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Parabolic fractal geometry
of stable Lévy processes with drift

Peter Kern and Leonard Pleschberger

Abstract. We explicitly calculate the Hausdorff dimension of the graph and range of an isotro-
pic stable Lévy process X plus deterministic drift function f . For that purpose we use a
restricted version of the genuine Hausdorff dimension, which is called the parabolic Hausdorff
dimension. It turns out that covers by parabolic cylinders are optimal for treating self-similar
processes, since their distinct non-linear scaling between time and space geometrically matches
the self-similarity of the processes. We provide explicit formulas for the Hausdorff dimension
of the graph and the range of X C f . In sum, the parabolic Hausdorff dimension of the drift
term f alone contributes to the Hausdorff dimension of X C f . Furthermore, we derive some
formulas and bounds for the parabolic Hausdorff dimension.

1. Introduction

Let X D .Xt /t�0 be a Lévy process in Rd that is a stochastic process on some prob-
ability space .�;A;P / with the following properties:

(i) The process P -almost surely starts in 0 2 Rd .

(ii) X possesses independent increments, that is, for any 0 � t0 < � � � < tn, the
random variables Xt0 ; Xt1 �Xt0 ; : : : ; Xtn �Xtn�1 are independent.

(iii) X has stationary increments, that is, for all t; h � 0, the distribution of the
increment XtCh � Xt

d
D Xh does not depend on t , where the symbol d

D

denotes equality in distribution.

(iv) X is stochastically continuous, that is, P .kXtCh � Xtk > "/! 0 as h! 0

for any t � 0 and " > 0.
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Additionally assuming self-similarity, the Lévy process is called stable. In this
paper we only deal with the special case of an isotropic ˛-stable Lévy process, in
which case the self-similarity is given by

.Xc�t /t�0
fd
D .c1=˛ �Xt /t�0 for all c > 0; (1.1)

where fd
D denotes equality of all finite-dimensional distributions that characterize the

stochastic processes in law. In this case the Hurst index H D 1=˛ is restricted to
H � 1

2
, that is, ˛ 2 .0; 2� and the isotropic ˛-stable Lévy process is also uniquely

determined in law by the characteristic function EŒeih�;Xt i� D e�t �Ck�k
˛

with Lévy
exponent‰.�/D Ck�k˛ for some constant C > 0. In case of ˛ D 2 we obtain Brow-
nian motion. For details on stable Lévy processes, we refer to the monograph [15].

The integrability of � 7! exp.�t � Ck�k˛/ ensures the applicability of the Fourier
inversion formula. Therefore, for any t > 0, the random variable Xt possesses the
continuous density function

x 7! p.t; x/ WD .2�/�d
Z

Rd
e�ih�;xie�t‰.�/ d� D .2�/�d

Z
Rd
e�ih�;xie�t �Ck�k

˛

d�;

which for ˛ 2 .0; 2/ cannot be expressed in simple terms but belongs to C1.Rd /with
all derivatives in L1.Rd / \ C0.Rd /; see [15]. Furthermore, from the self-similarity
property in (1.1), it easily follows that

p.t; x/ D t�d=˛ � p
�
1;

x

t1=˛

�
for all t > 0 and x 2 Rd . (1.2)

Thus, we define p.x/ WD p.1;x/ as the density at time t D 1 and by [4, Theorem 2.1],
we have the tail estimate

p.x/ D O.kxk�d�˛/ as kxk ! 1: (1.3)

This density is bounded and rotationally symmetric, that is, writing x D ry 6D 0 with
r D kxk > 0 and y D x=kxk 2 Sd�1, the density p.x/ D p.ry/ does not depend
on y and due to unimodality (see [15]), r 7! p.ry/ is non-increasing.

Our aim is to analyze isotropic stable Lévy processes plus (arbitrary) Borel mea-
surable drift functions by methods from fractal geometry. In particular, we determine
formulas for the Hausdorff dimension of the graph and the range of an isotropic ˛-
stable Lévy process plus drift. Starting with Brownian motion, in the past decades
much effort has been made to explicitly calculate the Hausdorff dimension of the
range and the graph of stable Lévy processes with an even more general self-similarity
relation than (1.1) (see, e.g., [1, 3, 5, 7, 10, 14, 17, 19] or the excellent review arti-
cle [18]). Some of these results were extended to Markov processes, but require addi-
tional regularity assumptions for the transition probabilities in the non-homogeneous
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situation; see [18] and the references therein for details. Only recently, Peres and
Sousi started to deal with Hausdorff dimension results of self-similar processes with
an additional drift function by considering Brownian motion [12] and fractional Brow-
nian motion [13]. We will follow the method in [13] to prove corresponding results
for isotropic stable Lévy processes. The restriction to isotropic stable Lévy processes
is due to rotational symmetry, which is needed in the proof method. Compared to the
method in [13], we have to overcome some additional issues:

(1) An isotropic ˛-stable Lévy process for ˛ 2 .0; 2/ is a pure jump process.
Hence, we cannot use Hölder continuity of the sample paths to derive upper
bounds for the Hausdorff dimension as in case of fractional Brownian motion
in [13]. Instead, we will use the covering lemma of Pruitt and Taylor ([14,
Lemma 6.1]) for the Lévy process together with a deterministic cover of the
drift function.

(2) The Hurst index H D 1=˛ of an isotropic ˛-stable Lévy process is restricted
to H � 1=2, whereas H 2 .0; 1/ for fractional Brownian motion. It will turn
out that the case H � 1 needs different arguments than the blueprint given
for H 2 .0; 1/ in [13]. The reason is that diameters of parabolic cylinders
introduced in (2.1) are determined by the size of the cylinders in the space
domain for H 2 .0; 1/, whereas for H > 1, the size of the cylinders in the
time domain dominates.

(3) By (1.3), the tail of the probability density of an isotropic ˛-stable Lévy pro-
cess falls off as a power function, whereas the normal density of fractional
Brownian motion decreases exponentially fast. The power law tails require
more delicate estimates of energy kernels in the potential-theoretic method to
derive lower bounds of the Hausdorff dimension.

We introduce a generalized version of the genuine Hausdorff dimension, which is
called the ˛-parabolic Hausdorff dimension in Section 2. We also give a priori upper
and lower bounds for the ˛-parabolic Hausdorff dimension in terms of the genuine
Hausdorff dimension. It turns out that covers by ˛-parabolic cylinders are optimal for
treating self-similar processes, since their distinct non-linear scaling between time and
space geometrically matches the self-similarity of the processes. We provide explicit
formulas for the Hausdorff dimension of the graph and the range of an isotropic
˛-stable Lévy process plus Borel measurable drift function in Section 3 and defer
the proofs to Sections 4–6. In sum, the ˛-parabolic Hausdorff dimension of the drift
term f alone contributes to the Hausdorff dimension of X C f . We derive new for-
mulas and estimates for the ˛-parabolic Hausdorff dimension of constant functions
and Hölder continuous functions in Section 7.
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2. On parabolic fractal geometry

We start with the definition of the ˛-parabolic Hausdorff dimension, in which a dis-
tinct non-linear scaling between time and space inheres. Throughout this paper the
symbol j � j denotes the diameter of a set in real Euclidean space. We use the same
symbol for the absolute value of reals, without fear to cause confusion, and denote
by k � k the Euclidean norm of vectors in Rd or R1Cd . For real functions f; g the
symbol f . g denotes the existence of a constant C 2 .0;1/ not depending on the
variables such that f � C � g and f � g is short for f . g together with g . f .

Definition 2.1. Let A � R1Cd be any set and ˛; ˇ 2 .0;1/. The ˛-parabolic ˇ-
Hausdorff (outer) measure of A is defined as

P ˛
�Hˇ .A/ WD lim

ı#0
inf
° 1X
kD1

jPkjˇ W A �
1[
nD1

Pk; Pk 2 P ˛; jPkj � ı
±
;

where the ˛-parabolic cylinders .Pn/n2N are contained in

P ˛
WD
®
Œt; t C c� �

dY
jD1

Œxj ; xj C c
1=˛� W t; xj 2 R; c 2 .0; 1�

¯
: (2.1)

We define the ˛-parabolic Hausdorff dimension of A as

P ˛-dimA WD inf
®
ˇ > 0 W P ˛

�Hˇ .A/ D 0
¯
D sup

®
ˇ > 0 W P ˛

�Hˇ .A/ D1
¯
:

The case ˛ D 1 equals the genuine Hausdorff dimension, which is simply denoted by
the symbol dim.

