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Hausdorff dimension of limsup sets of isotropic rectangles in
Heisenberg groups

Markus Myllyoja

Abstract. A formula for the Hausdorff dimension of typical limsup sets generated by randomly
distributed isotropic rectangles in Heisenberg groups is derived in terms of directed singular
value functions.

1. Introduction

In this paper, we study the Hausdorff dimension of a typical limsup set generated
by rectangles, where the centers of the rectangles are distributed randomly according
to the Lebesgue measure. A motivation for our studies is to find counterparts in the
Heisenberg setting for results known about random limsup sets in Euclidean spaces.

Recently, dimensional properties in Heisenberg groups have been studied widely.
Usually, the objective of these studies is to consider some results known in Euclidean
spaces and find the correct analogues in the Heisenberg setting. Since the relation
between Hausdorff dimension with respect to the Euclidean and the Heisenberg met-
rics is not a trivial one [4,5], the Euclidean dimension results do not directly translate
to results in Heisenberg groups and more careful consideration is required.

Hausdorff dimensions of self-similar and self-affine sets in the Heisenberg setting
have been studied, for example, in [1, 5, 6, 8]. In [2, 3, 16, 18], the authors study the
Hausdorff dimensions of projections and slices in Heisenberg groups. The two types
of natural projections and slices in Heisenberg groups are the horizontal and vertical
ones. The vertical projections are not quite as well-behaved as the horizontal projec-
tions in the sense that they are, for example, not Lipschitz continuous. This means
that methods employed in the Euclidean projection theorems cannot be used in the
Heisenberg setting and the theorems themselves turn out to have a different character
than their Euclidean counterparts.
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Our focus is on the dimensional properties of random limsup sets in Heisenberg
groups. Given a space X and a sequence .An/ of subsets of X , the limsup set gener-
ated by the sequence .An/ is the set of points in X which belong to infinitely many of
the sets An, that is,

lim sup
n!1

An D

1\
nD1

1[
kDn

Ak :

The study of limsup sets has a long history, and can be traced back at least as far
as the Borel–Cantelli lemma. These limsup sets are essential objects in the study of
Besicovitch–Eggleston sets related to k-adic expansions of real numbers [7,10], and in
Diophantine approximation [19,22]. For developments in Diophantine approximation
in Heisenberg groups, see [27–29].

Dimensional properties of random limsup sets have been studied since [15]. There,
the authors considered limsup sets of arcs whose centers are randomly placed on
the unit circle where the randomness is determined by the Lebesgue measure. They
obtained a formula for the Hausdorff dimension of a typical limsup set generated by
arcs.

Since [15], there have been many developments in the study of dimensional prop-
erties of random limsup sets in metric spaces. For various results, see [9, 13, 14, 17,
20, 21, 24–26]. Together, the dimension results in these papers yield the almost-sure
values of Hausdorff dimensions of random limsup sets in varying scenarios depend-
ing on properties of the ambient space, the sets generating the limsup sets and the
measure according to which the sets are distributed.

If the underlying space is a Riemann manifold and the driving measure is the
Lebesgue measure, then the generating sets can be any Lebesgue measurable sets sat-
isfying some necessary density conditions. If the underlying space is the Euclidean
or the symbolic space and the generating sets are balls, then the restrictions imposed
on the measure can be relaxed a bit, although some special properties, like the mea-
sure being a Gibbs measure, are required. The underlying space can be taken to be
any Ahlfors regular metric space provided that the generating sets are balls and the
randomness is determined by the natural measure.

In paper [12], the authors consider random limsup sets generated by rectangles in
products of Ahlfors regular metric spaces. There, the Lipschitz continuity of projec-
tions plays an essential role, hence the same methods are not readily available when
considering rectangles in Heisenberg groups and some new machinery is required.

In the paper [11], the authors obtained an almost-sure formula for the Hausdorff
dimension of a random limsup set generated by a certain type of rectangles in the first
Heisenberg group. To accomplish this, they generalized certain Euclidean results to
the context of unimodular groups (see Theorem 4.1). They then carried out calcula-
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tions specific to these types of rectangles and the first Heisenberg group to complete
the proof.

With the definition of rectangles given in [11], the methods presented in this
paper can be used to extend the dimension formula to higher-dimensional Heisen-
berg groups (see Remark 4.2 below). However, in Heisenberg groups there are also
other natural ways of defining rectangles and the purpose of this paper is to obtain
a dimension formula that is valid for limsup sets generated by these types of rectan-
gles. In our setting, rectangles are defined using the natural horizontal and vertical
projections, which is compatible with the setting in the papers [2, 3, 16, 18].

The paper is organized as follows: first, we fix some notations and introduce the
required concepts in order to present our main result (see Theorem 2.1 below). In
Section 3, we establish upper bounds for the Hausdorff content and lower bounds for
the capacity of rectangles. In Section 4, we combine the results of Section 3 with a
theorem proved in [11] to prove Theorem 2.1. We end the paper with a brief comment
on the main result in [11] and its generalization to higher dimensional Heisenberg
groups.

2. Notation and main result

In a metric space .X; d/, we write B.x; r/ and B.x; r/ for the open and closed balls
with radius r and center x 2 X , respectively. Throughout this paper, a ^ b denotes
the minimum of two real numbers a and b. For x; y 2 Rm we denote the Euclidean
norm of x simply by jxj and we write hx; yi for the Euclidean inner product of x and
y. The dimension m of the Euclidean space in question will be clear from context.

Before stating our main result, we introduce the Heisenberg groups and discuss
their properties which we need in our analysis. For more details on general properties
of Heisenberg groups, we refer the reader to [3] and [23].

The Heisenberg group H WD Hn is the set R2nC1 equipped with the group opera-
tion

p � p0 D .x C x0; y C y0; z C z0 C 2�..x; y/; .x0; y0///

D

�
x C x0; y C y0; z C z0 C 2

nX
iD1

.xiy
0
i � yix

0
i /
�

D .x C x0; y C y0; z C z0 C 2.hx; y0i � hy; x0i//



M. Myllyoja 222

where p D .x;y; z/;p0 D .x0; y0; z0/ 2Rn �Rn �R and � is the standard symplectic
form on R2n given by the formula

�..x; y/; .x0; y0// D

nX
iD1

.xiy
0
i � yix

0
i /:

The neutral element of H is .0; 0; 0/ and the inverse of an element p D .x; y; z/ is
p�1 D .�x;�y;�z/. There is a norm on H given by

kpkH D
�
j.x; y/j4 C z2

�1=4
which determines a left-invariant metric via the formula

dH.p; p
0/ D kp�1p0kH

D

�
j.x0; y0/ � .x; y/j4 C

�
z0 � z � 2.hx; y0i � hy; x0i/

�2�1=4
:

The Haar measure on H is the Lebesgue measure, which is invariant under both left
and right translations so that H is a unimodular group. In the metric dH, the Lebesgue
measure of B.p; r/ is proportional to r2nC2 and thus, the metric space .H; dH/ has
Hausdorff dimension 2nC 2. The vertical line through the origin is

L.0/ D ¹p 2 H j x D y D 0º;

and the vertical line through p is the set

L.p/ WD pL.0/ D ¹.x; y; z0/ 2 H j z0 2 Rº:

Moreover, the horizontal plane through the origin is

H.0/ D ¹p 2 H j z D 0º

and the horizontal plane through p is defined as

H.p/ WD pH.0/ D ¹p0 2 H j z0 D z C 2.hx; y0i � hy; x0i/º:

Note that dH.p; p
0/ � j.x; y/ � .x0; y0/j for every p and p0 in H, with an equality if

and only if p0 2 H.p/.
In the following, we work with homogeneous subgroups of H. These are the

closed subgroups of H which are invariant under the intrinsic dilations .x; y; z/ 7!
.sx; sy; s2z/, s > 0. There are two kinds of homogeneous subgroups of H, namely,
the horizontal subgroups and vertical subgroups. A horizontal subgroup V of H is of
the form V D V � ¹0º, where V is an isotropic subspace of R2n, that is, V � R2n is
a linear subspace with the property that �jV D 0. A vertical subgroup V? � H is a
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subgroup of the form V? D V ? �R, where V ? �R2n is the orthogonal complement
of an isotropic subspace V . The dimension (as a vector space) of a nontrivial isotropic
subspace V � R2n can be any value from the set ¹1; : : : ; nº.

Given any linear subspace W � R2n, we denote the orthogonal projection onto
W by PW WR2n ! W . Each isotropic subspace V � R2n yields a semidirect group
splitting of H in two ways. Firstly, we obtain the Heisenberg group as the semidirect
product H D V? Ì V since each point p 2 H can be uniquely written as

p D .PV?.x; y/; z � 2�.PV?.x; y/; PV .x; y// � .PV .x; y/; 0/

where .PV?.x;y/; z � 2�.PV?.x;y/;PV .x;y/// 2 V? and .PV .x;y/; 0/ 2 V . This
gives rise to well-defined horizontal and vertical projections

PV WH! V ; PV .p/ D .PV .x; y/; 0/

and

PV? WH! V?; PV?.p/ D .PV?.x; y/; z � 2�.PV?.x; y/; PV .x; y///:

On the other hand, we have that H D V Ì V?, since each point p has a unique
representation

p D .PV .x; y/; 0/ � .PV?.x; y/; z C 2�.PV?.x; y/; PV .x; y///

where
QV .p/ WD .PV .x; y/; 0/ 2 V

and
QV?.p/ WD .PV?.x; y/; z C 2�.PV?.x; y/; PV .x; y/// 2 V?

determine the horizontal and vertical projections (respectively) with respect to this
group splitting. The horizontal projections are Lipschitz continuous and also group
homomorphisms, whereas the vertical projections are neither.

For 1 � d � n, we write

Gh.n; d/ D ¹V � R2n j V is a d -dimensional isotropic subspace of R2nº:

The set Gh.n; d/ is called the isotropic Grassmannian and it is a submanifold of
the usual Grassmannian manifold G.2n; d/ consisting of all d -dimensional linear
subspaces of R2n.

A matrix M 2M.2n;R/ is called symplectic, if it preserves the symplectic form
� . A matrix which is both symplectic and orthogonal is called orthosymplectic. Write

U.n/ D ¹M 2M.2n;R/ jM is orthosymplecticº:
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The set U.n/ with matrix multiplication forms a group which acts transitively on
Gh.n; d/ (for the proof of this fact, see [3, Lemma 2.1]). Note also that since any
U 2 U.n/ preserves both the form � and the Euclidean inner product, the induced
map eU WH! H, .x; y; z/ 7! .U.x; y/; z/ preserves both the Heisenberg norm and
the metric.

Given V 2 Gh.n; d/ and a pair of positive numbers r D .r1; r2/, we define the
closed rectangle of type 1 centered at the origin to be the set

R1;V .0; r/ WD ¹p
0
j kPV .p

0/kH � r1; kPV?.p
0/kH � r2º;

and the closed rectangle of type 1 centered at p is defined by

R1;V .p; r/ WDpR1;V .0; r/

D¹p0 j kPV .p
�1p0/kH � r1; kPV?.p

�1p0/kH � r2º:

We define rectangles with respect to the group splitting H D V Ì V? similarly
with Q in place of P . More precisely, we let

R2;V .0; r/ WD ¹p
0
j kQV .p

0/kH � r1; kQV?.p
0/kH � r2º

be the closed rectangle of type 2 centered at the origin and we define

R2;V .p; r/ WDpR2;V .0; r/

D¹p0 j kQV .p
�1p0/kH � r1; kQV?.p

�1p0/kH � r2º

to be the closed rectangle of type 2 centered at p.
By the left-invariance of the metric and the relations

pPV?.p
�1p0/PV .p

�1p0/ D p0 D pQV .p
�1p0/QV?.p

�1p0/

we obtain the following interpretations for the rectangles. The rectangle R1;V .p; r/ is
the set of such points that can be reached from the center p by first moving “vertically”
in pV? a distance at most r2 to end up at a point, say q 2 pV?, and then moving
“horizontally” in qV a distance at most r1. For the rectangle R2;V .p; r/, we first
move from the center “horizontally” in pV a distance at most r1 and then “vertically”
in qV? a distance at most r2.

Figures 1 and 2 shed light into what the rectangles look like in the first Heisenberg
group when V is the x-axis. For explicit formulas defining the rectangles in this case,
see the proof of Proposition 3.2.

While the rectangles of type 1 and type 2 look rather similar and have, for exam-
ple, the same Lebesgue measure, they are quite different objects in the eyes of the
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Figure 1. Rectangles of type 2 centered at the origin with r D .1; 1=2/ and r D .1=2; 1/,
respectively.

Heisenberg metric. Indeed, for type 2 rectangles depicted in Figure 1, the set of points
sharing the same x-coordinate is just the intersection

B..x; 0; 0/; r2/ \ .¹xº �R2/:

On the other hand, for type 1 rectangles this set of points is smaller than r2 in some
directions and much larger in some other directions provided that the x-coordinate is
large compared to r2. Because of this, the analysis on type 1 rectangles is (in the case
r1 > r2) somewhat more complicated as we will see later in the proofs of our results.

