1; x2; : : : ; xm� to mean
Pm
iD0 xip

i and
the equivalent notation for infinite p-adic expansions. For eventually periodic p-adic
expansions, we use the notation

Œx0; x1; : : : ; xt�1; xt ; : : : ; xtCs�1 �;
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Figure 4.2. Transducer for Example 4.8.

where the x0; : : : ; xt�1 is the pre-periodic component and xt ; : : : ; xtCs�1 is the peri-
odic component.

We note that�1=3D Œ3; 1�D 3C 1 � 5C 3 � 52C 1 � 53C 3 � 54C � � � and�2=3D
Œ1; 3�. We see that the periods of the p-adic expansions of both �1=3 and �2=3 are
both of length 2, the pre-periodic components are of length 0, and the denominators
in both cases are 3.

Let N D t1 C `.�1/s1n1 D 0C 2 � 2 � 3 D 12. We note that

�1=3 D Œ3; 1; 3; 1; 3; 1; 3; 1; 3; 1; 3; 1�C .�1=3/ � 512 D c0 C .�1=3/ � 5
12;

�1=3 � 52 D Œ0; 0; 3; 1; 3; 1; 3; 1; 3; 1; 3; 1�C .�1=3/ � 512 D c1 C .�1=3/ � 5
12;

�1=3 � 54 D Œ0; 0; 0; 0; 3; 1; 3; 1; 3; 1; 3; 1�C .�1=3/ � 512 D c2 C .�1=3/ � 5
12;

�1=3 � 56 D Œ0; 0; 0; 0; 0; 0; 3; 1; 3; 1; 3; 1�C .�1=3/ � 512 D c3 C .�1=3/ � 5
12;

�1=3 � 58 D Œ0; 0; 0; 0; 0; 0; 0; 0; 3; 1; 3; 1�C .�1=3/ � 512 D c4 C .�1=3/ � 5
12;

�1=3 � 510 D Œ0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 3; 1�C .�1=3/ � 512 D c5 C .�1=3/ � 5
12:

This gives us that the image of �1�1�1�1�1�1 is

c0 C c1 C � � � C c5 C .�2/ � 5
12
D Œ3; 1; 1; 3; 4; 4; 2; 1; 1; 3; 4; 4�C .�1/ � 512:

It is worth noting that the output from the transducer on .BA/6DB;A;B;A; : : : ;B;A
is 3, 1, 1, 3, 4, 4, 2, 1, 1, 3, 4, 4, and we end in state �1.

Similarly, for �2 we have s2 D 3 and n2 D 2. Taking N2 D t2 C `.�2/s2n2 D

0C 1 � 2 � 3 D 6, we have

�2=3 D Œ1; 3; 1; 3; 1; 3�C .�2=3/ � 56 D c00 C .�2=3/ � 5
6;

�2=3 � 5 D Œ0; 1; 3; 1; 3; 1�C .�1=3/ � 56 D c01 C .�1=3/ � 5
6;

�2=3 � 52 D Œ0; 0; 1; 3; 1; 3�C .�2=3/ � 56 D c02 C .�2=3/ � 5
6;

�2=3 � 53 D Œ0; 0; 0; 1; 3; 1�C .�1=3/ � 56 D c03 C .�1=3/ � 5
6;
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�2=3 � 54 D Œ0; 0; 0; 0; 1; 3�C .�2=3/ � 56 D c04 C .�2=3/ � 5
6;

�2=3 � 55 D Œ0; 0; 0; 0; 0; 1�C .�1=3/ � 56 D c05 C .�1=3/ � 5
6:

This gives us that the image of �2�2�2�2�2�2 is

c00 C c
0
1 C c

0
2 C c

0
3 C c

0
4 C c

0
5 C .�3/ � 5

6
D Œ1; 4; 0; 4; 0; 4�C .�1/ � 56:

It is worth noting that the output from the transducer on B6 D B;B; B; B; B; B
is 1, 4, 0, 4, 0, 4, and we end in state �1.

At this point, we see that the state�1 is a common descendant of both states�1=3
and �2=3, and hence, �1=3 and �2=3 are in the same essential class.

If these were different (integer) states, then we would have needed to use the
additional techniques from Lemma 4.5.

Notice that the adjacency matrix of a finite automaton is a non-negative matrix.
From the Perron–Frobenius theorem [5, Theorem 8.3.7], such a matrix has a dominant
eigenvalue � corresponding to a non-negative eigenvector such that � � j�0j for any
other eigenvalue �0.

Now, we can proceed to proving the main statement of this section.

Proof of Theorem 1.2. Let A be the NDFA associated to the p-adic self-similar set
with the set of states Q. We let xA be the deterministic representation of the p-adic
self-similar set obtained by a subset construction, as described in Section 2.2. We
denote xQ as the set of states of xA. We note for all Nq 2 xQ that Nq � Q.

We denote by EC � Q the unique essential class of the non-deterministic repre-
sentation of K, as described in Lemma 4.5. We let EC � xQ be an essential class of
the deterministic representation.

