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The packing measure of the linear Gauss system

Rafał Tryniecki

Abstract. For every k 2 N, let fk W Œ 1
kC1

; 1
k
�! Œ0; 1� be decreasing, linear functions such

that fk. 1
kC1

/ D 1 and fk. 1k / D 0, k D 1; 2; : : : . We define the iterated function system Sn

by limiting the collection of functions fk to first n, meaning Sn D ¹fkºnkD1. Let Jn denote the
limit set of Sn. Then, lim

n!1
Phn.Jn/ D 2, where hn is the packing dimension of Jn and Phn

is the corresponding packing measure.

1. Introduction

Let gk.x/D �kxC bk , (kD 1;2; : : : ;m) be a collection of linear contractions defined
on the interval Œ0; 1� and such that gk.Œ0; 1�/ � Œ0; 1�. Assume additionally that this
collection satisfies the Open Set Condition (OSC; defined in Definition 2.9). It is
well known that the packing dimension of the limit set (defined as in Definition 2.2)
is equal to ˛, the unique positive solution of the implicit equation

Pm
kD1 �

˛
k
D 1;

the ˛-dimensional packing measure P˛.K/ and the ˛-dimensional Hausdorff mea-
sure H˛.K/ are both finite and positive. In 1999 E. Ayer and R. S. Strichartz [1]
provided an algorithm for calculating the Hausdorff measure of the limit set of the
iterated function system (IFS) consisting of maps gk . In 2003 D. Feng [4] provided
similar formula for the packing measure in the same setup.

On the other hand, let fk W Œ 1
kC1

; 1
k
�! Œ0; 1�, fk.x/D ¹ 1x º define the well-known

Gauss map. Then, let gk W Œ0; 1�! Œ 1
kC1

; 1
k
� be a collection of inverse maps gk D f �1k .

For each, we define an IFS Sn consisting of the maps gk , k D 1; : : : ; n. Let Jn be the
Julia set (limit set) generated by Sn. The asymptotics of the Hausdorff dimension
of Jn was estimated first in 1929 by V. Jarnik [6], and then more precisely in 1992
by Doug Hensley [5]. In 2016 Mariusz Urbański and Anna Zdunik in [9] proved
using Hensley’s result, which states that for the previously mentioned sets, we have
continuity of the Hausdorff measure in the Hausdorff dimension, meaning

lim
n!1

Hhn.Jn/ D 1;
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where Hh denotes the numerical value of Hausdorff measure in dimension h. In this
paper, we combine these two ideas by considering linear, decreasing functions

fk

� 1

k C 1

�
D 1 and fk

� 1
k

�
D 0

and their inverses gk D f �1k . Then, we define an IFS Sn consisting of the maps gk ,
k D 1; : : : ; n. Let Jn be the limit set generated by Sn. We prove that the packing
measure is continuous, meaning

Theorem 5.16. Let Sn be the IFS defined in Definition 2.1. Then,

lim
n!1

Phn.Jn/ D 2;

where Jn is the limit set of the IFS Sn and Ph denotes packing measure in packing
dimension h.

The proof splits into two main parts: one is to estimate the packing measure from
below, which is done in Section 4. This is the easier part of the proof. Then, in Sec-
tion 5 we estimate the lower limit of the n-th density (see Definition 2.15) on different
families of sets: starting with sets of the form Œ0; r� and slowly expanding families up
to a point from which we can conclude that the lower limit of the n-th density on all
subintervals of Œ0; 1� centered at Jn is at least 1

2
.

2. Notation and definitions

Let fk.x/ W Œ 1
kC1

; 1
k
�! Œ0; 1� for k 2 ¹1; 2; : : : º be a linear analogue of the Gauss

map, that is, a linear, decreasing function such that

fk

� 1

k C 1

�
D 1 and fk

� 1
k

�
D 0:

Definition 2.1. An IFS Sn is defined by limiting the collection of functions fk to the
first n, meaning Sn D ¹fkºnkD1.

By gk we will denote the inverse map f �1
k

.

Notation 2.2. By Jn we will denote the limit set created by the IFS Sn,

Jn D

1\
lD1

[
q1;q2;:::;ql2¹1;2;:::;nº

l

gq1 ı gq2 ı � � � ı gql .Œ0; 1�/:

Definition 2.3. The ı-packing of a given setE �Rn is a countable family of pairwise
disjoint closed balls of radii at most ı and with centers in E.
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Now, we will formulate the classic definition of the packing measure, which can
be found in [7, Definition 5.10]. For s � 0, the s-dimensional packing premeasure
of E is defined as follows:

Definition 2.4.
P premeasure
s .E/ D inf

ı>0

®
P sı
¯
;

where P s
ı
D sup¹

P
Bi2R jBi j

s WR is a ı � packing of Eº and jBi j denotes the diam-
eter of Bi .

Definition 2.5. The s-dimensional packing measure of E is defined as

Ps.E/ D inf
° 1X
iD1

P premeasure
s .Ei / W E �

1[
iD1

Ei

±
:

Definition 2.6. The packing dimension of E is by definition the quantity

dimP .E/ WD inf
®
s � 0 W Ps.E/ D 0

¯
D sup

®
s � 0 W Ps.E/ D1

¯
:

Notation 2.7. We will denote Hausdorff dimension of the set Jn by hn and the Haus-
dorff measure of the set A in dimension h by Hh.A/.

Notation 2.8. Analogously, by PA
hp

we denote the packing measure of set A in the
packing dimension hp . By hpn we denote the packing dimension of set Jn.

We denote by diam.F /, or jF j, the diameter of the set F .

Definition 2.9. We say that an IFS composed of contractions ¹�iºniD1 fulfills the Open
Set Condition (OSC) if there exists an open set V such that the following two condi-
tions hold:

n[
iD1

�i .V / � V (2.1)

and the sets �i .V / are pairwise disjoint.

Based on the fact that an IFS Sn fulfills the OSC, it is well known that the packing
dimension and Hausdorff dimension are equal (see [2, Theorem 2.7]). Due to this fact,
we will be using hn to denote the packing and Hausdorff dimension of the set Jn. We
know that hn is a unique solution to the following equation:

nX
kD1

� 1
k
�

1

k C 1

�hn
D 1:

Proof of this well-known fact can be found in [3]. It follows from this equation that
lim
n!1

hn D 1 and 0 < hn < hnC1 < 1.
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Definition 2.10. Let P hn denote the packing measure in the packing dimension hn.
If 0 < P hn.X/ <1, then we denote by mn the normalized P hn packing measure

mn.A/ WD
P hn.A \X/

P hn.X/
:

Let A be a Borel subset of Œ0; 1�. Then, for all k 2 ¹1; 2; : : : ; nº,

mn.gk.A// D jg
0
kj
hn �mn.A/I

thus, mn is the hn-conformal measure for the set Jn. It is worth noting that mn is
a unique hn-conformal measure on the set Jn. This implies that the following holds
true:

mn.A/ D
Hhn.A \ Jn/

Hhn.Jn/
:

Using the fact that mn is conformal measure, we immediately get the following
lemma, which we will use throughout our proof:

Lemma 2.11. Let A be Borel subset of Œ0; 1�. Then, for all k 2 ¹1; 2; : : : ; nº, the
following holds:

mn.A/

.diamA/hn
D

mn.gk.A//

.diam.gk.A///hn
:

We can develop this further.

