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Pair-matching: Link prediction with adaptive queries
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Abstract. The pair-matching problem appears in many applications where one wants to dis-
cover matches between pairs of entities or individuals. Formally, the set of individuals is rep-
resented by the nodes of a graph where the edges, unobserved at first, represent the matches.
The algorithm queries pairs of nodes and observes the presence/absence of edges. Its goal is to
discover as many edges as possible with a fixed budget of queries. Pair-matching is a particu-
lar instance of multi-armed bandit problem in which the arms are pairs of individuals and the
rewards are edges linking these pairs. This bandit problem is non-standard though, as each arm
can only be played once.

Given this last constraint, sublinear regret can be expected only if the graph presents some
underlying structure. This paper shows that sublinear regret is achievable in the case where the
graph is generated according to a stochastic block model (SBM) with two communities. Optimal
regret bounds are computed for this pair-matching problem. They exhibit a phase transition
related to the Kesten–Stigum threshold for community detection in SBM. The pair-matching
problem is considered in the case where each node is constrained to be sampled less than a given
amount of times, for example for ensuring individual fairness. We show how optimal regret rates
depend on this constraint. The paper is concluded by a conjecture regarding the optimal regret
when the number of communities is larger than 2. Contrary to the two communities case, we
argue that a statistical-computational gap would appear in this problem.

1. Introduction

1.1. Motivation

Many real world data can be represented as a graph of pairwise relationships. Exam-
ples include social networks connections, metabolic networks, protein-protein inter-
action networks, citations network, recommendations and so on. Matchmaking algo-
rithms and link prediction algorithms are routinely used in many practical situations
to discover biochemical interactions, new contacts, hidden connections between crim-
inals, or to match players in online multiplayers video games and sport tournaments.
As testing a link in biological networks, or discovering connections between criminals
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can be expansive, link prediction algorithms are useful to focus on the most relevant
links. In social networks or online video games, they can help in finding relevant
partners.

1.2. Problem

These applications raise the following mathematical problem that this paper intends
to study. Suppose that there exists a graph whose nodes represent a set of entities or
individuals and whose edges represent matches between entities or individuals. The
nodes are known to the statistician while the edges are typically hidden at first. Match-
making algorithms make queries on pairs of individuals, trying to discover as many
edges as possible. For biological networks like protein-protein interaction networks,
the individuals are proteins, an edge is an interaction between the two proteins and a
query is an experiment to test whether the interaction exists. The goal of matchmaking
algorithms is to discover as many edges of the graph as possible while minimizing the
number of mismatches. To stress that the focus lies on discovering graph structures,
the problem at hand is called hereafter pair-matching rather than matchmaking.

In this paper, pair-matching algorithms are constrained to explore the graph as
they cannot make queries on edges that have already been observed. To learn interest-
ing features on unobserved edges from previous observations, it is necessary to make
assumptions on the structure of the hidden graph. This paper considers the arguably
simplest situation where the graph has been generated according to an assortative
conditional stochastic block model (SBM) [23] with two balanced communities; see
Section 2.2 for a formal presentation. In this model, individuals are grouped into two
(unobserved) communities and the probability of a match (edge) between two indi-
viduals is larger if they belong to the same community than to different ones. In this
context, the set of pairs is partitioned into good and bad ones, good pairs contain two
individuals from the same community and bad pairs two individuals from different
communities. A pair-matching algorithm samples pairs and should sample as many
good pairs as possible. Of course, the partition into good and bad pairs is unknown.

When the graph is fully observed, communities are recovered using clustering
algorithms, which have been extensively studied over the past few years; see, for
example, the recent overviews in [1, 30, 37]. A key parameter in the analysis of clus-
tering algorithms, called here scaling parameter s, is the ratio

s D
.p � q/2

p C q
;

where p is the probability of connection within a community and q the probabil-
ity of connection between communities. This parameter measures the difficulty of
clustering; see Section 2.2 for details. The quality of a pair-matching algorithm is
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evaluated by the expected number of discovered edges after T queries. Equivalently,
the performance can be measured by the expected number of pairs sampled that do
not contain edges, which should be as small as possible; see Section 2.4 for details.
This last quantity is proportional to the expected number of bad pairs sampled, which
is called sampling regret in this paper. Besides constraining the algorithms to sample
each pair only once, we also force algorithms to sample each individual less than a
certain amount of times BT before T queries have been made. This constraint cor-
responds to practical situations where each individual may not be solicited too many
times. For example, for fairness policy, the algorithm may be required to sample a
similar amount of time a large fraction of the n individuals. Such fairness constraint
is then implemented by forcing to have at most BT D cT=n queries per individual,
where c � 1.

1.3. Contribution

Our objective is to understand precisely the order of magnitude of the optimal regret
in this online learning problem. This task is not trivial due to the originality of our
setting, where pairs and nodes cannot be sampled as much as desired, but where the
hidden structure of the graph should help to learn useful information. Our main con-
tribution is that the sampling regret of any strategy that cannot sample pairs more than
once, that is invariant to nodes labelling and which satisfies the above constraint (see
Assumptions (NR), (IL) and (SpS) in Section 2.3 for details) is larger than

T ^

p
T _ .T=BT /

s
; (1.1)

up to multiplicative constants. Moreover, a polynomial-time algorithm with sampling
regret bounded from above by a constant times T ^ .

p
T _ .T=BT //=s is described

and analyzed; see Theorem 2. It then follows that T ^ r.T; s/, where r.T; s/ D
.
p
T _ .T=BT //=s is the order of magnitude of the optimal regret we were look-

ing for and that this rate can be achieved in polynomial time. As a consequence, when
T DO.1=s2/ pairs have been sampled, the linear sampling regret is unavoidable since

r.T; s/ >
p
T

s
> T:

Likewise,

r.T; s/ >
T

.sBT /
& T

whenBT DO.1=s/ and linear sampling regret is also unavoidable when the constraint
is too strong. On the other hand, when BT � 1=s, and T � 1=s2, our algorithm
reaches the optimal sub-linear sampling regret r.T; s/. A particular interesting arises
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when T D n˛ for some ˛ 2 .1; 2/ and when, for fairness requirement, the algorithm
is required to sample at most cT=n time each individual. In this situation actually, the
optimal sampling regret becomes of order

T ^
T 1=˛

s
:

This result illustrates the price to pay for the fairness constraint: The optimal uncon-
strained rate

p
T =s is replaced by the larger rate T 1=˛=s.

1.4. Related literature

The following problem, related to matchmaking, has recently attracted attention, in
particular in Bradley–Terry models; see [6, 56]. The task is to infer, from the obser-
vation of pairs, a vector of parameters characterizing the strength of players. Most
results considered the case where all the graph is observed; see [8, 24]. Recent con-
tributions dealing in particular with ranking issues also consider the case of partially
observed graphs; see [26, 45, 46] and the references therein. In all cases, the list of
observed pairs is given as input to the algorithm evaluating the strength of all players.
The choice of a relevant list of successive observed pairs, independent of the obser-
vation of the edges is sometimes called a scheduling problem; see [13]. Scheduling
problems are different from matchmaking problems considered here where the algo-
rithm should choose the observed pairs and can use preliminary observations to make
its choice. For online video games, classical algorithms used to evaluate strength of
players are ELO or TRUESKILL; see [22,36]. Matchmaking algorithms such as EOMM

(see [12]), which is used with TRUESKILL (see [36]), are then used to pair players,
taking as inputs these estimated strengths. In this approach, the number of mismatches
during the learning phase is not controlled. It is an important conceptual difference
with this paper where the matchmaking problem is considered together with the prob-
lem of discovering the strength (communities here). Here, pair-matching algorithms
have to simultaneously explore the graph to evaluate the strength and sample as many
good pairs as possible to optimize the number of matches. Closer to our setting is the
active ranking literature, where the goal is to discover adaptively the rank or strength
of players with a minimal amount of queries; see [21,25,49]. Contrary to our problem,
only the exploration matters in adaptive ranking and no notion of regret is investigated.

Pair-matching algorithms take sequential decisions to explore new pairs exploiting
previous observations. This kind of exploration and exploitation dilemma is typical
in multi-armed bandit problems; see [7, 29, 42, 50]. In stochastic multi-armed ban-
dit problems, a set of actions, called arms is proposed to a player who chooses one
of these actions at each time step and receives a payoff. The payoffs are indepen-
dent random variables with unknown distribution. For any arm, payoffs are identi-
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cally distributed. The player wants to maximize its total payoff after T queries. The
pair-matching problem introduced above can be seen as a non-standard instance of
stochastic multi-armed bandit problems. In this interpretation, each pair of nodes is
an arm and the associated payoff is 1 if an edge links these nodes and 0 otherwise.
The payoffs hence follow a Bernoulli distribution with parameter p for good pairs and
parameter q for bad pairs. The unusual feature is that each arm can only be played
once, so the pair-matcher must choose a new arm at each time step. For this rea-
son, optimal strategies differ in spirit from classical strategies in bandit problems;
see Section 2.1 for more details. While the proofs of lower bounds involve useful
inequalities borrowed from the classical bandit literature, in particular the data pro-
cessing inequality from [18, 28], they require a non-trivial adaptation to work in our
setting. The lemmas involved in this adaptation may be of use in a wider class of
problems with pairwise observations.

Forgetting the constraint that a node cannot be sampled more than BT times, the
pair-matching bandit problem could be seen as an extreme version of mortal or rot-
ting bandit problems (see [9, 31, 43]), where every arm would systematically die or
have zero pay-off after the first sampling. Without additional assumptions, the regret
would be inexorably linear in the querying budget T . Here, an important difference
with classical mortal or rotting multi-armed bandits is that payoffs are structured by
the underlying stochastic block model (SBM). While pair-matching can easily be for-
malized as a bandit problem, and while we explore the parallel with some specific
bandit problems like k out of m bandit, it turns out that neither the algorithms nor the
results or their proof can be used in our framework. In particular, our strategy mixes
clustering, iterative rounds of screening and exploitation steps in order to identify a
sufficiently large set of nodes in a single community, thus focusing on eliminating
sub-optimal arms (at the price of also eliminating optimal ones) rather than identi-
fying good ones as bandit algorithms usually do. Notice though that the paper [15],
which is posterior to our work, considered related questions in a different setting.

