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A consistent estimator for confounding strength
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Abstract. Regression on observational data can fail to capture a causal relationship in the pres-
ence of unobserved confounding. Confounding strength measures this mismatch, but estimating
it requires itself additional assumptions. A common assumption is the independence of causal
mechanisms, which relies on concentration phenomena in high dimensions. While high dimen-
sions enable the estimation of confounding strength, they also necessitate adapted estimators.
In this paper, we derive the asymptotic behavior of the confounding strength estimator by Janz-
ing and Schölkopf (2018) and show that it is generally not consistent. We then use tools from
random matrix theory to derive an adapted, consistent estimator.

1. Introduction

A common machine learning task is to learn the influence of features x on a target
variable y from a set of observations ¹.xi ; yi /ºniD1. In many applications, we are not
only interested in the statistical problem of predicting y after observing x; instead, we
ask the causal question of how y changes after intervening on x. Unfortunately, the
causal dependence structure between x and y is in general not identifiable from their
statistical dependencies [31]. Simply regressing y on x attributes all dependencies
to direct causal influence and is therefore only appropriate when x causes y without
hidden confounders. However, this solution can be grossly misleading in the other
possible cases where y causes x or both are caused by a common confounder [35].

For example, we might want to predict how increasing the height x from which an
object is dropped affects its momentum y when it hits the ground. In this case, height
clearly causes momentum and not vice versa. However, if this experiment is merely
observed, we cannot rule out the possibility that both are influenced by some hidden
confounders. Consider fruits falling from a tree: the type of fruit influences the height
of the tree (type causes height) and the mass of the fruit, which in turn influences
the momentum (type causes momentum). This makes the type a confounding factor.
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Disregarding confounding can lead to counter-intuitive findings, such as Simpson’s
paradox: for apples and oranges, where orange trees are slightly shorter but bear much
heavier fruit, we would observe a negative correlation between height and momentum,
even though the causal influence of height on momentum is positive.

A priori, it is generally unclear to what extent an observed statistical dependence
is due to direct causal influence or due to confounding factors. This fundamental
non-identifiability issue of causal structure from observational distribution can be
addressed in different ways. One way is access to additional data, such as data from
different environments [13, 33] or instrumental variables [4, 16], which reduces the
causal learning problem to a statistical one. Alternatively, one can assume that the
underlying causal model follows a certain data-generating process, such as addi-
tive noise models [14, 25, 43]. This reduces the number of causal models which can
explain a given observational structure and therefore mitigates the non-identifiability.
A more abstract approach to choosing a causal model among those compatible with an
observational structure is to postulate certain information-theoretic properties of the
causal model. For example, the causal directions are those that maximize conditional
entropies or the causal factorization of the joint distribution is the one with minimal
Kolmogorov complexity [3, 19, 29, 38].

In this paper, we theoretically analyze the confounding strength estimator by [21].
This estimator assumes that x causes y and aims to estimate the strength of unob-
served confounding based on observational data ¹.xi ; yi /ºniD1. Here, the confounding
strength is defined as the discrepancy between the causal effect of x on y and the
statistical regression vector. To mitigate the non-identifiability, the estimator con-
siders a linear Gaussian causal model under the assumption of independent causal
mechanisms, a common assumption in causal learning [19, 27, 34]. Abstractly, this
principle states that the different causal mechanisms share no information. In our
example of fruits falling from trees, these mechanisms are the physical mechanisms
of gravity (height! momentum), inertia (fruit type! momentum) and the biologi-
cal mechanism that determines the growth of a tree (fruit type! height). Arguably,
understanding one of those mechanisms does not inform about the others. While
the task of confounding strength estimation remains ill posed in finite dimensions,
it becomes solvable in the high-dimensional limit due to concentration of measure
phenomena. Crucially, this approach therefore requires large dimension d to reduce
the non-identifiability error, but at the same time requires an even larger number of
samples n� d to reduce the finite-sample error. This is because it uses the empirical
covariance matrix and regression vector in an intermediate step to estimate the cor-
responding population quantities, which is only consistent for n� d . It is therefore
not guaranteed that this estimator is consistent in the high-dimensional regime. We
address this issue by analyzing this estimator, from here on referred to as the plug-in
estimator, in the proportional asymptotic regime n; d !1 with d=n! 
 2 Œ0; 1/
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and make the following contributions:

• We derive the asymptotic behavior of the plug-in estimator for confounding
strength from [21] in the proportional asymptotic regime and show that it is not
generally consistent. We also show that the approach based on population instead
of finite-sample quantities is consistent.

• We derive a consistent estimator for confounding strength by correcting the above
estimator with tools from random matrix theory.

The paper is structured as follows. Section 2 gives an overview of related work
on causal inference under unobserved confounding. Section 3 introduces the con-
founded causal model, the measure of confounding strength, and basic notions from
random matrix theory which are needed for the analysis. Section 4 describes the gen-
eral approach of [21] and shows that it is consistent based on population quantities
in Section 4.1, but generally biased based on plug-in quantities in Section 4.2. A
corrected, consistent estimator for confounding strength is then derived in Section 5.
Section 6 concludes with a discussion.

2. Related work

Learning causal relationships under the presence of unobserved confounding has been
investigated by multiple works. Reference [15] detects the causal direction in linear
non-Gaussian models based on the structure of the mixing matrix and [18] does so for
non-linear additive noise models. Reference [22] detects low-complexity confound-
ing based on a purity criterion for conditional distributions. Reference [23] decides
whether a causal model is confounded based on the algorithmic Markov condition.
Reference [5] considers the stability of the regression vectors under different environ-
ments as an indication of causal influence.

Our paper falls into another line of work that detects confounding based on the
assumption of independent causal mechanisms. This assumption induces certain non-
generic alignments between the coefficients of the observational distribution, which
can be used to identify confounding. Reference [2] uses this assumption to learn a
sparse causal DAG under dense confounding. Reference [20] introduces the notion
of confounding strength and estimate it under scalar confounding. Their method is
based on the observation that a weighted spectral measure of the covariance matrix
concentrates in high dimensions. Reference [28] builds on this idea by moving from
the spectral measure to its first moment. Reference [21] extends this setting to mul-
tivariate confounding, which is the setting of our work. Reference [17] considers a
subsequent task of learning a causal model with ridge regression. It uses an estimate
of confounding strength to choose an appropriate regularization parameter, which is
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motivated by an analogy between finite sample error and confounding. Reference [6]
generalizes the notion of confounding strength beyond independent causal mecha-
nisms and characterizes the relationship between confounding strength and the causal
risk of ridge regression in the high-dimensional limit.

Another related field is sensitivity analysis for treatment-effect studies based on
observational data. Sensitivity analysis aims to quantify how sensitive causal conclu-
sions are to potential unobserved confounding [7]. Since this task suffers from the
same non-identifiability issue as described above, early work relies on assumptions
about the unobserved confounder [11, 40]. A more recent, popular approach without
assumptions gives bounds based on two (unknown) sensitivity parameters for how
strong confounding would need to be in order to explain away any observed statistical
associations between treatment and effect [9,32,37]. The region of sensitivity param-
eters that explain away associations can be condensed into a single E-value, which
acts as a measure of confounding strength and can be computed from observational
data [41, 42].

3. Preliminaries

This preliminary section introduces our confounded causal model and a notion of
confounding strength in Section 3.1, as well as basic tools from random matrix theory
needed for analysis in Section 3.2.

