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Projections of totally disconnected thin fractals with very thick
shadows on Rd

Chun-Kit Lai and Lekha Priya Patil

Abstract. We study an extreme scenario of the Marstrand projection theorem for which a frac-
tal has the property that its orthogonal projection is the same as the orthogonal projection of
its convex hull. We extend results in current literature and establish checkable criteria for self-
affine sets to have this property. Using this, we show that every convex polytope on Rd contains
a totally disconnected compact set, which is a union of self-affine sets, of dimension as close
to 1 as possible, as well as a rectifiable 1-set, such that the fractal projects to an interval in
every 1-dimensional subspace and its convex hull is the given polytope. Other convex sets and
projections onto higher dimensional subspaces are also discussed.

1. Introduction

The Marstrand projection theorem [14], which describes the relationship between the
dimensions of Borel sets and their projections through a measure-theoretic statement,
is now the landmark result of the projection theory of fractals.

Theorem 1.1 (Marstrand, 1954). Let E � R2 be a Borel set, and let ˛ D dimH E. If
˛ � 1, then

dimH .�� .E// D ˛ for almost every � 2 Œ0; �/:

If ˛ > 1, then

L1.�� .E// > 0 for almost every � 2 Œ0; �/;

where L1 is the Lebesgue measure.

It is known that this result can be generalized to higher dimensions with projec-
tions on k-dimensional subspaces, see [15] for more details. There has been a huge
amount of research studying different ways of improving this theorem under various
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conditions. In one direction, one can obtain a more precise dimension estimate for
the exceptional set of directions. This starts from the result of R. Kaufman [12] who
proved that if s < dimH .E/ < 1, then

dimH ¹� W dimH .�� .E// < sº � s:

There have been substantial improvements and generalization on this topic. In the
other direction, people are interested in determining the classes of sets for which
“almost all” can be replaced by “all” in the statement of the Marstrand’s theorem.
For example, Peres and Shmerkin [17] showed that self-similar sets with dense rota-
tion group satisfy dimH .�� .K// D min¹dimH .K/; 1º for all � 2 Œ0; �/. We refer the
reader to [6] by Falconer, Fraser, and Jin for some of these recent developments.

This paper considers the Marstrand projection theorem in its most extreme sce-
nario. In particular, we examine how small the Hausdorff dimension of a compact
totally disconnected set on Rd can be while still ensuring its projections are exactly
an interval in all one-dimensional subspaces. We aim to present a systematic study
of such sets and give different interesting examples. Let us set up the following two
terminologies.

Definition 1.2. LetK be a Borel set on Rd with convex hull C and let 1� k < d . We
say that K projects a very thick shadow on k-dimensional subspace W where W 2
G.d; k/ if we have �W .K/ D �W .C /. We say that K satisfies the (k-dimensional)
everywhere very thick shadow condition if K projects very thick shadows on every
W 2 G.d; k/.

Here,G.d;k/ is the set of all k-dimensional subspaces in Rd . We also have a dual
concept for convex sets.

Definition 1.3. Let C be a closed convex set in Rd . We say that C is (k-dimensional)
fractal-decomposable with a set K if

(1) conv.K/ D C , and

(2) �W .K/ D �W .C / for all W 2 G.d; k/.

Clearly, if K is connected, the projection of K is connected and hence, the closed
convex hull of K is 1-dimensional fractal-decomposable. Our main interest is asking
how “disconnected” K can be if it satisfies the above two definitions. Moreover, we
would hope that K possesses a nice topology and geometry, so compactness of K is
desirable, as well as thatK is generated by self-similar or self-affine iterated function
systems.

From Marstrand’s theorem, we know already that the set must have Hausdorff
dimension at least one. Another landmark projection theorem by Besicovitch also
showed that purely unrectifiable 1-sets cannot be fractal-decomposable either (see
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Section 6 for the precise definitions about rectifiability). Our main result demonstrates
that other than these two constraints, all convex polytopes are fractal-decomposable
using compact sets of dimension close to 1 or even rectifiable 1-sets.

Theorem 1.4. Let C be a convex polytope on Rd . Then

(1) For all � > 0, there exists a totally disconnected compact set K, such that
1 � dimH .K/ � 1C � and where K is a finite union of self-affine sets, such
that C is 1-dimensional fractal-decomposable with the set K.

(2) There exists a totally disconnected compact rectifiable 1-set K such that C is
1-dimensional fractal-decomposable with the set K.

The very first totally disconnected compact set which projects very thick shad-
ows on every line was discovered by Mendivil and Taylor [16]. Without noticing
Mendivil–Taylor’s work, Falconer and Fraser [5] demonstrated some examples of
self-similar sets that project very thick shadows while studying the visibility con-
jecture of fractals. They mentioned a checking criterion for self-similar sets having
very thick shadows everywhere. Farkas [8] studied interval projections of self-similar
sets and gave an example of a totally disconnected self-similar fractal of dimension
arbitrarily close to 1 existing inside the unit square. In the example, rotations were
required and there was no indication that the example could be generalized to other
polygons or to higher dimensions. We give an example based only on fractal squares
and rigorously prove the criterion used by previous researchers on Rd for checking
when a self-affine set has a very thick shadow everywhere. Moreover, as another inter-
esting contribution of the paper, for the projection onto all 1-dimensional subspaces,
we provide another natural criterion using the connected components of the first iter-
ation (see Theorems 3.1 and 3.2). We can prove Theorem 1.4 (1) conveniently with
this new criterion.

The everywhere very thick shadow condition has been a useful sufficient condition
to study the visibility conjecture: If F � R2 is Borel and dimH .F / � 1, then the
Hausdorff dimension of the visible part of F in the direction � is equal to 1 for almost
all angles � . Falconer and Fraser [5] showed that the conjecture is true for self-similar
sets under the convex open set condition on R2 and the everywhere very thick shadow
condition. Other more general cases for the visibility conjecture of self-affine or self-
similar sets were studied in [11, 19]. Therefore, the construction given in this paper
(e.g., in Figure 3) produces examples for the visibility conjecture.

Theorem 1.4 gives a complete answer to convex polytopes. One may be inter-
ested in other convex sets as well as projections onto other subspaces of dimension
greater than 1. Unfortunately, with certain simple observations, total disconnected-
ness is indeed an impossible requirement for fractal decomposability if we go beyond
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the condition for Theorem 1.4. A thorough discussion is given in the last section of
the paper.

We organize our paper as follows: in Section 2, we set up our terminologies used
in this paper. In Section 3, we prove our classification theorem for self-affine sets.
In Section 4, we discuss fractal decomposablility for unit cubes. Examples existing
in current literature are also exhausted in this section. In Section 5, we discuss the
fractal decomposablility for general polytopes using self-affine sets. In Section 6, we
discuss the fractal decomposablility for polytopes using rectifiable sets. Theorem 1.4
is proved in Sections 5 and 6. Finally, we close our paper with remarks on general
cases.