Let us compare the ˛-parabolic Hausdorff dimension to other parabolic Hausdorff
dimensions appearing in the literature. For the Gaussian case, Taylor and Watson [16]
introduced the parabolic Hausdorff dimension P -dim in the same way we did for
˛ D 2 in order to determine polar sets for the heat equation. On the contrary, for
H 2 .0; 1�, Peres and Sousi [13] defined the H -parabolic ˇ-Hausdorff content

‰
ˇ
H .A/ WD inf

° 1X
kD1

c
ˇ

k
W A �

1[
kD1

Pk; Pk 2 P 1=H
±
;

where the covering sets

Pk D Œtk; tk C ck� �
dY
jD1

Œxj;k; xj;k C c
H
k �
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are from the class of 1=H -parabolic cylinders P 1=H from (2.1) with jPkj � cHk . This
results in what they call the H -parabolic Hausdorff dimension

dim‰;H A WD inf
®
ˇ > 0 W ‰

ˇ
H .A/ D 0

¯
D sup

®
ˇ > 0 W ‰

ˇ
H .A/ > 0

¯
:

Proposition 2.2. Let A � R1Cd be an arbitrary set, let ˛ D 1=H 2 Œ1;1/, and
let ˇ 2 .0;1/. Then, one has

P ˛-dimA D .dim‰;H A/=H; (2.2)

that is, Peres and Sousi’s H -parabolic Hausdorff dimension differs from our ˛-para-
bolic Hausdorff dimension by a constant factor.

Proof. First we introduce the auxiliary ˛-parabolic ˇ-Hausdorff content

ˆˇ˛ .A/ WD inf
° 1X
kD1

jPkjˇ W A �
1[
kD1

Pk; Pk 2 P ˛
±
:

Since for ˛ � 1 and Pk D Œtk; tk C ck��
Qd
jD1 Œxj;k; xj;k C c

1=˛

k
� 2 P ˛ , the diameter

fulfills jPkjˇ � c
ˇ=˛

k
D c

H �ˇ

k
, one has

ˆˇ˛ .A/ D ‰
ˇ �H
H .A/: (2.3)

Following the arguments in [11, Proposition 4.9], one gets P ˛ �Hˇ .A/ D 0 if and
only if ˆˇ˛ .A/ D 0, which together with (2.3) shows (2.2).

The ˛-parabolic Hausdorff dimension fulfills the following countable stability
property, which easily follows from monotonicity and � -subadditivity of the ˛-para-
bolic Hausdorff measure, as argued for the genuine Hausdorff dimension in [6,
page 29]:

Proposition 2.3. For every ˛ 2 .0;1/ and .Ak/k2N �R1Cd , the ˛-parabolic Haus-
dorff dimension fulfills the countable stability property

P ˛-dim
1[
kD1

Ak D sup
k2N

P ˛-dimAk :

Moreover, we derive the following a priori estimates for the Hausdorff dimension
in terms of the parabolic Hausdorff dimension:

Theorem 2.4. Let A � R1Cd be any set. Let �˛ D P ˛-dimA. Then, one has

dimA �

´
�˛ ^ .˛ � �˛ C 1 � ˛/ ˛ 2 .0; 1�;

�˛ ^
�
1
˛
� �˛ C

�
1 � 1

˛

�
� d
�
˛ 2 Œ1;1/



P. Kern and L. Pleschberger 348

and

dimA �

´
�˛ C

�
1 � 1

˛

�
� d ˛ 2 .0; 1�;

�˛ C 1 � ˛ ˛ 2 Œ1;1/:

Proof. (i) Let ˛ 2 .0;1/. By the definition of the ˛-parabolic ˇ-Hausdorff measure,
there are only coverings by P ˛-sets permitted. So, besides P ˛ , there could exist more
efficient covers of A with respect to their shape. Therefore, Hˇ .A/ � P ˛ �Hˇ .A/,
which implies dimA � �˛ .

(ii) Let ˛ 2 .0; 1� and " > 0 be arbitrary. If ˇ > ˛ � �˛ C 1� ˛, then ˇ
˛
C .1� 1

˛
/

> �˛ . Hence, we can cover A by the ˛-parabolic cylinders

.Pk/k2N D

�
Œtk; tk C ck� �

dY
jD1

Œxj;k; xj;k C c
1=˛

k
�
�
k2N
� P ˛

with jPkj � ck for every k 2 N such that
P1
kD1 jPkj

ˇ=˛C1�1=˛ � ". Each Pk can be
covered by dc1�1=˛

k
e hypercubes�k with sidelength c1=˛

k
. Hence,

Hˇ .A/ �

1X
kD1

dc
1�1=˛

k
e � j�kjˇ .

1X
kD1

c
ˇ=˛C1�1=˛

k
.
1X
kD1

jPkjˇ=˛C1�1=˛ � ":

Since ˇ > ˛ � �˛ C 1 � ˛ is arbitrary, we have dimA � ˛ � �˛ C 1 � ˛.
(iii) Let ˛ 2 Œ1;1/ and " > 0 be arbitrary. If ˇ > 1=˛ � �˛ C .1� 1=˛/ � d , then we

have ˛ˇ C .1 � ˛/ � d > �˛ . Hence, a cover of A by ˛-parabolic cylinders .Pk/k2N

as in part (i) now fulfills jPkj � c
1=˛

k
such that

P1
kD1 jPkj

˛ˇC.1�˛/�d � ". Each Pk
can be covered by dc1=˛�1

k
ed hypercubes�k with sidelength ck . Then,

Hˇ .A/ �

1X
kD1

dc
1=˛�1

k
e
d
� j�ck j

ˇ .
1X
kD1

.c
1=˛

k
/˛ˇC.1�˛/�d .

1X
kD1

jP
c
1=˛

k

j
˛ˇC.1�˛/�d

� ":

Since ˇ > 1=˛ � �˛ C .1� 1=˛/ � d is arbitrary, we have dimA� 1
˛
� �˛ C .1�

1
˛
/ � d .

(iv) Let ˛ 2 .0; 1�. Further, let ˇ > dimA and " > 0 be arbitrary. Then, we can
cover A with hypercubes

�
�k
�
k2N
D

�
Œtk; tk C ck� �

dY
jD1

Œxj;k; xj;k C ck�
�
k2N
� P 1

of sidelength ck � 1 such that
P1
kD1 j�kjˇ � ". Each �k can be covered by

dc
1�1=˛

k
ed ˛-parabolic cylinders

.Pk/k2N D

�
Œtk; tk C ck� �

dY
jD1

Œxj;k; xj;k C c
1=˛

k
�
�
k2N
� P ˛
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with jPkj � ck . By choosing 
 D ˇ C .1=˛ � 1/ � d , one has

P ˛
�H
 .A/ �

1X
kD1

dc
1�1=˛

k
e
d
� jPkj
 .

1X
kD1

c
.1�1=˛/dC


k
D

1X
kD1

c
ˇ

k
.
1X
kD1

j�kjˇ

� ":

Since ˇ > dimA is arbitrary, one has P ˛-dimA � dimAC . 1
˛
� 1/ � d .

(v) Let ˛ 2 Œ1;1/. Each�k from part (iv) can be covered by dc1�˛
k
e ˛-parabolic

cylinders

.Pk/k2N D

�
Œtk; tk C c

˛
k � �

dY
jD1

Œxj;k; xj;k C ck�
�
� P ˛

with jPkj � ck . By choosing 
 D ˇC ˛ � 1, with similar calculations as above we get
P ˛ �H
 .A/ . ". Since ˇ > dimA is arbitrary, one has P ˛-dimA � dimAC ˛ � 1
and the theorem is proven.

3. Main results

So far, our considerations regarding the parabolic Hausdorff dimension were of a
purely geometric nature. Now we will apply it to stochastic processes. We unite the
cogitations of the following sections and begin with the Hausdorff dimension of the
graph GT .X C f / D ¹.t; Xt C f .t// W t 2 T º of an isotropic stable Lévy process X
plus Borel measurable drift function f .

Theorem 3.1. Let T � RC be a Borel set and ˛ 2 .0; 2�. Let X D .Xt /t�0 be an
isotropic ˛-stable Lévy process in Rd . Further, let f W T !Rd be a Borel measurable
function. Let '˛ D P ˛-dimGT .f /. Then, one P -almost surely has

dimGT .X C f / D
´
'1 ˛ 2 .0; 1�;

'˛ ^
�
1
˛
� '˛ C

�
1 � 1

˛

�
� d
�
˛ 2 Œ1; 2�:

Proof. The Gaussian case where ˛ D 2 follows from [13, Theorem 1.2] together with
Proposition 2.2. The other cases will follow by the combination of Corollary 4.2 with
Theorem 5.7 for drift functions f with kf .t/ � f .s/k � 1 for all s; t 2 T . For the
treatment of arbitrary drift functions f , we write T D

S
z2.Z=2/d Tz , where Tz WD

¹t 2 T W kf .t/ � zk � 1
2
º. The claim now follows easily by using the countable sta-

bility property from Proposition 2.3.