Recall that for A � Q we defined L.A/ D
S
q2A L.q/, where L.q/ is the lan-

guage accepted by an automaton A with initial state q. We defined the dimension of
a language L � ¹0; 1; : : : ; p � 1º! as the dimension of the natural projection of L to
the p-adic integers.

Similarly, we denote by xL. Nq/ as the language accepted by the automaton xA with
initial state Nq. For a set of states xA � xQ, we define xL. xA/ D

S
Nq2 xA
xL. Nq/.

We see that

dimH;p.L.EC// D max
EC

dimH;p. xL.EC// D dimH;p.K/:

Here, the second maximum is taken over all possible essential classes in xA. The first
equality comes from the fact that the dimension of a finite union is the maximum of
the dimensions within the union. The second equality can be seen from either part (2)
or (3) of Theorem 4.10 (stated and proven below).
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It follows from the subset construction that, for each state q 2 EC , there is a state
Nq 2 EC such that q 2 Nq. To see this, consider any path from the initial state i to q
in the NDFA. In the DFA coming from the subset construction, the same path from
¹iº ends in a state Nq 2 EC with q 2 Nq. It then holds that L.EC/ � xL.EC/ because
EC contains every walk of EC (labeling-wise) and possibly more. As such, for all
choices of EC , we have that dimH;p.K/ D dimH;p.L.EC// � dimH;p. xL.EC// �

dimH;p.K/. Hence, dimH;p. xL.EC// D dimH;p.K/ for all essential classes EC .
If L.EC/ ¤ xL.EC/, then EC contains a path w1 � � �wn, starting in some state

Nq, that is not a prefix of any member of L.EC/. Moreover, as EC is a loop class,
we see that there exists a u1u2 � � � um such that w1 � � �wnu1 � � � um begins and ends
in the same state Nq 2 EC . There exists a Nq0 2 EC such that Nq0 \ EC ¤ ¿. As EC
is a loop class, we may assume that Nq has this property. Let q 2 Nq 2 EC such that
q 2 EC . Construct A0 by appending to the directed graph of A a path from q to q
that outputsw1 � � �wnu1 � � �um. We see thatEC is the essential class of A0. We define
L0 on A0 in an analogous way to L on A. Consider the determinization of A0, which
we denote by xA0. We define xL0 on xA0 in an analogous way to xL on xA. We have
L.EC/ ¨ L0.EC 0/ � xL0.EC

0
/ � xL.EC/.

Let T , T 0, xT 0, xT be the transition matrices for EC , EC 0, EC
0
, EC , respectively.

Let �, �0, x�0, x� be the dominant eigenvalues of these transition matrices. We see that

dimH;p.K/ D
log.�/
log.p/

D
log.x�/
log.p/

and � < �0 � x�0 � x�;

a contradiction. The strict inequalities on the spectral radius are discussed in Section
2.4. Hence, L.EC/ D xL.EC/ for all EC .

We next show that we can identify the essential classes and substitute them for
one representative without changing the language of the DFA.

Note that for any language recognized by a DFA there is a unique (up to iso-
morphism) minimal DFA that recognizes this language. Moreover, this minimal DFA
can be obtained by iteratively identifying vertices that are non-distinguishable (see
Hopcroft’s algorithm [22]). It is important to notice that, by following this procedure,
to each “original” state q, there is a state Nq in the next iteration such that L.q/D xL. Nq/.
The same is then true for minimal DFA.

Therefore, any essential class EC can be replaced with a minimal representative
EC �, and for any p … EC; q 2 EC , an edge p ! q can be replaced with p ! Nq 2
EC � without changing the language this DFA recognizes. It is not hard to see that the
resulting DFA is again deterministic, which concludes the proof.

Theorem 1.2 combined with Remark 4.3 proves the following corollary.

Corollary 4.9. The set of p-adic IFS satisfying condition (C) form a strict subset of
p-adic path set fractals.
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Theorem 4.10. Let F D ¹Fiº
n
iD1 be a p-adic IFS satisfying condition (C). Let K be

the p-adic self-similar set associated to F . Let K 0 � K be the set of non-essential
points. Let �K;p DH

dimH;p.K/
p be the Hausdorff measure with respect toK. Then, the

following are true.

(1) 0 < �K;p.K/ <1,

(2) �K;p.K 0/ D 0,

(3) dimH;p.K
0/ < dimH;p.K/.

Remark 4.11. Consider the p-adic path set fractal from Remark 4.3. If we removed
state C and all edges to or from state C , we see that the conclusions of the above
theorem would not hold true, despite the DFA having a unique essential class. This
is another example showing that the set of p-adic self-similar sets satisfying condi-
tion (C) forms a strict subset of p-adic path set fractals.

Remark 4.12. The proof of Theorem 1.2 used Theorem 4.10. As such, we will not
assume there is a unique essential class in the proof of Theorem 4.10, but instead only
assume that there is an essential class (which is true for all directed graphs where
every vertex has a positive out-degree).

Proof of Theorem 4.10. It is worth noting that part (2) follows immediately from (3).
It is easier to prove part (2) first and then, as a consequence of the proof of this part,
conclude part (3).