Lemma 2.12. Let B be Borel subset of . 1
kC1

; 1
k
/ for some k 2 ¹1; 2; : : : ; nº intersect-

ing Jn. Then, there exists a set yB that is a Borel subset of Œ0; 1� such that

mn.B/

.diamB/hn
D

mn. yB/

.diam yB/hn

and 1
j
2 yB for some j 2 ¹1; 2; : : : ; nº.

Proof. If B � Œ 1
kC1

; 1
k
� for some k � n, then B D gk.A/ for some A� Œ0; 1�. We can

apply Lemma 2.11 with gk.A/ D B , giving us

mn.B/

.diamB/hn
D

mn.gk.A//

.diam.gk.A///hn
D

mn.A/

.diamA/hn
:

Now notice that 2 � diamB � diamA, and either there exists j 2 ¹1; 2; : : : ; nº such
that 1

j
2 A and then we set yB D A, or we can apply this procedure again to the set A,

expanding it until it intersects the set ¹ 1
j
ºnjD1, ending the proof.

[8, Theorem 8.6.2], called a Frostman-type lemma by the authors, states the fol-
lowing: let � be a Borel probability measure on Rn and A be a bounded subset of Rn.
Then, if there exists C 2 .0;1� such that
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(a) for all x 2 A,

lim inf
r!0

�.B.x; r//

rs
� C <1

and

(b) for all x 2 A,

lim inf
r!0

�.B.x; r//

rs
� C�1;

then 0 < Ps.E/ <1 for each Borel set E � A.
We know that � D mn fulfills this assumption. In fact, the following well-known

proposition holds:

Proposition 2.13. Let mn be the normalized packing measure on the set Jn. Then,
there exist constants Cn > 0 such that

C�1n � r
hn � mn.B.x; r// � Cn � r

hn

for each x 2 Jn and r > 0, and thus, we know that 0 < Phn.Jn/ <1.

Proof of this proposition can be found in [3, Theorem 9.3].

Definition 2.14. Let Sn be the IFS generated by fk , k D 1; : : : ; n. We denote by F n
l

the l-th generation of intervals generated by Sn,

F n
l D

®
gi1 ı gi2 ı � � � ı gil .Œ0; 1�/ W i1; i2; � � � 2 ¹1; 2; : : : ; nº

¯
:

Definition 2.15. Let us denote dn.J /D
mn.J /

.diam.J //hn
. We call this value the n-th density

of the interval J .

Lemma 2.16. Let Œ0;1�� I D I1 [ I2, where I1 and I2 are closed adjacent intervals.
Then,

dn.I / � min
®
dn.I1/; dn.I2/

¯
:

Proof. Note that the measure mn is atomless. This is a direct consequence of Propo-
sition 2.13. Using this fact together with hn < 1, we obtain

dn.J / D
mn.J /

.diam.J //hn
D

mn.I1 [ I2/

.diam.I1 [ I2//hn
�

mn.I1/Cmn.I2/

diam.I1/hn C diam.I2/hn

� min
° mn.I1/

diam.I1/hn
;
mn.I2/

diam.I2/hn

±
D min

®
dn.I1/; dn.I2/

¯
:

Lemma 2.17. Let c be a real number with 0 < c < 1 and let aj 2 .0; 1/ for
j 2 1; 2; : : : ; k. Then,

kX
jD1

acj �
h kX
jD1

aj

ic
:
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3. Density theorems for the packing measure

For a Borel measure in Rn, let the lower density be defined as follows:

‚˛�.�; x/ WD lim inf
r!0

�.B.x; r//

.2r/˛
:

In particular, if n D 1, then

‚˛�.�; x/ WD lim inf
r!0

�.Œx � r; x C r�/

.2r/˛
:

P. Mattila in [7, Theorem 6.10] provides a proof of the following theorem:

Theorem 3.1. Suppose A � Rn with P˛.A/ <1. Then,

‚˛�.P˛jA; x/ D 1

for P˛ almost all x 2 A.

Based on this theorem, Feng in [4] observed the following:

Theorem 3.2. Let � be the normalized packing measure on the limit setK �R of the
IFS consisting of finitely many linear, orientation-preserving contractions, satisfying
the OSC. Then, for �-almost all x 2 R, ‚˛�.�; x/ D dmin, where dmin is defined as

dmin D inf
®
d.J / W J a closed interval centered in K with J � Œ0; 1�

¯
;

where d.J / D �.J /
jJ j˛

and ˛ denotes the packing dimension of K.

This theorem is easily adapted to the case where the IFS consists of finitely many
linear, changing-orientation contractions satisfying the OSC. An immediate conse-
quence of this fact is the following: denote by P˛jK the restriction of the ˛–dimen-
sional packing measure on K, that is, P˛jK D Ph.A \K/ for any Borel set A � R.
Since � D c �P˛jK with c D 1=P˛.K/, we have

‚˛�.�; x/ D
1

P˛.K/
‚˛�.P˛jK ; x/ (3.1)

for all x 2 R. With those tools in hand, Feng noticed the following theorem, which is
essential to his paper:

Theorem 3.3. P˛.K/ D d
�1
min.

Proof. From observation (3.1), we get ‚˛�.P˛jK ; x/ D ‚˛�.�; x/P˛.K/ for any
x 2 R. However, using the lower density theorem (Theorem 3.1), we have that
‚˛�.P˛jK ; x/ D 1 for P˛jK-almost all x 2 R, which implies the result.
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Adapting this theorem to our case, we get the following result:

Corollary 3.4. The following equality holds:

Phn.Jn/ D sup
F centered atJnF�Œ0;1�

.diam.F //hn

mn.F /
D

�
inf

F centered atJnF�Œ0;1�
dn.F /

��1
;

where Phn denotes the packing measure with dimension hn, diam.F / is the diameter
of the interval F, mn is the normalized packing measure, and dn.F / denotes n-th
density of the interval F .

4. Estimating the packing measure from below

In 2003 De-Jun Feng showed in [4] the following result regarding comparing the
Hausdorff and packing measures on the real line:

Theorem. For each 0 < s < 1, define

c.s/ D inf
E

Ps.E/

Hs.E/

where Ps ,Hs denote the s-dimensional packing and Hausdorff measure, respectively,
and the infimum is taken over all sets E � R with 0 < Hs.E/ <1. Then,

2s.1C v.s//s � c.s/ � 2s.2
1
s � 1/s

for each 0 < s < 1 and v.s/ D min¹16�
1
1�s ; 8

� 1

.1�s/2 º.

This result is a general estimate of the quotient of the packing and Hausdorff
measure. One can deduce from [9] that Hhn.Jn/! 1 as n tends to infinity, where Jn
is the limit set of IFS Sn and hn is its Hausdorff dimension. This result implies the
following estimate:

lim inf
n!1

Phn.Jn/ � 2:

However, we are going to provide a short and direct proof of this fact for our case.