Stochastic block models have attracted a lot of attention in the recent years, with
a focus on the determination of optimal strategies for clustering and for parameter
estimation; see [1, 37]. In this prolific literature, the graph is fully observed and the
question is to identify precisely the weakest separation between the probabilities of
connection necessary to perfectly or partially recover the communities, or to estimate
the parameters of the SBM. Closer to our setting, the paper [55] investigates the ques-
tion of recovering communities from a minimal number of observed pairs, sampled
sequentially. In this problem, the question is to assign a community to all nodes after
a minimal number T of time steps and try to minimize the number of misclassified
nodes. This is quite different from the minimization of the sampling regret considered
here, where we seek to find on a budget as many good pairs as possible and not to
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classify all nodes. As discussed in Section 3.3, applying the algorithm of [55] would
lead to a suboptimal regret in our problem.

The formalization of the pair-matching problem considered in this paper may be
restrictive in some applications. Section 5 presents some conjectures that seem rea-
sonable forK classes SBMs. Other graph structures would also be interesting, such as
Bradley–Terry models of [6,56], which have been used for sport tournaments in [47],
chess ranking in [27] and predictions of animal behaviors in [53]. Various constraints
dealing with first discoveries for example may be interesting depending on the appli-
cations: the first match of a node is the most important in some situations, and, for
the search of a life partner, discovering a match with a node already connected in the
observed graph is (for most nodes at least) less interesting than a match with an iso-
lated node. These constraints naturally induce different versions of the pair-matching
problem and raise mathematical questions of interest. Multiplayer video games sug-
gest the extension to hypergraphs of the pair-matching problem. Indeed, the value of
a player could be evaluated as part of a team and with respect to a possible team of
opponents rather than simply as part of a pair. Finally, in many practical situations,
additional information on individuals is available and could be used to improve pair-
matching algorithms. It is clear from our first results that this information is necessary
to avoid linear regret in applications such as life partner research. These extensions
are postponed to follow-up works. This paper should be seen as a first step to for-
malize and study the important sequential pair-matching problem. It focuses on a toy
example but opens several interesting questions that arise when dealing with natural
constraints in practical applications of interest.

1.5. Organization and notation

The remainder of the paper is decomposed as follows. Section 2 introduces the for-
mal setting and objectives. As a warm-up, Section 3 focuses on the case where the
algorithms are not constrained to sample nodes more than a certain amount of times.
Section 4 presents the main results where the algorithm are constrained. Section 5
gives conjectures for K-classes SBMs. Finally, in Section 6, we assess the behav-
ior of the algorithms on synthetic data, and we explore the estimation of the scaling
parameter as well as the robustness of our result to slight model misspecification. The
proofs of the main results are postponed to the appendix.

Notation. We write xn . yn and xn DO.yn/, if there exist numerical constants such
that xn 6 Cyn for all n � n0; and we write xn � yn and xn D ‚.yn/, if xn D O.yn/
and yn D O.xn/ that is, if there exist numerical constants c; c0 > 0 and n0 such that
cxn � yn � c

0xn for all n � n0. We denote by dxe (respectively, bxc) the upper
(respectively, lower) integer part of x; by jAj the cardinal of a set A; and by A�B the
symmetric difference between two sets A and B .
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2. Setting and problem formalization

2.1. A special bandit problem

In the pair-matching problem described above, the data-scientist uncovers sequen-
tially a random graph, whose nodes are clustered into two communities. The prob-
ability to have an edge between two nodes within a community is p, while this
probability is q for two nodes belonging to different communities. The problem to
discover sequentially as many edges as possible in T steps, without querying more
than BT times a node, can be interpreted as a non-standard multi-armed bandit prob-
lem. Actually, each pair ¹a; bº of nodes can be seen as an arm and the discovery of
match as a payoff. The payoff of the arm ¹a; bº follows a Bernoulli distribution with
parameter p if a and b belongs to the same communities, and with parameter q if they
are in different communities. This bandit problem is non-standard, as

(1) the arms are sampled at most once,

(2) at most BT arms involving a given node can be sampled up to time T ,

(3) the distribution of the payoffs have a hidden structure inherited from the SBM
set-up.

Compared with the standard multi-armed bandit problem, points (1) and (2) make this
problem harder, while point (3) is a strong structural property that gives hope to find
regimes with sub-linear regret.

These special features make this problem quite different from classical bandit
problems. In classical bandit problems, optimal strategies have to identify the best
arm (or some of the best arms) and each arm is played many times to reach this
goal. Here, half the arms are “optimal” but one cannot play an arm more than once.
Therefore, instead of identifying one of these, optimal strategies should avoid bad
arms, possibly disregarding a non-negligible proportion of good arms in the process.

The constraint (2) also induces a specific exploration / exploitation trade-off.
When the community of a node is identified, we wish to query it with a maximum
of nodes of the same community in order to maximize the rewards (exploitation). Yet,
we also need to pair this node to some new nodes in order identify the community of
new nodes (exploration). Since a node can be queried at most BT times, we need to
trade-off between these two strategies.

Due to these unusual features of the problem, the classical bandit literature is of
little help in order to design some optimal sampling algorithm. It is yet useful to
establish our lower bounds, which involve inequalities from [18, 28].

In the remainder of this section, the problem, the assumptions and the objectives
are described more formally.
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2.2. Two-classes SBM

The n individuals are represented by the set V D ¹1; : : : ; nº. Matches are represented
by a set of edges E between nodes in V : there is a match between a and b in V
if and only if the pair ¹a; bº belongs to E. Hereafter, a set of two distinct elements
in V is called a pair and an element of E is called an edge. The graph .V; E/ is
conveniently represented by its adjacency matrix A 2 Rn�n, with entries Aab D 1 if
¹a;bº 2E andAabD 0 otherwise. In the following, any graph .V;E/ is identified with
its adjacency matrix .Aab/a;b2V . For any pair eD¹a;bº, the notationsAe andAab are
used indifferently. Since the graph is undirected, the adjacency matrixA is symmetric,
and since there is no self-matching (no self-loop in the graph), the diagonal of A is
equal to zero.

Individuals are grouped into two (unknown) communities according to their affin-
ity. To model this situation, the graph .V;E/ is random and distributed as a two-classes
conditional stochastic block model. Let 0< q;p < 1, and let n1 denote an integer n1 �
n� n1 � 1. The collection cSBM.n1;n� n1;p;q/ of two-classes conditional stochas-
tic block model distributions on graphs is defined as follows. Let G D ¹G1; G2º be a
partition of ¹1; : : : ; nº into two groups, with jG1j D n1 and jG2j D n� n1. The parti-
tion G represents the communities of individuals. Let �G denotes the distribution on
graphs with nodes ¹1; : : : ; nº, such that the adjacency matrix is symmetric, null on the
diagonal and with lower diagonal entries .Aab/a<b sampled as independent Bernoulli
random variables with �G.Aab D 1/D p when a and b belong to the same groupGi ,
and �G.Aab D 1/ D q when a and b belong to different groups. In other words, two
individuals are matched with probability p if they belong to the same community,
and with probability q otherwise. The class cSBM.n1; n � n1; p; q/ is defined as the
set of all distributions �G defined above, where G D ¹G1; G2º describes the set of
partitions of ¹1; : : : ; nº satisfying jG1j D n1 and jG2j D n � n1:

cSBM.n1; n � n1; p; q/ D ¹�G W G D ¹G1; G2º is a partition

satisfying jG1j D n1, jG2j D n � n1º:

In the following, the communities are balanced and matches happen with higher prob-
ability if individuals belong to the same community. Formally, n is even and the graph
.V;E/ has been generated according to a distribution � in cSBM.n=2; n=2; p; q/, for
some unknown parameters p and q such that 0 < q < p � 1=2. As q < p, the distri-
bution of .V; E/ is called an assortative cSBM.n=2; n=2; p; q/. All along the paper,
the ratio p=q is also assumed bounded from above. To sum up, p and q are smaller
than 1=2 and satisfy

1 < p=q � ��: (2.1)
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The rationale for the upper bound in (2.1) is provided in the remark below Theorem 1.
Given p and q, the following scaling parameter plays a central role

s D
.p � q/2

p C q
: (2.2)

This parameter appears in various results in the literature on SBM. The following
property, proved for example in [2, 10, 16, 17, 19, 32, 54], will be used repeatedly in
the paper. When the graph .V;E/ � cSBM.n1; n� n1; p; q/, there exist polynomial-
time clustering algorithms that return a partition of ¹1; : : : ; nº such that, with large
probability, the proportion of misclassified nodes decreases exponentially:

proportion of misclassified nodes � exp.�cns/ when ns � c0;

where c; c0 > 0 are numerical constants. The rate ns of exponential decay in this result
is optimal (up to a constant) when (2.1) is met. Hence, the scaling parameter s drives
the difficulty of clustering. To stress the importance of s, the following parametriza-
tion will be used henceforth:

p D
s.˛ C

p
˛/

2
; q D

s.˛ �
p
˛/

2
;

with ˛ D .p C q/2=.p � q/2. In this parametrization, assumption (2.1) is met if and
only if ˛ is bounded from below by .�� C 1/2=.�� � 1/2. Another useful property
is that there exist numerical constants c1; c2 > 0 such that non-trivial community
recovery is possible as soon as s � c1=n (see [2, 5, 10, 14, 16, 19, 35, 40]) and perfect
community recovery is possible as soon as s � c2 log.n/=n; see [2, 11, 39].

The reader familiar with SBM literature may be more comfortable with the param-
etrization p D an=n and q D bn=n for a SBM distribution with two communities. For
a comfortable translation of the results, the following relations between s, ˛ and an,
bn are provided:

s D
.an � bn/

2

n.an C bn/
; ˛ D

.an C bn/
2

.an � bn/2
;

an

bn
D
˛ C
p
˛

˛ �
p
˛
; an C bn D n˛s:

With these notations, the optimal sampling regret (1.1) can be rewritten as

T ^

p
T _ .T=BT /

s
D T ^

��p
T _ .T=BT /

�n.an C bn/
.an � bn/2

�
;

which is smaller than T as soon as

BT ^
p
T �

n.an C bn/

.an � bn/2
:
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In particular, in the sparse regime where an and bn are constants,
p
T has to be of the

order of n, while s has to be of the order of 1=n. The regret, which is lower bounded
by T ^

p
T =s, is then at least of the order of T ^ n2, and thus linear.