3.1. The confounded causal model

We first describe the problem setup and introduce basic quantities. We consider a con-
founded causal model with linear conditionals and Gaussian distributions. The model
depends on a set of hyperparameters ˛ 2 Rl ; ˇ 2 Rd ; M 2 Rd�l with dimensions
l � d and noise �2 � 0. Il 2 Rl�l denotes the identity matrix. Specifically, we define
the causal model in terms of its structural equations

z � N .0; Il/;

" � N .0; �2/;

x DMz;

y D xTˇ C zT ˛ C ":

(3.1)

Figure 1 shows the corresponding directed acyclic graph (DAG). All random variables
x; y; z have mean 0 and the covariance of the features x is given by † WD MM T 2

Rd�d . We additionally assume that M has full rank d such that † is invertible. We
use the notation kxk2† WD x

T†x for the generalized norm,MC for the pseudo-inverse
of M , and MCT WD .MC/T as shorthand. Random variables are boldfaced.
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Figure 1. Left: DAG corresponding to the causal model (3.1). Right: corresponding observa-
tional model as in Lemma 1. Observed variables are shaded.

By construction, ˇ describes the causal influence of x on y . This is formally
captured by the interventional distribution of the do-calculus [30] for any x0 2 Rd ,
under which y D xT0 ˇ C z

T ˛ C " is only a random variable in z; " and has expecta-
tion xT0 ˇ. However, we do not assume access to interventional data; instead, we only
observe values .x; y/. The corresponding statistical dependencies between x and y
are captured by the usual conditional distribution.

Lemma 1 (Observational distribution). For the causal model (3.1), the observational
distribution of y given x is yjx � N .xT ž; z�2/, where ž D ˇ CMCT ˛ and z�2 D
�2 C k˛k2

Il�M
CM

.

Proof. Since z � N .0; Il/ is Gaussian and x D Mz is a linear map, it is a stan-
dard result that zT jx is Gaussian again with parameters zT jx � N .xTMCT ; I �

MCM/. Subsequently, we have zT ˛jx � N .xTMCT ˛; k˛k2
I�MCM

/. With y D
xTˇ C zT ˛ C ", we arrive at

yjx � N .xT .ˇ CMCT ˛/; �2 C k˛k2
I�MCM

/ D N .xT ž; z�2/:

The statistical parameter ž can also be viewed as the result of regressing y on x
on the population level. Notice that ž is equal to the causal parameter ˇ up to an error
term MCT ˛, which results from the influence of the confounder z on y . This error
term cannot be identified even if we have access to the full joint distribution P.x;y/,
which demonstrates the fundamental non-identifiability issue of causal learning. To
quantify the error of incorrectly treating ž as the causal parameter, [20] proposes the
following measure of confounding strength.

Definition 2 (Measure of confounding strength [20]). The confounding strength � for
the causal model (3.1) is defined as the relative error between statistical parameter ž

and causal parameter ˇ via

� WD
k ž � ˇk2

kˇk2 C k ž � ˇk2
: (3.2)



L. Rendsburg, L. C. Vankadara, D. Ghoshdastidar, and U. Luxburg 194

The confounding strength � takes values in Œ0;1�, where �D 0 describes the uncon-
founded case ˛ D 0 for which ž D ˇ and � D 1 describes the purely confounded case
ˇ D 0. A larger confounding strength implies that the statistical parameter is further
away from the causal parameter.

The goal of this paper is to estimate the confounding strength based on finite
samples ¹.xi ;yi /ºniD1 �Rd �R from the observational distribution P.x;y/, which we
compactly write asX 2Rd�n and Y 2Rn. We define two quantities which are central
to the following estimators, namely, the sample covariance matrix y† WD 1

n
XXT and

the result of regressing Y on X , y̌ WD . 1
n
XXT /C 1

n
XY .

3.2. Basic tools from random matrix theory

To make statements about the confounding strength, we need to control the behavior
of the sample covariance matrix. However, the high-dimensional regime inhibits an
entry-wise control, because we do not have many more samples than dimensions.
Fortunately, the confounding strength only depends on a low-dimensional aspect of
this matrix, which is the distribution of its eigenvalues. Controlling this distribution
is one of the main objectives of random matrix theory. We therefore briefly recap
some standard tools and results from random matrix theory to analyze the following
estimators for confounding strength in the high-dimensional regime. The analysis is
based on the Stieltjes transform of the empirical spectral distribution, an alternative
description of the spectrum that is easier to handle.

Definition 3 (Empirical spectral distribution and Stieltjes transform). Let † 2 Rd�d

be a symmetric matrix with eigenvalues �1; : : : ; �d . The empirical spectral distri-
bution of † is defined as the normalized counting measure of its eigenvalues �† WD
1
d

Pd
iD1 ı�i

. The corresponding Stieltjes transform of this measure is defined as the
function m†.z/ WD

Pd
iD1

1
�i�z

for z 2 C n ¹�1; : : : ; �d º.

We need to characterize the spectra of the empirical covariance matrix

y† D
1

n
XXT

2 Rd�d

and the closely related empirical kernel matrix yK D 1
n
XTX 2Rn�n. One might guess

that they simply tend towards the spectrum of the population matrix, but their relation
is more complicated in the asymptotic regime. The following standard result relates
their limiting spectra to the spectrum of the population covariance in terms of Stieltjes
transforms.

Theorem 4 (Asymptotics of the sample covariance matrix [36]). Let n; d !1 such
that d=n! 
 2 .0;1/, and assume that the sequence of covariance matrices†D†d
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has bounded operator norm lim supd!1k†k <1. Further, assume that the empiri-
cal spectral distribution of † converges, that is, �† ! � with bounded support and
corresponding Stieltjes transform m� . Then, it holds that � y†

a:s:
��! � and � yK

a:s:
��! z�

as d !1, where �; z� are the unique measures having Stieltjes transformsm.z/ and
Qm.z/, respectively. For z 2 C nRC, they satisfy

m.z/ D
1



Qm.z/C

1 � 



z
; (3.3)

m�

�
�

1

Qm.z/

�
D �zm.z/ Qm.z/: (3.4)

Equation (3.3) also holds in finite dimensions for the Stieltjes transforms of y†

and yK ,

m y†
.z/ D

1
d
n

m yK
.z/C

1 � d
n

d
n
z
;

and simply reflects the fact that y† and yK share the same eigenvalues up to the eigen-
value 0 with multiplicity jn � d j. Equation (3.4) is the main result that connects the
limiting Stieltjes transforms of the empirical matrices y† and yK to the limiting Stielt-
jes transform of the population covariance†. The solutionm to this equation remains
implicitly defined in all but the simplest case † D Id , where m is the Stieltjes trans-
form of a Marc̆enko–Pastur distribution.

4. Asymptotic behavior of the population and plug-in estimators for
confounding strength

In this section, we describe the general approach for estimating confounding strength
based on the assumption of independent causal mechanisms [21]. We show that the
estimator is consistent based on population quantities in Section 4.1 but is generally
biased for n 6� d based on sample (plug-in) quantities in Section 4.2.

The main ingredient to tackle the non-identifiability of the causal model is the
assumption of independent causal mechanisms, a common assumption in causal learn-
ing [19]. This abstract principle states that the physical mechanisms of a causal model
that transfers causes to effect share no information. A possible translation for the
causal model (3.1) is the assumption that the mechanisms ˛ and ˇ are drawn from
independent rotationally invariant distributions. Specifically, we assume that ˛ and ˇ
are independent with ˛ � N .0; �2˛Il/ and ˇ � N .0; �2

ˇ
Id / for unknown hyperpa-

rameters �2˛ ; �
2
ˇ
� 0. From here on out, we treat ˛ and ˇ as random and reflect this by

boldfacing them. Intuitively, this assumption facilitates estimation because it implies
a certain alignment between the covariance matrix † D MM T and the regression
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vector ž D ˇ CMCT˛: for large confounding �2˛ , the error term MCT˛ is aligned
with small singular value directions of M . Correspondingly, ž is aligned with small
eigendirections of †.