As in [1], we define �p W Qp ! R by

�p

�X
i�k

xip
i
�
D

X
i�k

xi

pi
:

As K is a path set fractal, we know from [1, Theorem 3.1] that

dimH;p.K/ D dimH;0.�p.K// D log.�/= log.p/;

where � is the spectral radius of the adjacency matrix of the minimal automaton asso-
ciated to the path set fractal. We define�0 WDH

dimH;0.�p.K//

0 as the Hausdorff measure
with respect to �p.K/. By [32, Theorem 3], it is known that 0 < �0.�p.K// <1.

We next show that

�0.�p.K// � �K;p.K/ � 2p
dimH;0.�p.K//�0.�p.K//;

which proves part (1): that �K;p.K/ is positive and finite.
Let d D dimH;p.K/ D dimH;0.�p.K//. Consider

Hd
ı;0.�p.K// WD inf

´
1X
iD1

diam0.Xi /
d
W �p.K/ �

[
Xi ; diam0.Xi / < ı

µ
:
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We define
Cp D

®
aC pkZp W k � 0; 0 � a � p

k
� 1

¯
and

C0 D

²�
a

pk
;
aC 1

pk

�
W k � 0; 0 � a � pk � 1

³
:

Note that for 0 � a � pk � 1 we have �p.aC pkZp/ D Œ
a

pk
; aC1
pk
�; hence, there is a

natural bijection between the countable set of sets Cp and the countable set of sets C0.
It is worth noting that for an element of aC pkZp 2 Cp that �p is not a bijection onto
Œ a
pk
; aC1
pk
� as there are a countable number of places where this map is 2-to-1. Hence,

a cover of �p.K/ by sets in C0 corresponds to a cover of K by sets in Cp . That is, if
E0 � C0 is a cover such that �p.K/ �

S
E2E0

E, then ¹��1p .E/ºE2E0 � Cp is a cover
with K �

S
E2E0

��1p .E/.
For each Xi � R, with p�k < diam0.Xi / � p

1�k , there exists two cylinders,
Ai ;Bi 2Cp of diameter p1�k such thatXi � �p.Ai /[ �p.Bi /. In the case thatXi 2C0,
we can take Ai D Bi . Let ¹Xiº be a cover of �p.K/. Associate to each Xi the pair
Ai , Bi such that Xi � �p.Ai / [ �p.Bi / with p�k � diam0.Xi / � p

1�k and p1�k D
diamp.Ai / D diamp.Bi /. We see that ¹Ai ; Biº is a cover of K. Further,

diam0.Xi /
d
� diamp.Ai /d C diamp.Bi /d

� .p � diam0.Xi //
d
C .p � diam0.Xi //

d

� 2pddiam0.Xi /
d :

This gives us that

Hd
ı;0.�p.K// � H

d
pı;p.K/ � 2p

dHd
ı;0.�p.K//:

Taking limits gives

�0.�p.K// � �K;p.K/ � 2p
d�0.�p.K//;

which proves part (1) as desired.
To prove part (2), that �K;p.K 0/D 0, we follow the proof of [20, Proposition 3.6].

Let
U` D ¹u 2 Cp W u \K

0
¤ ¿; u has diameter p�`º:

For ease of notation, we define z�.A/ D �K;p.A \ K/. As K 0 � K, we see that
z�.K 0/ D �K;p.K

0/. Notice that z�.K 0/ D lim`!1

P
u2U`

z�.u/. We show that there
exist � < 1 and L such that X

u2U`CL

z�.u/ � �
X
u2U`

z�.u/:
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Taking limits, this gives
z�.K 0/ � �z�.K 0/;

which proves the result.
Set L equal to the number of vertices in the minimal DFA representation of the

p-adic self-similar set. As z� is a measure, we see that for all a that

z�.aC p`Zp/ D
X

b`;b`C1;:::;b`CL�1

z�.aC b`p
`
C � � � C b`CL�1p

`CL�1
C p`CLZp/:

For ease of notation, we write Nb D b`p` C � � � C b`CL�1p`CL�1. Consider u 2 U`,
and a 2 u. We have

z�.u/ D z�.aC p`Zp/ D
X
Nb

z�.aC Nb C p`CLZp/:

Further, as there are L vertices in the DFA, we see that there is at least one choice of
Nb such that

.aC Nb C p`CLZp/ \K
0
D ¿ and .aC Nb C p`CLZp/ \K ¤ ¿:

This follows as, for any state in the DFA, there exists a path of length at most L which
terminates in an essential class. As .aC NbCp`CLZp/\K ¤¿ andK is p-adic self-
similar, we see that there is a scaled copy ofK inside of .aC NbC p`CLZp/\K, and
hence,

z�.aC Nb C p`CLZp/ � p
�L
z�.K/:

We set �D .1� p�L/. Hence, for u 2 U` with u\K 0 ¤¿, a ball of radius p�`, and
u D aC p`Zp , we have that

z�.u/ D z�.aC p`Zp/

D

X
Nb

z�.aC Nb C p`CLZp/

D

X
Nb

aCNbCp`CLZp\K0¤¿

z�.aC Nb C p`CLZp/

C

X
Nb

aCNbCp`CLZp\K0D¿

z�.aC Nb C p`CLZp/

D

X
u02U`CL
u0�u

z�.u/C
X
Nb

aCNbCp`CLZp\K0D¿

z�.aC Nb C p`CLZp/:
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We see in the last line that the second sum is strictly positive and bounded from
below by p�L z�.aC Zp/ D p�L z�.u/. Let � D 1 � p�L. This gives us thatX

u02U`CL
u0�u

z�.u0/ D z�.u/ �
X
Nb

aCNbCp`CLZp\K0D¿

z�.aC Nb C p`CLZp/

� z�.u/ � p�L z�.u/

D .1 � p�L/z�.u/

D �z�.u/:

Summing over all u 2 U` givesX
u2U`

X
u02U`CL
u0�u

z�.u0/ D
X

u02U`CL

z�.u0/ � �
X
u2U`

z�.u/;

as required.
To see part (3), we see from the above result that

dimH;pK
0
� �1=LdimH;p.K/:

As � < 1, the result follows.

5. p-adic self-similar measures

There is a well-established literature on self-similar measures � on Rn with support
equal to a self-similar set. See, for instance, [19]. Let F0.x/D ˇx and F1.x/D ˇxC
1 � ˇ. Let 0 < Np < 1. A common and classic example is �ˇ , defined as the unique
(up to scaling) measure satisfying

�ˇ D Np�ˇ ı F
�1
0 C .1 � Np/�ˇ ı F

�1
1 :

If Np D 1=2, then this is known as unbiased; otherwise, it is known as biased.
If ˇ < 1=2, then this is a Cantor measure with support on a Cantor setK satisfying

K D F0.K/ [ F1.K/. If ˇ D 1=2 and Np D 1=2, then this is the standard Lebesgue
measure restricted to Œ0; 1�. If 1=2 < ˇ < 1, then this is known as a Bernoulli convo-
lution and has been extensively studied [9, 10, 12–16].

Of particular interest is the local dimension of a point with respect to a self-similar
measure.

Definition 5.1. Let � be a measure and x 2 supp.�/. We define the upper local
dimension at x with respect to � as

dimloc�.x/ D lim sup
"!0

log.�.B".x///
log."/

:
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Replacing lim sup with lim inf gives the lower local dimension. If the upper and lower
local dimensions are equal, then we say that this is the local dimension.

The goal of this section is to demonstrate that a number of the techniques and
results from self-similar measures on R carry over to p-adic self-similar measures in
a natural way, with respect to the upper and lower local dimensions.

Definition 5.2. A p-adic measure � is an additive map from the set of compact open
sets C of Qp to RC. That is, if U1; U2; : : : ; Un is a set of disjoint open compact sets,
then

�

 
n[
iD1

Ui

!
D

nX
iD1

�.Ui /:

Remark 5.3. It is worth noting that Definition 5.1 is well defined for such measures.
We note that B".x/ D ¹y W jx � yjp < "º are cylinders of p-adic numbers.

Consider the set of cylinders a C pNZp in Qp . We see that these sets are both
open and closed and form a basis of a topology for Qp .

The most common measure on Qp is the Haar measure, defined by

�.aC pNZp/ D 1=p
N :

We can construct a p-adic self-similar measures in a similar way to their counter-
part on R. Let F1; : : : ;Fn be a series of contractions from Qp!Qp . Let Np1; : : : ; Npn 2
R with 0 < Npi < 1 and Np1 C � � � C Npn D 1. We define a measure � such that

� D Np1� ı F
�1
1 C � � � C Npn� ı F

�1
n : (5.1)

It is further convenient to normalize this so that �.K/ D 1, where K is the attractor
of ¹F1; F2; : : : ; Fnº. We define the (upper, lower) local dimensions for � as before.

Example 5.4. The Haar measure restricted to Zp is a p-adic self-similar measure
given by setting Fi .x/ D px C i for i D 0; 1; : : : ; p � 1 and with equal probabilities
Npi D 1=p. In this case, all points have local dimension 1.

Example 5.5. Let F1.x/ D 3x C 0 and F2.x/ D 3x C 2 be maps from Q3 ! Q3.
Let Np1 D Np2 D 1=2. Then, the measure

� D Np1� ı F
�1
1 C Np2� ı F

�1
2

is the natural analog of the Cantor measure in the 3-adics. For a cylinder

C WD c0 C c13C � � � C ck�13
k�1
C 3kZ3;

we see that �.C/ D 1=2k if c0; c1; : : : ; ck�1 2 ¹0; 2º and 0 otherwise. For all points
in the support of �, we have that the local dimension is log.2/= log.3/.
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For more complicated measures, we often have a range of possible local dimen-
sions, instead of a singleton value.