2. Preliminaries

The goal of this section is to set up the basic terminologies throughout this paper. Let
ˆ D ¹�1; : : : ; �N º be a collection of contractive maps from Rd ! Rd . ˆ generates
an iterated function system (IFS) with a unique nonempty compact attractorK DKˆ:
A self-affine IFS consists of maps �i .x/ D Tix C ti where Ti are invertible matrices
on Rd with the operator norm kTik < 1 and ti 2 Rd . A self-similar IFS is a special
case of a self-affine IFS in which all Ti are of the form riOi , where 0 < ri < 1 and
Oi is an orthogonal transformation.

We use the standard multi-index notation to describe our IFS. Namely, we let
† D ¹1; : : : ; N º and †k D † � � � � �† (k times). For each � D .�1; : : : ; �k/ 2 †k ,

�� .x/ D ��1
ı � � � ı ��k

.x/:

It is well known that the Hausdorff dimension of the attractor of a self-similar IFS
under the open set condition is the unique s such that

NX
iD1

rsi D 1:

The Hausdorff dimension of a self-affine IFS is, however, much more difficult to
compute. Let ˆ D ¹�1; : : : ; �N º be a self-affine IFS. Write each �i .x/ D Tix C bi ,
where Ti are linear transformations. Let T W Rn ! Rn be a linear mapping that is
contracting and nonsingular. The singular values 1 > ˛1 � � � � � ˛N > 0 of T are the
positive square roots of the eigenvalues of T �T , where T � is the adjoint of T . For
0 � s � n, we define the singular value function as

's.T / D ˛1˛2 � � �˛r�1˛
s�rC1
r ;
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where r is the smallest integer greater than or equal to s. We define the affinity dimen-
sion as

dima.ˆ/ D inf
²
s W

1X
kD1

X
�2†k

's.T� / <1

³
: (2.1)

Falconer proved that
dimH .Kˆ/ � dima.ˆ/

and that equality holds for almost all translations as long as kTik< 1=3 [3]. Solomyak
later relaxed the condition to kTik < 1=2 [20]. One cannot expect equality to hold
generally for the well-known Bedford–McMullen carpet. In a recent deep result by
Bárány, Hochman and Rapaport [1], however, equality does hold for affine IFS under
certain natural separation and irreducibility conditions.

2.1. Total disconnectedness

A topological space X is totally disconnected if the only connected components of X
are the singletons. Many definitions of total disconnectedness appear in the literature.
For the convenience of the reader, we collect all alternate equivalent definitions below
that are useful for our discussions. This theorem follows from [2, Propositions 3.1.8
and 3.1.11], as well as [21, Theorem 29.7]. 1

Theorem 2.1. If X is a locally compact separable metric space, then the following
are equivalent:

(1) All connected components are singletons.

(2) For all x ¤ y, there exist disjoint open sets U; V such that x 2 U and y 2 V
where U [ V D X .

(3) For every pair of disjoint closed sets E; F , there exist disjoint open sets U;V
such that E � U and F � V where U [ V D X .

(4) There exists a basis of X such that every basis element is a clopen set in X .

In particular, the following proposition holds true [2, p.91].

Proposition 2.2. A finite union of totally disconnected closed sets is totally discon-
nected.

We note that closedness cannot be removed as the rationals and irrationals are both
totally disconnected, while their union is not. We now give the following sufficient
condition for total disconnectedness in fractals generated by an IFS.

1In [21, Theorem 29.7], rim-compact means that every point has an open set with compact
boundary, which is true for a locally compact space, see p.288 of the same book.



C.-K. Lai and L. P. Patil 294

Proposition 2.3. Let ˆ D ¹�1; : : : ; �N º be an IFS. Let C be a closed and connected
set such that

C �

N[
iD1

�i .C /:

For any level k � 1, we let[
�2†k

�� .C / D R1;k [ � � � [Rmk ;k; (2.2)

where Rj;k denotes the j th connected component of the kth iteration. Then, K is
totally disconnected if

lim
k!1

max
1�j�mk

diam.Rj;k/ D 0:

Proof. As C is connected, all �� .C / are connected. Hence, there can only be finitely
many connected components at each level k, so mk <1 in (2.2). Let x; y 2 K be
distinct. Then jx � yj > 0. Choose the iteration k where diam.Rj;k/ < jx � yj for
all 1 � j � mk . Then x and y belong to different connected components of the kth
level. So the connected components in the kth stage provides the separation. Thus, K
is totally disconnected.

We remark that another useful criterion for checking total disconnectedness specif-
ically for fractal squares can be found in [18] (see also [13]).

2.2. Notions about convex geometry

We use some notions from convex geometry. We can see [9] for details. A hyperplane
E is the level set of a linear functional, i.e.,E D ¹x W f .x/D ˛º for some linear func-
tional f W Rd ! R. Let A � Rd be closed and convex. Then E is called a supporting
hyperplane of A if A \ E 6D ¿ and A is contained in exactly one of the two closed
half-spaces ¹f � ˛º or ¹f � ˛º.

A convex polytope C is a closed convex set that is a convex hull of finitely many
points. It is also known that a convex polytope also admits a half-space representation,
i.e.,

C D

M\
iD1

Hi

where Hi is a closed half-space for some linear functional f . Recall that a point x is
called an extreme point of a convex set C if x D �y C .1 � �/z for some � 2 Œ0; 1�
and y; z 2 C implies that y D z. A point x is called an exposed point of a convex set
C if there exists a supporting hyperplane H such that H \ C D ¹xº. We would like
to note that all exposed points are extreme points, but the converse is not necessarily
true, see the track and field example [9, p.75].
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3. Classification theorems

In this section, we provide a classification for which self-affine fractals in Rd project
very thick shadows in every k-dimensional subspace, where 1 � k < d . Suppose K
is a self-affine fractal whose IFS consists of the generating contractions

¹�1; : : : ; �N º:

Let C D CK represent the convex hull of K. Let Lk.K/ be the set of all d � k
dimensional affine subspaces that intersect C . When we say an affine subspace W of
dimension d � k, we mean that W is a translated d � k dimensional subspace, i.e.,
W D V C x for some V 2 G.d; d � k/ and x 2 Rd .

The following theorem provides an equivalence by only checking the first level
iteration of self-affine sets. It was first used by Mendivil and Taylor in [16] in their
special case. It has also been mentioned for the case of R2 without proof by [5] and
[8]. There appears to be no explicit formal proof written down. Although the proof is
not too difficult to experts in fractal geometry, we provide the proof here for the sake
of completeness.

Theorem 3.1. Using the above notations, the following are equivalent:

(1) For all W 2Lk.K/, there is some i 2¹1; : : : ; N º such that W \ �i .C / 6D ¿.

(2) K projects very thick shadows in every k-dimensional subspace.

Proof. (H)): It suffices to claim that for allW 2Lk.K/ and n2N, there exists some
�n 2 †

n such that ��n
.C / \W 6D ¿. Indeed, we can take xn 2 ��n

.K/ � ��n
.C /.

By passing into subsequence if necessary, we can assume xn ! x 2 K and we have

dist.xn; W / � diam.��n
.K//! 0

as n ! 1. Hence, x 2 W: As all d � k dimensional affine subspaces hit K, the
projection of K onto any k-dimensional subspace must be equal to that of C . This
proves (2).