Assumption 5. We make the following assumptions about the (sequence of) causal
models.

(A1) The parameters ˛; ˇ of model (3.1) are independently sampled with ˛ �
N .0; �2˛Il/ and ˇ � N .0; �2

ˇ
Id / for hyperparameters �2˛ ; �

2
ˇ
� 0.

(A2) The number of samples n, data dimension d , and latent confounder dimen-
sion l are in the proportional asymptotic regime, that is, n; d; l !1 such
that d=n! 
 2 .0; 1/ and l=d ! z
 � 1.

(A3) The covariance†D†d has bounded operator norm lim supd!1k†k <1
and as d !1 its empirical spectral distribution �† converges to a distri-
bution � with bounded support, that is, supp.�/ � Œh1; h2� with 0 < h1 �
h2 <1.

Assumption (A1) is the assumption of independent causal mechanisms. Assump-
tion (A2) captures that this approach to confounding strength estimation requires high
dimensions so that concentration effects can mitigate the non-identifiability issue. We
exclude the case 
 � 1 because the estimation of the term 1

d
Tr.†�1/ (which later

turns out to be relevant) is hard; see [8, Remark 2.11] for a discussion. The restriction
on the latent dimensions z
 � 1 ensures that l � d so that the population covariance
†DMM T withM 2Rd�l can be full rank, which is necessary for Assumption (A3).

Remark 6. Even if M and the full observational distribution are known, this only
amounts to knowing the statistical parameter

ž D ˇ CMCT˛;

which does not uniquely determine the multivariate causal mechanisms ˛ and ˇ. The
assumption of independent causal mechanisms does not resolve this non-identifiability
issue, but it does enable the estimation of certain scalar functions of these parame-
ters: norms k˛k2=d and more generally certain quadratic forms ˛TA˛=d concentrate
in high dimensions. As we will see, this enables the estimation of the confounding
strength, which only depends on quadratic forms of ˛ and ˇ.

The following key lemma states that random quadratic forms can concentrate
around their trace.

Lemma 7 (Quadratic-form-close-to-the-trace [1, Lemma B.26]). Let

x D .x1; : : : ;xd / 2 Rd
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have independent entries xi of zero mean, unit variance, andE Œjxi jK �� �K for some
K � 1. Then, for A 2 Rd�d and k � 1,

E
�
jxTAx � TrAjk

�
� Ck

��
�4 Tr

�
AAT

��k=2
C �2k Tr

�
AAT

�k=2�
for some constant Ck > 0 independent of d . In particular, if the operator norm of A
satisfies kAk � 1 and the entries of x have bounded eighth-order moment, then

E
��
xTAx � TrA

�4�
� Cd2

for some C > 0 independent of d , and consequently,

1

d
xTAx �

1

d
TrA

a:s:
����!
d!1

0:

Using this lemma, we directly obtain concentration of the confounding strength.

Corollary 8 (Confounding strength concentrates). Under Assumption 5,

� �
�pop � ��

1C �pop � ��
a:s:
��! 0; (4.1)

where �pop WD 1
d

Tr.†�1/ and �� WD �2˛=�
2
ˇ

.

Proof. Using ž D ˇ CMCT˛, we can rewrite the confounding strength from equa-
tion (3.2) in terms of the hyperparameters ˛;ˇ;M :

� D
k ž� ˇk2

kˇk2 C k ž� ˇk2
D

1
d
˛TMCMCT˛

1
d
ˇT Idˇ C

1
d
˛TMCMCT˛

:

This expression consists only of quadratic terms that can be controlled by Lemma 7,
which yields

� D

1
d
˛TMCMCT˛

1
d
ˇT Idˇ C

1
d
˛TMCMCT˛

a:s:
�

1
d

Tr.MCMCT /�2˛
1
d

Tr.Id /�2ˇ C
1
d

Tr.MCMCT /�2˛

D
�pop � ��

1C �pop � ��
:

It only remains to estimate the trace term �pop and the ratio ��. In the following,
we distinguish between three different kinds of estimators for various quantities: esti-
mators based on the population quantities †, ž, based on the plug-in quantities y†,
y̌, and consistent estimators derived by random matrix theory. For example, we write
�pop, �plg, or �RMT.
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4.1. The population estimator for confounding strength is consistent

First, we consider estimation based on the population quantities† and ž, which basi-
cally assumes that there are no finite-sample issues. In this case, �pop D 1

d
Tr.†�1/

is known and does not need to be estimated. To estimate �� D �2˛=�
2
ˇ

, observe that

Assumption 5 (A1) on ˛ and ˇ implies žD ˇCMCT˛�N .0; �2
ˇ
C �2˛†

�1/. With
respect to the uniform distribution on the sphere Sd�1, the distribution of the normal-
ized vector ž=k žk has the log density

logp��.v/ D �:5.log det.†C ��/C d loghv;†.†C ��/�1vi � log det†/;

where v 2 Sd�1. Correspondingly, �� can then be estimated via maximum likelihood
estimation as1

�pop
D arg min

��0

f pop.�/;

where f pop.�/ D
1

d
log det.†C �/C log

�
ž

k žk
; †.†C �/�1

ž

k žk

�
:

(4.2)

In summary, we consider the following population estimator for confounding
strength.

Definition 9 (Population estimator for confounding strength). Given † and ž, the
population estimator for confounding strength �pop is defined as

�pop
D

�pop � �pop

1C �pop � �pop ; (4.3)

where �pop D 1
d

Tr.†�1/ and �pop is given by equation (4.2).

We now analyze this estimator by analyzing the asymptotic behavior of �pop from
equation (4.2). Since �pop is implicitly defined as the minimizer of the function f pop,
we first derive the asymptotic behavior of f pop as an intermediate step. Specifically,
we consider its derivative, which is given by

@�f
pop.�/ D m†.��/ �

D
ž

k žk
; †.†C �/�2

ž

k žk

E
D

ž

k žk
; †.†C �/�1

ž

k žk

E : (4.4)

This idea is realized in the next theorem, which shows that the confounding strength
estimator based on population quantities is consistent as n;d !1;d=n! 
 2 .0;1/.

1Maximum likelihood estimation on the density of ž directly leads to the same optimality
condition for �pop.
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Theorem 10 (Population estimator is consistent). Under Assumption 5 with �� > 0.

(1) For every � � 0, the derivative of the function from equations (4.2) satisfies

@�f
pop
d
.�/

a:s:
��! .� � ��/Var���

�
1

�C �

�
E���

�
�C ��

�C �

��1
: (4.5)

(2) For some C > �� and every d 2 N, let �pop
d

be a root of @�f
pop
d

in Œ0; C � if
it exists or 0 otherwise. Additionally, assume that � is not a point mass. Then,
the sequence ¹�pop

d
º converges to �� almost surely.

Proof. We just present a proof sketch here; the full proof is deferred to Appendix A.
For the first statement about the population function @�f

pop
d

, we treat the three terms
in equation (4.4) separately. The first termm†.��/ converges tom�.��/ by Assump-
tion 5 (A3). The two quadratic forms are handled by Lemma 7 after rewriting

ž D ˇ CMCT˛ D
�
�˛M

CT �ˇId
�
u

for some u � N .0; IlCd /. Plugging everything together and simplifying yield the
result.

We prove the second statement by first upgrading the convergence of equation
(4.5) to uniform convergence on Œ0; C � using Vitali’s convergence theorem [39] and
then conclude that the roots converge to the unique root �� of the limiting function
using Hurwitz’s theorem [39].