Figure 3 demonstrates the effect of translation on rectangles.
It is already evident from the rectangles above that the shape of a translated rect-

angle depends greatly on the center point p. When considering a rectangle centered
at some arbitrary point, the following formulas are useful. For any p 2 H, it is true
that

pV D ¹p0 j p�1p0 2 V º

D ¹p0 j .x0; y0/ � .x; y/ 2 V; z0 D z C 2.hx; y0i � hy; x0i/º

and

pV? D ¹p0 j p�1p0 2 V?º D ¹p0 j .x0; y0/ � .x; y/ 2 V ?º:

For an integer d 2 ¹1; : : : ; nº, a pair of positive numbers as r D .r1; r2/ and
t 2 Œ0; 2nC 2�, we define the directed singular value functionsˆt1 andˆt2 as follows:
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Figure 2. Rectangles of type 1 centered at the origin with r D .1; 1=2/ and r D .1=2; 1/,
respectively.

If r1 � r2, let

ˆt1.r; d/ D ˆ
t
2.r; d/ D

´
r t2 if t 2 Œ0; 2nC 2 � d�;

r
tCd�2.nC1/
1 r

2.nC1/�d
2 if t 2 Œ2nC 2 � d; 2nC 2�:

If r1 � r2, let

ˆt1.r; d/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
r t1 if t 2 Œ0; d �;

r
tCd

2

1 r
t�d

2

2 if t 2 Œd; d C 2�;

rdC11 r t�d�12 if t 2�d C 2; 2nC 1Œ;

r2nC2Cd�t1 r
2t�.2nC2Cd/
2 if t 2 Œ2nC 1; 2nC 2�;

and let

ˆt2.r; d/ D

´
r t1; if t 2 Œ0; d �;

rd1 r
t�d
2 if t 2 Œd; 2nC 2�:

Denote by � the Lebesgue measure on H and let W � H be an open bounded
subset of H. Define the probability space .�;P / by�DHN and P D .�W /N , where
�W D �.W /

�1�jW .
For a sequence .dk/ 2 ¹1; : : : ; nºN , a sequence V WD .Vk/ of isotropic subspaces

Vk 2Gh.n;dk/, a sequence j WD .jk/2 ¹1;2ºN of types, a bounded sequence r WD .rk/
of pairs of positive numbers and ! D .!1; !2; : : :/ 2 �, let

Ej;V ;r.!/ D lim sup
k!1

Rjk ;Vk
.!k; rk/:
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Figure 3. The rectangle R2;V .0; .1; 1=2// from Figure 1 translated to the centers .1; 0; 0/,
.0; 1; 0/ and .1; 1; 0/, respectively.

We are now ready to state our main theorem.

Theorem 2.1. Given sequences .dk/, V D .Vk/, j D .jk/ and r D .rk/ as above,

dimHEj;V ;r.!/ D inf
°
t
ˇ̌̌ X

k

ˆtjk
.rk; dk/ <1

±
^ .2nC 2/

for P -almost every ! 2 �.

Remark 2.2. (a) If r1 D r2 D �, thenˆtj .r; d/D �
t for every j; t and d . In such

a case, the rectangles are comparable to balls in the sense that

B.0; c�1j;d�/ � Rj;V .0; r/ � B.0; cj;d�/

for some constant cj;d > 1 depending on j and d but independent of � and
V 2Gh.n;d/. If the sequence .rk/ of pairs of positive numbers is contained in
the diagonal ¹.x; x/ j x > 0º, then Theorem 2.1 reduces to the known formula
for limsup sets of balls in Ahlfors regular metric spaces (for details, see [21,
Theorem 2.1] and [20, Proposition 4.7]).

(b) We excluded the endpoints d C 2 and 2nC 1 in the definition of ˆt1.r; d/ for
r1 � r2 to emphasize the fact that in the first Heisenberg group H1 the piece
rdC11 r t�d�12 does not exist. Indeed, if nD 1 then automatically d D 1 (hence
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d C 2 D 2nC 1) and for r1 � r2 the definition of ˆt1.r; 1/ reduces to

ˆt1.r; 1/ D

8̂̂<̂
:̂
r t1 if t 2 Œ0; 1�;

r
tC1

2

1 r
t�1

2

2 if t 2 Œ1; 3�;

r5�t1 r2t�52 if t 2 Œ3; 4�:

(c) In the definition of rectangles, we could have first fixed our group splitting as
H D V? Ì V or H D V Ì V?, and then provided the dimension formula for
rectangles with respect to said group splitting. However, we chose to allow
mixing rectangles of type 1 and type 2 in the sequence generating the ran-
dom limsup set, since this introduces no additional complexity to the proof of
Theorem 2.1 and yields a slightly more general result.

3. Hausdorff content and energy of rectangles

Our strategy in the proof of Theorem 2.1 is as follows: in Proposition 3.2, we obtain
deterministic upper bounds for the Hausdorff content of rectangles, which we later use
to obtain an upper bound for the dimension of a limsup set generated by rectangles. In
Proposition 3.3, we obtain deterministic lower bounds for the capacity of rectangles.
With the help of Theorem 4.1, these lower bounds then turn into lower bounds for the
dimension in Theorem 2.1. Before establishing the upper and lower bounds, we recall
the relevant definitions.

The t -dimensional Hausdorff content (with respect to the Heisenberg metric) of a
set A � H is defined by

H t
1.A/ D inf

² 1X
kD1

diam.Ck/t
ˇ̌̌̌
A �

1[
kD1

Ck

³
;

where the diameter of a set C � H in the Heisenberg metric is denoted by diam.C /.
For t > 0 and a Borel measure � on H, the t -energy of � is defined by

It .�/ D

Z Z
dH.p; q/

�t d�.p/ d�.q/:

We define the t -energy of a Borel set A � H to be the quantity It .A/ D It .�jA/.
The t -capacity of a Borel set A � H is defined by

Capt .A/ D sup¹It .�/�1 j � 2 P .A/º;

where P .A/ denotes the space of Borel probability measures on H which are sup-
ported on A.
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We have now defined the necessary concepts and we are ready to proceed with the
proof.