The formula for the Hausdorff dimension of the range RT .X C f / D ¹Xt C

f .t/ W t 2 T º of an isotropic stable Lévy process X plus Borel measurable drift func-
tion f reads as follows:
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Theorem 3.2. Let T � RC be a Borel set and ˛ 2 .0; 2�. Let X D .Xt /t�0 be an
isotropic ˛-stable Lévy process in Rd and f W T ! Rd be a Borel measurable func-
tion. Let '˛ D P ˛-dimGT .f /. Then, one P -almost surely has

dimRT .X C f / D

´
.˛ � '˛/ ^ d ˛ 2 .0; 1�;

'˛ ^ d ˛ 2 Œ1; 2�:

Proof. The Gaussian case where ˛ D 2 follows from [13, Theorem 1.2]. The rest will
follow by Theorems 6.1 and 6.4, analogously to the proof of Theorem 3.1.

Our main theorems imply an improvement of Theorem 2.4 for graph sets.

Corollary 3.3. Let '˛ D P ˛-dimGT .f /. In the case of ˛ 2 .0; 1�, one has

'1 � .˛ � '˛/ _
�
'˛ C

�
1 � 1

˛

�
� d
�
:

Proof. For ˛ 2 .0; 1�, the combination of Theorems 3.1 and 3.2 directly yields

'1 D dimGT .f / � dimGT .X C f / � dimRT .X C f / D .˛ � '˛/ ^ d:

Furthermore, we have

˛ � '˛ � '˛ C
�
1 � 1

˛

�
� d if and only if ˛ � '˛ � d

and
d � '˛ C

�
1 � 1

˛

�
� d if and only if ˛ � '˛ � d;

which proves the claim.

4. Graph: Upper bound via geometric measure theory

We calculate an upper bound for the Hausdorff dimension of the graph of an isotropic
stable Lévy process X plus drift function by means of an efficient covering.

Theorem 4.1. Let T �RC be any set and ˛ 2 .0;2�. LetX D .Xt /t�0 be an isotropic
˛-stable Lévy process in Rd and f W T !Rd be any function. Furthermore, let '˛ D
P ˛-dimGT .f / be the ˛-parabolic Hausdorff dimension of the graph of f over T .
Then, for ˛ 2 .0; 1� one P -almost surely has

dimGT .X C f / � dimGT .f / D '1;

and for ˛ 2 Œ1; 2�, one P -almost surely has

P ˛-dimGT .X C f / � P ˛-dimGT .f / D '˛:
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Proof. (i) Let ˛ 2 .0; 1� and ˇ D '1 and let ı; " > 0 be arbitrary. Then, GT .f / can
be covered by hypercubes

�
�k
�
k2N
D

�
Œtk; tk C ck� �

dY
iD1

Œxi;k; xi;k C ck�
�
k2N
� P 1

such that
P1
kD1 j�kjˇCı .

P1
kD1 c

ˇCı

k
� ". Let Mk.!/ be the random number of

a fixed 2d -nested collection of hypercubes (see [14, Lemma 6.1] for the definition)
with sidelength c1=˛

k
that the path t 7! Xt .!/ hits at some time t 2 Œtk; tk C ck�. LetS

k2N Pk.!/ � GT .X.!// with

.Pk.!//k2N D

�
Œtk; tk C ck� �

Mk.!/[
jD1

dY
iD1

Œ�i;j;k.!/; �i;j;k.!/C c
1=˛

k
�
�
k2N

being a corresponding random parabolic cover of the graph of this path. Then, for all
t 2 Œtk; tk C ck�, there exists j 2 ¹1; : : : ; Mk.!/º such that for the i -th component
of X C f , we have

�i;j;k.!/C xi;k � X
.i/
t .!/C fi .t/ � �i;j;k.!/C xi;k C c

1=˛

k
C ck

� �i;j;k.!/C xi;k C 2ck :

Hence, we obtain a random cover
S
k2N

e�k.!/ � GT .X.!/C f /, where

e�k.!/ D Œtk; tk C ck� �Mk.!/[
jD1

dY
iD1

�
Œ�i;j;k.!/C xi;k; �i;j;k.!/C xi;k C ck�

[ Œ�i;j;k.!/C xi;k C ck; �i;j;k.!/C xi;k C 2ck�
�
:

This is a union ofMk.!/ � 2
d sets with diameter

p
d C 1 � ck . An application of Pruitt

and Taylor’s covering lemma (see [14, Lemma 6.1]) and [10, Lemma 3.4] shows that
for all ı0 > 0, one has

EŒMk� .
ck

EŒT .c1=˛
k
=3; ck/�

. c�ı
0=˛

k
;

where T .c1=˛
k
=3; ck/ is the sojourn time of the process .Xt /t2Œ0;ck � in a ball of radi-

us c1=˛
k
=3 centered at the origin. Hence, we get for "0 D ı C ı0=˛ > 0,

EŒHˇC"0.GT .X C f //� � E
h 1X
kD1

je�ck jˇC"0i . 1X
kD1

EŒMk� � c
ˇC"0

k
.
1X
kD1

c
ˇCı

k
� ":
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Since "; "0 > 0 are arbitrary, we get for all ˛ 2 .0; 1� and ˇ0 > ˇ,

EŒHˇ 0.GT .X C f //� D 0;

which implies Hˇ 0.GT .X C f // D 0 P -almost surely. Since ˇ0 > ˇ is arbitrary, we
finally get P -almost surely dimGT .X C f / � ˇ D '1.

(ii) Let ˛ 2 Œ1; 2� and ˇ D P ˛-dimGT .f / and also let "; ı > 0 be arbitrary.
Then, GT .f / can be covered by ˛-parabolic cylinders

.Pk/k2N D

�
Œtk; tk C ck� �

dY
iD1

Œxi;k; xi;k C c
1=˛

k
�
�
k2N
� P ˛

such that
P1
kD1 jPkj

ˇCı .
P1
kD1 c

.ˇCı/=˛

k
� ". Let Mk.!/ be the random num-

ber of a fixed 2d -nested collection of hypercubes with sidelength c1=˛
k

that the path
t 7! Xt .!/ hits at some time t 2 Œtk; tk C ck�. As in part (i), we obtain a random
parabolic cover

S
k2N

zPk.!/ � GT .X.!/C f /, where

zPk.!/ D Œtk; tk C ck��
Mk.!/[
jD1

dY
iD1

�
Œ�i;j;k.!/C xi;k; �i;j;k.!/C xi;k C c

1=˛

k
�

[ Œ�i;j;k.!/C xi;k C c
1=˛

k
; �i;j;k.!/C xi;k C 2c

1=˛

k
�
�
:

This is a union ofMk.!/ � 2
d sets with diameter jzPk.!/j .c1=˛k . As in part (i), we get

EŒMk� . c�ı
0=˛

k
. Hence, we get for "0 D ı C ı0 > 0 with the similar calculations as

above,

EŒP ˛
�HˇC"0.GT .X C f //� .

1X
kD1

EŒMk� � c
.ˇC"0/=˛

k
.
1X
kD1

c
.ˇCı/=˛

k
� ":

Since "; "0 > 0 are arbitrary, as in part (i), we finally get

P ˛-dimGT .X C f / � ˇ D P ˛-dimGT .f / P -almost surely;

as claimed.

Corollary 4.2. Let T �RC be any set and ˛ 2 .0;2�. LetX D .Xt /t�0 be an isotropic
˛-stable Lévy process in Rd and f W T ! Rd be any function. Furthermore, let
'˛ D P ˛-dimGT .f /. Then, one P -almost surely has

dimGT .X C f / �
´
'1 ˛ 2 .0; 1�;

'˛ ^
�
1
˛
� '˛ C

�
1 � 1

˛

�
� d
�
˛ 2 Œ1; 2�:

Proof. The Gaussian case ˛D 2 follows from [13, Corollary 2.3] and Proposition 2.2.
The rest follows directly from Theorems 2.4 and 4.1.
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5. Graph: Lower bound via potential theory

Next we want to calculate a lower bound for the Hausdorff dimension of isotropic
stable Lévy processes with drift. This will be accomplished by the energy method;
see [11, Section 4.3]. This method makes use of the Lebesgue integral. Hence, for the
first time we have to impose restrictions on the domain T � RC and the drift function
f W T ! Rd with regard to their measurability. For a Borel-measurable function, it
is well known that the graph is always a Borel set, whereas the range is not neces-
sarily a Borel set, but belongs to the Suslin sets. Suslin sets (also called analytic sets)
supersede the Borel sets and can be represented as the image of a Borel set under a
continuous mapping. For details on Suslin sets, we refer to [8, Section 39]. We intro-
duce some notions from potential theory in this slightly more general setting, to be
also applicable for the range in Section 6.