This theorem shows that the approach of minimizing the log probability based on
population quantities in equation (4.2) correctly estimates �� in the limit. Therefore,
equation (4.3) leads to a consistent estimator for confounding strength. For the second
statement, it is necessary to assume that the limiting spectral distribution � of† is not
a point mass because otherwise Var��� Œ1=.�C �/� D 0. In this case, equation (4.5)
states that the derivative @�f pop converges to the constant 0 function, which contains
no information about ��. This is perfectly in line with the intuition presented for this
approach: estimation of confounding strength is made possible by an alignment of
ž with small eigendirections of †, but if † is a multiple of the identity (or, equiva-
lently, the distribution of eigenvalues � is a point mass), there is no particular small
eigendirection.

4.2. The plug-in estimator for confounding strength is generally biased

The population estimator considered above crucially relies on the population quan-
tities † and ž, which are not directly available. In practice, we only have access to
the corresponding empirical quantities y† and y̌ based on samples X , Y . This sec-
tion considers the resulting plug-in estimator for confounding strength as introduced
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by [21] and shows in a similar asymptotic analysis that this estimator is generally
biased. Formally, the plug-in estimator follows the same structure as Definition 9 but
replaces the population quantities †, ž with the empirical quantities y†, y̌.

Definition 11 (Plug-in estimator for confounding strength [21]). The plug-in estima-
tor for confounding strength �plg is defined as

�plg
D

�plg � �plg

1C �plg � �plg ; (4.6)

where �plg D 1
d

Tr.y†�1/ and �plg is given by

�plg
D arg min

��0

f plg.�/;

where f plg.�/ D
1

d
log det.y† C �/C log

�
y̌

k y̌k
; .y†.y† C �/�1/

y̌

k y̌k

�
:

(4.7)

The main issue with the plug-in estimator in the proportional asymptotic regime
is that y† and y̌ are not consistent estimators for † and ž. Any subsequent estimators
are therefore also not guaranteed to be consistent. The first example of such behavior
is given by the plug-in estimator �plg D 1

d
Tr.y†�1/ for �pop D 1

d
Tr.†�1/, one of the

two quantities which need to be estimated in equation (4.1).

Proposition 12 (Asymptotic trace of inverse covariance). Under Assumption 5, it
holds

�plg
� .1 � 
/�1�pop a:s:

����!
d!1

0:

Proof. In terms of Stieltjes transforms, the statement reads

.1 � 
/m y†
.0/ �m†.0/

a:s:
����!
d!1

0:

The limiting empirical and population Stieltjes transforms are given by m y†
.z/

a:s:
��!

m.z/ and m†.z/
a:s:
��! m�.z/ as d !1, so it remains to relate m.0/ to m�.0/. By

combining equations (3.3) and (3.4) from Theorem 4, we get

m�

�
�

1

Qm.z/

�
D .1 � 
 � zm.z//m.z/:

Taking z ! 0, it is 1= Qm.z/! 0, and therefore, we get by continuity that m�.0/ D
.1 � 
/m.0/.

This result shows that the plug-in estimator for the trace of the inverse covariance
matrix is off by a factor of .1� 
/. This factor is negligible in the case n� d , where

 D d=n � 0, but becomes increasingly relevant as 
 grows.
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Next, we treat the plug-in estimator �plg similarly as �pop in Theorem 10 and show
that it is generally biased. Here, @�f plg is given analogously to equation (4.4).

Theorem 13 (Plug-in estimator is generally biased). Under Assumption 5 with ��>0,
the following hold.

(1) For all � � 0, the derivative of the function from equation (4.7) satisfies

@�f
plg
d
.�/

a:s:
��!�

� � .1C 
 z
/�� C 
��.1 � �m.��//

�
1C

M.��/

M.��/ �m.��/2

��
h.�/;

(4.8)
with

h.�/ D .M.��/ �m.��/2/

� .1 � �m.��/C .1 � 2
 C 
 z
/��m.��/C 
���m.��/2/�1;

m.��/ D E���Œ1=.�C �/�, and M.��/ D E���Œ1=.�C �/2�.

(2) For every d 2 N, let �plg
d

be a root of @�f
plg
d

if it exists or 0 otherwise. Addi-
tionally, assume that z
 does not satisfy

z
 D .1 � ��m.���//

�
1C

M.���/

M.���/ �m.���/2

�
: (4.9)

Then, the sequence ¹�plg
d
º almost surely does not converge to ��.

Proof. We again only sketch the proof here; the full proof is deferred to Appendix B.
The proof for the first statement follows the same strategy as in Theorem 10 but now
deals with the sample quantities y†, y̌ in place of the population quantities †, ž.
Similarly as for ž, we treat y̌ by combining the equations

y̌ D .XXT /CXY ; Y D XT žCE

for E � N .0; z� 2In/, and ž D ˇ CMCT˛ to obtain

y̌ D
�
�˛M

CT �ˇId z� .XXT /CX
�
v

for some v � N .0; IlCdCn/. Additional complications arise because y̌ depends on
both the population term M and the empirical quantities. This produces mixed terms
TrŒ.y† C �/�1 y††C� for k 2 ¹1; 2º, which need to be treated with a separate result
by [26] in Lemma 21.

For the second statement, we use similar arguments as in the proof of Theorem 10
to show that the convergence �plg

d
! �� implies that �� is a root of the right-hand

side in equation (4.8). This is equivalent to equation (4.9), which does not hold by
assumption.
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The limiting derivative for the plug-in estimator in equation (4.8) is phrased in
terms of the limiting sample distribution � instead of the limiting population distribu-
tion �. The main structural difference to equation (4.5) is the existence of an additional
term 
��.1� �m.��//.1CM.��/=.M.��/�m.��/2//, which prevents a closed-
form expression for the corresponding roots �plg of this function. We therefore cannot
directly exclude the possibility that �� is a root, in which case the plug-in estimator
would be consistent. However, by simply plugging in �� in the limiting derivative, we
see that �� being a root is equivalent to the condition in equation (4.9). This condition
generally does not hold because the limiting ratio of dimensions z
 D limd;l!1 l=d

on the left-hand side stands in no special relationship to the terms on the right-hand
side. Therefore, the plug-in estimator �plg is generally a biased estimator for ��. This
means that the resulting plug-in estimator for confounding strength �plg is generally a
biased estimator for the true confounding strength �.

5. A consistent estimator for confounding strength

In this section, we derive a novel estimator for confounding strength using tools from
random matrix theory. We show that this estimator consistently recovers the true con-
founding strength in the high-dimensional asymptotic limit (n; d !1; d=n! 
 2

.0; 1/). To this end, we can derive a consistent estimator of �RMT by first consistently
estimating f pop.�/ and then finding the minimizer of this function. While this proce-
dure indeed yields a consistent estimator, it is stochastic, which can adversely affect
the optimization algorithm at finite d . Therefore, we also provide a consistent esti-
mator based on finding the zeros of @�f pop.�/ which is deterministic given a fixed
sample. Coupled with the consistent estimator for �pop in Proposition 12, we arrive at
a consistent estimator for confounding strength.

5.1. A consistent estimator for f pop.�/

Recall from equation (4.2) that maximum likelihood estimation of �� is equivalent to
the optimization problem

�pop
D arg min

��0

f pop.�/;

where f pop.�/ D
1

d
log det.†C �/C log

�
ž

k žk
; †.†C �/�1

ž

k žk

�
:

To consistently estimate f pop.�/, it suffices to consistently estimate the two quan-
tities 1

d
log det.†C �/ and logh

ž

k žk
; †.†C �/�1

ž

k žk
i. We derive such estimators in
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Theorems 14 and 15 using tools from random matrix theory. The main results are
included here, and we defer the proofs to Appendix C.

Theorem 14 (A consistent estimator for log determinant [24]). For any � 2 RC, let
W DX C

p
�E , whereE 2Rd�n is a random matrix with standard normal entries.