2.3. Sequential matching strategies

Denote by E the set of all pairs of nodes, that is the set of all subsets of V containing
two distinct elements. Heuristically, a sequential matching strategy samples at each
time t a new pair yet 2 E , using only past observations .ye1; : : : ; yet�1; Aye1 ; : : : ; Ayet�1/
and an internal randomness of the algorithm.

Formally, let U0; U1; : : : be i.i.d. uniform random variables in Œ0; 1�, indepen-
dent of A and representing the sequence of internal randomness for the algorithm.
A sequential matching strategy  on E (shortened strategy in the following) is a
sequence

 D . t /0�t�.n2/�1

of measurable functions  t W E t � ¹0; 1ºt � Œ0; 1�tC1 ! E . Any sequential matching
strategy  defines a matching algorithm as follows. The first pair is sampled as ye1 D
 0.U0/. Then, at each time t � 0, the pair yetC1 is defined by

yetC1 D  t
�
yEt ; .Ae/e2yEt

; U0; : : : ; Ut
�

with yEt D ¹ye1; : : : ; yetº:

The strategy takes as input the observed graph .Ae/e2yEt and possibly an internal inde-
pendent randomness Ut to output the new observed pair yetC1.

In the following, strategies are assumed to satisfy the following constraints: a pair
can only be sampled once and strategies are invariant to labelling of the nodes. These
constraints can be formalized as follows.

Non-redundancy (NR). The strategy  samples any pair at most once, that is, for
any 0 � t �

�
n
2

�
� 1 and e1; : : : ; et 2 E , the map  t fulfils  t .¹e1; : : : ; etº; : : :/ …

¹e1; : : : ; etº.

Invariance to labelling requires some notation. For any pair e 2 E and any strat-
egy  , let

Ne. ; t/ WD 1
e2yEt

(2.3)

indicate if the pair e has been sampled or not before time t by the strategy  . For any
non-redundant strategy  (i.e., satisfying (NR)), pairs are sampled at most once and
the observation of ¹Ne. ; t/ W e 2 Eº is equivalent to that of yEt .

Let � be a distribution in cSBM.n=2; n=2;p; q/ and � be a permutation of V . For
any pair ¹a; bº 2 E , let �.¹a; bº/ WD ¹�.a/; �.b/º. Let �� denote the distribution of
.A�.e//e2E , where .Ae/e2E is distributed according to �.
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Invariance to labelling (IL). The distribution of the outcomes of the strategy  is
invariant by permutations of the nodes labels: For any � 2 cSBM.n=2;n=2;p;q/ and
any permutation � on V , the distribution of .Ne. ; t/ W e 2 E; 1 � t �

�
n
2

�
/ under ��

is the same as the distribution of .N�.e/. ; t/ W e 2 E; 1 � t �
�
n
2

�
/ under �.

Remark 1. Any algorithm can be made invariant to labelling by simply relabelling
all the vertices at random before applying the algorithm.

Besides (NR) and (IL), we consider strategies that do not sample a node more
than B times before time T . This constraint appears naturally in practical situations.
For example, if the algorithm matches biological entities or individuals, one may not
want to query too many times each individual for logistic or acceptability reasons. To
stress that the constraint B typically grows with the time horizon T , it is denoted BT .
Formally, for any a 2 V , let

Na. ; t/ D
X

b2V Wb¤a

N¹a;bº. ; t/ (2.4)

denote the number of times the node a has been sampled in a pair ¹a;bº after t queries.

Sparse sampling (SpS). Let T and BT denote two integers. The strategy  is called
BT -sparse up to time T if it satisfies

8a 2 V; Na. ; T / � BT :

Since Na. ; T / � .n � 1/ ^ T for all nodes a, choosing BT � .n � 1/ ^ T cor-
responds to the unconstrained case.

2.4. Objectives of the pair-matcher

Let � 2 cSBM.n=2; n=2; p; q/ be the distribution of an assortative conditional stoch-
astic block model with associated partition G D ¹G1; G2º. Pairs within a community
have a larger probability to lead to a match, than pairs between two different com-
munities. Accordingly, pairs ¹a; bº with a and b from the same community are called
good pairs, and Egood.�/ (or simply Egood) denotes the set of such pairs. Similarly,
Ebad.�/ (or simply Ebad) denotes the set of pairs ¹a;bºwith a and b from two different
communities.

The objective of the pair-matcher is to discover as many edges (i.e., matches bet-
ween individuals) as possible with T queries, in expectation or with high-probability.
For simplicity, we focus henceforth on the maximization of the expected number of
edges discovered. The strategy  of the pair-matcher should then maximize the num-
ber of discovered edges, in expectation with respect to the randomness of the SBM
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and the strategy. Optimal strategies should therefore sample as many pairs in Egood as
possible. Formally, consider a time horizon T smaller than

jEgood
j D 2

�
n=2

2

�
� n2=4;

and denote by
N bad. ; T / D

X
e2Ebad

Ne. ; T /;

respectively,
N good. ; T / D

X
e2Egood

Ne. ; T /;

the number of pairs in Ebad (respectively, Egood) sampled up to time T . Applying
Wald’s lemma at the second line, we can compute the expected number of discoveries
for any strategy  as follows:

E�

� TX
tD1

Ayet

�
D

X
e2Egood.�/

E�
�
1
e2yEt

Ae
�
C

X
e2Ebad.�/

E�
�
1
e2yEt

Ae
�

D

X
e2Egood.�/

pE�
�
1
e2yEt

�
C

X
e2Ebad.�/

qE�
�
1
e2yEt

�
D pE�

�
N good. ; T /

�
C qE�

�
N bad. ; T /

�
D pT � .p � q/E�

�
N bad. ; T /

�
;

where the last line follows from N good. ; T /C N bad. ; T / D T . Since p > q, the
maximal expected value of discoveries is achieved by any oracle strategy � sampling
only edges in Egood. In that case,N bad. �; T /D 0 and the maximal expected number
of discoveries is equal to pT . The regret of the strategy  is defined as the difference
between pT and its expected number of discoveries:

RT . / D pT � E�

� TX
tD1

Ayet

�
D .p � q/E�

�
N bad. ; T /

�
:

As long as T 6 jEgoodj, the regret is proportional to the expected number of
sampled between-group pairs E�ŒN bad. ; T /�. Therefore, the main results analyze
this last quantity rather than the regret. The expected number of bad sampled pairs
E�ŒN bad. ; T /� is called hereafter sampling-regret.

Remark 2. Without assumption on  , the distribution of N bad. ; T /may depend on
the distribution� of the cSBM. On the other hand, when the strategy fulfils (IL), the
distribution of N bad. ; T / does not depend on the distribution � in cSBM.n=2; n=2;
p; q/. Indeed, let �; �0 be two distributions in cSBM.n=2; n=2; p; q/. By definition,
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there exists a permutation � on ¹1; : : : ; nº such that �0 D �� , where �� has been
defined in Section 2.3. Since Ebad.�� / D ��1.Ebad.�//, it follows from (IL) that the
distribution under �� of

P
e2Ebad.�� /Ne. ;T / is the same as the distribution under �

of
P
e2Ebad.�/Ne. ; T /.

3. Warm-up: Unconstrained optimal pair-matching

3.1. Optimal rates for unconstrained pair-matching

As a warm-up, we focus first on the simplest case, where BT D C1, which amounts
to remove the constraint (SpS). Let ‰1 denote the set of strategies  fulfilling (NR)
and (IL). The first main result describes the best sampling-regret that can be achieved
by a strategy in ‰1, as a function of s and T .

Theorem 1. Let T and n be positive integers with T � jEgoodj D 2
�
n=2
2

�
. Let p; q 2

Œ0; 1=2� be two parameters fulfilling (2.1) and such that

s �
1

32.1C ��/
;

where the scaling parameter s is defined in (2.2). For any � 2 cSBM.n=2; n=2;p; q/,
we then have

inf
 2‰1

E�
�
N bad. ; T /

�
�
1

32

� p
T

32.1C ��/s
^ T

�
: (3.1)

Moreover, there exist two numerical constants c1; c2 > 0, and a strategy  2 ‰1
corresponding to a polynomial-time algorithm described in Section 3.2, taking s as
input, such that, for any p; q satisfying (2.1), any � 2 cSBM.n=2; n=2; p; q/ and any
time horizon 1 � T � c2n2,

E�
�
N bad. ; T /

�
� c1

�p
T

s
^ T

�
:

The proof of Theorem 1 is provided in the appendix. The lower bound is proved
in Section A and the upper bound in Section B. The upper bound derives from a
stronger result showing that similar bounds hold with high probability; see Theorem 7
for a precise statement. Theorem 1 provides only the upper bound in expectation for
clarity.

Remark 3. The parameter �� only appears in the lower bound. In fact, the SNR
showing up in the proof of the lower bound is zs WD kl.p; q/ _ kl.q; p/ � 1=16,
where kl.p;q/D p log.p=q/C .1�p/ log..1�p/=.1� q// is the Kullback–Leibler



C. Giraud, Y. Issartel, L. Lehéricy, and M. Lerasle 234

divergence between two Bernoulli distributions with parameters p and q. Under the
condition p=q � ��, we have s � zs � 2.1 C ��/s, so s and zs are equivalent; see
Lemma 19. Thus, the quantity �� appears when writing the condition with s instead
of zs as SNR.

We have chosen to use s instead of zs for convenience, as it is a classical SNR
in the SBM literature, and it allows us to use existing results and clustering routines
straightforwardly. We stress that s can strongly differ from zs when �� is large, but this
difference is large only in the ‘easiest’ setting where p and q are markedly different.
On the other hand, the regime where �� is small is more challenging. In the upper
bound, the constants c1 and c2 are numerical constants that do not depend on ��.

Theorem 1 states that, when (2.1) holds, for any � 2 cSBM.n=2; n=2; p; q/ and
any time horizon 1 � T � c2n2, the optimal sampling-regret

inf
 2‰1

E�
�
N bad. ; T /

�
�

p
T

s
^ T ;

grows linearly with T as long as T . 1=s2 and becomes sub-linear, of order
p
T =s,

when T & 1=s2.

Remark 4. For the convenience of the reader familiar with the SBM literature, the
conclusion of Theorem 1 in terms of the parametrization p D an=n and q D bn=n (as
in Section 2.2) is

inf
 2‰1

E�
�
N bad. ; T /

�
�
n.an C bn/

.an � bn/2

p
T ^ T;

since s D .an � bn/2=n.an C bn/.