Theorem 4.1. Let Sn be IFS defined in (2.1). By Jn, we denote the limit set of the
IFS Sn. We denote by Ph the packing measure in the packing dimension h and by hn
the packing dimension of Jn. Then,

lim inf
n!1

Phn.Jn/ � 2:

Proof. From definition of gk , we know that

g1.x/ D �
1

2
x C 1
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and
gn.x/ D

� 1

nC 1
�
1

n

�
x C

1

n

for x 2 Œ0;1�. The leftmost point in Jn is a stationary point such that gn ı g1.xn/D xn.
A short computation yields that

xn D
2n

2n2 C 2n � 1
:

Let us define an interval In D Œan; bn� such that it is centered at xn, and bn D 1
n

. Then,
because xn is the left endpoint of the set Jn, the following holds:

mn.Œan; bn�/ D mn

�h 1

nC 1
;
1

n

i�
D

ˇ̌̌1
n
�

1

nC 1

ˇ̌̌hn
and

jbn � anj D 2 � jbn � xnj D 2 �
�1
n
�

2n

2n2 C 2n � 1

�
D 2 �

2n � 1

n.2n2 C 2n � 1/
:

Hence,

dn.In/ D
mn.Œan; bn�/

jbn � anjhn
D

ˇ̌̌
1
n
�

1
nC1

ˇ̌̌hn
�
2 � 2n�1

n.2n2C2n�1/

�hn D �12�hn � �2n2 C 2n � 12n2 C n � 1

�hn
:

We showed that for each Jn, there is an interval In centered at Jn with density equal
to .1

2
/hn � .2n

2C2n�1
2n2Cn�1

/hn , and thus, based on Corollary 3.4, we get

Phn.Jn/ �
h�1
2

�hn
�

�2n2 C 2n � 1
2n2 C n � 1

�hni�1
;

which implies
lim inf
n!1

Phn.Jn/ � 2:

5. Estimating the packing measure from above

We will show that the function that assigns to every number n 2 N the packing mea-
sure of the Jn in its packing dimension hn has the limit equal to 2 when n tends
to infinity. We do this in several steps: first, by showing that the lower limit of the
densities of the intervals Œ0; r� is at least 1

2
, then expanding the family of intervals

with this property up to a family of intervals that has a right endpoint in the set ¹ 1
k
º,

k D 0; 1; : : : , in Propositions 5.3–5.6. Then, we deduce the same about the intervals
with a left endpoint in set ¹ 1

k
º, k D 0; 1; : : : , in Propositions 5.7–5.9. Then, in the final
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propositions we use previously obtained estimates to show that any interval centered
at Jn that intersects set ¹ 1

k
º, k D 0; 1; : : : has the limit of the densities at least 1

2
. From

those estimates, we will be able to deduce that all intervals centered at Jn have this
property.

5.1. Density on intervals Œ0; r� and Œ 1
k

; 1
l
�

Proposition 5.1. The following estimate holds:

lim inf
n!1

inf
®
dn.Œ0; r�/ W r 2 Œ0; 1�; and interval Œ0; r� is centered at Jn

¯
�
1

2
:

Proof. Notice that there exists k 2 ¹1;2; : : : ; nº such that 1
kC1

< r � 1
k

. Such k exists,
because Œ0; r� is centered at Jn. Moreover, the fact that Œ0; r� is centered at Jn implies
that r=2 > 1

nC1
, and thus, 1

k
> 2

nC1
, giving k < .nC 1/=2. Then, by Lemma 2.17,

dn.Œ0; r�/ D
mn.Œ0; r�/

.diam.Œ0; r�//hn
�

nP
jDkC1

.1=j � 1=.j C 1//hn

.1=k/hn
�

ˇ̌
1
kC1
�

1
nC1

ˇ̌hnˇ̌
1
k

ˇ̌hn
�

hn � k
nC 1

�
k

k C 1

ihn
:

Because k < nC1
2

, we can see that the minimum value of this expression is attained
at k D 1 or k D nC1

2
. Indeed,

@

@k

n � k

nC 1
�

k

k C 1
D

n � k.k C 2/

.nC 1/.k C 1/2

is equal to zero if and only if n � k.k C 2/ D 0, and hence, k D
p
nC 1 � 1 is

the value at which this expression attains maximum. Thus, the minimum values are
attained at the edge of domain of the function. The value of the expression for k D 1
is equal to h n � 1

nC 1
�
1

2

ihn
and for k D nC1

2
, hn � nC1

2

nC 1
�

nC1
2

nC1
2
C 1

ihn
D

h1
2
�

2

nC 3

ihn
:

Hence,

lim inf
n!1

inf
°
dn.Œ0; r�/ W r 2 Œ0; 1�; and interval Œ0; r� is centered at Jn

±
�
1

2
:
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Note that Proposition 5.1 requires only r > 2
nC1

. Hence, we will be using the
following corollary in the next steps:

Corollary 5.2. The following estimate holds:

lim inf
n!1

inf
°
dn.Œ0; r�/ W r 2

h 2

nC 1
; 1
i±
�
1

2
:

Now, we move to showing similar property for intervals with endpoints in the
set
®
1
k

¯
, k D 1; 2; : : : ; n.

Proposition 5.3. The following estimate holds:

lim
n!1

inf
°
dn

�h 1

k C l
;
1

k

i�
W k 2 ¹1; 2; : : : ; nº;

l C k 2 ¹k C 1; k C 2; : : : ; nC 1º
±
� 1:

Proof. Notice that, using Lemma 2.17, we get

dn

�h 1

k C l
;
1

k

i�
D
mn
��

1
kCl

; 1
k

��ˇ̌�
1
kCl

; 1
k

�ˇ̌hn �
ˇ̌̌kCl�1P
jDk

1
j
�

1
jC1

ˇ̌̌hn
ˇ̌
1
k
�

1
kCl

ˇ̌hn D

ˇ̌
1
k
�

1
kCl

ˇ̌hnˇ̌
1
k
�

1
kCl

ˇ̌hn D 1:
Hence, obviously

lim inf
n!1

inf
°
dn

�h 1

k C l
;
1

k

i�
W k 2 ¹1; 2; : : : ; nº;

l C k 2 ¹k C 1; k C 2; : : : ; nC 1º
±
� 1:

5.2. Density on intervals with a right endpoint in set ¹
1
k

º, k 2 N

Now, we will prove that the lower limit of the densities of intervals contained in
Œ 1
kC1

; 1
k
� for some k D 1; 2; : : : and having the right endpoint equal to 1

k
is at least 1

2
.

Proposition 5.4. The following estimate holds:

lim inf
n!1

inf
°
dn

�h
r;
1

k

i�
W k 2 ¹1; 2; : : : ; nº;

r 2
h 1

k C 1
;
1

k

�
; interval is centered at Jn

±
�
1

2
:

Proof. Note that Œr; 1
k
� � Œ 1

kC1
; 1
k
�, and thus, applying Lemma 2.11, we get

dn

�h
r;
1

k

i�
D dn.Œ0; yr�/;
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where r D gk.yr/. Now we notice that centers of the intervals are transformed under gk
to the centers of the intervals, and the center of Œr; 1

k
� is in Jn. Thus, the interval Œ0; yr�

is also centered at Jn and based on Proposition 5.1, we get

lim inf
n!1

inf
°
dn

�h
r;
1

k

i�
W k 2 ¹1; 2; : : : ; nº;

r 2
1

k C 1
;
1

k

�
; interval is centered at Jn

±
�
1

2
:

Similarly to Corollary 5.2, notice that the proof of this theorem only requires
r > j 1

k
�

1
kC1
j �

2
nC1

. This yields another corollary, used later on.