We now justify our claim by induction. Fix W 2 Lk.K/. By our assumption (1),
W \�i .C / 6D¿ for some i 2 ¹1; 2; : : : ; N º. Taking �1D i , we proved the case nD 1.
For an inductive hypothesis, assume that at the nth iteration, there exists some map
��n

such thatW \ ��n
.C / 6D¿. Because the IFS is self-affine, the nth level map, ��n

,
from the hypothesis must have an inverse, ��1�n

. From our inductive hypothesis, we
have ��n

.C /\W 6D¿: It implies that C \ ��1�n
.W / 6D¿. Notice that ��1�n

.W / is still
a .d � k/ dimensional affine subspace, so the above implies that ��1�n

.W / 2 Lk.K/.
So, by our assumption, there exists some i 2 ¹1; : : : ; N º such that

�i .C / \ �
�1
�n
.W / 6D ¿:
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Applying the forward map ��n
to the above, we have

��n
.�i .C // \W 6D ¿:

Hence, for ��nC1
D ��n

ı �i , we have ��nC1
.C / \W ¤ ¿. So we have shown that

.1/ H) .2/ holds.
((H): Suppose that the self-affine fractal K has a very thick shadow in every

k-dimensional subspace. Then we know that �V .K/ D �V .C / for all V 2 G.d; k/.
Fix W 2 Lk.K/. Take V to be the k-dimensional subspace orthogonal to W . As W
passes through C , we can find z 2 W \ C . Let y be the orthogonal projection of
z onto V , then we have that y 2 V \ �V .C /. Moreover, ��1V .¹yº/ D W . By our
assumption that �V .C / D �V .K/, there exists x 2 K such that �V .x/ D y. Hence,
x 2 ��1V .¹yº/ D W . Recall that

K �

N[
iD1

�i .C /:

Therefore, for some i 2 ¹1; : : : ; N º, we have x 2 �i .C /. In particular, this shows that
�i .C / \W ¤ ¿:

Checking condition (1) in Theorem 3.1 may still be a tough computational task.
The following theorem gives a third equivalent condition when kD 1 using the convex
hulls of subsets of the connected components of the first iteration of the generat-
ing IFS. This third condition is a new contribution, to the best of our knowledge.
Moreover, as we will see, this provides a much more effective checking criterion for
self-affine fractals.

To state the theorem, we now decompose the image of the first iteration of the
convex hull into the disjoint union of r connected components, denoted by Rj where
j 2 ¹1; : : : ; rº. That is,

N[
iD1

�i .C / D R1 [ � � � [Rr :

We are now ready to state our main theorem.

Theorem 3.2. Using the prior notations, the following are equivalent:

(1) K has a very thick shadow in every 1-dimensional subspace.

(2) For all proper indexing sets I � ¹1; : : : ; rº,

conv
�[

i2I

Ri

�
\ conv

�[
i2Ic

Ri

�
6D ¿:



Projections of totally disconnected thin fractals with very thick shadows on Rd 297

Proof. (H)): We assume that K has a very thick shadow in every 1-dimensional
subspace. Then for allW 2 G.d; 1/, we have �W .K/D �W .C / is an interval, where
conv.K/ D C . Suppose for a contradiction, there exists some proper indexing set
I � ¹1; : : : ; rº such that

conv
�[
i2I

Ri

�
\ conv

� [
i2Ic

Ri

�
D ¿:

For ease, we let A and B denote the above sets, respectively. By the hyperplane sepa-
ration theorem, the convex nonempty setsA and B can be properly separated by some
hyperplane H D ¹x W hn; xi D cº. This implies that A � H� D ¹x W hn; xi < cº and
B � HC D ¹x W hn; xi > cº. Let W be the 1-dimensional subspace spanned by n. If
we project A and B onto W , then �W .A/ \ �W .B/ D ¿. Thus, �W .A/ [ �W .B/ is
a union of two disjoint closed intervals. But K is a subset of

Sr
iD1Ri , implying that

�W .K/ � �W .A/ [ �W .B/:

As I is proper, K intersects both A and B . Hence, �W .K/ cannot be an interval,
contradicting our assumption (1).

((H) Assume that for any indexing set I � ¹1; 2; : : : ; rº, we have that

conv
�[
i2I

Ri

�
\ conv

� [
i2Ic

Ri

�
6D ¿:

For a contradiction, suppose that the condition of very thick shadows fails. By the
contrapositive of Theorem 3.1, there exists some hyperplane H 2 L1.K/ such that
for all i 2 ¹1; : : : ; N º, we haveH \ �i .C /D ¿: Note that each �i .C / is connected.
The definition of connected components implies that

Rj D
[

¹i W�i .C/�Rj º

�i .C /:

We see that H cannot intersect any connected component R1; : : : ; Rr . So, there must
exist some indexing set I � ¹1; : : : ; rº such that[

i2I

Ri � H
C and

[
i2Ic

Ri � H
�

whereHC;H� are the upper and lower half plane determined byH . Moreover, I¤¿
because if all Ri 2 HC or H�, then H would not intersect C . Since the convex hull
of a set is the smallest convex set containing the original set and H˙ are convex, we
see that

conv
�[
i2I

Ri

�
� HC and conv

� [
i2Ic

Ri

�
� H�:
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Therefore, there does exist some proper indexing set I such that

conv
�[
i2I

Ri

�
\ conv

� [
i2Ic

Ri

�
D ¿:

This contradicts our original assumption. The proof is complete.

4. Fractal-decomposability for cubes

Let us first revisit some known examples in literature and provide a full character-
ization, for those fractals, when they have very thick shadows on all 1-dimensional
subspaces. All these examples were on the unit square. In the last example, we pro-
vide a new construction which works in higher dimensions that shows the fractal
decomposability for the unit cubes in Rd .

1. Mendivil–Taylor self-affine fractals. Mendivil and Taylor first discovered a self-
affine fractal whose convex hull is the unit square such that it has very thick shadows
in every projection (see Figure 1). Let 0< t < 1

2
< s < 1 and sC t < 1. The contractive

maps are defined by

�1.x; y/ D .tx; sy/; �2.x; y/ D .sx; ty C .1 � t //;

�3.x; y/ D .sx C .1 � s/; ty/; �4.x; y/ D .tx C .1 � x/; sy C .1 � s//:

They obtained a sufficient condition on t; s such that the corresponding invariant set
projects very thick shadows in every direction. We now let Ri D �i .Œ0; 1�2/; that is,
Ri is the rectangle that is the image of �i applied on the unit square. In the following
argument, we prove that the condition given by Mendivil and Taylor is a complete
description of t; s for the everywhere very thick shadow condition.

Example 4.1. Let 0 < t < 1
2
< s < 1 and s C t < 1. Then, the Mendivil–Taylor

self-affine set has very thick shadows in all directions if and only if

1 �
p
2s � 1

2
� t:

Proof. We use the characterization about the convex hull in Theorem 3.2. By the
rotational symmetry of the rectangles inside the square, condition (2) holds if and
only if

(i) The rectangle R1 intersects the convex hull of the other three rectangles.