This result can be understood intuitively. As long as communities cannot be recov-
ered better than random, there is no hope of getting better sampling-regret than with
purely random sampling of the pairs. In this regime, the sampling-regret grows lin-
early with T . To identify when this occurs, consider the situation where pairs are
sampled at random amongN nodes and T D ˇN 2=2 (with ˇ 6 1). Then the observed
edges at time T are approximately distributed as in a SBM with N nodes, within-
group connection probability pˇ D ˇp, and between-group connection probability
qˇ D ˇq. It follows from [5,14,35,38] that weak recovery of the communities is pos-
sible if and only if N.pˇ � qˇ /2 � 2.pˇ C qˇ /, which is equivalent to

p
ˇT s �

p
2

or T � 2=.ˇs2/. Since ˇ � 1 by definition, no information about the communities can
be recovered when T � 2=s2. Hence, the sampling-regret is expected to grow linearly
with T for T D O.1=s2/. This intuition is confirmed by equation (3.1).

When T � 1=s2, the situation is different. Classical results, such as those in [2,
10, 16, 19, 32, 39, 54] among others, ensure that the communities of N nodes can
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be recovered almost perfectly if N � 1=s and all edges between these nodes are
observed. Therefore, when 1=s � N D .

p
T =s/1=2 �

p
T , one can sample all the

edges between N nodes and recover almost perfectly their community with a samp-
ling regret smaller than N 2 D

p
T =s.

A recipe in order to get a sublinear regret is the following. If we are able to find a
community of‚.

p
T / nodes, then we can spend a budget of T queries without further

regret by sampling pairs among these ‚.
p
T / nodes. To do so, we need to identify

a community of ‚.
p
T / nodes from the N clustered nodes, with a regret smaller

than
p
T =s. Given theN clustered nodes, a carefully designed screening strategy (see

Step 2 of Algorithm 1), can identify the community of a new node with a sampling
regret of order O.1=s/. Proceeding recursively, ‚.

p
T / new nodes can be identified

with a sampling-regret of order O.
p
T =s/. The remaining budget of T queries can

then be spent by sampling pairs among these ‚.
p
T / nodes without further regret

if there were no errors in the community assignment. This informal reasoning sug-
gests that the optimal sampling-regret grows like

p
T =s when T � 1=s2. Again, this

intuition is confirmed by equation (3.1). An algorithm achieving the optimal upper
bound in Theorem 1 and taking as input s and the time horizon T is provided in
Section 3.2. It essentially proceeds as in the informal strategy outlined above, even
if some steps have to be refined. In particular, the identification of a community of
‚.
p
T / nodes has to be conducted with care in order to balance the regret and the

community assignment errors. The dependency of the algorithm of Section 3.2 on
the time horizon T , can be easily dropped out with a classical doubling trick; see
Section B in the appendix.

To sum up the discussion: in the early stage where T D O.1=s2/, one cannot
do better than random guessing, up to multiplicative constant factors. In the second
stage where T � 1=s2, the rate

p
T =s can be interpreted as follows. A total of‚.

p
T /

nodes are involved at time T and, for each of them,‚.1=s/ observations are necessary
to obtain an educated guess of their community.

Finally, Theorem 1 can be equivalently stated in terms of the regret RT . /: for
any time horizon 1 � T � c2n2, the minimal regret satisfies

inf
 2‰1

RT . / �
p
˛
�p
T ^ .sT /

�
;

when the assumptions of Theorem 1 are met.

3.2. Algorithm with specified horizon T

This section presents an algorithm achieving the upper bound in Theorem 1. This
algorithm takes as input the scaling parameter s and the time horizon T . This depen-
dency on the time-horizon can be avoided with the classical doubling trick; see Sec-
tion B in the appendix. We discuss in Section 5.1 a heuristic for the preliminary
estimation of s involving less than O.1=s2/ edges.
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When the horizon T is O.1=s2/, any strategy achieves a regret of order O.T /.
Hence, without loss of generality, it is assumed in the remaining of the section that
T � cth=s

2 for some numerical constant cth. Moreover, as Theorem 1 holds for
T � c2n

2, it is also assumed that this condition is fulfilled for a sufficiently small
constant c2.

The algorithm proceeds in three steps. In the first step, a core-set N of jN j D
‚.
p
T = log.s

p
T // vertices is chosen uniformly at random and each pair within this

core-set is sampled with probability ‚..log.s
p
T //2=.s

p
T //. Hence, an average of

‚.
p
T =s/ pairs are sampled within this core-set. A community recovery algorithm is

run on this observed graph that outputs two estimated communities with a fraction of
misclassified nodes vanishing as O.log.s

p
T /=.s

p
T // with high probability.

The second step identifies with high probability ‚.
p
T / vertices from the same

community, say Community 1. To do so, it picks uniformly at random a set A0

of 8
p
2T vertices outside of the core-set N (this is possible thanks to the condition

T � c2n
2) and samples pairs between this set and the estimated Community 1 of the

core-set. This set of edges is used to estimate the connectivity between these vertices
and Community 1. Vertices with low connectivity, that seem to belong to Commu-
nity 2, are removed online to keep the sampling regret under control. The goal of
this screening is not to classify perfectly the 8

p
2T picked vertices, but instead to sift

out vertices of Community 2 with a low sampling regret. In particular, a price to pay
to achieve this goal is to possibly remove a non-negligible proportion of vertices of
Community 1 from the 8

p
2T picked vertices. This second step of the algorithm is

crucial for getting the optimal regret rate O.
p
T =s/. A simplified version of this sec-

ond step can be connected to a particular k out ofm best arms identification problem.
This connection is discussed in Section 3.3 below.

The third step samples all pairs ¹a; bº such that a and b belong to the ‚.
p
T /

vertices isolated in the second step of the algorithm, until the remaining budget of T
queries is expended.

The pair-matching algorithm calls an external clustering algorithm (generically
denoted by GOODCLUST in what follows). GOODCLUST takes as input a graph .V; E/
and outputs a partition yG D . yG1; yG2/. We require that GOODCLUST fulfils the follow-
ing recovery property: There exist numerical constants cGC; cGC

1 > 0 such that, for all
N D N1 CN2 and all zp; zq 2 Œ0; 1�, if .V; E/ � cSBM.N1; N2; zp; zq/, the proportion
of misclassified nodes

"N D
j yG1�G1j C j yG2�G2j

2N
;

with � the symmetric difference, satisfies

"N � exp
�
�cGC

1 N
. zp � zq/2

zp

�
; (3.2)
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Algorithm 1: Unconstrained algorithm
Inputs: s scaling parameter, T time horizon, V set of nodes.

Internal constants: cO0 D 2 _ .1=c
GC
1 /, Ck D 2200 and CI D 4.

Step 1: finding communities in a core-set

(1) Sample uniformly at random a set N � V of N D d
p
T = log.s

p
T /e nodes.

(2) Sample each pair of N with probability cO0.
p
T =s

�
N
2

�
/, call O0 � E the

output.

(3) Estimate global connectivity � D .p C q/=2 by y� D 1
jO0j

P
e2O0

Ae .

(4) Run GOODCLUST on the graph with nodes set N and edges present in O0.
Output, for any x 2 N , yZx the estimated community of x. Choose the label
yZ D 1 for the largest estimated community.

Step 2: expanding the communities

(5) Sample uniformly at random a set A0 of jA0j D d8
p
2T e nodes in V nN .

(6) Set k D dCk=se and I D dCI log.s
p
T /e.

(7) For i D 1; : : : ; I , do

(a) For x 2 Ai�1, sample k nodes .yx
k.i�1/Ca

/aD1;:::;k uniformly at random

in N \ ¹ yZ D 1º n ¹yxa ºaD1;:::;k.i�1/.

(b) Sample the pairs .¹x; yx
k.i�1/Ca

º/aD1;:::;k and let ypx;i D 1
ki

Pki
aD1Axyxa .

(c) Select Ai D ¹x 2 Ai�1 W ypx;i � y�º.

(d) In case1 Ai D ;, then set AI D ; and BREAK.

Step 3: sampling pairs within estimated communities

(8) Sample uniformly at random pairs within the set AI until T pairs have been
sampled overall. If the number of sampled pairs is smaller than T after all
pairs in AI have been sampled, then sample the remaining pairs at random.

Output: T pairs sampled at points (2), (7.b) and (8) of the algorithm.

with probability at least 1 � cGC=N 3. Algorithms achieving this proportion of mis-
classification can be found, e.g., in [19]; see also [2, 10, 16, 17, 32, 54] for similar
results.

1with high probability, this undesirable case does not happen
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3.3. Community expansion versus k out of m best arm identification

As proved in Lemma 8 in Appendix B, after Step 1, with high probability, we end
up with a set of N classified nodes, where at most O.1=s/ of them are misclas-
sified, and the empirical connectivity y� does not deviate from the population one
� D .p C q/=2 by more than .p � q/=4. The goal of Step 2 is then to identify

p
2T

new nodes of Community 1, with at most O.1=s/ misclassified nodes and a regret at
most O.

p
T =s/. Let us connect this problem to a k out of m best arms identification

problem.
Let us consider a simplified version of the problem of Step 2. Assume that we

have identified N1 D N=2 nodes of Community 1 with no error, that we have access
to the population connectivity � and that among theM D 8

p
2T nodes in A0, half of

them are of Community 1. Then, each node a 2A0 can be seen as an arm, and pulling
the arm a amounts to query a pair ¹a; bº with b one of the N1 nodes of Community 1
identified at Step 1. The mean reward of the arm a is p if it belongs to Community 1,
and q otherwise. Hence, a simplified version of the problem in Step 2 amounts to
identify k D

p
2T out of m DM=2 D 4

p
2T best arms, with at most O.1=s/ errors,

and a cumulated regret O.k=s/. We have the additional constraint that an arm can be
pulled at most N1 times, but we will forget this additional feature in this discussion,
for simplicity of the comparison.