Definition 5.1. Let A � R1Cd be a Suslin set and � be a probability measure sup-
ported on A, that is, � 2M1.A/. Further, let K W R1Cd ! Œ0;1� be a Lebesgue
measurable function that is called the difference kernel. The K-energy of a probability
measure � is defined to be

EK.�/ WD
Z
A

Z
A

K.t � s; x � y/ d�.t; x/ d�.s; y/

and the equilibrium value of A is defined as E�K WD inf�2M1.A/ EK.�/. We define the
K-capacity of A as

CapK.A/ WD
1

E�K
:

Whenever the kernel has the form K.t; x/ D k.t; x/k�ˇ , we write Eˇ .�/ for EK.�/
and Capˇ .A/ for CapK.A/ and we refer to them as the ˇ-energy of a probability
measure � and the Riesz ˇ-capacity of A, respectively. Next we state Frostman’s
theorem.

Theorem 5.2. Let ˛ > 0. For any Suslin set A � R1Cd , one has

P ˛-dimA � dimA D sup
®
ˇ W Capˇ .A/ > 0

¯
:

Proof. This follows from the first assertion in the proof of Theorem 2.4 together with
[2, Appendix B].

The next lemma shows that we can work with an energy integral where the stable
process X is transformed into the kernel.

Lemma 5.3. Let T �RC be a Borel set and ˛ 2 .0;2�. LetX D .Xt /t�0 be a stochas-
tic process in Rd with stationary increments and f WRC!Rd be a Borel measurable
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function. Define the difference kernel

Kˇ .t; x/ WD E
�
k.t; sign.t/ �Xjt j C x/k�ˇ

�
:

Then, from CapKˇ .GT .f // > 0, it follows that P -almost surely Capˇ .GT .X C f //
> 0 holds. Hence, EKˇ .�/ < 1 for some probability measure � 2M1.GT .f //
implies

dimGT .X C f / � ˇ P -almost surely:

Proof. For every ! 2 �, the pathwise bijection that .t; f .t// 2 GT .f / if and only
if .t; Xt .!/C f .t// 2 GT .Xt .!/C f / yields the existence of some random prob-
ability measure �! 2M1.GT .X.!/C f // with �!. zA!/ D �.A/ for all Borel sets
A� GT .f /, where zA! WD ¹.t; xCXt .!// W .t; x/ 2Aº. Therefore, Tonelli’s theorem
and the stationarity of the increments of X yield

E
�
Eˇ .�!/

�
D E

hZ
GT .X.!/Cf /

Z
GT .X.!/Cf /

k.t � s; x � y/k�ˇ d�!.t; x/ d�!.s; y/
i

DE
hZ

GT .f /

Z
GT .f /

k.t � s; x CXt .!/ � .y CXs.!///k
�ˇ d�.t; x/ d�.s; y/

i
D

Z
GT .f /

Z
GT .f /

E
�
k.t � s; Xt .!/ �Xs.!/C x � y/k

�ˇ
�

d�.t; x/ d�.s; y/

D

Z
GT .f /

Z
GT .f /

E
�
k.t � s; sign.t � s/ �Xjt�sj.!/C x � y/k�ˇ

�
d�.t; x/ d�.s; y/

D EKˇ .�/

By assumption, there exists � 2M1.GT .f // such that EKˇ .�/ < 1; therefore,
Eˇ .�!/ <1 P -almost surely. The rest of the claim follows by Frostman’s theorem
(Theorem 5.2).

Frostman’s lemma provides the suitable candidate for the probability measure �.
We give a parabolic version of it.

Theorem 5.4. Let A � R1Cd be a Borel set. If P ˛-dimA > ˇ; then there exists
� 2M1.A/ such that we have

�
�
Œt; t C c� �

dY
iD1

Œxi ; xi C c
1=˛�

�
.

´
cˇ ˛ 2 .0; 1�;

cˇ=˛ ˛ 2 Œ1;1/

for every c 2 .0; 1� and t; x1; : : : ; xd 2 R.

Proof. The parabolic case can easily be proven along the lines of the classical case;
see, for example, [11, Section 4.4].
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The following lemma is a refinement of [13, (2.7)]:

Lemma 5.5. Let t 2 R be fixed and h W Rd ! R; h.x/ D k.t; x/k�ˇ D .t2

C kxk2/�ˇ=2. Then, h is rotationally symmetric and the mapping r 7! h.r � y/ is
non-increasing for r D kxk and does not depend on y D x=kxk 2 Sd�1. Further,
let p W Rd ! R be a rotationally symmetric function such that also r 7! p.r � y/ is
non-increasing for r D kxk and y D x=kxk 2 Sd�1. Then, for all u 2 Rd , we haveZ

Rd
h.x C u/ � p.x/ dx .

Z
Rd
h.x/ � p.x/ dx;

provided that the integrals exist.

Proof. The first part is obvious. Further, by monotonicity, we haveZ
Rd
h.x C u/ � p.x/ dx

D

Z
¹kxk<kxCukº

h.x C u/„ ƒ‚ …
�h.x/

� p.x/ dx C
Z
¹kxk�kxCukº

h.x C u/ � p.x/„ƒ‚…
�p.xCu/

dx

� 2

Z
Rd
h.x/ � p.x/ dx;

as claimed.

Inspired by [13, Lemma 2.5], we give a priori estimates for the difference ker-
nel Kˇ from Lemma 5.3 that will later turn out to provide appropriate estimates of
the energy integral.

Lemma 5.6. Let ˛ 2 .0; 2/ and X D .Xt /t�0 be an isotropic ˛-stable Lévy process
in Rd . Let ˇ � 0, � 2 R, and ı 2 Rd be such that j� j 2 .0; 1�, kık 2 Œ0; 1�. Then, for
the difference kernel Kˇ .�; ı/ D EŒk.�; sign.�/ �Xj� j C ı/k�ˇ � from Lemma 5.3, one
has

Kˇ .�; ı/ .

8̂̂<̂
:̂
j� j�ˇ ;

j� j�ˇ=˛ for ˇ < d;

j� j.1�1=˛/d�ˇ for ˇ > d

(5.1)

and

Kˇ .�; ı/ .

8̂̂<̂
:̂
kık�ˇ for ˛ 2 .0; 1�; j� j � kık;

kık�ˇ for ˛ 2 Œ1; 2/; ˇ < d; j� j � kık˛;

kık.˛�1/d�˛ˇ for ˛ 2 Œ1; 2/; ˇ > d; j� j � kık˛:

(5.2)

Proof. Let p.x/ denote the density function of X1
d
D j� j�1=˛Xj� j. We define rescaled

increments z� WD �=j� j1=˛ and zı WD ı=j� j1=˛ . Trivial estimation always yields

E
�
k.�; sign.�/ �Xj� j C ı/k�ˇ

�
� j� j�ˇ :
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The self-similarity of the stable Lévy process and Lemma 5.5 yield

E
�
k.�; sign.�/ �Xj� j C ı/k�ˇ

�
D j� j�ˇ=˛

Z
Rd
k.e�; sign.�/ � x C zı/k�ˇ � p.x/ dx

D j� j�ˇ=˛
Z

Rd
k.je� j; x C sign.�/ � zı/k�ˇ � p.x/ dx

. j� j�ˇ=˛
Z

Rd
k.je� j; x/k�ˇ � p.x/ dx: (5.3)

Let ˇ < d . Then, by (5.3), we get

E
�
k.�; sign.�/ �Xj� j C ı/k�ˇ

�
. j� j�ˇ=˛

Z
Rd
kxk�ˇ � p.x/ dx

. j� j�ˇ=˛ � E
�
kX1k

�ˇ
�
. j� j�ˇ=˛;

since negative moments of order ˇ < d exist; see [1, Lemma 3.1].
Let ˇ > d . Then, by (5.3) one has, using the volume of a ball with radius z� ,

E
�
k.�; sign.�/ �Xj� j C ı/k�ˇ

�
. j� j�ˇ=˛

Z
Rd
k.jz� j; x/k�ˇ � p.x/ dx

� j� j�ˇ=˛
�Z
¹kxk<jz� jº

jz� j�ˇ � p.x/ dx C
Z
¹kxk�jz� jº

kxk�ˇ � p.x/ dx
�

� j� j�ˇ=˛
�
jz� jd�ˇ C

Z
¹jz� j�kxk�1º

kxk�ˇ dx C
Z
¹kxk>1º

p.x/ dx
�

� j� j�ˇ=˛
�
jz� jd�ˇ C

Z 1

jz� j

Z
Sd�1

kryk�ˇ � rd�1 dy dr C 1
�

. j� j�ˇ=˛
�
jz� jd�ˇ C

Z 1

jz� j

rd�ˇ�1 dr
�

. j� j�ˇ=˛ � jz� jd�ˇ D j� j�ˇ=˛ � j� j.1�1=˛/.d�ˇ/ D j� j.1�1=˛/d�ˇ :