(ii) The convex hull of R1 [R3 intersects the convex hull of R2 [R4.
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Figure 1. Mendivil–Taylor fractal

Denote the straight line joining .1 � s; 0/ and .0; 1 � t / by

`1 W f .x; y/ D .1 � t /x C .1 � s/y D .1 � t /.1 � s/:

Similarly, denote the straight line joining .t; 0/ and .s; 1 � t / by

`2 W g.x; y/ D .1 � t /x � .s � t /y D .1 � t /t:

Condition (i) is achieved if and only if the right upper corner point .t; s/ of R1 lies
above `1, meaning that f .t; s/� .1� t /.1� s/. Plugging in and rearranging, we have

.1 � t /.1 � s � t / � s.1 � s/:

Similarly, (ii) is achieved if and only if g.1 � s; t/ � t .1 � t /, which means that

.1 � t /.1 � s � t / � t .s � t /:

Indeed, for s C t � 1, we have t .s � t / � s.1 � s/, so (ii) implies (i). Thus, the
Mendivil–Taylor fractal has a very thick shadow in every direction if and only if
.1� t /.1� s � t /� t .s � t /. Solving for t , we obtain the desired characterization.

2. A rotated square in the middle. This example was considered by Falconer and
Fraser in [5] and Farkas in [8].

Example 4.2. Let 0 < r < 1=2. In Figure 2, we consider the self-similar IFS on the
unit square generated by

�1.x/ D rx; �2.x/ D rx C .1 � r; 0/; �3.x/ D rx C .0; 1 � r/;

�4.x/ D rx C .1 � r; 1 � r/; �5.x/ D rR�=4x C

�
1

2
;
1

2
�

p
2

2
r

�
:

Then (1) the attractor projects very thick shadows in every 1-dimensional subspace if
and only if r � 1=3, and (2) the attractor is totally disconnected if r < .2C 1p

2
/�1.
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Figure 2. IFS for Example 4.2

Proof. (1) We apply (2) from Theorem 3.2. Notice that the attractor projects very
thick shadows if and only if the corner square always intersects the convex hull of the
remaining four squares. A direct check shows that the rotated square is always inside
the convex hull of the three corner squares. Hence, by symmetry, the condition is
equivalent to the right-hand corner of the square Œ0; r�2, i.e., .r; r/ lying above the line
xC yD 1� r , which is the line joining .0;1� r/ and .1� r;0/. Hence, r C r � 1� r ,
meaning r � 1=3:

(2) By ensuring that the corner .r; r/ is not intersecting the rotated square, which
is exactly when r < 1

2C 1p
2

, all squares do not intersect each other. Hence, the fractal

is totally disconnected.

Consequently, a totally disconnected self-similar set projecting very thick shad-
ows in every 1-dimensional subspace exists if we take 1=3 � r < 1

2C1=
p
2

. Farkas
indicated how to use this pattern to create self-similar totally disconnected sets whose
Hausdorff dimension is arbitrarily close to 1. However, there were no explicit map-
pings written down and it is unclear how one can generalize to higher dimensions. In
the following example, we provide an explicit solution based on fractal squares/cubes.

3. Cross and corner fractal cubes.

Example 4.3 (Cross and Corner Fractal Cubes). We introduce a fractal cube con-
struction that we call the cross and corner fractal. To begin, fix some odd positive
integer n. Divide the unit cube into n � � � � � n smaller cubes on Rd . We denote by
Pd the set of all d � d permutation matrices that map the coordinate hyperplane
xd D 0 to another coordinate plane xj D 0 for some j D 1; : : : ; d .

Take the cross in the center of our grid, whose digits are

Cross D
[
�2Pd

�

²�
j;
n � 1

2
; : : : ;

n � 1

2

�
W j D 1; : : : ; n � 2

³
:
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We say the diagonals are all the unit cubes such that each of them is connected
only by a corner, from .�1; : : : ; �d / to .1 � �1; : : : ; 1 � �d /, for �1; : : : ; �d 2 ¹0; 1º.

For each corner of the unit cube, we choose cubes on the diagonal consecu-
tively until we hit the convex hull of the cross. For example, at the origin, we choose
cubes on the diagonal until we hit the hyperplane x1 C � � � C xd D

.n�1/.d�1/
2

C 1,
which is the convex hull of the points .1; n�1

2
; : : : ; n�1

2
/, .n�1

2
; 1; n�1

2
; : : : ; n�1

2
/,. . .,

.n�1
2
; : : : ; n�1

2
; 1/. As these diagonal cubes are of the form .j; j; : : : ; j /where j takes

the values 1; : : : ; n� 1, when we plug them into the hyperplane equation, we find that

Nd D
j .n � 1/.d � 1/

2d
C
1

d

k
(4.1)

cubes are needed. By symmetry, we choose from every corner of the cubes, Nd con-
secutive diagonal cubes from the corner. Collect all those digits as the set Corner.
Then our digit set is D D Cross [ Corner, and our IFS is

®
1
n
.x C d/ W d 2 D

¯
. In

Figure 3, the first two iterations of the 2-dimensional cross and corner fractal squares
are shown. In Figure 4, the cross and one side of the corners of the fractal construction
are shown.

Figure 3. A two-dimensional picture for the cross and corner fractal

We call Kn to be the self-similar fractal cubes that this IFS generates. Then,
(1) Kn is totally disconnected.
(2) Kn projects very thick shadows in every 1-dimensional subspace.
(3) dimH .Kn/! 1 as n!1.

Proof. (1) To see that Kn is totally disconnected, we apply Proposition 2.3. At the
kth stage of the iteration, the connected components are either a cross inside a cube
of length 1=k or a union of corner cubes which lies in 2d cubes meeting at a point. As
this union of corner cubes does not intersect the cross, this component has diameter at
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Figure 4. A part of the three-dimensional picture for the cross and corner fractal. The whole
construction is to include the diagonal cubes starting from all corners

most
p
2d=k. Therefore, the maximum of the diameters of the connected components

at the kth iteration is bounded above by
p
2d=k, which tends to 0 as k !1. This

shows Kn is totally disconnected.
(2) We now show that this fractal projects to intervals for all lines on Rd . Note

that by our construction, the convex hull of the cross must intersect the convex hull of
the connected components at each corner. Therefore, it is not possible to separate any
connected components by hyperplanes. By Theorem 3.2, our proof is complete.

(3) For a fixed odd integer n > 2, there are d.n � 2/C 2dNd number of cubes
chosen for this pattern where Nd is given by (4.1). Hence

dimH .Kn/ D
log.d.n � 2/C 2dNd /

logn
:

As d.n � 2/C 2dNd D O.n/, the above expression goes to 1 as n!1.