Then, as d; n!1 such that d=n! 
 2 .0; 1/,

log � C
1

d
log det

1

n�
WW T

C .1 � 
/ log

 � 1



C 1 �

1

d
log det.†C �/

a:s:
��! 0:

In other words, the function

g1.�/ D log � C
1

d
log det

1

n�
WW T

C .1 � 
/ log..
 � 1/=
/C 1

is a consistent estimator of log det.†C �/.

Proposition 15 (A consistent estimator for the quadform). Under Assumption 5, for
any � 2 RC, let � be the unique solution in R� satisfying Qm.�/ D 1=� . Then, as
d; n!1 such that d=n! 
 2 .0; 1/,

1
d
h y̌; y†.y† � �/�1 y̌i �

S
�
�
S .1�
/
�

1
d
k y̌k2 � S
m.0/

�

�
ž

k žk
; †.†C �/�1

ž

k žk

�
a:s:
��! 0;

where S D .1 � 
/�1kY k2
I�XCX

=.nd/.

In other words, the function

g2.�/ D log
1
d
h y̌; y†.y† � �/�1 y̌i �

S
�
�
S .1�
/
�

1
d
k y̌k2 � S
m.0/

is a consistent estimator of logh
ž

k žk
;†.†C �/�1

ž

k žk
i. Thereby, for every � 2 RC, as

n; d !1 as d=n! 
 2 .0; 1/,

g1.�/C g2.�/ � f
pop.�/

a:s:
��! 0 (5.1)

Therefore, a consistent estimator of f pop.�/ is given by f RMT.�/ WD g1.�/ C

g2.�/.

Stochasticity of the estimation. Observe that the estimator for the log determinant
given by g1.�/ is not a deterministic function of a given sampleX ;Y since the matrix
W is stochastic. Following arguments similar to the proof of Theorems 10 and 13 2,

2With an additional argument to deal with the stochasticity of the log det estimator.
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we can indeed obtain an asymptotically consistent estimator for confounding strength.
However, at finite d , our experiments suggest that the stochasticity can adversely
affect the optimization step. Furthermore, the dependence of g1.�/ on � is highly
non-linear. Iterative optimization procedures require multiple evaluations (and there-
fore estimation of) g1.�/ which considerably increases the computation complexity.
To overcome these limitations, we also provide a deterministic and consistent estima-
tor of � by first consistently estimating the function @�f pop.�/ for any � 2 RC and
showing that the roots of the estimating function asymptotically converge to ��.

5.2. A consistent estimator for @�f pop.�/

As derived in equation (4.4), the derivative of f pop.�/ is given by

@�f
pop.�/ D

D
ž

k žk
; †.†C �/�1

ž

k žk

E
�m†.��/ �

D
ž

k žk
; †.†C �/�2

ž

k žk

E
D

ž

k žk
; †.†C �/�1

ž

k žk

E :

In order to consistently estimate @�f pop.�/, it suffices to consistently estimate
the three quantities m†.��/, h

ž

k žk
; †.† C �/�1

ž

k žk
i, and h

ž

k žk
; †.† C �/�2

ž

k žk
i.

Proposition 15 provides us with a consistent estimator for the quantity�
ž

k žk
; †.†C �/�1

ž

k žk

�
:

In Propositions 16 and 17, we derive estimators for the remaining quantities.

Proposition 16 (Estimation of Stieltjes transform). Under the assumptions of Theo-
rem 4, for any � 2 RC, let � be the unique solution in R� satisfying Qm.�/ D 1=� .
Then, as d; n!1 such that d=n! 
 2 .0; 1/,

�
1


�

��
�
� 
 C 1

�
�m†.��/! 0:

Proof. From Theorem 4, we have m�.� 1
Qm.z/

/ D .1 � 
 � zm.z//m.z/ for any z 2
C=RC. Letting � 2 R� such that Qm.�/ D 1=� , we arrive at the estimator.

Now, we present a consistent estimator of the quadratic form�
ž

k žk
; †.†C �/�2

ž

k žk

�
:

From Proposition 15, we know that, for any � 2 RC, g2.�/ is a consistent estimator
of h

ž

k žk
; †.†C �/�1

ž

k žk
i. To derive an estimator of the quadratic form�

ž

k žk
; †.†C �/�2

ž

k žk

�
;
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we utilize the so-called derivative trick [10, 12]. First, observe that˝
ž; †.†C �/�2 ž

˛
D �@�

�
h ž; †.†C �/�1 ži

�
:

Furthermore, for every fixed � 2 RC, we know that as n; d !1 and d=n! 
 2

.0; 1/,

g2.�/ �

�
ž

k žk
; †.†C �/�1

ž

k žk

�
a:s:
��! 0:

It is also easy to verify that g2.�/ � h
ž

k žk
; †.†C �/�1

ž

k žk
i is analytic and uni-

formly bounded in � in the domain RC. Therefore, we can apply Vitali’s convergence
theorem to show that the limit of the derivatives converges to the derivative of the
limit. Therefore, a consistent estimator for the quadratic form h

ž

k žk
;†.†C �/�2

ž

k žk
i

is given by �@�g2.�/ and is formally presented in Theorem 17.

Proposition 17 (Consistent estimator for quadratic form). For any � 2 RC, let �
be the unique solution in R� satisfying Qm.�/ D 1=� , and let �0 D 1=.�2 Qm0.�//. As
d; n!1 such that d=n! 
 2 .0; 1/,

�0

d
h y̌; y†.y† C �/�2 y̌i �

S

�2 C
S�0.1�
/

�2

1
d
k y̌k2 � S
m.0/

�

�
ž

k žk
; †.†C �/�2

ž

k žk

�
a:s:
��! 0;

where
S D

1

.1 � 
/nd
kY k2

I�XCX
=.nd/:

From Propositions 15, 16, and 17, for any � 2 RC, a consistent estimator of
@�f

pop.�/ is given by

hRMT.�/ WD

g2.�/

�

.
 � 1 � �
�
/ � @�g2.�/

g2.�/
:

The RMT estimator for confounding strength is then naturally defined via the roots
of hRMT.�/ and RMT-corrected estimate of �pop as formally presented in Definition
18 which consistently estimates the true confounding strength �.

Definition 18 (RMT estimator for confounding strength). The RMT estimator for
confounding strength �RMT can then be defined as

�RMT
D

�RMT � �RMT

1C �RMT � �RMT ; (5.2)

where �RMT D .1� 
/�plg and �RMT is a root of hRMT.�/ if it exists and 0 otherwise.
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Theorem 19 (RMT estimator is consistent). Let �RMT
d

be defined as a root of hRMT.�/

in some Œ0; C � for some C <1 if it exists or 0 otherwise. Additionally, assume that
� is not a point mass. Then, under Assumption 5 with �� > 0, the sequence ¹�RMT

d
º

converges a.s. to ��.

6. Discussion and future work

We analyze the asymptotic behavior of the confounding strength estimator by [21]
in the high-dimensional proportional regime. While the approach is consistent under
population quantities, the corresponding plug-in estimator is generally biased. We cor-
rect for this bias and present a consistent estimator using tools from random matrix
theory. High dimensions can help to identify the causal model, but they also war-
rant adapted estimators if the number of samples does not grow even faster than
the dimensions. More generally, our work highlights the inherent complexity of the
causal estimation problem since it requires careful consideration of statistical esti-
mation in conjunction with the problem of causal non-identifiability, particularly in
high-dimensional settings.