Let �1; �2 2 ¹1; 2; : : : ; nº�. Define �1�2 as the concatenation of �1 with �2, and
�k1 as the k-fold concatenation of �1 with itself. Let � D a0a1 � � �am 2 ¹1; 2; : : : ; nº�.
We define F� D Fa0 ı � � � ı Fam . Associated to each Fi is a probability Npi such thatP
Npi D 1. We define Np� D Npa0 � � � Npam .
Assume that the p-adic IFS (and hence measure) is defined by the equicontractive

maps ¹Fiº, where all maps are of the form Fi .x/D pxC di for some di 2Zp \Q. A
more complicated construction is possible p-adic self-similar IFS satisfying condition
(C) by adapting the technique of [21].

LetK be the associated p-adic self-similar set. We know thatK D
S
Fi .K/. It is

not difficult to show that for any fixed m that

K D
[

�2¹1;2;:::;nºm

F� .K/:

We see that if � 2 ¹1; 2; : : : ; nºm, then

F� .K/ � x C p
mZp

for some x D x0x1x2 � � � 2 Zp . Further, as the center of every ball of the form x C

pmZp depends only on the first m terms of x, we may assume x D x0x1x2 � � � xm�1.
This gives us that F� .K/ \ .x C pmZp/ ¤ ¿ if and only if F� .K/ � x C pmZp .
This greatly simplifies our analysis. By a recursive application of equation (5.1), using
a proof similar to [19, Lemma 3.5] or [13], we have that

�
�
.x C pmZp/ \K

�
D

X
�2¹1;2;:::;nºm;F� .K/\.xCpkZp/¤¿

Np� :

We show that there exists a finite set of matrices such that the measure of c C
pmZp is the sum of the entries of the product of m of these matrices. The product is
explicitly determined by c.

With � and Npi defined as above,

�.c C pmZp/ D
p�1X
iD0

�.c C i � pm C pmC1Zp/:

Recall when we constructed the non-deterministic automaton that we labeled the
states based on the remainder. Then, when we constructed our deterministic (albeit
not necessarily minimal) automaton, we labeled the states as subsets of the set of
remainders. Following [19, Section 3.2], we use these subsets of the set of remainders
for the start state and end state of a transition to index the rows and columns of the
transition matrices.
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Consider two states in the deterministic automaton, say,

q1 WD ¹r1; : : : ; rkº and q2 WD ¹r
0
1; : : : ; r

0
k0º

such that there is a transition from q1 to q2 by output c 2 ¹0; 1; : : : ; p � 1º. We
construct a k � k0 matrix T WD T .q1; q2/. We define

T Œi; j � WD
X

k2H.i;j /

Npk;

where the H.i; j / is the set of all transitions Sk from states ri to r 0j and with output
of a. If this set is empty, then the sum is 0.

It is clear by construction that if q1 ! q2 ! q3, then the transition matrices
T .q1; q2/ and T .q2; q3/ have compatible dimensions for matrix multiplication. As
both the NDFA and DFA contain a finite number of states, there are a finite number
of matrices. Such a measure is said to satisfy the finite type condition.

We next show that the measure of a cylinder c C pkZp can be determined by this
matrix multiplication.

In a deterministic automaton, there is at most one edge associated to a particular
output. As such, in the original transducer, we see that if for some � D a0a1 � � � am
we have output x0x1 � � � xm�1 we can determine exactly what the final state is in the
DFA. We further see that this final state depends only on x0x1 � � � xk�1. Let Sm�1
be the state associated to the output x0x1 � � � xm�2 and Sm the state associated to the
output x0x1 � � � xm�1. We are interested in the transition from Sm�1 to Sm. Assume
that F� .K/ � x C pmZp . If � D a0a1 � � � am, we define

�� D a0a1 � � � am�1:

We see that in the non-deterministic automaton that Fw� is associated to a particular
carry state, say, ri 2 Sm�1, and S� is associated to a carry state r 0j 2 Sm. The weight
contributed by this carry state is pam . Hence, it is Npam times the weight associated to
the carry state ri in x0x1 � � � xm�2.

Example 5.6. Consider a measure�with support the 3-adic self-similar set of Exam-
ple 3.2. That is,

• A W x 7! 3x with probability Np0,

• B W x 7! 3x C 1 with probability Np1,

• C W x 7! 3x C 3 with probability Np3.

See Figure 5.1 for a visual representation of the transducer with associated prob-
abilities and the DFA with the associated transition matrices.

The local dimension at a point x D
P
i�0 xip

i can be computed by using the
norm of the matrix product, normalized by the length, as before. For example, the
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(b) DFA

Figure 5.1. Transducer and DFA with associated probabilities and transition matrices for Exam-
ple 5.6.

local dimension at �1=8 D Œ1; 0� would be given by

dimloc�.x/ D lim
k!1

log
�


Œ Np1 �Œ Np0 Np1 ��h Np1 0

Np0 Np2

ih
Np0 Np2
0 0

i�.k�2/=2


�
log.1=3k/

D �
log. Np0. Np1 C Np2//

2 log 3
:

As the above example shows, the methods and technique from [12–15,19] can be
extended to p-adic self-similar measures in a natural way. The upper and lower local
dimension of points in Zp can be computed using similar techniques. In R, the com-
putation of the upper local dimensions is complicated by the fact lim sup log.�Œx �
"; x�/= log."/ need not equal lim sup log.�Œx; x C "�/= log."/. A similar comment
holds for (lower) local dimensions. This is not an issue in the p-adic case, as all
points are the center of the cylinder in which they are contained.