5. Fractal-decomposability for other convex sets

In the previous section, we demonstrate that cubes on Rd are fractal decomposable
with self-similar sets of dimension arbitrarily close to one. We now extend our study
to other convex polytopes in this section. Let

��!
AB denote the line segment joining A

and B with direction pointing from point A to point B. A simplex on Rd is the convex
hull of d C 1 points ¹A0; : : : ; Ad º where the vectors ¹

#        �

A0A1; : : : ;
#         �

A0Ad º are linearly
independent. We denote it by �.A0; : : : ; Ad /.
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Given a simplex � D �.A0; : : : ;Ad /, we consider another similar unrotated image
of � , denoted by �.A00; : : : ; A

0
d
/ D r�.A0; : : : ; Ad /C t , where 0 < r < 1 and t is a

translation vector such that �.A00; : : : ; A
0
d
/ lies in the interior of �.A0; : : : ; Ad /. Fix

� > 0. Notice that for all i D 0; 1; : : : ; d , the set ¹
#       �

AiAj W j ¤ i; j 2 ¹0; : : : ; dºº forms
a basis for Rd . We now define d C 1 affine maps inside � by the following relations.
For i D 0; 1; : : : ; d ,

Ti .
���!
AiAj / D �

���!
AiAj ; j ¤ i � 1; and

Ti .
�����!
AiAi�1/ D

�����!
AiA

0
iC1; j D i � 1;

(5.1)

where j D 0; 1; : : : ; d . Here �
���!
AiAj denotes the scaled vector of

���!
AiAj with Ai fixed.

We identify the addition as the addition on the cyclic group of d C 1 elements, i.e.,
if i D 0, we identify �1 D d . ˆ� D ¹T0; : : : ; Td º defines a self-affine IFS whose
attractor has convex hull exactly equal to �.A0; : : : ; Ad /. Moreover, Ai is the fixed
point of Ti for each i . In this IFS,

Ti .�.A0; : : : ; Ad // D �.Ai ; ¹Ai C �
���!
AiAj W j ¤ i � 1; iº; A

0
iC1/:

Figures 5 and 6 illustrate the IFS on R2 and R3, respectively.

Figure 5. Illustration of the triangular IFS on R2.

Theorem 5.1. The attractor K� of the IFS ˆ� defined above is totally disconnected,
projects very thick shadows in every 1-dimensional subspace, and has dimH .K�/! 1

as �! 0:

Consequently, all simplices on Rd are fractal-decomposable with self-affine sets
whose Hausdorff dimension is arbitrarily close to 1.

As Ti .�.A0; : : : ;Ad // are mutually disjoint, it follows that the self-affine set must
be totally disconnected. In Proposition 5.2, we verify condition (2) from Theorem 3.2.
Hence, the invariant set projects very thick shadows in every 1-dimensional subspace.
Finally, we show that the Hausdorff dimension can be made arbitrarily close to 1 in
Proposition 5.3.
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A1

A4

A3

A2

A01

A04

A03

A02

Figure 6. An illustration of the IFS on the simplex on R3

Proposition 5.2. Let Ji D Ti .�.A0; : : : ; Ad //. Then for all I ¨ ¹0; 1; : : : ; dº,

conv
�[

i2I

Ji

�
\ conv

�[
i2Ic

Ji

�
¤ ¿:

Proof. Let I ¨ ¹0; 1; : : : ; dº and let i 2 I . We first notice that if i 2 I , then the line
segment

#             �

AiA
0
iC1 2 conv

�S
i2I Ji

�
by (5.1). The proof is based on a simple geomet-

rical fact.

Fact. Let
��!
AB and

��!
CD be two parallel line segments in R2 such that the vectors point

in the same direction. Then the line segment
#    �

AD and
#   �

CB must intersect.
The proof of this fact is elementary (e.g., we can put

#   �

AB and
#    �

CD on y D 0 and
y D 1, respectively, and solve for the intersection), so we omit it. We now have two
cases:

(1) Suppose that i � 1; i C 1 2 I c : We note that the line segment
�����!
AiA

0
iC1 2

conv
�S

i2I Ji
�
. On the other hand, the points A0i and AiC1 are in conv

�S
i2Ic Ji

�
.

Hence, the line segment
#             �

A0iAiC1 2 conv
�S

i2Ic Ji
�

as well. From our construction
of the smaller simplex,

#             �

AiAiC1 and
#             �

A0iA
0
iC1 are two parallel line segments point-

ing in the same direction. Thus, the points Ai ; A0i ; AiC1; A
0
iC1 lie in the same two-

dimensional plane. In particular,
�����!
AiA

0
iC1 and

�����!
A0iAiC1 must intersect by the Fact. This

means that the intersection of the convex hulls in the statement cannot be empty.
Because of (1), if I consists of only one element, then the conclusion of the propo-

sition must hold. The same is true if I c consists of only one element as we can switch
the role of I and I c in the proof of case (1). Hence, we can assume that both I and
I c contain at least two elements for case (2).
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(2) If (1) does not hold and I; I c has at least two elements, then i � 1 or i C 1 2 I:
In this case, we let

j D min¹i 0 � i W i 0 2 I; i 0 C 1 2 I cº; k D max¹i 0 < i W i 0 C 1 2 I; i 0 2 I cº:

Since I; I c has at least two elements and (1) does not hold, we see that kC 1¤ j and
j C 1¤ k. Moreover, we have j 2 I , j C 1 2 I c , k 2 I c and kC 1 2 I . This means
that the points A0jC1; AkC1 2 conv.

S
i2I Ji / and AjC1; A0kC1 2 conv.

S
i2Ic Ji /,

as well as their respective line segments. We now consider the plane generated by
AjC1; A

0
jC1; AkC1; A

0
kC1

. The Fact implies that the line segment
#                    �

AjC1A
0
kC1

and
#                    �

A0jC1AkC1 must intersect, so the intersection of the convex hulls cannot be empty.
This completes the whole proof.

Proposition 5.3. With respect to the above notations, we have

lim
�!0

dimH .K�/ D 1:

Proof. We give an estimate of the affinity dimension (2.1) of the affine IFS. To do
so, we need to give an estimate of the singular values of the linear part of Ti . We let
˛i;1 � ˛i;2 � : : : � ˛i;d > 0 be the singular values of Ti . Also, let

˛1 D max¹˛i;1 W i D 0; : : : ; dº; ˛2 D max¹˛i;2 W i D 0; : : : ; dº:

As Ai is the fixed point of Ti , by putting Ai as the origin of the coordinates, we
may assume Ti is a linear transformation. Moreover, the subspace Hi containing the
face of the simplex generated by the points ¹Aj W j 2 ¹0; 1; : : : ; dº n ¹i � 1ºº is the
eigenspace of Ti with eigenvalue �: Let Bi be an orthonormal basis forHi ; we extend
Bi to an orthonormal basis for Rd by adding one more vector. Then Ti admits a matrix
representation of the form

�
�Id�1 u

0 ud

�
where Id�1 is the .d � 1/� .d � 1/ identity

matrix and u D .u1; : : : ; ud�1/>. Hence,

T �i Ti D

"
�2Id�1 �u
�u

Pd
iD1 u

2
i

#
:

By the Cauchy interlacing theorem applied to the principal minor �2Id�1, we have
˛2 � � (they are indeed equal if d � 3). Recall that the singular value function is
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sub-multiplicative. Therefore,

1X
kD1

X
�2†k

's.T� / �

1X
kD1

X
�2†k

.˛1;�1
˛s�12;�1

/ � � � .˛1;�k
˛s�12;�k

/

�

1X
kD1

X
�2†k

˛k1 .˛
s�1
2 /k

D

1X
kD1

..d C 1/˛1˛
s�1
2 /k :

The above summation is finite if and only if .d C 1/˛1˛s�12 < 1. So we must have

dima.K/ � 1C
log..d C 1/˛1/

log˛�12
:

Since ˛2 ! 0 as �! 0, we must have dimH .K�/ � dima.K/! 1. Proposition 5.2
implies that K� projects very thick shadows, so dimH .K�/ � 1. Hence, our proposi-
tion follows.