Corollary 5.5. The following estimate holds:

lim inf
n!1

inf
°
dn

�h
r;
1

k

i�
W k 2 ¹1; 2; : : : ; nº; r 2

h 1

k C 1
;
1

k

�
;ˇ̌̌ 1

k
� r

ˇ̌̌
>
ˇ̌̌ 1
k
�

1

k C 1

ˇ̌̌
�

2

nC 1

±
�
1

2
:

To expand this further, we will show that the lower limit of the densities of the
intervals with a right endpoint equal to ¹ 1

k
º, k 2 N and containing interval Œ 1

kC1
; 1
k
�

is at least 1
2

.

Proposition 5.6. The following holds:

lim inf
n!1

inf
°
dn

�h
r;
1

k

i�
W k 2 ¹1; 2; : : : ; nº; r 2

�
0;

1

k C 1

�
; centered at Jn

±
�
1

2
:

Proof. Let l 2 N be a number such that 1
kClC1

� r < 1
kCl

.
Part (A). First, assume that k C l C 1 � nC 1. Then, by Lemma 2.17,

dn

�h
r;
1

k

i�
D
mn
��
r; 1
k

��ˇ̌
r � 1

k

ˇ̌hn � mn
��

1
kCl

; 1
k

��ˇ̌
1

kClC1
�
1
k

ˇ̌hn D
kCl�1P
jDk

ˇ̌
1
j
�

1
jC1

ˇ̌hn
ˇ̌

1
kClC1

�
1
k

ˇ̌hn
�

ˇ̌̌ kCl�1P
jDk

1
j
�

1
jC1

ˇ̌̌hn
ˇ̌

1
kClC1

�
1
k

ˇ̌hn D

ˇ̌
1
kCl
�
1
k

ˇ̌hnˇ̌
1

kClC1
�
1
k

ˇ̌hn
D

h l

k.k C l/
�
k.k C l C 1/

l C 1

ihn
D

h l

l C 1
�
k C l C 1

k C l

ihn
�

�1
2

�hn
:

Note that in Part (A) of this theorem, we are not using the assumption that the inter-
val Œr; 1

k
� is centered. This assumption is used later on, in Part (B).
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Part (B). Now, assume that r < 1
nC1

. From the fact that the interval Œr; 1
k
� is cen-

tered at Jn, we know that the point c, the center of Œr; 1
k
�, must be located to the right

of the point 1
nC1

. Using this observation and Lemma 2.17, we get

dn

�h
r;
1

k

i�
D
mn
��
r; 1
k

��ˇ̌
r � 1

k

ˇ̌hn D mn
��

1
nC1

; 1
k

��ˇ̌
r � 1

k

ˇ̌hn D

nP
jDk

ˇ̌̌
1
j
�

1
jC1

ˇ̌̌hn
ˇ̌
r � 1

k

ˇ̌hn
�

ˇ̌
1
k
�

1
nC1

ˇ̌hnˇ̌
r � 1

k

ˇ̌hn �

ˇ̌
1
k
� c

ˇ̌hnˇ̌
r � 1

k

ˇ̌hn D �12�hn :
Thus, we get

lim inf
n!1

inf
°
dn

�h
r;
1

k

i�
W k 2 ¹1; 2; : : : ; nº; r 2

�
0;

1

k C 1

�±
�
1

2
:

5.3. Density on intervals with a left endpoint in the set ¹
1
k

º; k D 0; 1; : : :

Now we move to the case where we analyze the intervals with a left endpoint
in ¹ 1

kC1
º, for some k � n, and contained in Œ 1

kC1
; 1
k
�.

Proposition 5.7. The following estimate holds:

lim inf
n!1

inf
°
dn

�h 1

k C 1
; r
i�
W k 2 ¹1; 2; : : : ; nº;

r 2
� 1

k C 1
;
1

k

i
; interval centered at Jn

±
�
1

2

Proof. Notice that the interval Œ 1
kC1

; r� is contained in Œ 1
kC1

; 1
k
�. Thus,

dn

�h 1

k C 1
; r
i�
D dn

�
fk

�h 1

k C 1
; r
i��
D dn.Œyr; 1�/

for yr D fk.r/. If jyr � 1j > 1
2

, then invoking Proposition 5.6 with k D 1, we get our
thesis. If jyr � 1j � 1

2
, then we can apply the map f1 to the interval Œyr; 1�. Further,

notice that because interval Œyr; 1� was centered at Jn, then so must be the interval
f1.Œyr; 1�/D Œ0;yyr�. Moreover, the intervals Œyr; 1� and Œ0;yyr� have the same density based
on Lemma 2.11 and so we can apply Proposition 5.1, which ends the proof.

Notice that similarly to the proof of Proposition 5.1, the only assumption needed
in the proof of Proposition 5.7 is that jŒ 1

kC1
; r�j > j 1

k
�

1
kC1
j �
1
2
�
2
nC1

. This is due to
the fact that in the first part of the proof, where we assume that jyr � 1j > 1

2
, we can

use Part (A) of the Proposition 5.6, which does not assume being centered at Jn. As
for the other case, when jyr � 1j < 1

2
, we can invoke Corollary 5.2 to end the proof.

This observation gives another corollary.
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Corollary 5.8. The following estimate holds:

lim inf
n!1

inf
°
dn

�h 1

k C 1
; r
i�
W k 2 ¹1; 2; : : : ; nº; r 2

� 1

k C 1
;
1

k

i
;ˇ̌̌h 1

k C 1
; r
iˇ̌̌
>
ˇ̌̌ 1
k
�

1

k C 1

ˇ̌̌
�
1

2
�

2

nC 1

±
�
1

2
:

Proposition 5.9. The following estimate holds:

lim inf
n!1

inf
°
dn

�h 1

k C 1
; r
i�
W k; l 2 N; k C l < nC 1; l > 0;

r 2
� 1

k C l
; 1
i

and
1

k C l
< r �

1

k

±
�
1

2
:

Proof. As a side note, one can notice that this case is symmetric to the one in Propo-
sition 5.6, although the method used in the proof is different. First, let us assume that
j
1
kC1
� r j � j 1

kC1
�
1
k
j �

1
2
�

2
nC1

. Additionally, we can split the interval Œ 1
kClC1

; r�

into two: Œ 1
kClC1

; 1
kC1

� and Œ 1
kC1

; r�. Using Lemma 2.16, we get

dn

�h 1

k C l C 1
; r
i�
� min

°
dn

�h 1

k C l C 1
;