This proves (5.1). To prove (5.2), consider the region kxk � jzıj=2, which yields

ksign.�/ � x C zık � jkxk � kzıkj D kzık � kxk �
1

2
� kzık:

Thus, for the estimates in (5.2), we have

E
�
k.�; sign.�/ �Xj� j C ı/k�ˇ

�
D j� j�ˇ=˛

Z
Rd
k.z�; sign.�/ � x C zı/k�ˇ � p.x/ dx

. kık�ˇ C j� j�ˇ=˛
Z
¹kxk�kzık=2;ksign.�/�xCzık�jz� jº

ksign.�/ � x C zık�ˇ � p.x/ dx„ ƒ‚ …
DWI1
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C j� j�ˇ=˛
Z
¹kxk�kzık=2;ksign.�/�xCzık�jz� jº

z��ˇ � p.x/dx„ ƒ‚ …
DWI2

:

Now,

I1 D j� j
�ˇ=˛

Z
¹kxk�kzık=2;ksign.�/�xCzık�jz� jº

ksign.�/ � x C zık�ˇ � p.x/ dx

D j� j�ˇ=˛
Z
¹kxk�kzık=2;ksign.�/�xCzık�max.jz� j;kzık/º

ksign.�/ � x C zık�ˇ � p.x/ dx

C j� j�ˇ=˛
Z
¹kxk�kzık=2;kzık�ksign.�/�xCzık�jz� jº

ksign.�/ � x C zık�ˇ � p.x/ dx

� kık�ˇC j� j�ˇ=
Z̨
¹kxk�kzık=2;kzık�ksign.�/�xCzık�jz� jº

ksign.�/ � x C zık�ˇ � p.x/ dx„ ƒ‚ …
DWI3

:

By using (1.3), we further have

I3 D j� j
�ˇ=˛

Z
¹kxk�kzık=2;kzık�ksign.�/�xCzık�jz� jº

ksign.�/ � x C zık�ˇ � p.x/ dx

. j� j�ˇ=˛ � kzık�d�˛
Z
¹kzık�ksign.�/�xCzık�jz� jº

ksign.�/ � x C zık�ˇ dx

D j� j�ˇ=˛ � kzık�d�˛
Z kzık
jz� j

rd�ˇ�1 dr: (5.4)

For ˛ 2 Œ1; 2/, ˇ < d , and j� j � kık˛ , by (5.4) we get

I3 . j� j�ˇ=˛ � kzık�˛�ˇ D j� j � kık�˛�ˇ . kık�ˇ ;

whereas for ˛ 2 .0; 1� and j� j � kık, one has

I3 . j� j � kık�˛�ˇ � kık1�˛ � kık�ˇ . kık�ˇ :

For ˛ 2 Œ1; 2/, ˇ > d , and j� j � kık˛ , by (5.4) one has

I3 . j� j�ˇ=˛ � kzık�d�˛
Z 1
z�

r�ˇ � rd�1 dr . j� j�ˇ=˛ � kzık�d�˛ � z�d�ˇ

D j� jdC1�ˇ � kık�d�˛ � kık˛.dC1�ˇ/ � kık�d�˛ D kık.˛�1/d�˛ˇ :

Finally, by using (1.3), we get

I2 D j� j
�ˇ=˛

Z
¹kxk�kzık=2;ksign.�/�xCzık�jz� jº

jz� j�ˇ � p.x/ dx
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. j� j�ˇ=˛ � jz� j�ˇ
Z
kxCsign.�/�zık�jz� jº

kxk�d�˛ dx

. j� j�ˇ=˛ � jz� j�ˇ � kzık�d�˛ � jz� jd D j� jd�ˇC1 � kık�d�˛;

using the volume of a ball with radius jz� j and center �sign.�/ � zı. Now, ˛ 2 .0; 1�,
ˇ < d , and j� j � kık result in

I2 . j� jd�ˇC1 � kık�d�˛ � kık1�˛�ˇ � kık�ˇ :

If ˛ 2 Œ1; 2/, ˇ � d , and j� j � kık˛ one has

I2 . j� jd�ˇC1 � kık�d�˛ � kık.˛�1/�d�˛ˇ � kık�ˇ :

If ˛ 2 Œ1; 2/, ˇ � d , and j� j � kık˛ one has

I2 . kık.˛�1/�d�˛ˇ and kık�ˇ � kık.˛�1/�d�˛ˇ :

Altogether, we have shown

E
�
k.�; sign.�/ �Xj� j C ı/k�ˇ

�
. kık�ˇ C I1 C I2 . kık�ˇ C I3 C I2

and our upper bounds for I2 and I3 directly yield (5.2).

Now, we are able to calculate the lower bound via energy estimates.

Theorem 5.7. Let T � RC be a Borel set and ˛ 2 .0; 2/. Let X D .Xt /t�0 be an
isotropic ˛-stable Lévy process in Rd and f W T ! ¹y 2 Rd W ky � xk � 1

2
º for

fixed x 2 Rd be a Borel measurable function. Let '˛ D P ˛-dimGT .f /. Then, one
P -almost surely has

dimGT .X C f / �
´
'1 ˛ 2 .0; 1�;

'˛ ^
�
1
˛
� '˛ C

�
1 � 1

˛

�
� d
�
˛ 2 Œ1; 2�:

(5.5)

Proof. We define the increments � WD t � s and ı WD f .t/� f .s/with kık 2 Œ0;1� and
consider the difference kernel Kˇ .t; x/ D EŒk.t; sign.t/ � Xjt j C x/k�ˇ �. We prove
that EKˇ .�/ < 1 holds for � 2M1.GT .f // from the parabolic version of Frost-
man’s lemma in Theorem 5.4 and for every ˇ less than the right-hand side of (5.5).
Then, the claim follows due to Lemma 5.3. For the energy integral, we have

EKˇ .�/ D
Z Z

GT .f /�GT .f /
Kˇ .t � s; f .t/ � f .s// d�.s; x/ d�.t; y/

�

Z Z
¹jt�sj2.0;1�º

Kˇ .�; ı/ d� d�C
Z Z

¹jt�sj2.1;1/º

jt � sj�ˇ d� d�

.
Z Z

¹j� j2.0;1�º

E
�
k.�; sign.�/ �Xj� j.!/C ı/k�ˇ

�
d� d�: (5.6)
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(i) We begin with the case ˛ 2 .0; 1� and ˇ D '1 � 2" for some arbitrary " > 0.
Due to Lemma 5.6, we have

EKˇ .�/ .
Z Z

¹j� j2.0;1�;kık2Œ0;j� j�º

j� j�ˇ d� d�„ ƒ‚ …
DW I1

C

Z Z
¹j� j2.0;1�;kık2.j� j;1�º

kık�ˇ d� d�„ ƒ‚ …
DW I2

:

We get

I1 .
1X
kD1

2kˇ � �˝ �
®
j� j 2 .2�k; 2 � 2�k�; kık 2 Œ0; 2 � 2�k�

¯
:

Further,

I2 .
1X
kD1

2kˇ � �˝ �
®
j� j 2 .0; 2 � 2�k�; kık 2 .2�k; 2 � 2�k�

¯
:

Now we have to calculate the expressions �˝ �¹�º for I1 and I2. For each k 2 N we
tile RC �Rd by disjoint hypercubes of size 2�k � � � � � 2�k and denote the collection
of such hypercubes by Dk . For every c 2 .0; 1�, 
 D '1 � " and ˛ 2 .0; 1� Frostman’s
lemma 5.4 yields

�
�
Œt; t C c� �

dY
iD1

Œxi ; xi C c�
�
. c
 ;

in particular we have �.Q0/ . 2�k
 for each Q0 2 Dk . In order to estimate I1 we
define the following relation on Dk . For two hypercubesQ;Q0 2Dk we writeQ�Q0

if there exists .s; x/ 2 Q and .t; y/ 2 Q0 such that j� j D jt � sj 2 .2�k; 2 � 2�k� and
kık D ky � xk 2 Œ0; 2 � 2�k�. Thus,

I1 .
1X
kD1

2kˇ
X

Q;Q02Dk
Q�Q0

�˝ �.Q �Q0/ D

1X
kD1

2kˇ
X

Q;Q02DkQ�Q0
�.Q/ � �.Q0/:

The number of hypercubes related to a fixedQ 2 Dk via � is bounded by a universal
constant not depending on k and Q, hence

I1 .
1X
kD1

2kˇ
X
Q2Dk

X
Q�Q0

�.Q/ � �.Q0/ .
1X
kD1

2k.ˇ�
/ �
X
Q2Dk

�.Q/:
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Note that
P
Q2Dk �.Q/ D �.