Lemma 3.1. Let d 2 ¹1; : : : ; nº and let V; V 0 2 Gh.n; d/. Then for every j , t and r
it is true that

H t
1

�
Rj;V .0; r/

�
D H t

1

�
Rj;V 0.0; r/

�
:

Proof. We first verify the claim for type 1 rectangles. Since U.n/ acts transitively
on Gh.n; d/, there exists U 2 U.n/ such that U.V 0/ D V , which implies that also
U.V 0?/ D V ?. Hence, for any point p D .x; y; z/ 2 H we have that

U.PV 0.x; y// D PV .U.x; y// and U.PV 0?.x; y// D PV?.U.x; y//:

Thus, for the induced map eU WH! H we obtain that

PV .eU.p// D .PV .U.x; y//; 0/ D .U.PV 0.x; y//; 0/ D eU.PV 0.p//

and (recalling that the form � is invariant under U )

PV?.eU.p// D .PV?.U.x; y//; z � 2�.PV?.U.x; y//; PV .U.x; y////
D .U.PV 0?.x; y//; z � 2�.U.PV 0?.x; y//; U.PV 0.x; y////

D .U.PV 0?.x; y//; z � 2�.PV 0?.x; y/; PV 0.x; y///

D eU.PV 0?.p//:

Thus, p 2 R1;V 0.0; r/ if and only if eU.p/ 2 R1;V .0; r/. Since eU preserves the metric
dH, it also leaves the Hausdorff content invariant and thus

H t
1

�
R1;V 0.0; r/

�
D H t

1

�
R1;V .0; r/

�
:

Repeating the same arguments for rectangles of type 2 completes the proof.

Proposition 3.2. For every j 2 ¹1; 2º and t 2 Œ0; 2nC 2�,

H t
1

�
Rj;V .p; r/

�
. ˆtj .r; d/;

where the implicit constant depends on n, t , d and j , but not on the radius r , the
center p or the subspace V 2 Gh.n; d/ determining the horizontal and vertical sub-
groups.

Proof. We first consider the more delicate case of rectangles of type 1. At the end of
the proof, we see how similar arguments can be used to obtain the bounds also in the
simpler case of type 2 rectangles.

Since the metric dH is left-invariant, the Hausdorff content H t
1 is left-invariant

also and we may assume that p D .0; 0; 0/. By Lemma 3.1, we may also assume that
V is the isotropic subspace Rd � ¹0º � R2n. Write R D R1;V .0; r/.
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For points u 2 Rn, we use from now on the shorthand notations

ud D .u1; : : : ; ud ; 0; : : : ; 0/ and u? D .0; : : : ; 0; udC1; : : : ; un/:

Then, for p D .x; y; z/ 2 H we have that

PV .x; y/ D .x
d ; 0/ and PV?.x; y/ D .x

?; y/:

The horizontal and vertical projections thus take the form

PV .p/ D .PV .x; y/; 0/ D .x
d ; 0; 0/

and

PV?.p/ D .PV?.x; y/; z � 2�.PV?.x; y/; PV .x; y///

D
�
x?; y; z � 2�..x?; y/; .xd ; 0//

�
D
�
x?; y; z C 2hxd ; yd i

�
:

The definition of the rectangle now reads as

R D ¹p j kPV .p/kH � r1; kPV?.p/kH � r2º

D ¹p j jxd j � r1; j.x
?; y/j4 C jz C 2hxd ; yd ij2 � r42 º:

Observe that if p 2 R, then j.x; y/j �
p
2max.r1; r2/ and

jzj � r22 C 2jhx
d ; yd ij � r22 C 2jx

d
jjyd j � 3max.r21 ; r

2
2 /

hence

H t
1.R/ � .diam.R//t . max.r t1; r

t
2/:

Thus, it suffices to show that if r1 � r2 then

H t
1.R/ . r

tCd�2.nC1/
1 r

2.nC1/�d
2

and if r1 � r2 then

H t
1.R/ . min

�
r

tCd
2

1 r
t�d

2

2 ; rdC11 r t�d�12 ; r2nC2Cd�t1 r
2t�.2nC2Cd/
2

�
:

Suppose first that r1 � r2. Then given any points p 2 R and p0 2 B.p; r1/, we
have the estimates

jx0d j � jxd j C jx0d � xd j � 2r1; j.x
0?; y0/j � r1 C r2 � 2r2
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and

jz0j � jz0 � z � 2.hx; y0i � hy; x0i/j C jzj C 2.jxjjy0j C jyjjx0j/

� r21 C 3r
2
2 C 2..jx

d
j C jx?j/jy0j C jyj.jx0d j C jx0?j// � 20r22 :

Thus [
p2R

B.p; r1/ � ¹p
0
j jx0d j � 2r1; j.x

0?; y/j � 2r2; jz
0
j � 20r22 º DW A:

Note that the Lebesgue measure of this set is �.A/ � r2.nC1/�d2 rd1 .
Let ¹piºMiD1 be a maximal collection of points with the properties that pi 2 R for

each i and dH.pi ; pj / � r1 for i ¤ j . Then the balls B.pi ; r1=2/ are disjoint and

R �

M[
iD1

B.pi ; r1/ � A:

Using the fact that �.B.p; "// D �.B.0; "// � "2nC2 for all p 2 H and " > 0, we
obtain that

M�.B.0; r1=2// D �

� M[
iD1

B.pi ; r1=2/

�
� �.A/ � r

2.nC1/�d
2 rd1

which in turn yields

M .
r
2.nC1/�d
2 rd1

r2nC21

D

�r2
r1

�2.nC1/�d
:

Since R �
SM
iD1 B.pi ; r1/, we obtain the bound

H t
1.R/ .

�r2
r1

�2.nC1/�d
r t1 D r

tCd�2.nC1/
1 r

2.nC1/�d
2

as desired.
We now consider the case r1 � r2. We first establish the bound

H t
1.R/ . r

tCd
2

1 r
t�d

2

2 : (3.1)

To this end, we estimate the distance between a point p 2 R and its horizontal pro-
jection .xd ; 0; 0/ D PV .p/ 2 V . Observe now that for p 2 R it holds that

jz � 2hxd ; yd ij � jz C 2hxd ; yd ij C 4jhxd ; yd ij � r22 C 4r1r2 � 5r1r2:
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Hence, we obtain that

dH.PV .p/; p/ D
�
j.x?; y/j4 C jz � 2hxd ; yd ij2

�1=4
�
�
r42 C .5r1r2/

2
�1=4

�
4
p
26.r1r2/

1=2
� 3.r1r2/

1=2:

Now cover the Euclidean ball BRd .0; r1/ with

M .
�
r1=
p
r1r2

�d
D .r1=r2/

d=2

Euclidean ballsBRd .p0i ;
p
r1r2/. Then the points pi WD .p0i ; 0; 0;0/ 2V . Given p 2R

there exists an index j 2 ¹1; : : : ;M º such that

p
r1r2 � jx

d
� .p0j ; 0/j D dH.PV .p/; pj /

hence dH.p; pj / � 4.r1r2/
1=2. This yields the desired bound

H t
1.R/ . .r1=r2/

d=2.r1r2/
t=2
D r

tCd
2

1 r
t�d

2

2 :