1

k C 1

i�
; dn

�h 1

k C 1
; r
i�±

� min
°
1; dn

�h 1

k C 1
; r
i�±

;

and using Proposition 5.3 and Corollary 5.8 gives us the result. Now ifˇ̌̌ 1

k C 1
� r

ˇ̌̌
�

ˇ̌̌ 1
k
�

1

k C 1

ˇ̌̌
�
1

2
�

2

nC 1
;

then by Lemma 2.17,

dn

�h 1

k C l C 1
; r
i�
�

kClP
jDkC1

ˇ̌̌
1
j
�

1
jC1

ˇ̌̌hn
ˇ̌

1
kClC1

�
1
kC1
C
ˇ̌
1
k
�

1
kC1

ˇ̌
�
1
2
�
2
nC1

ˇ̌hn
�

ˇ̌̌ kClP
jDkC1

1
j
�

1
jC1

ˇ̌̌hn
ˇ̌

1
kClC1

�
1
kC1
C
ˇ̌
1
k
�

1
kC1

ˇ̌
�
1
2
�
2
nC1

ˇ̌hn
D

ˇ̌̌
1

kClC1
�

1
kC1

ˇ̌̌hnˇ̌
1

kClC1
�

1
kC1
C
ˇ̌
1
kC1
�
1
k

ˇ̌
�
1
2
�
2
nC1

ˇ̌hn
D

1ˇ̌
1C 1

nC1

ˇ̌
1
kC1
� 1
k

ˇ̌ˇ̌
1

kClC1
� 1
kC1

ˇ̌ ˇ̌hn �
�1
2

�hn
for sufficiently large n and all k; l 2 N such that k C l < nC 1.
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5.4. Density on intervals intersecting the set ¹
1
k

º, k D 0; 1; : : :

Now we move to the final step of the proof. This step is split into three parts. The
next two propositions require two auxiliary lemmas, which we will formulate here
and prove later on in Section 5.6.

Lemma 5.17. The following estimate holds:

lim inf
n!1

�
inf
d> 1n

°mn�� 1
nC1

; d
��

ˇ̌
d � 1

nC1

ˇ̌hn ±�
� 1:

It is worth noting this lemma cannot be replaced by Proposition 5.9. This is due
to the fact that in the Proposition 5.9, we have the estimate of the lower limit of the
densities by 1

2
, whereas here we need a stronger estimate.

Lemma 5.18. The following estimate holds:

lim inf
n!1

�
inf
d< 12

°mn��d; 1��
j1 � d jhn

±�
� 1:

It is worth noting this lemma cannot be replaced by Proposition 5.6. In Proposi-
tion 5.6 we have the estimate of the lower limit of the densities by 1

2
and the intervals

are required to be centered, whereas here we need a stronger estimate on all intervals.
Lemma 5.17 is used in the next proposition, however Lemma 5.18 is only utilized

in Proposition 5.11, but because those lemmas are similar, we formulate them here.
Now, let us start with the first proposition.

Proposition 5.10. The following estimate holds:

lim inf
n!1

inf
°
dn.Œa; b�/ W 0 < a <

1

l C 1
<
1

l
< b � 1;

l 2 ¹2; 3; : : : ; nº; Œa; b� centered at Jn
±
�
1

2
:

Proof. Let k and l be unique integer such that Œa; b� D Œa; 1
k
� [ Œ 1

k
; 1
l
� [ Œ1

l
; b� for

some integer l � k and 1
kC1
� a < 1

k
�

1
l
� b < 1

l�1
. First, assume that k � nC 1.

Note that this implies that a 62 Jn. Let c D aCb
2

be the center of the interval Œa; b�.
Because the interval Œa; b� is centered at Jn, c � 1

nC1
, and thus

j
1
nC1
� aj

jb � aj
<
1

2
;

which directly implies that
jb � 1

nC1
j

jb � aj
�
1

2
:
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Now, fix " > 0. Using Lemma 5.17 with d D b, fix n large enough such that

mn
��

1
nC1

; b
��ˇ̌

b � 1
nC1

ˇ̌hn � �1 � "2�
for all b � 1

n
. Hence,

dn.Œa; b�/ D
mn.Œa; b�/

jb � ajhn
D
mn
�
Œ 1
nC1

; b�
�

jb � ajhn
D
mn
�
Œ 1
nC1

; b�
�

jb � 1
nC1
jhn
�

ˇ̌
b � 1

nC1

ˇ̌hn
jb � ajhn

�

�
1 �

"

2

�
�

�1
2

�hn
�
1

2
� ";

where last inequality comes from the fact that hn ! 1 when n!1 for all n large
enough.

From now on, we will assume that k � n. Let J1 D Œa; 1
k
�, J2 D Œ 1

k
; 1
l
� and

J3 D Œ
1
l
; b�.

We say that J1 is long when

jJ1j D
ˇ̌̌
a �

1

k

ˇ̌̌
�

ˇ̌̌ 1
k
�

1

k C 1

ˇ̌̌
�

2

nC 1
I (5.1)

otherwise, we say that J1 is short. We say that J3 is long when

jJ3j D
ˇ̌̌1
l
� b

ˇ̌̌
�

ˇ̌̌ 1

l � 1
�
1

l

ˇ̌̌
�
1

2
�

2

nC 1
I (5.2)

otherwise, we say it is short. We will split this proof into four parts, based on the
length of the intervals J1 and J3. The cases are as follows:

(1) Both intervals J1 and J3 are long.

(2) J1 is long and J3 is short.

(3) J1 is short and J3 is long.

(4) Both J1 and J3 are short.

First, assume both J1 and J3 are long. Then, by using Lemma 2.16, we notice that

dn.Œa; b�/ D dn.J1 [ J2 [ J3/ � min
®
dn.J1/; dn.J2/; dn.J3/

¯
:

And thus, using Proposition 5.3, Corollary 5.5, and 5.8, we get our thesis. Now, mov-
ing to the second case, we assume that J1 is long and J3 is short. Now, we split our
interval into two J1 and J2 [ J3, out of which the first one is in the form of the inter-
vals from Corollary 5.5 and the other one is in form of the ones from Proposition 5.9.
Utilizing both of those theorems and Lemma 2.16, we get

dn.Œa; b�/ � min
®
dn.J1/; dn.J2 [ J3/

¯
�
1

2
:
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In the third case, when J1 is short and J3 is long, we can split our interval into two:
J1 [ J2 and J3. Then, the interval J1 [ J2 fulfills the assumptions of the Proposi-
tion 5.6 Part (A), whereas J3 fulfills the assumptions of Corollary 5.8. This together
with Lemma 2.16 gives us

dn.Œa; b�/ � min
®
dn.J1 [ J2/; dn.J3/

¯
�
1

2
:

In Case 4, assume that both of the intervals J1 and J3 are short, that is, they do not
satisfy (5.1) and (5.2). By Lemma 2.17,

dn.Œa; b�/ �

k�1P
jDl

ˇ̌
1
j
�

1
jC1

ˇ̌hn
ˇ̌̌ˇ̌
1
k
�

1
kC1

ˇ̌
�
2
nC1
C

k�1P
jDl

ˇ̌
1
j
�

1
jC1

ˇ̌
C
ˇ̌
1
l�1
�
1
l

ˇ̌
�
1
2
�
2
nC1

ˇ̌̌hn

�

ˇ̌̌ k�1P
jDl

1
j
�

1
jC1

ˇ̌̌hn
ˇ̌̌ˇ̌
1
k
�

1
kC1

ˇ̌
�
2
nC1
C

k�1P
jDl

ˇ̌
1
j
�

1
jC1

ˇ̌
C
ˇ̌
1
l�1
�
1
l

ˇ̌
�
1
2
�
2
nC1

ˇ̌̌hn
�

ˇ̌
1
l
�
1
k

ˇ̌hnˇ̌
1
l
�
1
k
C

2
nC1
�
�

1
k.kC1/

C
1
2
�

1
l.l�1/

�ˇ̌hn
�

1ˇ̌̌
1C 2

nC1
�

�
1

k.kC1/
C 12 �

1
l.l�1/

�
j 1
l
� 1
k
j

ˇ̌̌hn � 1

2
;

for sufficiently large n and all l 2 ¹2; 3; : : : ; nº and k 2 ¹l C 1; l C 2; : : : ; nC 1º.
This ends the proof of the Proposition 5.10.