S
Q2Dk Q/ D �.RC �Rd / D 1 and we conclude

I1 .
1X
kD1

2k.ˇ�
/ D

1X
kD1

2�k" <1;

since ˇ D '1 � 2" and 
 D '1 � ". For the estimation of I2 we define another relation
on Dk . For two hypercubes Q;Q0 2 Dk we write Q � Q0 if there exists .s; x/ 2 Q
and .t; y/ 2 Q0 such that j� j 2 .0; 2 � 2�k� and kık 2 .2�k; 2 � 2�k�. Thus,

I2 .
1X
kD1

2kˇ
X

Q;Q02DkQ�Q0
�.Q/ � �.Q0/:

Again, the number of hypercubes related to some fixed Q via � is bounded by a
universal constant. Hence the same calculation as for I1 yields

I2 .
1X
kD1

2k.ˇ�
/ D

1X
kD1

2�k" <1:

(ii) Now we treat the case ˛ 2 Œ1; 2/ and '˛ � d . Let ˇ D '˛ � 2˛ � " < d for
some arbitrary " > 0. Due to Lemma 5.6 we have

EKˇ .�/ .
Z Z

¹j� j2.0;1�;kık2Œ0;j� j1=˛�º

j� j�ˇ=˛ d� d�„ ƒ‚ …
DW I3

C

Z Z
¹j� j2.0;1�;kık2.j� j1=˛ ;1�º

kık�ˇ d� d�„ ƒ‚ …
DW I4

:

We get

I3 .
1X
kD1

2kˇ=˛ � �˝ �
®
j� j 2 .2�k; 2 � 2�k�; kık 2 Œ0; 21=˛ � 2�k=˛�

¯
:

Further,

I4 .
1X
kD1

2kˇ=˛ � �˝ �
®
j� j 2 .0; 2 � 2�k�; kık 2 .2�k=˛; 21=˛ � 2�k=˛�

¯
:

Now we have to calculate the expressions �˝ �¹�º for I3 and I4. For each k 2 N,
we tile RC �Rd by disjoint ˛-parabolic cylinders of size 2�k � 2�k=˛ � � � � � 2�k=˛
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and again denote the collection of such cylinders by Dk . For every c 2 .0; 1�, 
 D
'˛ � ˛ � ", and ˛ 2 Œ1; 2/, Frostman’s lemma (Theorem 5.4) yields

�
�
Œt; t C c� �

dY
iD1

Œxi ; xi C c
1=˛�

�
. c
=˛I

in particular, we have �.Q0/. 2�k
=˛ for eachQ0 2Dk . The same technique as in (i)
results in

I3; I4 .
1X
kD1

2k.ˇ�
/=˛ �

1X
kD1

2�k" <1;

since ˇ D '˛ � 2˛ � " and 
 D '˛ � ˛ � ".
(iii) Finally, we treat the case ˛ 2 Œ1; 2/ and '˛ > d . Let ˇ D .1 � 1

˛
/ � d C 1

˛
�

'˛ � 2" > d for sufficiently small " > 0. Due to Lemma 5.6, we have

EKˇ .�/ .
Z Z

¹j� j2.0;1�;kık2Œ0;j� j1=˛�º

j� j.1�1=˛/d�ˇ d� d�

C

Z Z
¹j� j2.0;1�;kık2.j� j1=˛ ;1�º

kık.˛�1/d�˛ˇ d� d�

and the same techniques as in (ii) yield the finiteness of this expression when choosing

 D '˛ � " in Frostman’s lemma (Theorem 5.4).

6. Range: Upper and lower bounds

We give upper and lower bounds for the Hausdorff dimension of the range of a stable
Lévy process with drift.

Theorem 6.1. Let T �RC be any set and ˛ 2 .0;2�. LetX D .Xt /t�0 be an isotropic
˛-stable Lévy process in Rd and f W T ! Rd be any function. Define '˛ WD P ˛

-dimGT .f /. Then, one P -almost surely has

dimRT .X C f / �

´
.˛ � '˛/ ^ d ˛ 2 .0; 1�;

'˛ ^ d ˛ 2 Œ1; 2�:
(6.1)

Proof. The Gaussian case follows from the proof of [13, Theorem 1.2] and Proposi-
tion 2.2. Since the Hausdorff dimension of the range never exceeds the topological
dimension of the space a function maps to, we always have dimRT .X C f / � d . In
the case of ˛ 2 Œ1; 2/ the claim directly follows from Theorems 2.4 and 4.1, which
yield

dimRT .X C f /� dimGT .X C f /�P ˛-dimGT .X C f /�P ˛-dimGT .f /D '˛:
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Now, let ˛ 2 .0; 1� and ˇ D ˛ � '˛ and let ı; " > 0 be arbitrary. Then, GT .f / can be
covered by ˛-parabolic cylinders

.Pk/k2N D

�
Œtk; tk C ck� �

dY
iD1

Œxi;k; xi;k C c
1=˛

k
�
�
k2N
� P ˛

such that
P1
kD1 jPkj

.ˇCı/=˛ .
P1
kD1 c

.ˇCı/=˛

k
� ". Let Mk.!/ be the random num-

ber of a fixed 2d -nested collection of hypercubes with sidelength c1=˛
k

that the path
t 7! Xt .!/ hits at some time t 2 Œtk; tk C ck�. As in the proof of Theorem 4.1, we
obtain a random parabolic cover

S
k2N

zPk.!/ � GT .X.!/C f / where

zPk.!/ D Œtk; tk C ck� �
Mk.!/[
jD1

dY
iD1

�
Œ�i;j;k.!/C xi;k; �i;j;k.!/C xi;k C c

1=˛

k
�

[ Œ�i;j;k.!/C xi;k C c
1=˛

k
; �i;j;k.!/C xi;k C 2c

1=˛

k
�
�
:

By projection, we get the random cover
S
k2N �k � RT .X.!/C f / with

�k.!/ D
Mk.!/[
kD1

dY
iD1

�
Œ�i;j;k.!/C xi;k; �i;j;k.!/C xi;k C c

1=˛

k
�

[ Œ�i;j;k.!/C xi;k C c
1=˛

k
; �i;j;k.!/C xi;k C 2c

1=˛

k
�
�
:

This is a union of Mk.!/ � 2
d hypercubes with diameter j�k.!/j � c1=˛k . As in the

proof of Theorem 4.1 we get EŒMk� . c�ı
0=˛

k
. Hence, we get for "0 D ı C ı0 > 0,

E
�
HˇC"0.RT .X C f //

�
� E

h 1X
kD1

j�kjˇC"
0
i
. E

h 1X
kD1

Mk � 2
d
� c
.ˇC"0/=˛

k

i
.
1X
kD1

EŒMk� � c
.ˇC"0/=˛

k
.
1X
kD1

c
.ˇC"0�ı0/=˛

k
D

1X
kD1

c
.ˇCı/=˛

k
� ":

Since "; "0 > 0 are arbitrary, for all ˇ0 > ˇ we get EŒHˇ 0.RT .X C f //� D 0, and
hence,

Hˇ 0.RT .X C f // D 0 P -almost surely:

Since ˇ0 > ˇ is also arbitrary, we finally get dimRT .X C f / � ˇ D ˛ � '˛ P -almost
surely, as claimed.

The lower bound is obtained by the energy method. The stable process X is trans-
formed into the kernel of the energy integral.
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Lemma 6.2. Let T � RC be a Borel set and ˛ 2 .0; 2/. Let X D .Xt /t�0 be an
isotropic stable Lévy process in Rd and f W RC ! Rd be a Borel measurable func-
tion. Define the difference kernel

�ˇ .t; x/ WD E
�
ksign.t/ �Xjt j C xk�ˇ

�
:

Then, Cap�ˇ .GT .f // > 0 implies that P -almost surely Capˇ .RT .X.!/C f // > 0

holds. Hence, E�ˇ .�/ <1 for some probability measure � 2M1.GT .f // implies
that P -almost surely dimRT .X C f / � ˇ holds.