Proof of Theorem 1.4 (1). We note that if C is a convex polytope, then C is a finite
union of simplices. Denote all these simplices by ¹�1; �2; : : : ; �N º. Next, by Theo-
rem 5.1, there exists an affine IFS ĵ whose attractor Kj projects very thick shadows
in every 1-dimensional subspace and has Hausdorff dimension arbitrarily close to 1
for each �j , where 1 � j � N . By Proposition 2.2, the union

K D

N[
jD1

Kj

is totally disconnected. Moreover, K is perfect since each Kj is perfect and the finite
union of perfect sets is perfect. K also has Hausdorff dimension arbitrarily close to
1 by the countable stability of Hausdorff dimension. It remains to demonstrate that
�W .C / D �W .K/ for all W 2 G.d; 1/. Consider the following:

�W .C /D�W

� N[
jD1

�j

�
D

N[
jD1

�W .�j /D

N[
jD1

�W .Kj /D�W

� N[
jD1

Kj

�
D�W .K/:

So every convex polytope is fractal-decomposable with a finite union of self-affine
sets whose Hausdorff dimension is arbitrarily close to 1, completing the proof of
Theorem 1.4 (1).

Remark. It is possible to obtain a very thin self-similar set inside any triangle on R2

projecting very thick shadows in every direction. To see this, let � be a triangle. We
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notice a simple fact that every triangle is self-similar with 4 maps of contraction ratio
1/2. For � > 0 given in the affine IFS construction (see Figure 5), we now partition
the triangle into 4n similar triangles where n D n� is the integer such that

2�n �
�

100
< 2�nC1:

We now take all those small triangles that intersect�i D Ti .�/, for i D 1; 2; 3. These
triangles form the first iteration of the self-similar IFS. Call this IFS ˆ. Because the
self-similar triangulation covers each �i , the convex hull condition of Theorem 3.2
still holds, ensuring we have very thick shadows in every direction. Additionally,
because there is a small triangle separating �i , the diameter of each connected com-
ponent goes to 0, and we have that the attractor K of ˆ is totally disconnected by
Proposition 2.3.

Finally, we calculate the Hausdorff dimension ofK. We know that the contraction
ratio is 1

2n . By standard volume counting, we estimate the number of maps covering
each �i is O.22n�/. Therefore, for some universal constant C > 0,

dimH .K/ �
log.C22n�/

log 2n
D 1C

log.C2n�/
log 2n

< 1C
log 200C

log 2n
:

Since n!1 as �! 0, we see that dimH .K/! 1 as �! 0.

6. A compact fractal-decomposable rectifiable set

In this section, our objective is to construct a rectifiable compact set that is fractal-
decomposable. Let us recall some terminologies. A 1-set is a set E with finite and
positive one-dimensional Hausdorff measure. A 1-set E is called rectifiable if there
exists a countable collection of sets Ai and Lipschitz functions fi such that

H1

�
E n

1[
iD1

fi .Ai /

�
D 0:

E is called purely unrectifiable if H1.E \ F / D 0 for all rectifiable sets F . The
well-known Besicovitch projection theorem states the following.

Theorem 6.1 (Besicovitch projection theorem, see [15]). For a purely unrectifiable
1-set on R2, the projection of E must have measure zero for almost all directions.

Because of this theorem, purely unrectifiable sets do not project very thick shad-
ows in almost all directions.
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We now prove Theorem 1.4 (2), which predicts that every convex set is fractal-
decomposable with compact totally disconnected rectifiable 1-sets. This question was
first brought to Alan Chang by the first-named author. He later on discussed with
Tuomas Orponen, who provided to us a workable idea of the construction. We would
like to thank Alan Chang and Tuomas Orponen for supplying the main idea of the
proof in the key lemma below, which utilizes the venetian blind construction. Since
the lemma is on dimension 2, we parametrize the projection by �� , � 2 Œ0; �/, where
�� is the orthogonal projection onto the line y D x.tan �/.

Lemma 6.2. LetE0 D Œ0; 1�� ¹0º. Then there exists a totally disconnected rectifiable
compact 1-set E � Œ0; 1�2 such that �� .E/ � �� .E0/ for � 2 Œ0; �/.

Proof. It suffices to construct E such that the conclusion holds for � 2 Œ0; �
2
�. To

extend the conclusion to � 2 Œ�
2
; �/, we need only reflect E about the line x D 1

2
.

Unioning E and its reflection gives us our desired result.
Now, we construct E for � 2 Œ0; �

2
� using the venetian blind construction2. To

begin, L.a;b/ represents the line segment connecting a;b 2 R2. Let ¹"nº be a rapidly
decreasing sequence, which is specified later. Let

E1 D L
�
.0; 0/;

�1
2
; "1

��
[ L

��1
2
; 0
�
; .1; "1/

�
:

Suppose Ei is constructed. Let e2 D .0; 1/. Then, we define

EiC1 D
[

L.a;b/�Ei

�
L
�

a;
aC b
2
C "iC1e2

�
[ L

�aC b
2

;bC "iC1e2

��
:

There are 2j line segments in Ej . For simplicity, we write Ej D
S2j

kD1 Lk;j , where
Lk;j is the line segment ending at the vertical line x D k

2j . We can think of Lk;j as
the “blind”. This construction of Ei is shown in Figure 7. Recall the Hausdorff metric
between two compact sets is defined as

dH .E; F / D inf ¹ı W E � .F /ı and F � .E/ıº ;

where .E/ı is the ı-neighborhood of the set E. It is well known that the set of all
compact sets forms a complete metric space under dH .

Our lemma follows by establishing these four claims:

(1) E D lim
n!1

En under the Hausdorff metric.

(2) E is totally disconnected.

2Another example of this construction can be found on page 104 of [4].
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E0

E1

E2

"1

"1

"2

Figure 7. Venetian blind construction

(3) �� .E/ � �� .E0/ for all � 2 Œ0; �
2
�.

(4) E is a rectifiable 1-set.

(1) To prove the first claim, notice thatEiC1 � .Ei /"iC1
andEi � .EiC1/"iC1

. So
dH .Ei ;EiC1/ < "iC1. Then, dH .Em;En/ <

Pm
iDn "iC1 by the triangle inequality. If

we choose ¹"iº to be a summable sequence, we see that En is a Cauchy sequence in
the Hausdorff metric. By completeness, En converges to some compact set E.