In this work, we focus on developing estimators that consistently estimate the true
confounding strength in the proportional asymptotic regime. An important direction
for future work involves establishing non-asymptotic guarantees for the convergence
of the RMT estimator, �RMT. Furthermore, determining convergence rates would fur-
ther enhance the applicability of the RMT estimator. It would also be of considerable
interest to define and estimate the strength of confounding for broader classes of
causal models, such as those in the Reproducing Kernel Hilbert Space (RKHS). From
a practical perspective, estimating the strength of confounding under less stringent
assumptions—for instance, when additional proxy variables are available—may also
prove beneficial. We leave these for future work.

Faithful estimation of confounding strength can indeed facilitate causal learning
from observational data, for instance, via regularization. This has been empirically
demonstrated in [17] and under the same model setting as ours, precisely character-
ized in [6]. However, it is important to practice caution in applying such techniques
more generally since causal learning or even estimation of confounding strength is a
very hard problem and does require strong assumptions.

A. Proof of Theorem 10

This section gives the full proof of Theorem 10 for the asymptotic behavior of the
population estimator for confounding strength. We state the theorem here again for
reference.
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Theorem 10 (Population estimator is consistent). Under Assumption 5 with �� > 0.

(1) For every � � 0, the derivative of the function from equations (4.2) satisfies

@�f
pop
d
.�/

a:s:
��! .� � ��/Var���

�
1

�C �

�
E���

�
�C ��

�C �

��1
: (4.5)

(2) For some C > �� and every d 2 N, let �pop
d

be a root of @�f
pop
d

in Œ0; C � if
it exists or 0 otherwise. Additionally, assume that � is not a point mass. Then,
the sequence ¹�pop

d
º converges to �� almost surely.

Proof. We first show equation (4.5). According to equation (4.4), the function is
given by @�f pop.�/D m†.��/�

1
d

žT†.†C �/�2 ž= 1
d

žT†.†C �/�1 ž. The first
term m†.��/ converges to m�.��/ by assumption. The two quadratic forms are
handled by Lemma 7 after rewriting ž D ˇ CMCT˛ D

�
�˛M

CT �ˇId
�
u for

some u � N .0; IlCd /, which is possible because by assumption ˛ � N .0; �2˛Il/

and ˇ � N .0; �2
ˇ
Id / are independent. We have

1

d
žT†.†C �/�1 ž D

1

d
uT

 
�˛M

C

�ˇId

!
†.†C �/�1

�
�˛M

CT �ˇId
�
u

a:s:
�

1

d
Tr

" 
�˛M

C

�ˇId

!
†.†C �/�1

�
�˛M

CT �ˇId
� #

(Lemma 7)

D
1

d
Tr

"
†.†C �/�1

�
�˛M

CT �ˇId
�  �˛MC

�ˇId

!#
(Tr.A � B/ D Tr.B � A/)

D
1

d
Tr
�
†.†C �/�1.�2˛†

�1
C �2ˇId /

�
(† DMM T )

D
�2
ˇ

d
Tr
�
.†C �/�1.†C ��/

�
(�� D �2˛=�

2
ˇ

)

! �2ˇE���

�
�C ��

�C �

�
: (�† ! �)

Similarly, we get 1
d

žT†.†C �/�2 ž
a:s:
����!
d!1

�2
ˇ
E��� Œ

�C��

.�C�/2
�. Plugging everything

together yields

@�f
pop.�/

a:s:
����!
d!1

m�.��/ �
E���

�
�C��

.�C�/2

�
E���

�
�C��

�C�

�
D

�
m�.��/ �E���

�
�C ��

�C �

�
�E���

�
�C ��

.�C �/2

��
E���

�
�C ��

�C �

��1
:
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Using m�.��/ D E��� Œ 1
�C�

� and the identity �C��

�C�
D 1 � .� � ��/ 1

1C�
, we can

simplify the first factor as follows.

m�.��/ �E���

�
�C ��

�C �

�
�E���

�
�C ��

.�C �/2

�
D E���

�
1

�C �

��
1 � .� � ��/E���

�
1

�C �

��
�E���

�
1

�C �

�
C .� � ��/E���

�
1

.�C �/2

�
D .� � ��/

�
E���

�
1

.�C �/2

�
�E���

�
1

�C �

�2�
D .� � ��/Var���

�
1

�C �

�
:

This concludes the first part of the proof.
For the second statement, first, observe that the almost sure convergence in equa-

tion (4.5) for each � � 0 implies that this convergence also holds almost surely on a
countable set, such as Œ0;C �\Q. Since each function @�f

pop
d

is analytic and bounded
on Œ0;C �, we can further upgrade equation (4.5) to almost surely uniform convergence
on Œ0; C � by Vitali’s convergence theorem. Now, let .�pop

d
/d2N be a sequence of roots

as described in the theorem, and let F pop.�/ denote the function on the right-hand side
of equation (4.5). First, note that the functions @�f

pop
d

eventually have a root �pop
d

in
Œ0;C �with probability 1: since �� <C , there exist ��; �C with 0< �� <�� <�C <C
with F pop.��/ < 0 and F pop.�C/ > 0. The convergence of the functions @�f

pop
d

then implies that @�f
pop
d
.��/ < 0 and @�f

pop
d
.�C/ > 0 eventually. Since @�f

pop
d

is
continuous, the intermediate value theorem then implies the existence of a root in
.��; �C/ � Œ0; C �. The proof is concluded with Hurwitz’s theorem, which states that
the sequence of roots .�pop

d
/d2N of analytic functions converges to the unique root ��

of the limiting function.

B. Proof of Theorem 13

For the proof of Theorem 13 about the asymptotic behavior of the plug-in estima-
tor, we require additional technical statements. The first characterizes the asymptotic
behavior of the statistical noise for our causal model.

Lemma 20 (Asymptotics of the statistical noise). Under Assumption 5, the statistical
noise z� 2 concentrates as

z� 2

d
� .z
 � 1/�2˛

a:s:
����!
d!1

0:
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Proof. According to Lemma 1, the statistical noise is given by

z� 2 D �2 C k˛k2
Il�M

CM
:

The term �2 is assumed to be constant, but the quadratic form k˛k2
Il�M

CM
grows

with d and is controlled by Lemma 7 as

z� 2

d
D
�2

d
C
1

d
˛T .Il �M

CM/˛
a:s:
�

Tr.Il �MCM/

d
�2˛

D
.l � Tr.MMC//

d
�2˛

D
l � d

d
�2˛

D .z
 � 1/�2˛ :

The second technical lemma covers the asymptotic behavior of traces that involve
both the sample covariance matrix y† and the population covariance matrix †.

Lemma 21 (Asymptotics of mixed terms). Under Assumption 5, it holds for any
� � 0 that

1

d
Tr
�
.y† C �/�1 y††C

� a:s:
����!
d!1


�m.��/2 C .1 � 
/m.��/

and

1

d
Tr
�
.y† C �/�2 y††C

� a:s:
����!
d!1

�
m.��/2 C 2
�m.��/M.��/

C .1 � 
/M.��/;

where m.��/ D E���Œ 1
�C�

� and M.��/ D E���Œ 1
.�C�/2

�.