Proof. Let � 2M1.GT .f // and �t denote the projection onto the time component,
that is, �t .t; f .t// D t . Define the probability measure � 2M1.RC/ as the pushfor-
ward measure �.A/ D �.��1t .A// for Borel sets A � RC and, further, the random
probability measure z�!.R/ D �..X.!/ C f /�1.R// for every Borel set R � Rd .
Then, Tonelli’s theorem and the stationarity of the increments of X yield

E
�
Eˇ .z�!/

�
D E

hZ
RT .X.!/Cf /

Z
RT .X.!/Cf /

kx � yk�ˇ dz�!.x/ dz�!.y/
i

D E
hZ
T

Z
T

kXt .!/C f .t/ � .Xs.!/C f .s//k
�ˇ d�.t/ d�.s/

i
D

Z
GT .f /

Z
GT .f /

E
�
kXt .!/ �Xs.!/C x � yk

�ˇ
�

d�.t; x/ d�.s; y/

D

Z
GT .f /

Z
GT .f /

E
�
ksign.t � s/ �Xjt�sj.!/C x � yk�ˇ

�
d�.t; x/ d�.s; y/

D E�ˇ .�/:

By assumption, there exists � 2M1.GT .f // such that E�ˇ .�/ <1 holds. From that
one P -almost surely has Eˇ .z�!/ <1 and the final statement immediately follows
by Frostman’s theorem (Theorem 5.2), since the range of a Borel set under a Borel
measurable function is a Suslin set; see [8, Section 11].

Next we provide estimates for the difference kernel �ˇ from Lemma 6.2 that will
give appropriate estimates of the energy integral.

Lemma 6.3. Let ˛ 2 .0; 2/ and X D .Xt /t�0 be an isotropic ˛-stable Lévy process
in Rd . Let ˇ 2 .0; d/ and � 2 R, ı 2 Rd be such that j� j 2 .0; 1�, kık 2 Œ0; 1�. Then,
for the difference kernel �ˇ .�; ı/ D EŒksign.t/ � Xjt j C xk�ˇ � from Lemma 6.2 one
has

�ˇ .�; ı/ .

´
j� j�ˇ=˛;

kık�ˇ for j� j � kık˛:
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Proof. Let p.x/ denote the density function of X1
d
D j� j�1=˛Xj� j. We define the

rescaled increment zı WD ı=j� j1=˛ . The self-similarity of the stable Lévy process and
Lemma 5.5 yield

E
�
ksign.�/ �Xj� j C ık�ˇ

�
D j� j�ˇ=˛

Z
Rd
ksign.�/ � x C zık�ˇ � p.x/ dx

D j� j�ˇ=˛
Z

Rd
kx C sign.�/ � zık�ˇ � p.x/ dx

. j� j�ˇ=˛
Z

Rd
kxk�ˇ � p.x/ dx . j� j�ˇ=˛ � E

�
kX1k

�ˇ
�
. j� j�ˇ=˛;

since negative moments of order ˇ < d exist; see [1, Lemma 3.1]. Now consider the
region ksign.�/ � x C zık � kzık=2, which yields

kxk D ksign.�/ � x C zı � zık � jksign.�/ � x C zık � kzıkj

D kzık � ksign.�/ � x C zık �
1

2
� kzık:

Thus, ˇ < d and � � kık˛ lead to

E
�
ksign.�/ �Xj� j C ık�ˇ

�
D j� j�ˇ=˛

Z
Rd
ksign.�/ � x C zık�ˇ � p.x/ dx

. kık�ˇ C j� j�ˇ=˛
Z
¹ksign.�/�xCzık�kzık=2º

ksign.�/ � x C zık�ˇ � p.x/ dx

. kık�ˇ C j� j�ˇ=˛ � kzık�d�˛
Z kzık
0

rd�ˇ�1 dr D kık�ˇ C j� j�ˇ=˛ � kzık�˛�ˇ

D kık�ˇ C j� j � kık�˛�ˇ . kık�ˇ ;

where we have used (1.3) to estimate the tail densities.

We get a lower bound for the Hausdorff dimension of the range of a stable Lévy
process with drift.

Theorem 6.4. Let T � RC be a Borel set and ˛ 2 .0; 2/. Let X D .Xt /t�0 be an
isotropic ˛-stable Lévy process in Rd and f W T ! ¹y 2 Rd W ky � xk � 1

2
º for

fixed x 2 Rd be a Borel measurable function. Let '˛ D P ˛-dimGT .f /. Then, one
P -almost surely has

dimRT .X C f / �

´
.˛ � '˛/ ^ d ˛ 2 .0; 1�;

'˛ ^ d ˛ 2 Œ1; 2/:
(6.2)

Proof. We consider the difference kernel �ˇ .t; x/ D EŒksign.t/ � Xjt j.!/ C xk�ˇ �
from Lemma 6.2. Analogously to the proof of Theorem 5.7, we can show that E�ˇ .�/
is finite for � 2M1.GT .f // from the parabolic version of Frostman’s lemma in
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Theorem 5.4 and for every ˇ less than the right-hand side of (6.2). Note that the dif-
ferent lower bounds for the dimension of the range in cases ˛ 2 .0; 1� and ˛ 2 Œ1; 2/
occur due to the different upper bounds in the parabolic version of Frostman’s
lemma.

7. Estimates for the parabolic Hausdorff dimension

We first give an estimate for the ˛-parabolic Hausdorff dimension of a constant func-
tion.

Lemma 7.1. Let T � R be any set and ˛ 2 .0;1/. Define the constant function
fC .x/ D C 2 Rd for all x 2 T . Then, one has

P ˛-dimGT .fC / � .˛ _ 1/ � dimT:

Proof. Without loss of generality, let fC D f0 � 0 2 Rd .
(i) Let ˛ 2 .0; 1�, ˇ D dim T and let ı; " > 0 be arbitrary. Then, there exists a

cover
S
k2N Tk � T with Tk D Œtk; tk C ck� and ck � 1 such that

P1
kD1 jTkj

ˇCı DP1
kD1 c

ˇCı

k
� ". Now, GT .f0/ can be covered by ˛-parabolic cylinders

.Pk/k2N D

�
Œtk; tk C ck� �

dY
jD1

Œ0; c
1=˛

k
�
�
k2N
� P ˛

with jPkj � ck . Hence,

P ˛
�HˇCı.GT .f0// �

1X
kD1

jPkjˇCı .
1X
kD1

c
ˇCı

k
� ":

Since ı > 0 is arbitrary, for all ˇ0 > ˇ we have P ˛ �Hˇ 0.GT .f0// <1 and, there-
fore, one has P ˛-dimGT .f0/ � ˇ0. Since ˇ0 > ˇ is also arbitrary, we obtain

P ˛-dimGT .f0/ � ˇ D dimT:

(ii) Let ˛ 2 Œ1;1/ and ˇ D ˛ � dimT and let ı; " > 0 be arbitrary. With the coverS
k2N Tk � T from part (i), we get

P1
kD1 jTkj

.ˇCı/=˛ D
P1
kD1 c

.ˇCı/=˛

k
� ". Then,

the cover
S
k2N Pk � GT .f0/ from part (i) now fulfills jPkj � c

1=˛

k
and it follows that

P ˛
�HˇCı.GT .f0// �

1X
kD1

jPkjˇCı .
1X
kD1

c
.ˇCı/=˛

k
� ":

Since ı > 0 and ˇ0 > ˇ are arbitrary, as in part (i) we get P ˛-dimGT .f0/ � ˇ D
˛ � dimT .
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We can calculate the ˛-parabolic Hausdorff dimension of the graph of an isotropic
˛-stable Lévy process itself.

Theorem 7.2. Let T � RC be a Borel set and ˛ 2 .0; 2�. Let X D .Xt /t�0 be an
isotropic ˛-stable Lévy process in Rd . Then, one P -almost surely has

P ˛-dimGT .X/ D .˛ _ 1/ � dimT:

Proof. By [17, Theorem 3.2], Theorems 2.4 and 4.1, and Lemma 7.1 in the case
˛ � dimT � 1, that is, ˛ 2 Œ1; 2� and f0 � 0 2 Rd , one P -almost surely has

dimT C 1 � 1=˛ D dimGT .X/ � 1=˛ �P ˛-dimGT .X/C 1 � 1=˛
� 1=˛ �P ˛-dimGT .f0/C 1 � 1=˛ � dimT C 1 � 1=˛:

In the other cases, [17, Theorem 3.1] together with the same theorems as above P -
almost surely yield

.˛ _ 1/ � dimT D dimGT .X/ � P ˛-dimGT .X/ � P ˛-dimGT .f0/
� .˛ _ 1/ � dimT

and the claim follows.

Remark 7.3. We can also deduce the Hausdorff dimension of the graph of the frac-
tional Brownian motionBH D .BHt /t�0 in Rd of Hurst index 1=˛DH 2 .0; 1�. One
P -almost surely has

P ˛-dimGT .BH / D
dimT

H
D ˛ � dimT:

This follows from [20, Theorem 2.1], Proposition 2.2, Theorem 2.4, [13, Lemma 2.2],
and Lemma 7.1 for ˛ � dimT � d and f0 � 0 2 Rd , which P -almost surely yield

˛ � dimT D dimGT .BH / � P ˛-dimGT .BH / D P ˛-dimGT .f0/ � ˛ � dimT:

In the other cases the same theorems P -almost surely yield

dimT C .1 � 1=˛/ � d D dimGT .BH / � P ˛-dimGT .BH /=˛ C .1 � 1=˛/ � d
D P ˛-dimGT .f0/=˛ C .1 � 1=˛/ � d � dimT C .1 � 1=˛/ � d

and the claim follows.