The problem of identifying k out ofm best arms with a tolerance � has been inves-
tigated in [20,41]. The focus on these papers is on the minimal sample size needed to
identify k arms whose expected reward is larger than themth largest expected reward
minus �. The main result of [41] states that, with probability at least 1� k�2 and with
a sample size of

O

�
1

.p � q/2

�
M log

�
mC 1

mC 1 � k

�
C k log.k/

��
;

the algorithm AL-Q-FK can recover k out of the m best arms with a tolerance � D
.p � q/=2. The sampling regret is not considered and it can be as large as the sample
size. In the same setting, the screening algorithm of Step 2 achieves the following
performance. For m � ck � c0=s, with probability at least 1 � c00k�2 a budget of at
most O.ks�1 log.sk// queries, and a sampling regret at most O.k=s/, the algorithm
identifies a set of arms with at least k out of m best arms and at most O.1=s/ arms
not in the m best ones. As s D .p � q/2=.p C q/, the sampling regret achieved by
the screening algorithm of Step 2 is at least .p C q/= log.k/ times smaller. We can
explain this gain by several reasons. The pC q improvement comes from the fact that
we explicitly take into account the fact that the rewards have a Bernoulli distribution.
The 1= log.k/ improvement is obtained by a careful design of the algorithm to keep
the regret low, at the price of possibly O.1=s/ identification errors.
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Specified to the simplified version of the problem in Step 2 depicted above, the
AL-Q-FK algorithm would return k D

p
2T nodes out of the m D M=2 D 4

p
2T

nodes of Community 1 with a sampling regret

O

� p
T

.p C q/s
log
�p
T
��
:

This sampling regret is larger than the O.
p
T =s/ regret needed for our Step 2, so the

AL-Q-FK cannot be used as a black-box for Step 2.
We emphasize also that the expansion of the communities in Step 2 is somewhat

more complex than the simplified version described above: at Step 1, up to O.1=s/
nodes are misclassified, we only have access to the empirical connectivity y� , an arm
can only be pulled N1 times and the number of best arms is random.

We also emphasize that we cannot use the algorithm of [55] as a black-box to
identify

p
2T nodes of Community 1 within A0 with at most 1=s errors and with a

sampling regretO.
p
T =s/. Indeed, if we take‚.

p
T / nodes and apply the procedure

of [55] to classify them with a sampling regret at mostO.
p
T =s/, then a fixed propor-

tion of the nodes are misclassified and pairing them together at Step 3 would generate
a final regret of order ‚.T /. In addition, from the lower bounds in [55], we observe
that the above phenomenon occurs, whatever the algorithm, if we try to classify all
the nodes in A0. To overcome this issue, the algorithm of Step 2 recovers the class
for a fraction only of the nodes in A0 with a sampling regret at most O.

p
T =s/ and

at most 1=s errors. When recovering the class of
p
2T nodes within A0, we do not

sample pairs at random, but we carefully select them in order to avoid as much as
possible the sampling of bad pairs.

4. Constrained optimal pair-matching

4.1. Main results

Let us now consider the general problem, where sparse sampling (SpS) is enforced.
The algorithm described in Section 3.2 for unconstrained pairs-matching uses exten-
sively the opportunity to make “localized” queries: At time T , a small number of
‚.
p
T / nodes has been queried a large number of ‚.

p
T / times, while other nodes

have been queried less thanO.log.s
p
T /2=s/ times. So, the strategy has to be adapted

to fulfils (SpS).
For a sparsity bound BT , denote by ‰BT ;T the set of strategies  fulfilling the

Non-redundancy (NR), Invariance to labelling (IL) and Sparse sampling (SpS) prop-
erties at time T .
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Theorem 2. Let T and n be positive integers with T � jEgoodj D 2
�
n=2
2

�
. Let p; q 2

Œ0; 1=2� be two parameters fulfilling (2.1) and such that the parameter s, defined
in (2.2), fulfils

s �
1

32.1C ��/
:

Then, for any � 2 cSBM.n=2; n=2; p; q/,

inf
 2‰BT ;T

E�
�
N bad. ; T /

�
�
1

32

�p
T _ .T=BT /

32.1C ��/s
^ T

�
:

Conversely, there exist two numerical constants c1; c2 > 0 such that, for any time
horizon T and constraint BT satisfying 1 � T � c1n.BT ^ n/, there exists a strategy
 2 ‰BT ;T corresponding to a polynomial-time algorithm, described in Section 4.2,
such that

E�
�
N bad. ; T /

�
� c2

�p
T _ .T=BT /

s
^ T

�
: (4.1)

We refer to the appendix for a proof of this theorem. The lower bound is proved
in Section A and the upper bound in Section C.

Compared with Theorem 1, Theorem 2 shows that the sparse sampling constraint
(SpS) amounts to replace

p
T by

p
T _ .T=BT / in the optimal sampling-regret. In

particular, the sparse sampling constraint downgrades optimal rates only when BT is
smaller than

p
T . Actually, a close look at the unconstrained algorithm (Algorithm 1)

reveals that, by construction, it satisfies assumption (SpS) with BT D 17
p
T . So, in

the regime where BT � 17
p
T , the lower bound cannot be worse than the upper-

bound of the unconstrained setting of Theorem 1.
When BT .

p
T , the optimal sampling-regret is of order .T=.BT s// ^ T . This

rate can be understood as follows. If BT � 1=s, there is not enough observations per
node to infer their community better than at random, which induces an unavoidable
linear regret. When BT � 1=s, to proceed as in Step 3 of the constrained case, one
needs to identify a sufficiently large set of nodes of the same community, among
which one can sample up to T pairs without adding regret. As each node can now be
paired with at most BT others, this set should be of size‚.T=BT / instead of‚.

p
T /

in the unconstrained case. As the identification of the community of a node requires at
least ‚.1=s/ queries, the sampling-regret expected to identify this large set of nodes
is ‚.T=.BT s//.

The previous informal discussion suggests to extend the algorithm described in
Section 3.2 for the unconstrained case. This extension, fully described and commented
in Section 4.2, still proceeds in three steps and goes as follows. The first step of the
constrained algorithm is essentially the same as the first step of the unconstrained
algorithm, with

p
T replaced by B D .BT ^

p
T /=2. In this first step, all pairs are
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sampled among a set of B= log.sB/� BT nodes, so the constraint cannot be violated.
Then, to keep the sampling-regret under control while not violating the (SpS) con-
straint, the trick is to apply recursively a variant of the screening algorithm in Step 2
and repeat these screenings until a total number of ‚.T=.BT ^

p
T // nodes are cor-

rectly classified, with a small proportion of error. Finally, one can sample at most
BT ^

p
T pairs for each of these nodes in Step 3 with a controlled regret. The result-

ing algorithm extends the unconstrained one of Section 3.2 where BT ^
p
T D

p
T

and where the screening step is only applied once. This extension is fully described
in Section 4.2.

To illustrate the theorem, one can discuss the results with the constraint BT D T 
 ,
where 0 < 
 � 1=2. As mentioned in the introduction, this situation arises with

 D 1� 1=˛ when T D n˛ , and when, for fairness reasons, the algorithm is required
to sample at most BT D cT=n D cT 1�1=˛ times each node. In this case, the optimal
sampling-regret is of order T ^ .T 1�
=s/which becomes, in the example discussed in
introduction the mentioned rate T ^ T 1=˛=s. It follows that any pair-matching algo-
rithm that is T 
 -sparse up to time T (besides satisfying (NR) and (IL)) has linear
sampling-regret up to time s�1=
 . On the other hand, there exist strategies with opti-
mal sampling-regret of order T 1�
=s after time s�1=
 .

Notice that the sparse sampling propertyNa. ;T /�BT only constrains the algo-
rithm at the time horizon T . This time horizon has therefore to be specified beforehand
for this constraint to be defined. In many practical situations, this specification is not
reasonable and a more realistic constraint takes the form: Na. ; t/ � Bt at any time
t 2 ¹1; : : : ; T º. In the case where Bt D‚.t
=.log t /� /, the constraint can be enforced
using a doubling trick, without enlarging the regret by more than a multiplicative
numerical constant. This doubling trick is discussed in detail in Section 4.4.

4.2. Algorithm with sparse sampling

Algorithm 1 achieves optimal regret in the unconstrained case. It identifies first a set
of ‚.

p
T / nodes from one community with O.1=s/ misclassified nodes and a regret

of orderO.
p
T =s/ in Steps 1 and 2. Then, it pairs these nodes together in Step 3 with

a O.
p
T =s/ regret (due to the misclassified nodes).

The algorithm described in this section follows essentially the same steps. It iden-
tifies first a set of nodes from a single community (with small error) and then samples
pairs among them. It has to be adapted to fulfil the (SpS) constraint. As the uncon-
strained algorithm fulfils the (SpS) constraint for any BT � 17

p
T , it is assumed in

the remaining of this section that BT D O.
p
T /. Moreover, as the result holds for

T � c1n.BT ^ n/, this assumption is granted in the remaining of the section.
To respect the constraint (SpS), no node may be sampled in more than BT pairs.

Hence, to perform the last step, the algorithm has to identify ‚.T=BT / nodes from
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one community. It should achieve this identification with a sampling-regret smaller
than O.T=.sBT // while respecting the (SpS) constraint. To respect the (SpS) con-
straint in the first step of the algorithm, a core-set Ninit of cardinality smaller than BT
is chosen. Formally, in points (1) and (2) of Step 1 in Algorithm 1,

p
T is replaced by

.BT ^
p
T /=2. Then, as in the unconstrained case, Step 2 expands the communities

in order to identify, with high probability and up to a small error, ‚.T=BT / nodes
from one community. The main difference with the unconstrained case is that this
expansion cannot be achieved in a single step of screening. Actually,

(i) ‚.N=s/ pairs are required to identify the community of ‚.N/ new nodes;

(ii) any node from the core-set Ninit cannot be sampled more than BT times.

By (ii), one cannot sample more than O.jNinitjBT / pairs and by (i), it follows that
at most O.jNinitjBT s/ D O.B2T s/ nodes can be classified with a single screening
step based on Ninit. The main idea of the new algorithm is to iterate the screen-
ing step, expanding progressively the communities. Along these iterations, to satisfy
the (SpS) constraint, the screening has to be conducted with more care than in Step 2
of the unconstrained algorithm (Algorithm 1). The trick is to apply the SCREENING
function (Algorithm 3), which compartmentalizes the nodes in order to enforce the
condition (SpS). This iterative process outputs a set of ‚.T=BT / nodes from a single
community (with a small proportion of error with high probability). The algorithm
finally pairs nodes among this subset while respecting the (SpS) constraint in Step 3
of the algorithm.