Adapting [20] and Theorem 4.10, we get the following proposition.

Proposition 5.7. Let F D ¹Fiº
n
iD1 be a p-adic IFS satisfying condition (C). Let K

be the p-adic self-similar set associated to F . Let � be a self-similar measure defined
on K as in (5.1). Let K 0 � K be the set of points outside the essential classes. Then,
the following are true.

(1) 0 < �.K/ <1.

(2) �.K 0/ D 0.

We say that � has the positive row property if every row of every transition matrix
has a non-zero entry. We say that a point is periodic if its p-adic representation is
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eventually periodic. We say that a point x is a positive periodic point if it is periodic
and the transition matrix associated to the period has strictly positive entries.

Adapting the proofs of [20], we get the following results for the p-adic self-similar
measures.

Theorem 5.8 (Analogous to [20, Theorem 3.12]). Suppose that � is a p-adic self-
similar measure satisfying the positive row property. Then, the set of lower local
dimensions of � at essential, positive, periodic points is dense in the set of all local
dimensions of � at essential points. A similar statement holds for the (upper) local
dimensions.

Theorem 5.9 (Analogous to [20, Theorem 3.13]). Suppose that � is a p-adic self-
similar measure satisfying the positive row property. Assume that x.n/ are essential,
positive, periodic points. There is an essential point x such that

dimloc�.x/ D lim sup dimloc�.x
.n//

and

dimloc�.x/ D lim inf dimloc�.x
.n//:

Theorem 5.10 (Analogous to [20, Theorem 3.14]). Suppose that � is a p-adic self-
similar measure satisfying the positive row property. Let y; z be essential, positive,
periodic points. Then, the set of local dimensions of � at essential points contains the
closed interval with endpoints dimloc�.y/ and dimloc�.z/.

Corollary 5.11 (Analogous to [20, Corollary 3.15]). Let � be a self-similar measure
satisfying the positive row property. Let

I D inf¹dimloc�.x/ W x essential, positive, periodicº

and

S D sup¹dimloc�.x/ W x essential, positive, periodicº:

Then, ¹dimloc�.x/ W x essentialº D ŒI; S�. A similar statement holds for the lower and
upper local dimensions.

Theorem 5.12 (Analogous to [20, Theorem 3.18]). Let � be a p-adic self-similar
measure satisfying the positive row property. Then, there exists an essential element
x with

dimloc�.x/ D dimH;p.K/:

It is likely that many other results from self-similar measures also carry over in a
similar or obvious way to p-adic self-similar measures.
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6. p-adic path set fractals of dimension 1

Consider a subset of R. It is easy to see that if the subset contains an interior point,
then it necessarily contains an interval and the subset has positive Lebesgue measure
and Hausdorff dimension 1. This is true in higher dimensions as well. That is, if a
subset in Rn contains an interior point, then it has positive Lebesgue measure and
Hausdorff dimension n.

Surprisingly the converse is not true. In [11], an example is given of a self-similar
set in R2 which has positive Lebesgue measure, but empty interior. A more explicit
example using countably many maps is given in [7]. To the best of the authors’ knowl-
edge, it is not known in R if an example exists of a self-similar set with positive
measure and empty interior.

In this section, we show that p-adic path set fractals (and in particular p-adic
self-similar sets satisfying condition (C)) satisfy a similar property. In particular, the
existence of an interior point is equivalent to having Hausdorff dimension 1.

Theorem 6.1. LetK be a p-adic path set fractal. Then, the following are equivalent.

(1) K has Hausdorff dimension 1.

(2) The minimal deterministic finite automaton describing the p-adic expansions
of K has a state q such that there are transitions q to q with output i for all
i 2 ¹0; 1; : : : ; p � 1º.

(3) There exists a finite word x 2 ¹0; 1; : : : ; p � 1º� such that the language of p-
adic expansions of elements of K contains the language x¹0; 1; : : : ; p � 1º! .

Proof. As dimH;p.Œx�/ D 1 for all finite words x, we see that (3) implies (1).
Assume thatK contains the language x¹0;1; : : : ;p� 1º! . Consider a path through

the minimal DFA by x. As the DFA accepts this language, we see that this is a valid
path. This results in a state q. We see that L.q/ D ¹0; 1; : : : ; p � 1º! . As we are
assuming this is a minimal DFA, we see that we have transitions from q to q for all
i D 0; 1; : : : ; p � 1. Hence, (3) implies (2).

Assume that the minimal DFA has a state q with the property there is a transition
from q to q for all i D 0; 1; : : : ; p � 1. Consider x to be any word that starts at the
initial state and ends at q. We see that x¹0;1; : : : ;p� 1º! is contained in L. Hence, (2)
implies (3).