To obtain the remaining upper bounds, we use similar “volume-based” arguments
as we did in the previous case r1 � r2. Consider a radius % 2 Œr22=r1; r2� and suppose
that p 2 R and p0 2 B.p; %/. Then

x0d j � r1 C % � 2r1; j.x
0?; y0/j � r2 C % � 2r2

and

jz0 C 2hx0d ; y0d ij � jz0 � z � 2.hx; y0i � hy; x0i/j C jz C 2hxd ; yd ij

C 2jhx0d ; y0d i � hxd ; yd i C hx; y0i � hy; x0ij

� %2 C r22 C 2jhx
0d ; y0d i � hxd ; yd i C hxd ; y0d i � hyd ; x0d ij

C 2jhx?; y0?i � hy?; x0?ij

� %2 C r22 C 2jhx
0d
C xd ; y0d � yd ij

C 2.jx?jjy0?j C jy?jjx0?j/

� %2 C r22 C 6r1%C 8r
2
2 � 16r1%:

Thus[
p2R

B.p; %/

� ¹p0 j jx0d j � 2r1; j.x
0?; y0/j � 2r2; jz

0
C 2hx0d ; y0d ij � 16r1%º DW A%:
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Note that �.A%/� rdC11 r2n�d2 %. The argument used above in the case r1 � r2 implies
that we can cover R withM balls of radius r2, or withN balls of radius r22=r1, where

M .
rdC11 r2n�d2 r2

r2nC22

D

�r1
r2

�dC1
and

N .
rdC11 r2n�d2 r22=r1

.r22=r1/
2nC2

D

�r1
r2

�2nC2Cd
:

Thus

H t
1.R/ . min

��r1
r2

�dC1
r t2;
�r1
r2

�2nC2Cd
r2t2 r

�t
1

�
D min

�
rdC11 r t�d�12 ; r2nC2Cd�t1 r

2t�.2nC2Cd/
2

�
and the proof of the upper bound for rectangles of type 1 is complete.

We now consider the case of rectangles of type 2. Proceeding as we did in the
previous case, we may once again assume that the center p is the origin and that
V D Rd � ¹0º. The rectangle then takes the form

R0 WD R2;V .0; r/ D
®
p j jxd j � r1; j.x

?; y/j4 C jz � 2hxd ; yd ij2 � r42
¯
:

Note that by the argument given in the previous case, we still have the same trivial
bounds as before, that is, H t

1.R
0/ � jR0jt . max.r t1; r

t
2/. In the case r1 � r2, we

proceed exactly as we did for the type 1 rectangles and we find that[
p2R0

B.p; r1/ � A;

where A is the set defined in the type 1 situation. Thus, we obtain the same upper
bound as for the type 1 rectangles and the case r1 � r2 is proved. In the case r1 � r2,
we follow similar arguments as we did to establish the upper bound (3.1). For a point
p 2 R0, we have from the definition of R0 that

dH.PV .p/; p/ D
�
j.x?; y/j4 C jz � 2hxd ; yd ij2

�1=4
� r2:

Thus, by covering the Euclidean ball BRd .0; r1/ withM 0 . .r1=r2/
d Euclidean balls

BRd .pdi ; r2/, we see as before that for any p 2R0 there exists an index i 2 ¹1; : : : ;M 0º
such that dH.p;pi /� 2r2, where pi is defined in the same way as in the proof of (3.1).
This yields the bound

H t
1.R

0/ . rd1 r
t�d
2

and the proposition is completely proved.
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Proposition 3.3. For every isotropic subspace V 2 Gh.n; d/, a pair of positive num-
bers r D .r1; r2/ and for every t 2�0; 2nC 2ŒnZ, we have the following:

If r1 � r2, d D 1 and t 2�3; 2nC 1ŒnZ, then for every s 2�btc; t Œ, we have that

Caps.R1;V .0; r// & ˆt1.r; d/r
s�t
1 : (3.2)

For all other possible choices of V 2 Gh.n; d/, j 2 ¹1; 2º, r and t we have that

Capt .Rj;V .0; r// & ˆtj .r; d/: (3.3)

The implicit constants above depend on n, t , s, j and d , but not on r or V 2Gh.n;d/.

Proof. As in the proof of Proposition 3.2, we begin by considering the more difficult
case of type 1 rectangles. We obtain the desired results for the rectangles of type 2 at
the end of the proof.

Let R D R1;V .0; r/. Directly from the definition of capacity, we obtain that

Capt .R/ �
�.R/2

It .R/
:

Recall that dH and � are invariant under the map eU WH! H induced by U 2 U.n/.
Also, we recall from the proof of Proposition (3.2) that U.n/ acts transitively on
Gh.n; d/ and if U 2 U.n/ maps V 0 to V , then the induced map eU maps R1;V 0.0; r/
to R1;V .0; r/. Thus, to estimate the quantity �.R/2

It .R/
, we may again assume that the

subspace V D Rd � ¹0º. The rectangle is then again the set

R D
®
p j jxd j � r1; j.x

?; y/j4 C jz C 2hxd ; yd ij2 � r42
¯
:

Observe that for any fixed xd with jxd j � r1, the slice

¹p0 2 R j x0d D xd º

has Lebesgue measure comparable to r2nC2�d2 . Hence, Fubini’s theorem implies that
�.R/ � rd1 r

2nC2�d
2 . We thus obtain the bound

Capt .R/ &
r2d1 r4nC4�2d2

It .R/
: (3.4)

In the following, we show that if r1 � r2, then

It .R/ .

´
r2d1 r4nC4�2d�t2 if t 2�0; 2nC 2 � dŒnZ;

r2nC2Cd�t1 r2nC2�d2 if t 2�2nC 2 � d; 2nC 2ŒnZ;
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and if r1 � r2, then

It .R/ .

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

r2d�t1 r4nC4�2d2 if t 2�0; d ŒnZ;

r
3d�t

2

1 r
8nC8�3d�t

2

2 if t 2�d; d C 2ŒnZ;

rd�11 r4nC5�d�t2 if t 2�d C 2; 2nC 1ŒnZ and d � 2;

r4nC4�t2 log
�
2r1
r2

�
if t 2�3; 2nC 1ŒnZ and d D 1;

r tCd�2n�21 r6nC6�d�2t2 if t 2�2nC 1; 2nC 2Œ:

Apart from the bound involving the logarithm, the rest of the above bounds combined
with (3.4) clearly imply (3.3). We show that (3.2) follows from the logarithm bound
at the end of this proof.