Now, we focus on the case where there is no whole interval of the first generation
in the interval Œa; b�.

Proposition 5.11. The following estimate holds:

lim inf
n!1

inf
°
dn.Œa; b�/ W

1

k C 1
< a <

1

k
< b <

1

k � 1
� 1;

k 2 ¹2; 3; : : : ; nC 1º; Œa; b� centered at Jn
±
�
1

2
:

Proof. Assume first that k � n. The case when k D nC 1 will be analyzed at the end
of the proof. Let J1 D Œa; 1k � and J2 D Œ 1k ; b�. As in the proof of the Proposition 5.10,
we say that J1 is long when

jJ1j D
ˇ̌̌
a �

1

k

ˇ̌̌
�

ˇ̌̌ 1
k
�

1

k C 1

ˇ̌̌
�

2

nC 1
; (5.3)
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and we call it short otherwise. We say that J2 is long when

jJ2j D
ˇ̌̌ 1
k
� b

ˇ̌̌
�

ˇ̌̌ 1

k � 1
�
1

k

ˇ̌̌
�
1

2
�

2

nC 1
; (5.4)

It is worth noting that

1

k
�

ˇ̌̌ 1
k
�

1

k C 1

ˇ̌̌
�

1

nC 1
D gk

� 1

nC 1

�
and

1

k
C

ˇ̌̌ 1

k � 1
�
1

k

ˇ̌̌
�
1

2
�

1

nC 1
D gk�1 ı g1

� 1

nC 1

�
:

The immediate consequence of this fact is the following observation:

Observation 5.12. Let c be the center of the interval Œa; b�. Assume that Œa; b� is
centered at Jn. Moreover, assume that J1 is short. Then, c must be to the right of the
set ¹ 1

k
º.

Proof. Note that by c1 we denote the center of the interval J1. Because

1

k
�

ˇ̌̌ 1
k
�

1

k C 1

ˇ̌̌
�

1

nC 1
D gk

� 1

nC 1

�
(see Figure 1) and J1 is short (i.e., does not fulfill (5.3)), then the center of the inter-
val J1 must be to the right of gk. 1

nC1
/. This means that gk. 1

nC1
/ < c1. But the

center of the interval Œa; b� lies to the right of c1, that is, c1 < c, thus gk. 1
nC1

/ < c.
Now, notice that Jn \ Œgk. 1

nC1
/; 1
k
� D ;. This, together with gk. 1

nC1
/ < c, implies

that 1
k
< c.

Now, we will formulate a symmetric observation regarding J2.

Observation 5.13. Let c be the center of the interval Œa; b�. Assume that Œa; b� is
centered at Jn. Moreover, assume that J2 is short. Then, c must be to the left of ¹ 1

k
º.

Proof. Note by c2 the center of the interval J2. Because 1
k
C j

1
k�1
�
1
k
j �
1
2
�

1
nC1
D

gk�1 ı g1.
1
nC1

/ (see Figure 1) and J2 is short (i.e. does not fulfill (5.4)), then the
center of the interval J2 must be to the left of gk�1 ı g1. 1

nC1
/. This means that c2 <

gk�1 ıg1.
1
nC1

/. But the center of the interval Œa;b� lies to the left of c2 i.e. c < c2, thus
c < gk�1 ı g1.

1
nC1

/. Now, notice that Jn \ Œ 1k ; gk�1 ı g1
�
1
nC1

/� D ;. This, together
with c < gk�1 ı g1. 1

nC1
/ implies that c < 1

k
.

Now, we will split the proof of the Proposition 5.11 into four cases based on the
length of intervals J1 and J2.
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Figure 1. Visualization of Jn.

Case 1. Assume that J1 and J2 are long. Then, utilizing Lemma 2.16 yields

dn.Œa; b�/ � min
®
dn.J1/; dn.J2/

¯
�
1

2
;

based on Proposition 5.4 and Corollary 5.8.
Case 2. Now, assume that J1 is long and J2 is short (i.e., J1 fulfills (5.3) and J2

does not fulfill (5.4)). Fix " > 0. Let c D center.Œa; b�/ D .a C b/=2 be the center
of the interval Œa; b�. Recall that, according to the assumption, the interval Œa; b� is
centered at Jn. By Observation 5.13, we have c < 1

k
. Moreover, c cannot be in the

interval Œgk. 1
nC1

/; 1
k
�, because the interval Œgk. 1

nC1
/; 1
k
� does not intersect Jn. This

implies that jŒa; c�j � jŒa; gk. 1
nC1

/�j. Let I1 D Œa; c� and I2 D Œc; b�. Because c is
the middle point of Œa; b�, jI1j D jI2j. From Lemma 5.17, we can find n to be large
enough for the following to hold:

mn
��

1
nC1

; d
��ˇ̌

d � 1
nC1

ˇ̌hn � �1 � "2�
for all d � 1

n
. Because J1 is long, g�1

k
.a/ > 1

n
. Now, applying Lemma 2.11 to the

interval Œa; gk. 1
nC1

/�, we get

mn
��
a; gk

�
1
nC1

���ˇ̌
gk.

1
nC1

/ � a
ˇ̌hn � �1 � "2�: (5.5)

Using this fact and jŒa; c�j � jŒa; gk. 1
nC1

/�j, we get

dn.Œa; b�/ �
mn
��
a; 1
k

��
jb � ajhn

�
mn
��
a; gk

�
1
nC1

���
jb � ajhn

D

mn.Œa;gk.
1
nC1

/�/

jgk.
1
nC1

/�ajhn
�
ˇ̌
gk.

1
nC1

/ � a
ˇ̌hn

jb � ajhn
�
jgk.

1
nC1

/ � ajhn �
�
1 � "

2

�
jb � ajhn

�
jc � ajhn �

�
1 � "

2

�
jb � ajhn

D
jI1j

hn �
�
1 � "

2

�
jI1 C I2jhn

D

�1
2

�hn
�

�
1 �

"

2

�
�
1

2
� " (5.6)

for sufficiently large n.
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Case 3. For the second-to-last case, assume that J1 is short (i.e., does not ful-
fill (5.3)) and J2 is long (i.e., fulfills (5.4)). Fix " > 0. Let c be the center of the
interval Œa; b�. From Observation 5.12, we know that 1

k
< c. Moreover, the interval

Œ 1
k
; gk�1 ı g1.