The calculations in the proof of the previous theorem further show the next result.

Corollary 7.4. Let T � RC be a Borel set and ˛ 2 .0;1/. Define the constant func-
tion fC .x/ D C 2 Rd for all x 2 T . Then, one has

P ˛-dimGT .fC / D .˛ _ 1/ � dimT:
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As a consequence, we recover a well-known result for the range of an isotropic
˛-stable Lévy process; see [3] and [10, Theorem 3.1].

Corollary 7.5. Let T � RC be a Borel set and ˛ 2 .0; 2�. Let X D .Xt /t�0 be an
isotropic ˛-stable Lévy process. One P -almost surely has

dimRT .X/ D .˛ � dimT / ^ d:

Proof. From Theorem 3.2 and Corollary 7.4 it follows that

dimRT .X/ D ..˛ ^ 1/ �P
˛-dimGT .f0// ^ d D .˛ � dimT / ^ d;

as claimed.

We can also give some a priori estimates for the ˛-parabolic Hausdorff dimension
of the graph of a function in terms of the genuine Hausdorff dimension.

Theorem 7.6. Let T � R be any set and f W T ! Rd be any function. Let '˛ D
P ˛-dimGT .f /. Then, one has

'˛ �

´ �
'1 C

�
1
˛
� 1

�
� d
�
^ .d C 1/ ˛ 2 .0; 1�;

.'1 C ˛ � 1/ ^ .d C 1/ ˛ 2 Œ1;1/
(7.1)

and

'˛ �

´
'1 _

�
1
˛
� '1 C 1 �

1
˛

�
˛ 2 .0; 1�;

'1 _ .˛ � '1 C .1 � ˛/ � d/ ˛ 2 Œ1;1/:
(7.2)

Further, if T � RC is a Borel set and f W T ! Rd is a Borel measurable function,
then we obtain

'˛ �
� 1
˛
� '1

�
^

�
'1 C

� 1
˛
� 1

�
� d
�
^ .d C 1/; ˛ 2 .0; 1�: (7.3)

Proof. This follows immediately by Theorem 2.4 for (7.1) and (7.2) and Corollary 3.3
for (7.3) and the fact that the Hausdorff dimension never exceeds the topological
dimension.

Next we calculate some bounds for the parabolic Hausdorff dimension of ˇ-
Hölder continuous functions. These are functions f W T ! Rd that fulfill kf .t/ �
f .s/k � C � jt � sjˇ for all s; t 2 T and some ˇ 2 .0; 1�, C > 0, denoted by f 2
C ˇ .T;Rd /. In the case of ˛ D 1, the following theorem is well known; see [9]:
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Theorem 7.7. Let T � R be any set, ˛ 2 .0;1/, ˇ 2 .0; 1�, and f 2 C ˇ .T;Rd /.
Define '˛ WD P ˛-dimGT .f /. Then, one has

'˛ �

8̂̂<̂
:̂
�
dimT C d �

�
1
˛
� ˇ

��
^

dimT
˛ˇ
^ .d C 1/ ˛ 2 .0; 1�;

.˛ � dimT C d � .1 � ˛ˇ// ^ dimT
ˇ
^ .d C 1/ ˛ 2

�
1; 1
ˇ

�
;

.˛ � dimT / ^ .d C 1/ ˛ 2
�
1
ˇ
;1

�
:

Proof. Let � > dim T and " > 0 be arbitrary. Then, we can cover T by intervals
.Tk/k2N with sidelength jTkj < 1 such that

P1
kD1 jTkj

� < ". Since f 2 C ˇ .T;Rd /,
we can cover GT .f / by .Bk/k2N � R1Cd where

Bk WD Tk �
dY
iD1

Œxi;k; xi;k C C � jTkjˇ � for every k 2 N:

Note that without loss of generality we may assume C � 1 for the constant in the
definition of Hölder continuity.

(i) Let ˛ 2 .0; 1�. On the one hand, for every k 2 N we can cover Bk by (several)
˛-parabolic cylinders with sidelength jTkj in time. Since K � jTkj1=˛ � C � jTkjˇ iff
K � C � jTkjˇ�1=˛ for some hypercubes�k;l with sidelength jTkj1=˛ , we find a cover

GT .f / �
1[
kD1

dC �jTk jˇ�1=˛ed[
lD1

Tk ��k;l

with Tk ��k;l 2 P ˛ and jTk ��k;l j � jTkj for every k; l 2 N. Now, for 
 D � C
d � .1=˛ � ˇ/, we have

P ˛
�H
 .GT .f // .

1X
kD1

jTkjd �.ˇ�1=˛/C
 D
1X
kD1

jTkj� < ":

Since � > dimT is arbitrary, '˛ � dimT C d � .1=˛�ˇ/. On the other hand, for every
k 2 N, we can cover Bk by a single ˛-parabolic cylinder with sidelength C ˛ � jTkj˛ˇ

in time. Then, GT .f /�
S
k2N Pk with jPkj � jTkj˛ˇ . Now, for 
 D �=.˛ˇ/, we have

P ˛ �H
 .GT .f // .
P1
kD1 jTkj

˛ˇ �
 < ". Since � > dimT is arbitrary, this results in
'˛ �

dimT
˛ˇ

.
(ii) Let ˛ 2 Œ1;1=ˇ�. On the one hand, for every k 2N we can cover Bk by (several)

˛-parabolic cylinders with sidelength jTkj in time. The covering sets from part (i) now
fulfill jTk ��k;l j � jTkj1=˛ and for 
 D ˛ � � C d � .1 � ˛ˇ/, we have

P ˛
�H
 .GT .f // .

1X
kD1

jTkjd �.ˇ�1=˛/C
=˛ D
1X
kD1

jTkj� < ":
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Since � > dimT is arbitrary, this results in '˛ � ˛ � dimT C d � .1� ˛ˇ/. On the other
hand, as in part (i), for every k 2 N we can cover Bk by a single ˛-parabolic cylinder
with sidelength C ˛ � jTkj˛ˇ in time. Then, the cover GT .f / �

S
k2N Pk now fulfills

jPkj � jTkjˇ and for 
 D �=ˇ, we have P ˛ �H
 .GT .f //.
P1
kD1 jTkj

ˇ �
 < ". Since
� > dimT is arbitrary, this results in '˛ � dimT=ˇ.

(iii) Let ˛ 2 Œ1=ˇ;1/. For every k 2 N, we can cover Bk by a single ˛-parabolic
cylinder Pk with lengthC ˛ � jTkj in time. Then, GT .f /�

S1
kD1 Pk with jPk � jTkj1=˛

and for 
 � ˛ � � , we have P ˛ �H
 .GT .f // .
P1
kD1 jTkj


=˛ < ": Since � > dimT
is arbitrary, this results in '˛ � ˛ � dimT .

Let us inspect the important case ˛ D 2, that is, we aim to get a bound for the
Hausdorff dimension of the graph of Brownian motion plus ˇ-Hölder continuous drift
function over T .

Corollary 7.8. Let T � RC be any set. Let B D .Bt /t�0 denote the d -dimensional
Brownian motion and let f 2 C ˇ .T;Rd / for some ˇ 2 .0; 1�. Then, one P -almost
surely has

dimGT .B C f / �

8̂̂̂̂
<̂
ˆ̂̂:
d C 1

2
ˇ � dimT

d
^
1
2
^
�
dimT � 1

2

�
;

dimT C d � .1 � ˇ/ dimT � 1
2
� ˇ �

� dimT
d
^
1
2

�
;

dimT
ˇ

dimT
d
� ˇ � 1

2
;

.2 � dimT / ^
�
dimT C d

2

�
ˇ � 1

2
:

Moreover, one P -almost surely has

dimRT .B C f / �

8̂̂<̂
:̂

dimT
ˇ

dimT
d
� ˇ � 1

2
;

.2 � dimT / ^ d ˇ � 1
2
;

d else:

Proof. Let '2 D P 2-dimGT .f /. Corollary 4.2 P -almost surely yields

dimGT .B C f / � '2 ^
'2 C d

2

and Theorem 6.1 P -almost surely yields

dimRT .B C f / � '2 ^ d:

Finally, by Theorem 7.7, we easily get

'2 �

8̂̂<̂
:̂
.2 � dimT C d � .1 � 2ˇ// ^ .d C 1/ ˇ � dimT

d
^
1
2
;

dimT
ˇ

dimT
d
� ˇ � 1

2
;

2 � dimT ˇ � 1
2

and the claim follows.
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