We next prove that (1) implies (2), which will complete the proof.
Consider the adjacency matrix of the minimal DFA. We first claim that we can

permute the vertices of the DFA such that this matrix is upper block diagonal. To see
this, we note that a condensation of a graph (a graph of its strongly connected compo-
nents) is directed acyclic. Call this matrix B , and the diagonal blocks B1;B2; : : : : The



K. G. Hare and T. Vávra 280

eigenvalues of B are the eigenvalues of the diagonal blocks B1; B2; : : : (in our case
corresponding to strongly connected components). Thus, if K has Hausdorff dimen-
sion 1, then at least one of these diagonal blocks (say Bj ) has eigenvalues p. We note
that the maximal row sum of B , and hence Bj , is equal to p (as there is at most one
directed edge corresponding to each output i 2 ¹0; 1; : : : ; p � 1º). As the eigenvalue
of Bj is p, we see that the minimal row sum restricted to Bj is p. Let Qj be the
set of states associated to the rows of Bj . This gives us that for each q 2 Qj and all
transitions i 2 ¹0; 1; : : : ; p � 1º there is a transition from q to q0 2 Qj . This gives us
that the language associate withQj , LQj is equal to ¹0; 1; : : : ; p � 1º�. The minimal
DFA associated to LQj D ¹0; 1; : : : ; p � 1º

� is a single state DFA. That is,Qj D ¹qº
and there is a transition from q to q for all i D 0; 1; : : : ; p � 1.

7. Decimation

In [1], Abram and Lagarias introduced the concept of decimation of a p-adic path set
fractal. In particular, they observed that the class of p-adic path set fractals was closed
under the operation of decimation.

Define the decimation of a sequence by k with offset j as

 j;k.a0; a1; : : :/ D .aj ; ajCk; ajC2k; : : :/:

In this section, we investigate p-adic path set fractals under the process of decimation.
Let K be the set of p-adic numbers of this path set fractal. It is often the case that,
for sufficiently large k, and any offset j , the decimation of a p-adic path set fractal
results in a language which is maximal. That is, for a loop class L we define E.L/
as the set of digits that occur in the language LL (then language associated to the
sub-automaton restricted to states in L). We often have, for sufficiently large k, that
the dimension of  j;k.K/ is max log.#E.L//= log.p/, where the maximum is taken
over all loop classes.

Theorem 7.1. LetK be a p-adic path set fractal with NDFA A. Let L be a loop class
of A with the property that there exists a qL 2 L and two paths starting and ending at
qL of coprime length. LetE.L/ be the set of digits that can occur in LL. Then, for suf-
ficiently large k, we have the Hausdorff dimension of  j;k.K/� log.#E.L//= log.p/.

Moreover, if for all maximal loop classes L such a qL exists, then for sufficiently
large k we have the Hausdorff dimension of  j;k.K/ D maxL log.#.E.L///= log.p/.

Remark 7.2. It is worth remarking here that the length of the path is measured by
the length of the output, not by the number of edges traversed. This is not an issue for
p-adic path set fractals, but one needs to be careful for p-adic self-similar sets.
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Corollary 7.3. Let T be the transition matrix of a loop class L of the NDFA of a p-
adic path set fractal. Assume that there exists an m such that Tm is strictly positive.
Let E be the set of digits that occur in LL. Then, for sufficiently large k, we have the
Hausdorff dimension of  j;k.K/ � log.#E/= log.p/.

Proof. This follows from noting that if Tm is strictly positive, then so is TmC1. As
such, for all states q in the loop class, we have that there exist paths of both lengthsm
and mC 1 which both start and end at q. Hence, the conditions of Theorem 7.1 are
satisfied and the result follows.

Proof of Theorem 7.1. Let i 2 E.L/. Let q 2 L such that there are two paths of
coprime length from q to q. Call these two paths p1 and p2. There exists a q2;i such
that there is a path from q to q2;a with final output i . Call this path p3;i . In addition,
there exists a path from q2;i to q. Call this path p4;i .

For each i , considering the set of paths from the state q to the state q of the form
¹p1; p2º

�p3;ip4;i¹p1; p2º
�. As p1 and p2 are coprime, we see that, for sufficiently

large k, there exists a j (dependent on k) such that for all i there exists a path of
length k and with output i in position j . Further, for sufficiently largeN , we have that
the state is reachable for all j 0 � N . This gives that  jCj 0;k.L.L// has dimension
log #E.L/= logp.

This proves the inequality of the first part of the theorem, and the equality when
maximizing over all maximal loop classes in the second part.

Example 7.4. Consider the path set fractal in Remark 4.3. We see that, for all j and
all k, it is equal to its decimation. Further, the Hausdorff dimension of this set comes
from the non-essential loop.

Example 7.5. If the conditions of Theorem 7.1 are not met, the result need not follow.
Let p D 3. Consider the two maps

A W x 7! 9x C 3 and B W x 7! 9x C 6:

The non-deterministic and deterministic automata for this attractor are shown in Fig-
ure 7.1.