1
nC1

/� does not intersect Jn. Additionally, Œa; b� is centered at Jn, and
thus, gk�1 ı g1. 1

nC1
/ � c. Let I1 D Œa; c� and I2 D Œc; b�. Because c is the middle

point of Œa; b�, jI1j D jI2j. If j 1
k
� bj � j 1

k�1
�
1
k
j �

1
2

, then using Lemma 5.18, we
can find n large enough such that

mn.Œd; 1�/

j1 � d jhn
� 1 �

"

2

for all d � 1
2

. Since j 1
k
� bj � j 1

k�1
�
1
k
j �
1
2

, we can apply Lemma 2.11 and obtain

mn
��
gk�1 ı g1

�
1
nC1

�
; b
��ˇ̌

b � gk�1 ı g1
�
1
nC1

�ˇ̌hn � 1 � "2 :
Applying this fact together with observation that jŒc; b�j � jŒgk�1 ı g1

�
1
nC1

�
; b�j, we

get

dn.Œa; b�/ �
mn
��
1
k
; b
��

ja � bjhn
D
mn
��
gk�1 ı g1

�
1
nC1

�
; b
��

jb � ajhn

D
mn
��
gk�1 ı g1

�
1
nC1

�
; b
��ˇ̌

b � gk�1 ı g1
�
1
nC1

�ˇ̌hn �
ˇ̌
b � gk�1 ı g1

�
1
nC1

�ˇ̌hn
jb � ajhn

�

�
1 � "

2

�
� jb � cjhn

jb � ajhn
�

ˇ̌
I2
ˇ̌hn
�
�
1 � "

2

�
jI1 C I2jhn

D

�1
2

�hn
�

�
1 �

"

2

�
�

�1
2
� "

�
(5.7)

for sufficiently large n.
Now if j 1

k
� bj < j 1

k�1
�
1
k
j �
1
2

, then from Lemma 5.17, we find n large enough
to get

mn
��

1
nC1

; d
��ˇ̌

d � 1
nC1

ˇ̌hn � 1 � "2
for all d � 1

n
. Now apply Lemma 2.11 twice, first to the interval Œgk�1 ı g1. 1

nC1
/; b�,

resulting in dn.Œgk�1 ı g1. 1
nC1

/; b�/ D dn.Œg
�1
k�1

.b/; g1.
1
nC1

/�/ D dn.Œw; 1�/ with
w D g�1

k�1
.b/. Then, from the fact that j 1

k
� bj < j 1

k�1
�
1
k
j �
1
2

, we know that j1�wj
< 1

2
, and thus we can apply Lemma 2.11 a second time, which results in dn.Œw;

g1.
1
nC1

/�/ D dn.Œ
1
nC1

; d �/ with d D g�11 .w/. This together with the fact that J2 is
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long results in d � 2
nC1

> 1
n

. This results in the following:

mn
��
gk�1 ı g1

�
1
nC1

�
; b
��ˇ̌

b � gk�1 ı g1
�
1
nC1

�ˇ̌hn � 1 � "2 :
Using this result yields

dn.Œa; b�/ �
mn
��
1
k
; b
��

ja � bjhn
D
mn
��
gk�1 ı g1

�
1
nC1

�
; b
��

jb � ajhn

�
mn
��
gk�1 ı g1

�
1
nC1

�
; b
��ˇ̌

b � gk�1 ı g1
�
1
nC1

�ˇ̌hn �
ˇ̌
b � gk�1 ı g1

�
1
nC1

�ˇ̌hn
jb � ajhn

�

�
1 � "

2

�
� jb � cjhn

jb � ajhn
�
jI2j

hn �
�
1 � "

2

�
jI1 C I2jhn

D

�1
2

�hn
�

�
1 �

"

2

�
�

�1
2
� "

�
for sufficiently large n, which ends the proof for this case.

Case 4. For the last case, assume that both J1 and J2 are short. We assumed that
the interval Œa; b� must be centered at Jn. As before, denote by c the center of the
interval Œa; b�. Because J1 is short, we can invoke Observation 5.12 and deduce that
c > 1

k
. The interval J2 is short as well, and invoking Observation 5.13 yields c < 1

k
.

This implies that Œa; b� cannot be centered at Jn.
The only thing left is to consider case when k D nC 1. This case is even simpler,

because the only possible case is Case 3. When k D nC 1, then 1
k
D

1
nC1

and thus,
Œa; 1

k
�\ Jn D ;. Since the interval Œa; b� is centered at Jn, this implies that the center

of the interval Œa; b� is in the interval Œ 1
nC1

; b�. The proof for this situation is exactly
the proof for the Case 3 of this proposition.

This ends the proof of Proposition 5.11

5.5. Finalizing the proof

As the last part of our proof, we put previously obtained results to get the following:

Theorem 5.14. The following estimate holds:

lim inf
n!1

inf
°
dn.Œa; b�/ W 0 < a < b � 1; Œa; b� centered at Jn

±
�
1

2
:

Proof. If there does not exist k 2 ¹1; 2; : : : ; nC 1º such that 1
k
2 .a; b/, then we can

apply Lemma 2.12 to the interval Œa; b�. This yields the interval Œya; yb�, with the same
density, such that at least one 1

k
belongs to Œya; yb�, k 2 ¹1; 2; : : : ; nC 1º. Then, by the

results of Propositions 5.1, 5.3, 5.4, 5.6, 5.7, 5.9, 5.10, and 5.11 we get the thesis.

This directly implies, using the definition of the packing measure from 2.5 and
Corollary 3.4, that the upper limit of the packing measure is at most one, meaning
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Theorem 5.15. Let Sn be IFS defined in 2.1. Then,

lim sup
n!1

Phn.Jn/ � 2;

where Jn is the limit set of the IFS Sn and Ph denotes packing measure in the packing
dimension h.

This result along with Theorem 4.1 proves our main result.

Theorem 5.16. Let Sn be IFS defined in 2.1. Then,

lim
n!1

Phn.Jn/ D 2;

where Jn is the limit set of the IFS Sn and Ph denotes the packing measure in the
packing dimension h.

5.6. Proofs of the auxiliary lemmas

Now, we will provide the proofs for auxiliary Lemmas 5.17 and 5.18.

Lemma 5.17. The following estimate holds:

lim inf
n!1

�
inf
d> 1n

°mn�� 1
nC1

; d
��ˇ̌

d � 1
nC1

ˇ̌hn ±� � 1:
Proof. Fix some n > 0. Take arbitrary d > 1

n
. We claim that in order to estimate the

ratio
mn
��

1
nC1

; d
��ˇ̌

d � 1
nC1

ˇ̌hn (5.8)

from below, one can assume that d 2 Jn, d > 1
n

. Indeed, if d 62 Jn (i.e., d is in some
“gap” of the Cantor set Jn), then we can replace d by yd WD inf¹x 2 Jn W x > dº (the
right endpoint of the “gap”). Then, mn.Œ 1

nC1
; d �/ D mn.Œ

1
nC1

; yd�/ and jd � 1
nC1
j �

j yd � 1
nC1
j and, clearly, yd � d > 1

n
. So

mn
��

1
nC1

; d
��ˇ̌

d � 1
nC1

ˇ̌hn � mn
��

1
nC1

; yd
��ˇ̌

yd � 1
nC1

ˇ̌hn :
So, from now on we assume that d 2 Jn, d > 1

n
.