Note that dH and � are invariant under the map eU WH!H induced by U 2 U.n/.
Recall from the proof of Proposition 3.2 that U.n/ acts transitively on Gh.n; d/ and
if U 2 U.n/ maps V 0 to V , then the induced map eU maps R1;V 0.0; r/ to R1;V .0; r/.
Thus, to estimate It .R/, we may again assume that V D Rd � ¹0º. Let

Rt .p/ D

Z
R

dH.p; q/
�t �.q/

so that It .R/ D
R
R
Rt .p/ d�.p/. Let p D .�; y0; z0/ 2 R and for q D .x; y; z/ let

gp.q/ D max
�
jxd � �d j; j.x?; y/ � .�?; y0/j; jz � z0 � 2.h�; yi � hy0; xi/j

1=2
�
:

Note that

R � ¹q j jxd j � r1; j.x
?; y/j � r2; jz C 2hx

d ; yd ij � r22 º DW A:

For a � 0 define B.a/ WD ¹q j gp.q/ � aº. Since gp.q/ � dH.p; q/, we obtain that

Rt .p/ .
Z
A

gp.q/
�t d�.q/ D

Z 1
0

�.A \ ¹q j gp.q/
�t
� aº/ da

�

Z 1
0

�.A \ B.a//a�.tC1/da:

We must estimate now the Lebesgue measure of the set

A \ B.a/ D
®
q j jxd j � r1; j.x

?; y/j � r2; jz C 2hx
d ; yd ij � r22 ; jx

d
� �d j � a;

j.x?; y/ � .�?; y0/j � a; jz � z0 � 2.h�; yi � hy0; xi/j � a
2
¯
:

Suppose first that r1 � r2 and let t 2�0; 2n C 2ŒnZ. Note that for any fixed .x; y/,
the z-coordinate of a point q 2 A \ B.a/ must come from an interval with length
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min.2r22 ; 2a
2/. By taking into account the constraints on the first 2n-coordinates,

Fubini’s theorem yields

�.A \ B.a// . min
�
a2a2n�dad ; a2a2n�d rd1 ; r

2
2 r
2n�d
2 rd1

�
D min

�
a2nC2; rd1 a

2nC2�d ; rd1 r
2nC2�d
2

�
:

We thus obtain

Rt .p/ .
Z r1

0

a2nC2a�.tC1/ daC

Z r2

r1

rd1 a
2nC2�da�.tC1/ da

C

Z 1
r2

rd1 r
2nC2�d
2 a�.tC1/ da

. max
�
r2nC2�t1 ; rd1 r

2nC2�d�t
2

�
:

Hence

It .R/ . �.R/max
�
r2nC2�t1 ; rd1 r

2nC2�d�t
2

�
� max

�
r2nC2Cd�t1 r2nC2�d2 ; r2d1 r4nC4�2d�t2

�
D

´
r2d1 r4nC4�2d�t2 if t � 2nC 2 � d;

r2nC2Cd�t1 r2nC2�d2 if t � 2nC 2 � d:

The case r1 � r2 is thus proved.
Suppose then that r1 � r2 and let t 2�0; 2n C 2Œ. In this case, we need a more

careful estimate for the Lebesgue measure ofA\B.a/. We collect the required upper
bounds in the following sublemma.

Sublemma 1. For every a � 0, we have that

�.A \ B.a// . min
�
a2nC2; ad r2nC2�d2 ; rd1 r

2nC2�d
2

�
:

If 0 < a � j�d j, then we also have the bound

�.A \ B.a// . min
�
a2nC1r22
j�d j

;
adC2r2nC1�d2

j�d j

�
:

Proof. In the proof of this lemma, to make reading less cumbersome, we slightly
deviate from our usual notation and we write xd D .x1; : : : ; xd / 2 Rd instead of
xd D .x1; : : : ; xd ; 0; : : : ; 0/ 2 Rn and similarly, x? D .xdC1; : : : ; xn/ 2 Rn�d .

For every a� 0, we note as before that for any fixed first 2n coordinates .x;y/, the
z-coordinate of a point q 2 A\ B.a/ must belong to the intersection of two intervals
of lengths 2r22 and 2a2, respectively. Noting also that then

xd 2 BRd .0; r1/ \ BRd .�d ; a/
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and
.x?; y/ 2 BR2n�d .0; r2/ \ BR2n�d ..�?; y0/; a/;

Fubini’s theorem yields

�.A \ B.a// . min
�
a2nC2; ad r2nC2�d2 ; rd1 r

2nC2�d
2

�
:

Suppose then that a � j�d j. Assume first that �d D .j�d j; 0; : : : ; 0/ 2 Rd so that
h�; yi D j�d jy1 and write

bx D .x2; : : : ; xd / 2 Rd�1:

Observe that if q D .x; y; z/ 2 A \ B.a/, then

�a2 � z0 � 2.h�; yi � hy0; xi/ � �z � a
2
� z0 � 2.h�; yi � hy0; xi/ (3.5)

and, on the other hand,

�r22 � z � 2hx
d ; yd i � r22 � z: (3.6)

Substituting (3.5) into (3.6) and subtracting the term 2hbx;byi, we obtain

� r22 � a
2
� z0 � 2.h�; yi � hy0; xi C hbx;byi/

� 2x1y1

� r22 C a
2
� z0 � 2.h�; yi � hy0; xi C hbx;byi/:

Write
C D C.x;by; y?/ WD �z0 � 2.h�?; y?i � hy0; xi C hbx;byi/:

Noting that h�; yi D j�d jy1 C h�?; y?i yields

C � r22 � a
2
� 2.x1 C j�

d
j/y1 � C C r

2
2 C a

2: (3.7)

Since q 2A\B.a/, we have that jx1 � j�d jj � jxd � �d j � a, and by our assumption
a � j�d j, we obtain

0 < j�d j � 2j�d j � a � x1 C j�
d
j:

From (3.7), we now obtain

C � r22 � a
2

2.x1 C j�d j/
� y1 �

C C r22 C a
2

2.x1 C j�d j/
:

Thus, for every point in A \ B.a/ with the coordinates x, by and y? fixed, the y1
coordinate must belong to the same interval of length

r22 C a
2

x1 C j�d j
�
r22 C a

2

j�d j
:
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By Fubini’s theorem

�.A \ B.a// DZ Z Z Z
�A\B.a/.x; y; z/ dL1.z/ dL1.y1/ dLd .xd / dL2n�d�1.x?;by; y?/

. min
�
a2; r22

�r22 C a2
j�d j

min
�
ad ; rd1

�
min

�
a2n�d�1; r2n�d�12

�
.
r22a

2

j�d j
min

�
ad ; rd1

�
min

�
a2n�d�1; r2n�d�12

�
� min

�
r22a

2nC1

j�d j
;
adC2r2nC1�d2

j�d j

�
:

This completes the proof in the case �d D .j�d j; 0; : : : ; 0/. It remains to see that this
is indeed sufficient.

