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A self-similar set with non-locally connected components

Jian-Ci Xiao

Abstract. Luo, Rao and Xiong [Topol. Appl. 322 (2022), 108271] conjectured that if a planar
self-similar iterated function system with the open set condition does not involve rotations or
reflections, then every connected component of the attractor is locally connected. We create a
homogeneous counterexample of Lalley–Gatzouras type, which disproves this conjecture.

1. Introduction

There have been a number of advances in the field of fractal geometry that improve our
understanding of the fractal dimensions of fractal sets and measures, but much less is
known about the topology. Even some fundamental topological properties such as the
connectedness and local connectedness have not been well studied. Hata [4] related
the connectedness of a self-similar set to the connectedness of some graph structure of
the corresponding iterated function system (or simply IFS). When the self-similar set
enjoys nice separation conditions, the graph structure can be thoroughly identified. In
fact, this often provides not only an approach for the verification of the connectedness
([1,2,12]), but also useful information about the connected components of the original
set ([6, 10, 15, 16]).

The local connectedness of fractal sets and their subsets is far more intricate and
poorly understood. Recall that a space X is said to be locally connected at x 2 X
if for every neighborhood U of x, there exists a connected neighborhood V of x
contained in U . If X is locally connected at each of its points, it is said to be locally
connected. A pioneering result was given by Hata [4] stating that if a self-similar set
is connected, then it must be locally and path connected. In [9], Luo, Rao and Xiong
further demonstrated that a self-similar set is locally connected if and only if it has
only finitely many connected components. There also exists some work [7, 8, 11, 13,
14] concerning the local connectedness of self-similar or self-affine tiles and related
sets, e.g., their boundaries, the closure of their disjoint interiors or their complements.
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In addition to the local connectedness of a given self-similar set, it is also inter-
esting to ask whether its connected components are locally connected. Luo, Rao and
Xiong [9] showed that every connected component of any fractal square (or gener-
alized Sierpiński carpet) is locally connected. They also provided an example where
this property does not hold when the IFSs involve rotations. The idea can be summar-
ized as follows: consider a carpet-like self-similar set in Œ0; 1�2 that contains infinitely
many vertical line segments, including the left and right sides of Œ0; 1�2, and require
these segments to belong to different components. If there are also two similitudes in
the IFS such that the image of Œ0; 1�2 under these two maps is exactly a pair of “up-
down” adjacent small squares, where the top one includes a 90ı rotation. Note that the
rotation transforms the left and right sides of Œ0; 1�2 into top and bottom sides of its
image. Due to the adjacency, we have a horizontal line segment gluing together infin-
itely many vertical segments, and the component containing them cannot be locally
connected.

Since all the prior examples require the corresponding IFS to either involve rota-
tions or to violate the open set condition (for the definition, please see [3]), Luo, Rao
and Xiong proposed the following conjecture.

Conjecture 1 ([9]). Let ˆ be a self-similar IFS on R2 and K its attractor. If ˆ sat-
isfies the open set condition and if every similitude in ˆ involves neither rotation nor
reflection, then every component of K is locally connected.

We are able to construct a homogeneous self-similar IFS on R2 satisfying the
open set condition (even the convex open set condition, that is, the invariant open set
is a convex set) without using any rotations or reflections, such that some particu-
lar connected component of the attractor is not locally connected. As a result, only
very specific self-similar sets that are generated from a strict grid structure or totally
disconnected can have the nice property that every connected component is locally
connected.

2. The counterexample
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Figure 1. An illustration of the IFS ˆ and the attractor K

Please see Figure 1 for an illustration. It is easy to check that
S24
iD1'i .Œ0;1�

2/� Œ0;1�2

and '1.Œ0; 1�2/; : : : ; '24.Œ0; 1�2/ have disjoint interiors. In particular, ˆ satisfies the
(convex) open set condition. Denote by K the attractor associated with ˆ. Such a
self-similar set is sometimes referred to as a Lalley–Gatzouras carpet ([5]).

We first prove that there are an infinite number of long, “well separated” line
segments all hitting the left side of the unit square, which is the key ingredient.

Let C1 be the Cantor set generated by the IFS
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translation vectors a7; a13, we have C1 � ¹0º � K. For x 2 C1, write
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to be the line segment passing through .x; 0/ and of slope 4. Note that the other
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�
x C 1

4
; 1
�
.

Lemma 2. The union
S
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Proof. Fix any x 2 C1 and y 2 Œ0; 1�. Write x D
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From the construction and the illustration in Figure 1, it is not hard to see that there
is a vacant strip (avoiding K) between each pair of different segments in ¹`x W x 2
C1º. We omit the tedious computation here. In particular, each pair of these segments
belong to different connected components of K.

Next, let us look at the left side of Œ0;1�2. LetC2 be the Cantor set generated by the
IFS
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6
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¯
. Recalling the translation vectors a1; a2, we have ¹0º � C2 � K.

For z D
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�t 2 C2 (where zt 2 ¹0; 1º), it is convenient to use the following
notations:
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Roughly speaking, x.z/ can be thought of as the element in C1 that is, in a certain
sense, the “inverse” of z.
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Lemma 3. For every z 2 C2, all of Ez , L0.z/ and L1.z/ are line segments in K.

Recall that the two endpoints of `x are .x; 0/ and .x C 1
4
; 1/, respectively.

Proof. By the previous lemma, Ez; L0.z/; L1.z/ are of course subsets of K. So it
suffices to show that they are all segments. For 3 � i � 5, 'i .`x.z// has an endpoint
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So they share a common point. Due to the “same slope” fact, Ez D
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that is, they share a common point. As a result, L0.z/ is a line segment.
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Moreover, we can conclude from the above lemma that:
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The lemma below shows thatK contains infinitely many line segments hitting the left
side of Œ0; 1�2.

Lemma 4. If we denote by `z the line passing through .0; z/ and of slope 4, thenS
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while the latter one has an endpoint
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Lemma 5. There exists some connected component ofK that is not locally connected.

Proof. Due to the existence of '19; : : : ; '24, the right side `� WD ¹1º � Œ0; 1� is con-
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infinitely many parallel line segments that are mutually “well separated” (recalling
this property of ¹`x W x 2 C1º). Moreover, for every x 2 C1, there is a sequence
¹xnº � C1 such that the distance between `xn

and `x goes to 0 as n!1. Therefore,
C is not locally connected at any interior point of '7'4.`x/.
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