Since d 2 Jn, there exists a unique sequence of integers .qj /1jD1, qj � n such that

¹dº D

1\
kD1

gq1 ı � � � ı gqk .Œ0; 1�/:
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0 1d
...

1

nC 1

d
...

gq1 ı gq2.0/

1

n

1

q1 C 1

1

q1

F n
1

1

q1 C 1

1

q1

F n
2

gq1 ı gq2C1.0/

Figure 2. Length and measure of the intervals to the left of d .

The measure mn.Œ 1
nC1

; d �/ can be expressed as the sum of the measures of the cylin-
der sets (i.e., intervals from the collection F n

l
located to the left of d ). Summing up

first the measures of the cylinder set of the first generation (see Figure 2), we obtain

nX
kDq1C1

� 1
k
�

1

k C 1

�hn
:

Now, looking at the cylinder set containing d (i.e., the interval Œ 1
q1C1

; 1
q1
�), we see

that the cylinder sets of the second generations (i.e., the elements of the collection F n
2 )

contained in Œ 1
q1C1

; 1
q1
� and located to the left of d have length� 1

q1
�

1

q1 C 1

�
�

� 1
k
�

1

k C 1

�
;

k D 1; : : : ; q2 � 1, and measure� 1
q1
�

1

q1 C 1

�hn
�

� 1
k
�

1

k C 1

�hn
:

Proceeding by induction, we easily conclude that the measure mn.Œ 1
nC1

; d �/ can be
expressed in the following form:

mn
�� 1

nC 1
; d
��
D

nX
kDq1C1

� 1
k
�

1

k C 1

�hn
C

� 1
q1
�

1

q1 C 1

�hn
�

q2�1X
kD1

� 1
k
�

1

k C 1

�hn
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C

2Y
iD1

� 1
qi
�

1

qi C 1

�hn
�

nX
kDq3C1

� 1
k

1

k C 1

�hn
C

3Y
iD1

� 1
qi
�

1

qi C 1

�hn
�

q4�1X
kD1

� 1
k
�

1

k C 1

�hn
C : : : (5.9)

Analogously, the value jd � 1
nC1
jhn can be expressed as follows:

ˇ̌̌
d �

1

nC 1

ˇ̌̌hn
D

h nX
kDq1C1

� 1
k
�

1

k C 1

�
C

� 1
q1
�

1

q1 C 1

�
�

q2�1X
kD1

� 1
k
�

1

k C 1

�
C

2Y
iD1

� 1
qi
�

1

qi C 1

�
�

1X
kDq3C1

� 1
k
�

1

k C 1

�
C

3Y
iD1

� 1
qi
�

1

qi C 1

�
�

q4�1X
kD1

� 1
k
�

1

k C 1

�
C : : :

ihn
:

Now, clearly each summand

2kY
iD1

� 1
qi
�

1

qi C 1

�
�

1X
kDq2kC1C1

� 1
k
�

1

k C 1

�
can be divided into two sums:

2kY
iD1

� 1
qi
�

1

qi C 1

�
�

nX
kDq2kC1C1

� 1
k
�

1

k C 1

�
C

2kY
iD1

� 1
qi
�

1

qi C 1

�
�

1X
kDnC1

� 1
k
�

1

k C 1

�
:

Note that the first sum corresponds to the sum appearing in the expression for
mn.Œ

1
nC1

; d �/. Grouping expressions that occur also in the formula for mn.Œ 1
nC1

; d �/

yield the following expression for jd � 1
nC1
jhn

ˇ̌̌
d �

1

nC 1

ˇ̌̌hn
D

h nX
kDq1C1

� 1
k
�

1

k C 1

�
C

� 1
q1
�

1

q1 C 1

�
�

q2�1X
kD1

� 1
k
�

1

k C 1

�
C

2Y
iD1

� 1
qi
�

1

qi C 1

�
�

nX
kDq3C1

� 1
k
�

1

k C 1

�
C

3Y
iD1

� 1
qi
�

1

qi C 1

�
�

q4�1X
kD1

� 1
k
�

1

k C 1

�
C : : :
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C

1X
iD1

2iY
jD1

� 1
qj
�

1

qj C 1

�
�

1X
kDnC1

.
1

k
�

1

k C 1
/
ihn

: (5.10)

Now, using Lemma 2.17 with mn.Œ 1
nC1

; d �/ and taking the quotient, we getˇ̌
d � 1

nC1

ˇ̌hn
mn
��

1
nC1

; d
��

�

"
1C

1P
iD1

2iQ
jD1

�
1
qj
�

1
qjC1

�
�

1P
kDnC1

. 1
k
�

1
kC1

/

nP
kDq1C1

�
1
k
�

1
kC1

�
C

1P
iD1

2iQ
jD1

�
1
qj
�

1
qjC1

�
�

�
1

q2iC1
�

1
nC1

�
C

1P
iD1

2iC1Q
jD1

�
1
qj
�

1
qjC1

�
�

�
1 � 1

q2iC2

�
#hn

�

"
1C

1P
iD1

2iQ
jD1

�
1
qj
�

1
qjC1

�
�

�
1
nC1

�
nP

kDq1C1

�
1
k
�

1
kC1

�
C

1P
iD1

2iQ
jD1

�
1
qj
�

1
qjC1

�
�

�
1

q2iC1
�

1
nC1

�
C

1P
iD1

2iC1Q
jD1

�
1
qj
�

1
qjC1

�
�

�
1 � 1

q2iC2

�
#hn

�

"
1C

�
1
nC1

��
1
q1
�

1
q1C1

��
1
q2
�

1
q2C1

�
�

1P
iD0

�
1
2

�iC1
nP

kDq1C1

�
1
k
�

1
kC1

�
C

1P
iD1

2iQ
jD1

�
1
qj
�

1
qjC1

�
�

�
1

q2iC1
�

1
nC1

�
C

1P
iD1

2iC1Q
jD1

�
1
qj
�

1
qjC1

�
�

�
1 � 1

q2iC2

�
#hn

�

h
1C

2

n

ihn
(5.11)

where inequality (5.11) comes from the fact that 1
qi
�

1
qiC1
�
1
2

for every i D 1;2; : : : .
This implies that the numerator is limited from above by the following expression
1
nC1
� . 1
q1
�

1
q1C1

/ � . 1
q2
�

1
q2C1

/ �
P1
kD1.

1
2
/k . The last inequality follows from the

fact that d > 1
q1C1

, and thus, the denominator of the expression is limited from below
by the first summand 1

q1C1
�

1
nC1

. From this, we get

mn
��

1
nC1

; d
��ˇ̌

d � 1
nC1

ˇ̌hn � 1�
1C 2

n

�hn � 1

1C 2
n

D
n

nC 2
D 1 �

2

nC 2
;

which concludes the proof.
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Very similar reasoning can be used to show the following lemma:

Lemma 5.18. The following estimate holds:

lim inf
n!1

�
inf
d< 12

°mn.Œd; 1�/
j1 � d jhn

±�
� 1

Proof. Proof of this lemma uses the same techniques as one of the Lemma 5.17, with
the only difference being that now we look at the intervals to the right of d instead of
left.
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