Given an arbitrary �d 2 Rd n ¹0º there exists an orthogonal map O 2 O.d/ with
the property that O.�d / D .j�d j; 0; : : : ; 0/. This induces a map eO 2 O.2nC 1/ via
the formula eO.x; y; z/ D .O.xd /; x?; O.yd /; y?; z/:
As the map eO preserves the norms and inner products appearing in the definition of
A \ B.a/, we have that

A \ B.a/ D eO�1�A \ ¹q j geO.p/.q/ � aº�:
Since � is invariant under eO , it follows that

�.A \ B.a// D �.A \ ¹q j geO.p/.q/ � aº/:
This completes the proof since the first coordinate of eO.p/ is j�d j and the following
.d � 1/ coordinates are all equal to zero.

We now continue with the proof of the proposition. By Sublemma 1, it is true for
every p 2 R that

Rt .p/ .
Z r2

0

a2nC2�.tC1/ daC

Z r1

r2

r2nC2�d2 ad�.tC1/ da

C

Z 1
r1

rd1 r
2nC2�d
2 a�.tC1/ da

. max
�
r2nC2�t2 ; r2nC2�d2 rd�t1

�
D

´
r2nC2�d2 rd�t1 if t < d;

r2nC2�t2 if t > d:
(3.8)
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For 0 < t < d , we thus obtain

It .R/ . �.R/r2nC2�d2 rd�t1 � rd1 r
2nC2�d
2 r2nC2�d2 rd�t1 D r2d�t1 r4nC4�2d2

as desired. Suppose then that t > d . Observe that if j�d j � r2, then�
r22=j�

d
j � r2 �

q
r2j�d j

�
and for a 2

�
r22=j�

d j;
p
r2j�d j

�
it is true that a � j�d j. For such j�d j, Sublemma 1

yields that

Rt .p/ .
Z r2

2
=j�d j

0

a2nC2�.tC1/ daC

Z r2

r2
2
=j�d j

r22a
2nC1�.tC1/

j�d j
da

C

Z pr2j�d j

r2

adC2�.tC1/r2nC1�d2

j�d j
daC

Z r1

p
r2j�d j

ad�.tC1/r2nC2�d2 da

C

Z 1
r1

rd1 r
2nC2�d
2 a�.tC1/ da

. max

 �
r22
j�d j

�2nC2�t
;
r2nC3�t2

j�d j
; r2nC2�d2 .r2j�

d
j/

d�t
2 ; r2nC2�d2 rd�t1

!

�
D

8̂̂̂<̂
ˆ̂:
r2nC2�d2 .r2j�

d j/
d�t

2 if d < t < d C 2;
r

2nC3�t
2

j�d j
if d C 2 < t < 2nC 1;�

r2
2

j�d j

�2nC2�t
if 2nC 1 < t < 2nC 2:

(3.9)

To see that the equality � holds, denote the options in the maximum on the second-
to-last line by O1; O2; O3 and O4, respectively. Note first that O4 � O3 is equivalent
to t � d so the last term is never the largest one for t > d . To compare the rest of the
terms, we calculate

O23
O22
D
r4nC4�2dCd�t2 j�d jd�t

r4nC6�2t2 j�d j�2
D

�
r2

j�d j

�t�d�2
� 1, t � d C 2:

Thus, O2 � O3 is equivalent to t � d C 2. We also have that

O1

O2
D
r
2.2nC2�t/
2 j�d jt�2n�2

r2nC3�t2 j�d j�1
D

�
r2

j�d j

�2nC1�t
� 1, t � 2nC 1

hence, the inequalityO2 �O1 is equivalent to t � 2nC 1. Combining these estimates,
we obtain the last equality in (3.9).

For � 2 Œ0; r1�, let ht .�/ D supj�d jD� Rt .p/ so that

It .R/ . r2nC2�d2

Z r1

0

ht .�/�
d�1 d�:
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If d < t < d C 2, we obtain from (3.8) and (3.9) that

It .R/ . r2nC2�d2

� Z r2

0

r2nC2�t2 �d�1 d� C

Z r1

0

r
4nC4�d�t

2

2 �
3d�t

2 �1 d�
�

. max
�
r4nC4�t2 ; r

8nC8�3d�t
2

2 r
3d�t

2

1

�
D r

8nC8�3d�t
2

2 r
3d�t

2

1 ;

where the last equality follows from

r
8nC8�3d�t

2

2 r
3d�t

2

1 D r4nC4�t2

�r1
r2

� 3d�t
2

and the facts that r1 � r2 and t < d C 2 � 3d . If 2nC 1 < t < 2nC 2, the estimates
(3.8) and (3.9) yield

It .R/ . r2nC2�d2

Z r2

0

r2nC2�t2 �d�1 d� C r2nC2�d2

Z r1

0

r
2.2nC2�t/
2

�2nC2�t
�d�1 d�

. r4nC4�t2 C r6nC6�d�2t2 r tCd�2n�21

. r6nC6�d�2t2 r tCd�2n�21 ;

where the last estimate can be seen by calculating

r6nC6�d�2t2 r tCd�2n�21

r4nC4�t2

D

�r2
r1

�2nC2�d�t
� 1;

since r2 � r1 and t > 2nC 1 � 2nC 2 � d .
If d C 2 < t < 2nC 1 and d � 2, we obtain that

It .R/ . r4nC4�t2 C r2nC2�d2

Z r1

0

r2nC3�t2

�
�d�1 d�

. max
�
r4nC4�t2 ; r4nC5�d�t2 rd�11

�
D r4nC5�d�t2 rd�11 :

Combining all the upper bounds for It .R/ obtained thus far, we have completely
proved the estimate (3.3).

We now consider the case d D 1 and t 2�3; 2nC 1ŒnZ. Once again, from (3.8)
and (3.9), we obtain

It .R/ . r4nC4�t2 C r2nC2�12

Z r1

r2

r2nC3�t2

�
d�

D r4nC4�t2 C r4nC4�t2 log
�r1
r2

�
. r4nC4�t2 log

�2r1
r2

�
:
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This yields

Capt .R/ &
ˆt1.r; 1/

log
�
2r1
r2

� :
Thus if s 2�btc; t Œ, we have that

Caps.R/ &
ˆs1.r; 1/

log
�
2r1
r2

� D r21 r
s�2
2

log
�
2r1
r2

� D ˆt1.r; 1/ rs�t2

log
�
2r1
r2

� :
Consider the function f W �0; r1Œ! R, f .x/ D xt�s log.2r1=x/. Note that

f 0.x/ D xt�s�1..t � s/ log.2r1=x/ � 1/

and the zero of the derivative is

2e1=.s�t/r1 DW c0r1:

Since t � s � 1 < 0, the derivative f 0 is strictly decreasing and thus, the function f
attains its maximum value at c0r1 and we obtain the bound

Caps.R/ &
ˆt1.r; 1/

.c0r1/t�s log
�
2r1
c0r1

� D ˆt1.r; 1/

.c0r1/t�s
.t � s/ & ˆt1.r; 1/r

s�t
1 :

This completes the proof of (3.2) and thus also the proof of the proposition for rect-
angles of type 1.