(2) We now show the second claim. The vertical segment from .1
2
; 0/ to .1

2
; t /

where t 2 Œ0; "1� is not in E. So there exist bounded disjoint open sets U0 and U1
such that

E \
�°
.x; y/ W 0 < x <

1

2

±
[
®
b0;u1=2

¯ �
� U0 and

E \
�°
.x; y/ W

1

2
< x < 1

±
[
®
b1=2;u1

¯ �
� U1

where we denote by ui2�n and bi2�n the uppermost point and bottom most points of
E on the line x D i2�n. For induction, suppose U� , � 2 ¹0; 1ºn, is an open set such
that

E \
�°
.x; y/ W

i

2n
< x <

i C 1

2n

±
[ ¹bi2�n ;u.iC1/2�nº

�
� U� :

Further, by the venetian blind construction, there exist vertical jumps whenever the
x-coordinate is a dyadic point, giving us that

E \
�°
.x; y/ W

2i

2nC1
< x <

2i C 1

2nC1

±
[ ¹bi2�n ;u.2iC1/2�.nC1/º

�
� U�0 and

E \
�°
.x; y/ W

2i C 1

2nC1
< x �

2i C 2

2nC1

±
[ ¹b.2iC1/2�.nC1/ ;u.iC1/2�nº

�
� U�1;
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where U�0 and U�1 are disjoint open sets inside U� . Thus,

E �

1\
nD1

[
�2†n

U� ; where † D ¹0; 1º:

All U� are disjoint from one another by construction, and one can ensure the max-
imum of the diameters of U� among � 2 †n tends to zero as n!1 since ¹"nº is
summable. Hence, E is totally disconnected.

(3) The third claim follows from showing that any line with slope � tan � for
� 2 Œ0; �

2
� passing through E0 must also pass through E. Let L be such a line through

E0. By the venetian blind construction, L must also pass through En for all n, i.e.,
L \En ¤ ¿. As En ! E in the Hausdorff metric, we see L must also pass through
E. Hence �� .E/ � �� .E0/.

(4) For the fourth claim, we show that E is indeed rectifiable by constructing a
curve with finite H1 measure containing E. Define the curve �1 as

�1 D E1 [ V1

where

V1 D L
��1
2
; 0
�
;
�1
2
; "1

��
[ L ..1; 0/ .1; "1// WD v1;1 [ v2;1:

That is, �1 is the union of E1 with the collection V1 of vertical line segments that
connect the disjoint line segments of E1. Suppose �j is constructed, such that

�j D Ej [ Vj :

We construct �jC1 as follows. Recall that Ej D
S2j

kD1 Lk;j . Additionally, for each
r D 1; 2; : : : ; 2jC1, we consider Lkr ;j to be the unique line segment with the largest
y-coordinate that intersects x D r

2jC1 . Define v0r;jC1 to be the vertical line segment
at x D r

2jC1 of length "jC1, beginning at Lkr ;j , and moving vertically "jC1 units.
Then, we have VjC1 is the collection of vertical line segments vr;jC1 defined as

vr;jC1 D

´
v0r;jC1 if r is odd

vr=2;j [ v
0
r;jC1 if r is even.

Then, we can define �jC1 as

�jC1 D EjC1 [ VjC1:

�3 is represented by the bolded line in Figure 8.
In the proof of the first claim, we showed that En ! E under dH . Since the

maximal distance between �n and �nC1 is "nC1 under dH , we can apply the same
strategy to show that �n converges to some compact set � .
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"1

"2

"3

Figure 8. �3 curve

We claim that E � � . First, recall that a point x 2 E D limn!1En in Hausdorff
metric if and only if there is a sequence of points xn 2 En such that limn!1 xn D x

(see, e.g., [2, p.72]). As we know that En � �n and � is the limit of �n under the
Hausdorff metric, the claim follows.

Recall that a continuum is a compact connected metric space. To complete our
proof, we need the following theorem taken from [7].

Theorem 6.3 ([7, Theorem 3.18, p.39]). Let ¹�nº be a sequence of continua in Rd

convergent in the Hausdorff metric to a compact set � . Then � is a continuum and

H1.�/ � lim inf
n!1

H1.�n/:

Moreover, a continuum with finite H1 measure is rectifiable (cf. [7, Theorem 3.14,
p.36]).

�n is compact and connected. Therefore, ¹�nº is indeed a sequence of continua
that converges to � under dH . We can then apply Theorem 6.3 to see that � itself is a
continuum – and hence connected – as well as that

H1.�/ � lim inf
n!1

H1.�n/:

It remains to compute H1.�n/ which is exactly the total length of the line segments
in En [ Vn. Note that

H1.Vn/ D

nX
jD1

2j "j

and by elementary geometry and the Pythagorean theorem, the length of one of the
“blinds” in En is equal tos�

1

2n

�2
C

�
"1

2n�1
C

"2

2n�2
C � � � C "n

�2
D

1

2n
�

vuut1C

� nX
jD1

2j "j

�2
:
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Therefore, summing all 2n “blinds” which are of the same length, we have

H1.�n/ D

nX
jD1

2j "j C

vuut1C

� nX
jD1

2j "j

�2
:

If we choose our rapidly decreasing positive sequence ¹"j º1jD1 such that it satisfiesP1
jD1 2

j "j <1; then we see that

H1.�/ � lim inf
n!1

H1.�n/ <1:

Additionally, since � contains vertical line segments at each dyadic point, we know
that H1.�/ > 0. Therefore, � is rectifiable.

Finally, by the monotonicity of measure, H1.E/ � H1.�/ <1. We now notice
that as �0.E/ � Œ0; 1�, and the projection does not increase the Hausdorff measure,
so we have H1.E/ � H1.�0.E// � 1 > 0. Thus, E is a 1-set. As E � � and � is
rectifiable, E is also rectifiable, justifying our last claim.

We use Lemma 6.2 to prove Theorem 1.4 (2). The proof in high dimensions
requires an induction, so we first settle it for a polygon on R2.

Proposition 6.4. Let C be a convex polygon on R2. Then there exists a compact
totally disconnected rectifiable 1-set K � C such that �� .K/ D �� .C / for all � 2
Œ0; �/. Hence, polygons are fractal-decomposable by a compact totally disconnected
rectificable 1-set.

Proof. Let C be an n-sided polygon, and let L1; L2; L3; : : : ; Ln be the sides of the
polygon. We claim that for each j D 1; : : : ; n, there exists a compact totally discon-
nected rectifiable set Ej � C such that �� .Ej / � �� .Lj / for all � 2 Œ0; �/. Then we
take E to be the union of Ej , which is still a compact totally disconnected rectifiable
set. The union is a subset of C , and since �� .C /D

Sn
jD1 �� .Lj /, this union gives us

�� .C / �

n[
jD1

�� .Ej / D �� .E/:

But E � C; and we have the other inclusion for the projection as well. Thus, E is our
desired set.

To justify the claim, we take a side L D Lj for some j . Suppose that L connects
with the other two sides, called L0 and L00, at some vertices. We now cut L D `0 [ `00

into two lines where L0 connects with `0 and similarly for the others. Consider L0 [ `0

and L00 [ `00. We have two cases depending on the angle between L0 and `0 (and,
respectively, L00 and `00).
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(i) Suppose that L0 makes an obtuse angle with `0 (i.e., the angle lies between
Œ�=2; �/). We simply take E in Lemma 6.2 for `0. For "j sufficiently small, E must
be inside the polygon and �� .E/ D �� .`0/ for all � 2 Œ0; �/.