Proof. The asymptotic behavior of these quadratic forms is not covered by Theo-
rem 4 because the dependencies between y† and † create complications. To treat
these, we require an additional result by [26] combined with Vitali’s convergence the-
orem which, in our notation, states that

1

d
Tr
�
.y† � z/�1g.†/

� a:s:
����!
d!1

�
1

z
E���

�
g.�/

Qm.z/�C 1

�
:

We first use this result to obtain the limit for 1
d

Tr..y† � z/�1†C/ by considering
g.�/ D 1=� and the identity

�
1

z�

1

Qm.z/�C 1
D
1

z

�
1

� �
�
�

1
Qm.z/

� � 1

�

�
;
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which yields

1

d
Tr
�
.y† � z/�1†C

� a:s:
����!
d!1

E���

�
�
1

z�

1

Qm.z/�C 1

�
D
1

z
m�

�
�

1

Qm.z/

�
�
1

z
m�.0/;

where we recall thatm�.z/DE��� Œ 1
��z

�. To relate the population Stieltjes transform
m� back to the sample Stieltjes transforms m and Qm, we can use the identities from
Theorem 4 to obtain

1

d
Tr
�
.y† � z/�1†C

� a:s:
����!
d!1

� 
m.z/ Qm.z/ �
1

z
m�.0/ (equation (3.4))

D� 
m.z/2 C
1 � 


z
m.z/ �

1

z
m�.0/: (equation (3.3))

Evaluating the above expression at z D �� then yields

1

d
Tr
�
.y† C �/�1†C

� a:s:
����!
d!1

�
m.��/2 �
1 � 


�
m.��/C

1

�
m�.0/:

All that remains is to relate .y†C �/�1†C to the terms we are interested in. Using the
identity .y† C �/�1 y† D I � �.y† C �/�1, we get the first statement of this lemma:

1

d
Tr
�
.y† C �/�1 y††C

�
D
1

d
Tr
�
†C

�
� �

1

d
Tr
��

y† C �
��1

†C
�

a:s:
����!
d!1

m�.0/ � �

�
� 
m.��/2 �

1 � 


�
m.��/C

1

�
m�.0/

�
D 
�m.��/2 C .1 � 
/m.��/:

The second statement of this lemma also follows directly by taking the derivative,
which can be exchanged with the limit d ! 1 using similar arguments as in the
main paper after Proposition 16, to obtain

1

d
Tr
�
.y† C �/�2 y††C

�
D� @�

1

d
Tr
�
.y† C �/�1 y††C

�
a:s:
����!
d!1

� @�
�

�m.��/2 C .1 � 
/m.��/

�
D� 
m.��/2 C 2
�m.��/M.��/C .1 � 
/M.��/;

where the last step used @�m.��/ DM.��/.

We are now ready to give the full proof of Theorem 13.

Theorem 13 (Plug-in estimator is generally biased). Under Assumption 5 with ��>0,
the following hold.
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(1) For all � � 0, the derivative of the function from equation (4.7) satisfies

@�f
plg
d
.�/

a:s:
��!�

� � .1C 
 z
/�� C 
��.1 � �m.��//

�
1C

M.��/

M.��/ �m.��/2

��
h.�/;

(4.8)
with

h.�/ D .M.��/ �m.��/2/

� .1 � �m.��/C .1 � 2
 C 
 z
/��m.��/C 
���m.��/2/�1;

m.��/ D E���Œ1=.�C �/�, and M.��/ D E���Œ1=.�C �/2�.

(2) For every d 2 N, let �plg
d

be a root of @�f
plg
d

if it exists or 0 otherwise. Addi-
tionally, assume that z
 does not satisfy

z
 D .1 � ��m.���//

�
1C

M.���/

M.���/ �m.���/2

�
: (4.9)

Then, the sequence ¹�plg
d
º almost surely does not converge to ��.

Proof. We first show equation (4.8). This proof for the plug-in quantities y†; y̌ follows
the same strategy as the proof of Theorem 10 for †; ž, but additional complica-
tions arise because y̌ asymptotically depends on both the population term M and
the empirical quantities. Similarly, as for ž, we treat y̌ by combining the equations
y̌ D .XXT /CXY , Y D XT žC E for E � N .0; z� 2In/, and ž D ˇ CMCT˛ to
obtain

y̌ D
�
�˛M

CT �ˇId z� .XXT /CX
�
v for some v � N .0; IlCdCn/:

As before, we get for k 2 ¹1; 2º that

1

d
y̌T y†.y† C �/�k y̌

D
1

d
vT

0B@ �˛M
C

�ˇId

z�XT .XXT /C

1CA y†.y† C �/�k
�
�˛M

CT �ˇId z� .XXT /CX
�
v

a:s:
�

1

d
Tr

264
0B@ �˛M

C

�ˇId

z�XT .XXT /C

1CA y†.y† C �/�k
�
�˛M

CT �ˇId z� .XXT /CX
�375

(Lemma 7)
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D
1

d
Tr

264y†.y† C �/�k
�
�˛M

CT �ˇId z� .XXT /CX
�0B@ �˛M

C

�ˇId
z�XT .XXT /C

1CA
375

(Tr.A � B/ D Tr.B � A/)

D
1

d
Tr
�

y†.y† C �/�k
�
�2˛†

C
C �2ˇId C

z� 2

n
y†�1

��
D
1

d
Tr
�
y†.y† C �/�k

�
�2˛†

C
C �2ˇId C 
.z
 � 1/�

2
˛

y†�1
��

(Lemma 20)

D
�2
ˇ

d
Tr
�
.y† C �/�k.y† C 
.z
 � 1/��/

�
C ��

�2
ˇ

d
Tr
�
.y† C �/�k y††C

�
:

The second term contains both the population term † and the sample term y†, which
is treated separately in Lemma 21. For readability, we use the shorthand notation

m D E���

�
1

�C �

�
and M D E���

�
1

.�C �/2

�
;

under which the limit for the first term is given by

1

d
Tr
�
.y†C�/�k.y†C
.z
�1/��/

� a:s:
����!
d!1

´
1 � �mC 
.z
 � 1/��m for k D 1;

m��MC
.z
�1/��M for k D 2:

Combined with Lemma 21, this yields

1

d
y̌T y†.y† C �/�k y̌

a:s:
����!
d!1

´
1 � �mC ��.
�m2 C .1 � 2
 C 
 z
/m/; k D 1;

m � �M C ��.�
m2 C 2
�mM C .1 � 2
 C 
 z
/M/; k D 2:

Together with m y†
.��/

a:s:
����!
d!1

m, this covers the individual components of

@�f
plg.�/ D m y†

.��/ �
1

d
y̌T y†.y† C �/�2 y̌=

1

d
y̌T y†.y† C �/�1 y̌:

It remains to plug everything in, which we do after factoring out the denominator
1
d

y̌T y†.y† C �/�1 y̌ to obtain

m y†
.��/ �

1

d
y̌T y†.y† C �/�1 y̌�

1

d
y̌T y†.y† C �/�2 y̌

a:s:
����!
d!1

m �
�
1 � �mC ��.
�m2 C .1 � 2
 C 
 z
/m/

�
�
�
m � �M C ��.�
m2 C 2
�mM C .1 � 2
 C 
 z
/M/

�
D .� � .1 � 2
 C 
 z
/��/ � .M �m2/C 
��

�
�m3 Cm2 � 2�mM

�
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D .� � .1 � 2
 C 
 z
/��/ � .M �m2/

C 
��.2m2 � 2M � .1 � �m/m2 C 2.1 � �m/M/

D .� � .1C 
 z
/��/ � .M �m2/C 
��.1 � �m/.2M �m2/

D

�
� � .1C 
 z
/�� C 
��.1 � �m/

�
1C

M

M �m2

��
� .M �m2/;

which concludes the first part of the proof.
For the second statement, observe that equation (4.9) is equivalent to F plg.��/ D

0, where F plg is the function on the right-hand side of equation (4.8). The assumption
in this theorem therefore states that F plg.��/ ¤ 0. Let .�plg

d
/d2N be the sequence

described in the theorem. In the case where @�f
plg
d

does not have a root infinitely
often, we have �plg

d
D 0 infinitely often and therefore �plg

d
6! �� as d ! 1 since

�� ¤ 0. Therefore, now assume that �plg
d

is a root of @�f
plg
d

eventually. Assume that
the claim is false, that is, �plg

d
����!
d!1

�� with positive probability. Similarly to the

proof of Theorem 10, we get that the convergence in equation (4.8) holds almost
surely uniformly on Œ0;C � for some C > ��. The convergence �plg

d
! �� also implies

that �plg
d
2 Œ0; C � eventually. Putting everything together, we get for sufficiently large

d that

jF plg.��/j D jF plg.��/ � @�f
plg
d
.�

plg
d
/j (@�f

plg
d
.�

plg
d
/ D 0)

� j@�f
plg
d
.�

plg
d
/ � F plg.�

plg
d
/j C jF plg.�

plg
d
/ � F plg.��/j

� sup
�2Œ0;C �

j@�f
plg
d
.�/ � F plg.�/j C jF plg.�

plg
d
/ � F plg.��/j

a:s:
��! 0;

where the first summand goes to 0 by uniform convergence and the second summand
goes to 0 by continuity of F plg and �plg

d
! ��. This implies F plg.��/ D 0, which is a

contradiction.