It remains to obtain the bound (3.3) for type 2 rectangles. Write R0 D R2;V .0; r/.
It suffices to show that if r1 � r2, the same bound as in the type 1 case holds. If r1 � r2
it suffices to show that

It .R
0/ .

´
r2d�t1 r4nC4�2d2 if t 2�0; d ŒnZ;

rd1 r
4nC4�d�t
2 if t 2�d; 2nC 2ŒnZ:

We may once again assume that V D Rd � ¹0º. We proceed exactly as in the
previous case of type 1 rectangles with the only difference being that we replace
the condition jz C 2hxd ; yd ij with jz � 2hxd ; yd ij in the definition of the set A.
Following the arguments used in the type 1 case, we immediately obtain the desired
bound in the case r1 � r2, since this bound is the same as before.

In the case r1 � r2, to estimate the measure �.A\B.a// we only need the trivial
bound

�.A \ B.a// . min
�
a2nC2; ad r2nC2�d2 ; rd1 r

2nC2�d
2

�
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which is obtained in exactly the same way as in the proof of the type 1 bounds. This
yields

Rt .p/ .
Z r2

0

a2nC2�.tC1/ daC

Z r1

r2

ad�.tC1/r2nC2�d2 da

C

Z 1
r1

rd1 r
2nC2�d
2 a�.tC1/ da

. max
�
r2nC2�t2 ; r2nC2�d2 rd�t1

�
D

´
r2nC2�d2 rd�t1 if t 2�0; d ŒnZ;

r2nC2�t2 if t 2�d; 2nC 2ŒnZ:

From this, we obtain that

It .R
0/ . �.R0/ sup

p2R0
Rt .p/ .

´
r2d�t1 r4nC4�2d2 if t 2�0; d ŒnZ;

rd1 r
4nC4�d�t
2 if t 2�d; 2nC 2ŒnZ

and the proof of the proposition is complete.

4. Proof of Theorem 2.1

To complete the proof of Theorem 2.1, we make use of the following theorem. For a
proof of this, see [11, Theorem 1.3].

Theorem 4.1. Let G be a unimodular group with left-invariant metric and .c; d/-
regular Haar measure �, and letW � G be a bounded open set such that �.W / D 1.
Define the probability space .�; P / by � D GN and P D .�jW /

N . Let .Vk/ be a
bounded sequence of open subsets of G. For ! D .!k/ 2 �, let

E.!/ D lim sup
k!1

.!kVk/:

If t 2�0; d Œ and X
k

Capt .Vk/ D1

then there exists g 2 G so that almost every ! is such that H t .U \ E.!// D 1 for
every open subset U of Wg.

Proof of Theorem 2.1. Clearly, dimH Ej;V ;r.!/ � 2nC 2 for every !. Suppose that
t 2 Œ0; 2nC 2� is such that

P
k ˆ

t
jk
.rk; dk/ <1. Then, for any ! 2 � and k0 2 N,

we have by Proposition 3.2 that

H t
1.Ej;V ;r.!// �

1X
kDk0

H t
1.Rjk ;Vk

.!k; rk// .
1X

kDk0

ˆtjk
.rk; dk/:
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Thus H t
1.Ej;V ;r.!// D 0 and dimHEj;r.!/ � t . This implies that

dimHEj;V ;r.!/ � inf
°
t
ˇ̌̌X
k

ˆtjk
.rk; dk/ <1

±
for every !.

Suppose then that
P
k ˆ

t
jk
.rk; dk/ D 1 for some t 2 Œ0; 2nC 2� n Z. Since the

sequence r is bounded, Proposition 3.3 implies that for s 2�btc; t Œ, the s-capacities of
(interiors of) the rectangles Rjk ;Vk

.0; rk/ sum up to infinity and thus, Theorem 4.1
(with �.W /�1� in place of �) yields dimH Ej;V ;r.!/ � s for P -almost every !. By
letting s % t through some countable sequence, we obtain that dimH Ej;V ;r.!/ � t

for P -almost every !. Finally, letting

t % inf
°
t 0
ˇ̌̌X
k

ˆt
0

jk
.rk; dk/ <1

±
^ .2nC 2/

through some sequence completes the proof.

Remark 4.2. In [11], the closed rectangle of radius r D .r1; r2/ centered at the origin
is defined to be the set

R.0; r/ WD ¹p0 2 H j kPH.0/.p
0/kH � r1; kPL.0/.p

0/kH � r2º;

where PL.0/ and PH.0/ are the Euclidean projections (recalling that Hn DR2nC1 as a
set) onto the vertical line and the horizontal plane through the origin, respectively. The
corresponding rectangle centered at p is defined analogously to our definition, that is,
R.p; r/ WD pR.0; r/. In [11], rectangles are defined only in the first Heisenberg group
H1, but the definition given above works equally well in all Heisenberg groups.

Define the probability space .�;P / in the same way as before. Given a sequence
r WD .rk/ of pairs of positive numbers and ! 2 �, let

Er.!/ D lim sup
k!1

R.!k; rk/:

The directed singular value functions corresponding to these types of rectangles are
defined as follows: If r1 � r2, let

ˆt .r/ D

´
r t2 if t 2 Œ0; 2�;

r t�21 r22 if t 2 Œ2; 2nC 2�;

and if r1 � r2 let

ˆt .r/ D

´
r t1 if t 2 Œ0; 2nC 1�;

r
2.2nC1/�t
1 r

2.t�.2nC1//
2 if t 2 Œ2nC 1; 2nC 2�:
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We emphasize the fact that rectangles defined this way do not correspond to either
of the types of rectangles considered in this paper and our results do not directly give
the dimension for these rectangles. However, the arguments presented in this paper
can be used to show that given a sequence r D .rk/, it is true that

dimHEr.!/ D inf
°
t
ˇ̌̌ X

k

ˆt .rk/ <1
±
^ .2nC 2/

P -almost surely. In the case n D 1, this formula reduces to [11, Theorem 1.1].
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