(ii) Suppose that L0 makes an acute angle with `0. Without loss of generality,
assume that `0 D Œ0; 1� � ¹0º, and L0 starts at .1; 0/, making an acute angle with `0.
Due to the acute angle, the E constructed in Lemma 6.2 cannot lie in C . However, we
can further decompose `0 into countable interior disjoint line segments towards the
vertex:

`0 D

1[
jD0

j̀ ; j̀ D Œ1 � 2
�j ; 1 � 2�j�1� � ¹0º:

We apply Lemma 6.2 for each j̀ to construct Ej � C (by taking sufficiently small
"j ). Define E D

S1
jD1 Ej [ ¹.1; 0/º. Then �� .E/ � �� .`0/ for all � 2 Œ0; �/. It

remains to check if E is closed and totally disconnected. The set E is closed because
if x D .x1; x2/ 2 R2 nE, then for x1 < 1 and for all sufficiently small ı > 0, the ball
B.x;ı/� .1� 2�j ;1� 2�j�1/�R. But in this strip,E \ Œ1� 2�j ;1� 2�j�1��RD

Ej andEj is closed. There exists some ı1 such that the ballB.x;ı1/�R2 nE. Hence,
R2 nE is an open set, showing that E is closed. Finally, it is a routine check that E is
totally disconnected using Theorem 2.1 (2), so we omit this detail. The proof of this
proposition is now complete.

Proof of Theorem 1.4 (2). We prove the theorem by induction on dimension d . By
Proposition 6.4, the theorem has been proven for d D 2. Suppose that for all .d � 1/-
dimensional convex polytopes C , there exists a rectifiable 1-set K such that K � C
andK projects very thick shadows in every one-dimensional subspace. We now prove
that it is also true for dimension d .

To prove the statement, let C be a convex polytope of dimension d . Suppose first
that C is lying on a .d � 1/-dimensional hyperplaneH0. By the induction hypothesis,
we construct the rectifiable 1-setK inside C \H0. Here, for any .d � 1/-dimensional
hyperplanes H such that H intersects C;H \H0 is a .d � 2/-dimensional hyper-
plane which intersects C . As K projects very thick shadows in every 1-dimensional
subspace, every d � 2-dimensional subspace must intersectK. SoH \H0 \K ¤¿,
and hence H \K ¤ ¿.

Suppose now that C is not lying in any .d � 1/-dimensional hyperplane. Then C
admits a half-space representation:

C D

M\
iD1

Hi ;

where Hi are closed half-spaces. Moreover, each Hi \ C is a .d � 1/-dimensional
convex polytope. We now construct rectifiable 1-sets Ki for each Hi \ C by the
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induction hypothesis, and define

K D

M[
iD1

Ki :

Then each .d � 1/-dimensional hyperplane must intersect one of the faces Hi \ C .
By the induction hypothesis, the hyperplaneHi must intersectKi . As a consequence,
every .d � 1/-dimensional hyperplane must intersect K. As K is a finite union of
compact totally disconnected rectifiable 1-sets, it must be a compact totally discon-
nected rectifiable 1-set as well. The proof is complete.

7. Remarks and open questions

This paper provides a detailed study regarding the projections of very thick shadows
onto 1-dimensional subspaces for polytopes on Rd . We conclude this paper with this
section by discussing more general cases.

7.1. Other convex sets

To begin with, we establish the following proposition showing that 1-dimensional
fractal-decomposability is not possible for general convex sets. The definition of
exposed points can be found in Section 2.

Proposition 7.1. Let C be a closed convex set in Rd . Suppose that C is fractal-
decomposable with the totally disconnected Borel set K. Then all exposed points of
C are also in K, and the set of exposed points is totally disconnected.

Proof. Let x be an exposed point of C . There exists some hyperplane H support-
ing x such that H \ .C n ¹xº/ D ¿. We now project C and K onto the orthogonal
complement of H , denoted by H?, which is a 1-dimensional subspace. Since C is
fractal-decomposable, we have that �H?.C /D �H?.K/: Therefore, there must exist
some y 2 K such that

�H?.x/ D �H?.y/:

Note that if x 2 H , then
��1
H?

.�H?.x// D H:

We thus know that y 2 ��1
H?

.�H?.x// D H . At the same time, y 2 K � C . So
y 2 C \H D ¹xº. Hence, y D x, and we proved that the exposed points of C are
also in K. Because K is totally disconnected and the set of all exposed points of C is
a subset of K, we have that the set of exposed points is also totally disconnected.
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Consequently, it is impossible for convex sets with a smooth boundary and every-
where positive Gaussian curvature, like the Euclidean ball, to be 1-dimensional fractal-
decomposable using totally disconnected sets. Fractal decomposability remains an
open question for those convex sets with totally disconnected exposed points, but that
are not polytopes.

7.2. Higher dimensional fractal-decomposability

If we now try to project onto two or higher dimensional subspaces, total disconnected-
ness can no longer be obtained even for convex polytopes. The following proposition
works on R3, and it clearly works on any greater dimensions.

Proposition 7.2. Suppose that a closed convex polytope C on R3 is 2-dimensional
fractal decomposable with a compact set K. Then all edges of the polytope must be
in the set K. Consequently, K cannot be totally disconnected.

Proof. Note that for each edge E, we can always find a supporting hyperplane H
such that H \ C D E. If C is 2-dimensional fractal-decomposable with compact set
K, then every line passing through C must also pass through K. However, for each
x 2 E, we can take a line ` inH that is orthogonal to E such that ¹xº D `\E. Then
` \K D ¹xº, meaning that E � K. This completes the proof.

As a result, we do not have 2-dimensional fractal-decomposability with a totally
disconnected compact set K for a convex polytope. We need to replace total discon-
nectedness with some other type of connectivity. On the other hand, the unit cube
Œ0; 1�3 admits a trivial solution for 2-dimensional fractal-decomposability. One can
subdivide the unit cube into n3 smaller cubes of sidelength 1=n and choose cubes
that intersect the boundary of Œ0; 1�3. The self-similar fractal contains the boundary
of Œ0; 1�3 which is trivially 2-dimensional fractal-decomposable. A simple question to
ask here which avoids a trivial answer is the following.

Question. Is it possible to construct a self-similar fractalK on Œ0; 1�3 such that Œ0; 1�3

is 2-dimensional fractal-decomposable with K and

dimH .P \K/ < 2

for all affine hyperplanes P that pass through Œ0; 1�3?

In some sense, we expect that K should be “plane-free”. Another question worth
considering is that ifK is totally disconnected, how many hyperplanes can we choose
to guarantee that the projection of K is equal to that of the convex hull on those
hyperplanes?
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Finally, our Theorem 1.4 (1) showed that every polytope is 1-dimensional fractal-
decomposable using a finite union of self-affine sets. We also showed that triangles
also admit self-similar solutions. It is interesting to see if every convex polytope is 1-
dimensional fractal-decomposable using only one totally disconnected self-similar or
self-affine sets. It is also unclear if higher dimensional simplices admit a self-similar
solution as simplices themselves are no longer self-similar on higher dimensions (see,
e.g., [10]).
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