4.3. Screening versus k out of m best arms identification

Similarly to Section 3.3, let us compare the screening step to a k out of m best arms
identification problem. The main additional feature compared to the situation dis-
cussed in Section 3.3, is that an arm a cannot be sampled more than B times. Hence,
a simplified version of the screening problem amounts to identify k out of m best
arms with tolerance � D .p � q/=2, with the constraint that each arm cannot be sam-
pled more than B times. In these simplified setting, the screening function achieves
the following performance. Assume that M � ck and k; B � c0=s. With probability
1 � c.sk/�1 , with a budget of O.ks�1 log.s.B ^ k/// queries, and with a sampling
regret at most O.k=s/, the screening function identifies at least k arms of Commu-
nity 1 with at most O..k.sB/�1/ _ s�1/ errors.

The situation handled by the screening function is actually somewhat more com-
plex than the stylized bandit problem depicted above. Actually, among the initial set
of N classified nodes, we have up to cN=.sB/ misclassified nodes. At the same time,
we cannot query more than B times any of these classified nodes. Hence, we need a
careful querying policy in order to avoid the misclassified nodes to generate errors,
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while keeping the (SpS) condition enforced. Fulfilling together these two conditions
is the main hurdle in the design and analysis of the screening function.

Algorithm 2: Constrained algorithm
Inputs: s scaling parameter, T time horizon, Vinit the set of the n nodes of the
whole graph, BT constraint.

Internal constants: set cO0 D 8 _ .1=c
GC
1 / and B D .BT ^

p
T /=2.

Step 1: finding communities in a core-set

(1) Sample uniformly at random an initial set Ninit � Vinit of Ninit D d
B

log.sB/e

nodes.

(2) Sample each pair of Ninit with probability cO0
B
s
=
�
Ninit
2

�
, call O0 � E the

output.

(3) Estimate mean connectivity � D .p C q/=2 by y� D 1
jO0j

P
.x;x0/2O0

Ax;x0 .

(4) Run GOODCLUST on the graph .Ninit;O0/ and output, for any x 2 Ninit, yZx
the estimated community of x (with the convention that the largest estimated
community is labelled by 1).

Step 2: iteratively expanding the communities

Internal constants: set N .0/ D dNinit=2e,

tf D

�
log.d2T=Be=N .0//

logblog.sB/c

�
and for all t 2 ¹0; : : : ; tf º,

N .t/
D N .0/

blog.sB/ct ^
l2T
B

m
:

(5) Let N .0/ be a set of N .0/ nodes in Ninit \ ¹ yZ D 1º sampled uniformly at
random, and let V .0/ D Vinit nNinit.

(6) For t D 1; : : : ; tf , set

.N .t/; V .t// D SCREENING.N .t�1/; N .t/; B; y�; V .t�1//:

Step 3: sampling pairs within estimated communities

(7) Sample pairs within the set N .tf / while respecting the constraint (SpS) with
BT , until T pairs have been sampled overall (the sampling method does not
matter).
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Algorithm 3: Function SCREENING.N ; N 0; B; �; V / D .N 0; V 0/

Inputs: a reference core-set N of cardinality N , a target number of
nodes N 0, a constraint B 2 RC, a threshold � 2 Œ0; 1�, a set of “new”
nodes V .

Output: a set of nodes N 0 � V of cardinality at most N 0 and the set of
nodes V 0 � V that are still “new” after running SCREENING. (Most of the
nodes of N 0 will belong to the most represented community in N .)

Internal constants: a number of pairs per step k D dCk=se and a number of
steps I D dCI log.sB/e, with Ck D 2500, CI D 1026.

(1) Sample uniformly at random a set A0 of jA0j D 4N
0 nodes in V .

(2) Let m D bN=.kI /c. Take a uniform partition of N into m sets .Vj /1�j�m
of cardinality kI and one set of cardinality smaller than kI . Likewise, take
a uniform partition of A0 into m sets .A.j /

0 /1�j�m with cardinality in
¹b4N 0=mc; d4N 0=meº.

(3) For j D 1; : : : ; m and i D 1; : : : ; I , do

For each x 2 A
.j /
i�1, do

(i) Sample k nodes .yx
k.i�1/Ca

/aD1;:::;k uniformly at random in
Vj n ¹y

x
a ºaD1;:::;k.i�1/.

(ii) Sample pairs .¹x; yx
k.i�1/Ca

º/aD1;:::;k and compute

ypx;i D
1

ki

kiX
aD1

Axyxa :

(iii) Select A
.j /
i D ¹x 2 A

.j /
i�1 W ypx;i � �º.

(4) Set N 0 a set of N 0 nodes sampled uniformly at random from
S
1�j�m A

.j /
I .

In case2 j
S
1�j�m A

.j /
I j < N

0, then sample at random N 0 nodes in A0.

(5) Set V 0 D V nA0.

Return .N 0; V 0/.

4.4. Pathwise sparse sampling algorithm

The algorithm presented above fulfils the sparse sampling condition (SpS) at time
horizon T . In many practical situations, it is more natural to consider condition (SpS)

2with high probability, this undesirable case does not happen
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at all times t D 1; 2; : : : rather than only at a predefined time horizon t D T . For-
mally, condition (SpS) would be replaced by Na. ; t/ � Bt , for all t D 1; 2; : : : It
is possible to modify the previous algorithm to build a strategy  such that, when
Bt D ‚.t


 log�� .t//, the sampling regret E�ŒN bad. ; t/� fulfils

E�
�
N bad. ; t/

�
D O

�p
t _ .t=Bt /

s
^ t

�
for t D 1; 2; : : :

Assume that there exist 
 2 .0; 1=2� and � 2 Œ0;C1/ such that Bt D t
=.log t /� ,
so
p
t _ .t=Bt / D t1�
 log� .t/. In this case, a pathwise sampling condition can be

enforced using the simple doubling trick. For any positive integer l , let tl D 2l . At each
time tl , the new algorithm discards all nodes and pairs previously sampled and starts
the algorithm of Section 4.2 with the remaining nodes, time horizon T D tlC1 � tl
and terminal sparse sampling constraint Na. ; tlC1 � tl/ � mintl�t�tlC1 Bt . The
resulting strategy does not depend on any time horizon and it fulfils the condition
Na. ; t/ � Bt for all t D 1; 2; : : :

Moreover, for any l such that tl � e�=
 , mintl�t�tlC1 Bt D Btl . Hence, for any l
such that tl < c1n.Bt ^ n/ and for any t such that tl�1 � t � tl < c1n.Bt ^ n/,

E
�
N bad. ; t/

�
D O

�
1C

lX
kD1

.tk � tk�1/
1�
 log� .tk � tk�1/

s
^ .tk � tk�1/

�
D O

��
1

s

l�1X
rD0

2r.1�
/.r log.2//�
�
^ tl

�
D O

�
t
1�


l
log� .tl/
s

^ tl

�
D O

�
t1�
 log� .t/

s
^ t

�
:

According to Theorem 2, the sampling-regret of the algorithm derived from the dou-
bling trick is then rate optimal.

5. Discussion

The present paper provides the optimal sampling-regret for pair-matching in the case
where G D .E; V / is a conditional SBM with a number of groups K D 2, where
the groups have n=K elements, with intra-class probability of connection p and inter-
class q. Algorithm 1 in Section 3.2 runs in polynomial time and has optimal sampling-
regret given in Theorem 1, up to a multiplicative constant. Let us discuss the two
following questions: How can we estimate the scaling parameter s? How does the
rates depend on the number K of groups?
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5.1. A heuristic to estimate the scaling parameter s

Algorithms 1 and 2 take the scaling parameter s as input. This parameter is typically
unknown in practice and an estimated value ys has to be plugged in the algorithm. To
guarantee a sampling-regret smaller thanO.T ^ .

p
T =s//, the estimator ys should use

at mostO.1=s2/ edges and satisfy ys� s with high probability. The following heuristic
builds a possible estimator ys.

Pick uniformly at randomN nodes in V and sample allN.N � 1/=2 pairs between
theseN nodes. WhenNs > 2, p D a=N and q D b=N , the results in [38] ensure that,
asN !1, a and b can be consistently estimated. Therefore,NsD .a� b/2=.aC b/
can also be consistently estimated from these T D N.N � 1/=2 D O.1=s2/ observa-
tions. Yet, this estimator requires the knowledgeNs larger than 2 and cannot therefore
be used directly when s is unknown.

However, when pD a=N and qD b=N andN !1, it is theoretically possible to
detect whetherNs D .a� b/2=.aC b/ is smaller or larger than 2. To proceed, denote
by B the non-backtracking matrix associated to the graph; see [5] for a definition
of the non-backtracking matrix. Let �1; �2; : : : be the eigenvalues of B ranked in
decreasing order of their moduli. The main result of [5] shows that, when p D a=N
and q D b=N , with a; b > 0 fixed, except on an event of vanishing probability as
N !1,

j�2j
2 < �1 when Ns < 2;

j�2j
2 > �1 when Ns > 2:

Hence, in this asymptotic setting where s D‚.1=N/, it is possible to detect ifNs > 2
by looking at the ratio j�2j2 > �1. In addition, when Ns > 2, the ratio 2j�2j2=�1
consistently estimates .a � b/2=.aC b/.

This result suggests the following recursive algorithm to estimate s: fix some � > 0
and start with a set V1 of 2 nodes i and j picked uniformly at random in V . Query the
pair ¹i; j º and let E1 denote the set of edges in E \ ¹i; j º. At each step k > 2, pick
at random a set Vk of 2k nodes in V n

S
`6k�1 V`. Sample all pairs in Vk , and denote

by Ek the set of edges among these pairs. Build the non-backtracking matrix Bk of
the graph .Vk; Ek/ and compute �.k/1 and �.k/2 the eigenvalues of this matrix with
largest moduli. If j�.k/2 j

2 < .1C �/�
.k/
1 iterate. If j�.k/2 j

2 > .1C �/�
.k/
1 stop, denote

by yk the stopping iteration time and yN D 2yk the number of nodes sampled in the last
graph .Vyk; Eyk/. Output ys D 2j�.

yk/
2 j

2=. yN�
.yk/
1 /.