We see that all paths that start and end at the same state are of even length. Hence,
we do not have two paths of coprime length, and the conditions of Theorem 7.1
are not satisfied. For any even number, the resulting decimation of the set has either
dimension 0 or dimension log.2/= log.3/, depending on the parity of the offset. The
dimension of K, as well as the decimation by an odd number, independent of the
offset, is log.2/= log.9/.

Example 7.6. Consider the self-similar 3-adic fractal given by the two maps A W x 7!
3xC 1 andB W x 7! 3xC 5. One can quickly compute the transducer (see Figure 7.2).
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0start

A=01

B=02

(a) Transducer

0start

a

b

0

0

1

2

(b) DFA

Figure 7.1. Transducer and DFA for Example 7.5.

0start 1 2

B/2

A/1
A/2

B/0

B/1
A/0

Figure 7.2. Transducer for Example 7.6.

A quick check shows that this is the DFA when removing the input, as there is no
non-deterministic output.

There is only one maximal loop class, which is the entire set. The adjacency matrix
is

T WD

2641 1 0

1 0 1

0 1 1

375 ;
whose dominant eigenvalue is 2. Hence, the dimension of this set is

dimH;p.K/ D log.2/= log.3/ � 0:63092:

We see that T 2 > 0, and further that

E D ¹0; 1; 2º

are all the possible labels of the edges. Hence, by Corollary 7.3, we see for sufficiently
large k that the decimation by k, independent of j , has

dimH;p. j;k.K// D log.3/= log.3/ D 1:
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start

1

0

2

0
1

1

0

Figure 7.3. DFA for Remark 7.7.

Take, for example, k D 3. Consider the composition of maps B ı B ı A. We see
that, regardless of the starting state, that the final output is 0 and the final state is 1.
Similarly, under the map B ı B ı B , the final output is 1 and under the map A ı A ı
B the final output is 2. Hence, the decimation by 3, independent of the offset, has
dimension 1.

Remark 7.7. It is worth noting that properties of decimation are not invariant under
scalar multiplication and translations. This is also true in R. We can define a path set
fractal in R with respect to some base b in the natural way. For example, consider
the middle third Cantor set C � Œ0; 1�, written in base 3. This can be viewed as a
path set fractal with one state, one transition from the state to itself with output 0, and
one other transition from the state to itself with output 2. We see that the decimation
of C , independent of both k and j , again gives C , and hence always has dimension
log.2/= log.3/. Consider instead a scaled shifted version of C , namely,

C 0 WD
1

2
C C

1

4
:

The directed graph for this path set fractal is given in Figure 7.3.
We have that the following.

(1) If k � 2, k even and j odd, then dimH;0. k;j .C
0// D

log3
log3 D 1.

(2) If k � 2, k even and j even, then dimH;0. k;j .C
0// D

log2
log3 .

(3) If k � 3, k odd, then dimH;0. k;j .C
0// D

log6
log9 .
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8. Open questions and Comments

In this paper, we demonstrated that certain p-adic self-similar sets are in fact p-adic
path set fractals. These self-similar sets are all recognizable by a DFA. We showed
that the associated DFA has a unique essential class.

We gave examples where the contraction factor was �pki for some ki � 1. It
should be possible to extend these types of results to algebraic extensions of the p-
adics.

In this paper, we restricted out investigation to contractions of the form

x !˙pkx C d

for k � 1 and d 2 Q \ Zp . If we consider a more general contraction

Fd .x/ D px C d

for d 2 Zp , we see that the (degenerate) IFS ¹Fd º consists of a single point. This is
the fixed point of Fd and is equal to d

1�p
2 Zp . We note that there are only countably

many p-adic path set fractals that accept a single point, whereas there are uncountably
many Fd . As such, there exists a d 2 Zp such that the p-adic IFS ¹Fd º is not a path
set fractal. A similar observation can be made of the (degenerate) IFS ¹x! dpxC 1º

for d 2 Zp .
These examples are somewhat extreme cases. It may be (and probably is) possible

to find more general contractions that preserve enough structure so that meaningful
things can be said about the attractor. These would probably be analogous to IFS in
R, where the ratio of contraction is the inverse of a Pisot number. This would be an
interesting avenue for further investigation.

We used the self-similar sets as a basis for creating p-adic self-similar mea-
sures. This follows a long history of self-similar measures in R. We explored local
dimension and showed that it is in fact easier to compute in this setting, with fewer
complications. There are a number of questions about self-similar measures that have
not been explored but could lead to interesting results. The most obvious of which
is an exploration of Lq-spectrum for p-adic self-similar measures. See, for exam-
ple, [29].

We next studied decimation. We gave sufficient conditions for when the decima-
tion of a p-adic path set fractal has “maximal” dimension. We also gave examples of
more general self-similar sets when this was not in fact true. It would be interesting
to further the investigation under which more general conditions the decimation of a
p-adic path set fractal has “maximal” dimension.

It was shown in [1] that the set of p-adic path set fractals is closed under the
process of decimation. As p-adic self-similar sets are p-adic path set fractals, it is
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clear that the decimation of a p-adic self-similar set is a p-adic path set fractal. It
would be interesting to know under what conditions the decimation of a p-adic self-
similar set is a p-adic self-similar set.
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