C. RMT consistent estimators for quantities of interest

Theorem 22 (Consistent estimation of statistical noise). Under the model in equa-
tion (3.1),

1

1 � 


kY k2
I�XCX

nd
�

z� 2

d

a:s:
��! 0:

Proof. We have

1

nd
kY k2 D

1

nd
kXT žCEk2 D

1

nd
žTXXT žC

1

nd
ETE C

2

nd
žTXE :
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We know that the minimum l2 norm estimator admits a following closed form
solution given by

y̌ D .XXT /CXY D .XXT /CX.XT žCE/
w:h:p:
D žC .XXT /CXE ;

where we used the fact that rank.XXT / D d with high probability (w.h.p.) to arrive
at the last equality. Letting � D .XXT /CXE , we have

1

nd
y̌TXXT y̌ D

1

nd
. žC �/TXXT . žC �/;

D
1

nd
žTXXT žC

1

nd
�TXXT�C

2

nd
žTXXT�:

From the closed form expression for y̌, we have

1

nd
y̌TXXT y̌ D

1

nd
Y TXT .XXT /CXXT .XXT /CXY ;

D
1

nd
Y TXT .XXT /CXY ;

D
1

nd
Y TXCXY :

Similarly, substituting � D .XXT /CXE , we have

1

nd
�TXXT� D

1

nd
ETXT .XXT /CXXT .XXT /CXE ;

D
1

nd
ETXT .XXT /CXE ;

D
1

nd
ETXCXE ;

D

 z� 2

d
CO.1=

p
d/:

To derive the last equality, we show first that

1

nd
ETXCXE D

z� 2

nd
TrŒXCX �CO.1=

p
p/

with Lemma 7. The equality follows using TrŒAAC� D rank.A/ for any A 2 Rn�d

and
1

nd
ETXCXE D


 z� 2

d
CO.1=

p
d/:

Now, let us consider the term 2
nd

žTXXT�:

2

nd
žTXXT� D

2

nd
žTXXT .XXT /CXE ;

D
2

nd
žTXE

a:s:
����!
d!1

1: (Strong law of large numbers)
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Following similar arguments, we have

1

nd
ETE D

z� 2

d
CO

�
1

d
p
n

�
:

Putting everything together, we have

1

nd
kY k2 D

1

nd
Y TXCXY �


 z� 2

d
C

z� 2

d
CO.1=

p
d/

z� 2

d
D

1

.1 � 
/nd
kY k2

I�XCX
CO.1=

p
d/:

Lemma 23 (Asymptotics of quadratic form with a deterministic sequence). For any
� 2 RC, let � be the unique solution in R� satisfying

Qm.�/ D 1=�:

Then, for any deterministic sequence of vectors ¹vd º with uniformly bounded (Eu-
clidean) norm, as d; n!1 such that d=n! 
 2 .0; 1/, we have

hvd ; y†.y† � �/�1vd i � hvd ; †.†C �/
�1vd i

a:s:
��! 0:

Proof. Observe that, for any � < 0, we have

hvd ; y†.y† � �/�1vd i D kvdk
2
� hvd ; .y† � �/

�1vd i:

The result follows from the generalized Marchenko-Pastur theorem [36], which states
that, for any � 2 RC,

hvd ; .y† � �/
�1vd i � hvd ; .†C �/

�1vd i
a:s:
��! 0:

Proposition 15 (A consistent estimator for the quadform). Under Assumption 5, for
any � 2 RC, let � be the unique solution in R� satisfying Qm.�/ D 1=� . Then, as
d; n!1 such that d=n! 
 2 .0; 1/,

1
d
h y̌; y†.y† � �/�1 y̌i �

S
�
�
S .1�
/
�

1
d
k y̌k2 � S
m.0/

�

�
ž

k žk
; †.†C �/�1

ž

k žk

�
a:s:
��! 0;

where S D .1 � 
/�1kY k2
I�XCX

=.nd/.

Proof. Let � be the unique solution in R� satisfying Qm.�/ D 1=� . From Lemma 23,
we have, for any � 2 RC as n; d !1 such that d=n! 
 2 .0; 1/,�

ž

k žk
; y†.y† � �/�1

ž

k žk

�
�

�
ž

k žk
; †.†C �/�1

ž

k žk

�
a:s:
��! 0 (C.1)
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Therefore, it suffices to consistently estimate h
ž

k žk
; y†.y† � �/�1

ž

k žk
i. First, we

characterize the asymptotic behavior of 1
d
h y̌; y†.y† � �/�1 y̌i, where

y̌ D žC z� 2.XXT /CXE ;

where E � N .0; In/. We have

1

d
h y̌; y†.y† � �/�1 y̌i D

1

d
h ž; y†.y† � �/�1 ži C

2z� 2

d
žT y†.y† � �/�1.XXT /CXE

C
z� 2

d
ETXT .XXT /C y†.y† � �/�1.XXT /CXE :

The first term in the expansion resembles the quantity of interest.
For the second term, notice that, since E � N .0; In/,

2z� 2

d
žT y†.y† � �/�1.XXT /CXE � N

�
0;





2z� 2

d
XT .XXT /C y†.y† � �/�1 ž





2�;
where 



2z� 2

d
XT .XXT /C y†.y† � �/�1 ž





2
D
4z� 2

d2
žT y†.y† � �/�1.XXT /CXXT .XXT /C y†.y† � �/�1 ž

D
4z� 2

d2n
žT y†.y† � �/�1 y†C y†.y† � �/�1 ž

a:s:
��! 0:

Therefore, the second term vanishes. For the last expression,

z� 2

d
ETXT .XXT /C y†.y† � �/�1.XXT /CXE

D
z� 2

d

1

n2
ETXT y†C y†.y† � �/�1 y†CXE

a:s:
��!

z� 2

d

1

n
tr
�
y†C y†.y† � �/�1

�
(Lemma 7 applied to E conditioned on X )

a:s:
��! 


z� 2

d
m.�/:

From Theorem 4, we know that

m.�/ D
1




�
Qm.�/C

1 � 


�

�
D
1




�
1

�
C
1 � 


�

�
:
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Therefore,

z� 2

d
ETXT .XXT /C y†.y† � �/�1.XXT /CXE �

z� 2

d

�
1

�
C
1 � 


�

�
a:s:
��! 0:

Following the same arguments, it is easy to verify that

1

d
k y̌k

2
�

z� 2

d

m.0/ �

1

d
k žk

2 a:s:
��! 0:

Combining the estimators with the result from Theorem 22, we have the desired
result.

Theorem 19 (RMT estimator is consistent). Let �RMT
d

be defined as a root of hRMT.�/

in some Œ0; C � for some C <1 if it exists or 0 otherwise. Additionally, assume that
� is not a point mass. Then, under Assumption 5 with �� > 0, the sequence ¹�RMT

d
º

converges a.s. to ��.

Proof. The proof follows the same arguments as the proof of 10.
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