Assume that p D a=N and q D b=N with a; b 2 RC fulfilling

.a � b/2

aC b
> 2:
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Let�N denote the event where simultaneously 2� yNs � 8.1C �/ and s=2� ys � 2s.
Then the results of [5] suggest that the event �N holds with probability tending to 1
as N !1. In addition, the total number of sampled edges is

ykX
kD1

�
2k

2

�
D O. yN 2/ D O.1=s2/

on this event. While the results of [5] suggest that the procedure should work for
vanishingly small s (large N limit), we emphasize that they only hold in a setting
where p D a=N , q D b=N , with a; b fixed and N !1, and we cannot turn them
into a theoretical guarantee that�N holds with probability close to 1. We evaluate the
performance of this heuristic numerically in Section 6.3.

5.2. Case with K > 2 groups

Let us discuss the case where the number of groups K is larger than 2, still assum-
ing that all the groups have n=K elements, with intra-class probability of connec-
tion p and inter-class q. Contrary to K D 2, we expect in this case an information-
computation gap and conjecture the following optimal rates for pair-matching.

Conjecture 1. Define ‰poly
1 as the intersection of ‰1 defined in Section 3.1, with

polynomial-time algorithms. Let

sK D
.p � q/2

q C .p � q/=K
:

Under Assumption (2.1) and sK � 1, without computational constraint:

inf
 2‰1

E
�
N bad. ; T /

�
�

��
K log.K/

sK

�2
_
K
p
T

sK

�
^ T: (5.1)

With polynomial time constraint:

inf
 2‰

poly
1

E
�
N bad. ; T /

�
�

��
K2

sK

�2
_
K
p
T

sK

�
^ T: (5.2)

Let us explain the heuristics leading to these rates.
For K D 2, a central tool to design the rate-optimal polynomial-time algorithm

(Algorithm 1) is the existence of polynomial-time algorithms (called GOODCLUST)
achieving non-trivial classification for a cSBM.N=2; N=2; p; q/ when Ns is larger
than some constant. When K > 2 and the number of nodes N !1, for p, q scal-
ing as 1=N , the papers [3, 5, 48] provide polynomial-time algorithms GOODCLUSTpoly

K

achieving a non-trivial classification for

NsK > K
2
DW �

poly
K :
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Furthermore, it is conjectured in [14] that there does not exist any polynomial-time
algorithm achieving non-trivial classification when NsK < K2. The threshold �poly

K

is known as the Kesten–Stigum (KS) threshold. While the conjecture of [14] is rela-
tive to the case where K is fixed, p D a=N , q D b=N , and N goes to infinity, this
conjecture has been recently supported non-asymptotically by a Low-Degree polyno-
mial lower bound [33,44] wheneverK2 �N . This supports the conjecture that, when
sK � 1, non-trivial clustering is possible only when N D ‚.K2=sK/.

The information theoretic threshold �inf
K for non-trivial classification is below �poly

K

for K � 5. Actually, the paper [4] proved that

�inf
K � K log.K/ and �inf

K < �
poly
K

for K � 5, so, if the conjecture of [14] holds, there is an information-computation
gap for K � 5. A consequence of the result of [4] is that there exist algorithms
GOODCLUSTinf

K , with exponential complexity, achieving non-trivial classification for
NsK D O.K log.K//.

Theorem 1 requires that GOODCLUST has more than non-trivial classification, it
should have vanishing classification error. Several papers have established, under
assumption (2.1), the existence of algorithms GOODCLUSTpoly

K and GOODCLUSTinf
K with

misclassification proportion smaller than exp.�cNsK=K/, for some positive con-
stant c. This result is obtained forNsK � c0�

poly
K for GOODCLUSTpoly

K ; see, e.g., [10,16,
17, 19] and for NsK � �inf

K for GOODCLUSTinf
K ; see [57].

As a consequence, without computational constraint, a linear sampling regret is
expected for any algorithm as long as the time horizon satisfies

p
2T sK < �inf

K , or
equivalently

T < 0:5.�inf
K =sK/

2
D 0:5.K logK=sK/2:

On the other hand, when T � .K.logK/2=sK/2, one can choose N fulfilling

�inf
K =sK � N � .K

p
T =sK/

1=2
�
p
T :

Selecting N nodes uniformly at random and observing all pairs of these N nodes,
GOODCLUSTinf

K classifies correctly the N nodes, but a proportion of them no greater
than exp.�cNsK=K/. The sampling-regret for this step does not exceed the number
O.N 2/ D O.K

p
T =sK/ of pairs sampled. Since NsK=K � log.K/, the proportion

of misclassified nodes among these N nodes is small and a screening procedure as in
Step 2 of Algorithm 1 can be applied in order to classify correctly

p
T nodes. As an

average of K=sK queries is necessary to classify one new node, this step will have
a regret scaling as K

p
T =sK . Then, we can pair all nodes of the same group until

the budget of T queries is spent. Hence, in the regime where T � .K.logK/2=sK/2,
the final regret should be proportional to N 2 CK

p
T =sK � K

p
T =sK . To sum-up
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the discussion, without computational constraints, one can expect a sampling-regret
of order �

.K log.K/=sK/2 _K
p
T =sK

�
^ T;

which is the conjectured rate (5.1).
Using polynomial time algorithms for clustering, the information-theoretic thresh-

old �inf
K should be replaced by the KS-threshold �poly

K . Following the same reasoning
as before, linear regret is expected as long as

T < 0:5.�
poly
K =sK/

2
D 0:5.K2=sK/

2:

On the other hand, when
p
T � K3=sK , one can pick N nodes at random with N

fulfilling
�

poly
K =sK � N � .K

p
T =sK/

1=2
�
p
T :

A polynomial time algorithm GOODCLUSTpoly
K run with all pairs based on these nodes

classifies correctly theseN nodes, except for a proportion at most exp.�cNsK=K/ of
them. The sampling-regret associated to this classification step is smaller than N 2 �

K
p
T =sK . The screening step classifies correctly

p
T nodes with a regretK

p
T =sK .

The remaining budget until sampling T pairs is spent by pairing together nodes in a
same estimated group. Ultimately, taking into account the computational constraint,
one can expect a sampling-regret of order ..K2=sK/2 _K

p
T =sK/^ T , which is the

conjectured rate (5.2).

5.3. Unbalanced partitions and pairwise dependent probabilities

Although we use a simple random graph model for the ease of exposition, our analysis
can be extended to a more general set-up which relaxes the following assumptions:

(i) the graph has only two groups;

(ii) the two groups have the same number n=2 of nodes;

(iii) the probabilities p and q of (intra- and inter-group) connection are constants.

For the relaxation of (i), we refer the reader to the Section 5.2, where we discuss
conjectures in a SBM with K groups, for any integer K � 2.

We can relax assumption (ii) by assuming that jG1j D cn and jG2j D .1 � c/n

with c a numerical constant in .0; 1/. Among the ten points in Lemmas 8 and 9, one
can readily check that only point (5) – about the estimation of .p C q/=2 – does not
hold anymore. Indeed, for c ¤ 1=2, the global connectivity of the graph is not equal
to .p C q/=2, and thus our estimator y� of the global connectivity is not a consistent
estimator of .p C q/=2. A solution is to replace y� by y� 0 D . yp C yq/=2, where the
estimators yp and yq of p and q are obtained from the following two-step procedure.
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One run GOODCLUST on a first set of sampled pairs in the core-set; then conditionally
to the estimated group labels yZx , one estimate p by sampling new intra-group pairs
(i.e., pairs .x;y/ satisfying yZx D yZy) and one estimate q by sampling new inter-group
pairs ( yZx ¤ yZy).

Instead of the model assumption (iii), let us consider the situation where the prob-
ability pij of connection between the nodes i and j belongs to Œp0; p� if i and j
are in the same group, while pij 2 Œq; q0� otherwise, with q0 < p0. Turnkey clus-
tering algorithms work in such situations; see [57], for example. Then, still with the
idea of having two distinct groups of nodes, assume that the intra-group variations
ı WD .p � p0/ _ .q0 � q/ are smaller than the inter group separation � WD p0 � q0.
Under this assumption, one can readily check that our estimator y� of the global con-
nectivity satisfies

jy� � .p0 C q0/=2j � �=4

(i.e., Lemma 8 (5)), and that all the other points in Lemmas 8 and 9 still hold. In this
situation of non-constant probabilities of connection, note that the link between the
regret and the sampling regret (seen in Section 2.4) does not hold anymore, and we
only control the sampling regret.

6. Numerical experiments

6.1. Unconstrained setting

In this section, we empirically assess the sharpness of our unconstrained algorithm
from Section 3.2 on the following parameters:

• the budget T is taken in ¹50; 100; 200; 500; 1 000; 2 000; 5 000;
10 000; 20 000; 50 000;100000;200000;500000;1000000;2000000;5000000º;

• the connection probabilities are taken as .p;q/D .0:6;0:4/; .0:7;0:3/; .0:55;0:45/
or .0:4;0:2/, which corresponds to sD 0:04;0:16;0:01, or 0:0666 : : : respectively;

• the groups are either balanced, or one group contains 20% of the individuals while
the other contains 80%;

• the pool of available individuals is assumed infinite (i.e., n infinite), which means
that one may freely add new individuals and decide their class independently of
the classes of previously sampled individuals;

• for each choice of parameter, ten experiments are performed to obtain an averaged
regret.



Pair-matching: Link prediction with adaptive queries 251

4 6 8 10 12 14

4
6

8
10

12

log.T /

lo
g.
x N

ba
d

av
er

ag
ed

on
10

si
m

ul
at

io
ns
/

4 6 8 10 12 14

0
2

4
6

8

log.T /

lo
g.
s
x N

ba
d

av
er

ag
ed

on
10

si
m

ul
at

io
ns
/

Figure 1. Average number of errors xN bad over ten simulations in the unconstrained case with
balanced communities. The graphs show log. xN bad/ (left) and log.s xN bad/ (right) as a func-
tion of log.T /, confirming the two regimes (linear in T and proportional to

p
T =s). The lines

have slope 1 and 1=2, respectively. Green: s D 0:01, black: s D 0:04, blue: s D 0:06666 : : :,
red: s D 0:16.

A few adaptations are required for the implementation to work efficiently and for
all values of T . For the unconstrained algorithm,

• if log.s
p
T / < 1, it is replaced by 1 in the formulas of the size N of the core-set

and of the number I of steps in Step 2;

• if the size of the core-set N is smaller than the size 2kI required to have at least
one estimated class large enough to perform Step 2, N is replaced by 2kI (more
generally KkI when there are K groups);

• GOODCLUST classifies the individuals by applying the Lloyd algorithm to the first
two eigenvectors of the trimmed-adjacency matrix of the graph (more generally
to the first K eigenvectors), see [10];

• the values of the constants are fixed to c0 D 2, CI D 10, Ck D 0:1, and the number
of individuals in the core-set is taken as N D dcN

p
T = log.s

p
T /e with cN D 2;

• instead of sampling a set A0 in Step 2 and pruning the individuals with low con-
nectivity, we instead proceed individual by individual, discarding them if their
connectivity dips below the threshold at one point and adding them to AI if not.

These modifications are intended to make the algorithm work more efficiently and for
smaller values of T than the ones presented in the theorems above, without changing
its theoretical properties.
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Figure 2. Average number of errors xN bad over ten simulations in the unconstrained case with
a 80%–20% split between communities. The graphs show log. xN bad/ (left) and log.s xN bad/

(right) as a function of log.T /. The lines have slope 1 and 1=2 respectively. Green: s D 0:01,
black: s D 0:04, blue: s D 0:06666 : : :, red: s D 0:16.

The results for the unconstrained algorithm are displayed in Figure 1 (balanced
communities) and Figure 2 (unbalanced communities). In both cases, as predicted
by Theorem 1, we observe an initial linear regime for the regret for T D O.1=s2/,
followed by a

p
T =s regime for T large compared to 1=s2.

6.2. Constrained setting

In this section, the constrained algorithm from Section 4.2 is assessed, the results are
displayed in Figure 3. The parameters are the same than in the previous section, with
the difference that we only consider balanced communities and budgets T greater or
equal to 500. The constraint BT is taken in ¹500; 1 000º.

In addition to the adaptations from the previous section, we modified the algorithm
as follows:

• if log.s
p
T / < 1, since this corresponds to the linear case, the edges are sampled

at random;

• the values of the constants are fixed to c0 D 8, CI D 10, Ck D 0:1, and the number
of individuals in the core-set is taken as N D dcN

p
T = log.s

p
T /e with cN D 4;

• if the size of the core-set is smaller than 5=2 � c0=s D 20=s, which ensures that the
constraint is satisfied with high probability, N is replaced by 20=s.

Again, we observe empirically the three regimes from Theorem 2: the sampling regret
is first linear in T , then proportional to

p
T =s and then linear again as T=.Bs/.
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Figure 3. Average number of errors xN bad over ten simulations in the constrained case with bal-
anced communities. The graph shows log.s xN bad/ as a function of log.T /. The lines have slope
1=2 and 1, respectively. This confirms the three regimes of Theorem 2: linear in T for small
and large T and proportional to

p
T =s in between. Black: s D 0:04, green: s D 0:06666 : : :,

red: s D 0:16.

6.3. Estimation of the scaling parameter s

In this section, we investigate the empirical performance of the heuristic procedure
from Section 5.1 for estimating s. As s! 0, the two key properties that we are looking
for, are

2 < yNs D O.1/ and ys D ‚.s/:

We focus on the empirical evaluation of these two properties.
For non-vanishing values of s, random fluctuations of the eigenvalues of the non-

backtracking matrix can blur the asymptotic results of [5]. We evaluate the noise
level with the modulus of the third eigenvalue j�.k/3 j, whose asymptotic value remains
smaller than

p
�
.k/
1 when s is vanishingly small. We changed the stopping criterion

accordingly: the algorithm stops when

j�
.k/
3 j

2 < .1C �/�
.k/
1 and j�

.k/
2 j

2
� .1C �/�

.k/
1 ;

with � D 0:1. The additional condition j�.k/3 j
2 < .1C �/�

.k/
1 is meant to ensure that

the stopping condition j�.k/2 j
2 � .1C �/�

.k/
1 is not due to pure random fluctuations.

This modification does not change the asymptotic properties of the estimator or the
asymptotic of the number of edges sampled, that is O.1=s2/ when s ! 0.

The parameters taken were balanced groups with .p; q/D .0:45; 0:05/, .0:4; 0:1/,
.0:35; 0:15/, .0:3; 0:2/, .0:3; 0:1=3/, .0:8=3; 0:2=3/, .0:7=3; 0:1/, or .0:2; 0:4=3/. For
each value of .p; q/, the ratio s=ys and the product yNs are displayed in Figure 4 for
ten simulations.
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Figure 4. On the left, ratio of the true scaling parameter s to the estimated scaling parameter ys as
defined in Section 5.1. The red line corresponds to s=ys D 1. On the right, product s yN , where yN
is the number of nodes at the stopping time. The red line corresponds to s yN D 2.

We used the SUNBEAM package from [52], available at [51], to compute the
eigenvalues of the non-backtracking matrix. The results are displayed in Figure 4.
The left-hand side figure shows that the estimator ys is always comparable to s, and
almost always smaller than s, which makes it a good choice to replace s by ys in the
pair-matching algorithm. Finally, the right-hand side figure shows that the condition
s yN > 2 is always satisfied, thus ensuring that ys consistently estimates s.

6.4. Resilience to model misspecification

The above simulations use data generated by a cSBM model. We now investigate how
the algorithm’s performance is affected when the data does not exactly follow a cSBM
distribution.

We consider the following alternative model. Let 0 < p; q < 1 be connectivity
parameters as above, as well as a misspecification parameter � 2 Œ0; 1=2/. When sam-
pling a new node i , it is affected the labelZi D 0 or 1 with probability 1=2. In addition
to its label, it is assigned a hidden state Si � Unif.ŒZi � �;Zi C ��/. The probability
that two nodes i and j are connected is given by

P .Aij D 1 j Zi ; Zj ; Si ; Sj / D p C .q � p/
�
jSi � Sj j �

2�

3

�
:

The case � D 0 is the usual, well-specified, case. In general, for any � ,

P .Aij D 1 j Zi D Zj / D p and P .Aij D 1 j Zi ¤ Zj / D q;

that is, the expected connectivity between members of the same class (respectively,
between members of different classes) is the same as in the well-specified setting.
Where the distribution differs is in the joint distribution of more than two nodes: if
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Figure 5. Logarithm of the average regret 1
10

P10
kD1.pT �

PT
tD1 A

.k/

yet
/ in the misspecified

case, as a function of log.T /. The lines have slope 1=2 and 1 respectively. Black: � D 0, red:
� D 0:1, green: � D 0:2, blue: � D 0:3, cyan: � D 0:4, violet: � D 0:5. The two regimes from
the well-specified case (linear then proportional to

p
T ) are still visible.

two nodes are connected, chances are good their hidden states are closer than average,
thus making it more likely that if a new node connects to one of them, then it will
connect to the other.

We take the same possible values of T as in Section 6.1, with balanced communi-
ties, .p;q/D .0:6; 0:4/, and an infinite pool of individuals and misspecification values
� 2 ¹0; 0:1; 0:2; 0:3; 0:4º. Ten experiments are performed for each choice of parame-
ters, and the average regrets computed over them, are displayed in Figure 5. The two
regimes from the well-specified case (linear then proportional to

p
T ) are still visible.

A. Proof of the lower bounds

A.1. Distributional properties under assumption (IL)

Recall that E denotes the set of all pairs in ¹1; : : : ; nº. The invariance to labelling
property enforces some invariances on the distribution of the .Ne. ;T / W e 2 E/, with
Ne. ; T / defined by (2.3) and on the distribution of the .Na. ; T / W a D 1; : : : ; n/
with Na. ; T / defined by (2.4).

Let � be a distribution in cSBM.n=2; n=2; p; q/ associated to a partition G D
¹G1;G2º of ¹1; : : : ; nº. Consider a permutation � which leaves the partition G invari-
ant, that is such that, either �.G1/ D G1 and hence �.G2/ D G2, or �.G1/ D G2

and thus �.G2/ D G1. Then, the distribution �� defined in Section 2.3 is equal to
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the distribution �. Hence the invariance to labelling property ensures that for any per-
mutation � leaving G invariant, the vectors .Ne. ; t/ W e 2 EI t D 1; : : : ;

�
n
2

�
/ and

.N�.e/. ; T / W e 2 EI t D 1; : : : ;
�
n
2

�
/ have the same distribution. As a consequence,

the following property holds.

Lemma 3. When the strategy  fulfils the invariance to labelling property, then the
random variables .Ne. ; T / W e 2 Egood/ are pairwise exchangeable. The same prop-
erty holds for .Ne. ; T / W e 2 Ebad/ and .Na. ; T / W a D 1; : : : ; n/.

Proof. Let ¹a; bº; ¹a0; b0º denote two pairs in Egood and let � be a G-invariant permu-
tation such that �.¹a; bº/ D ¹a0; b0º and �.¹a0; b0º/ D ¹a; bº. Since � D �� and  
is invariant to labelling, the random variables .N¹a;bº; N¹a0;b0º/ and .N¹a0;b0º; N¹a;bº/
have the same distribution. The same reasoning applies for pairs in Ebad.

Consider now two nodes a; b 2 ¹1; : : : ; nº. Let � be a G-invariant permutation
on ¹1; : : : ; nº such that �.a/ D b and �.b/ D a. Since � D �� and  is invariant
to labelling, the random variables .Na. ; T /; Nb. ; T // and .Nb. ; T /; Na. ; T //
have the same distribution.

A.2. Proof of the lower bound in Theorems 2 and 1

This section contains the proof of the first part of Theorem 2. The first part of Theo-
rem 1 follows by taking BT D T .

Let kl.p; q/ D p log.p=q/ C .1 � p/ log..1 � p/=.1 � q// be the Kullback–
Leibler divergence between two Bernoulli distributions with parameters p and q. We
actually prove the following stronger lower bound: when zs D kl.p; q/ _ kl.q; p/

satisfies zs � 1=16, for any � 2 cSBM.n=2; n=2; p; q/,

inf
 2‰BT ;T

E�
�
N bad. ; T /

�
�
1

32

�p
T _ .T=BT /

16zs
^ T

�
: (A.1)

The first part of Theorem 2 follows from this bound and from Lemma 19 which
ensures that s � zs � 2.1C ��/s when (2.1) holds.

Recall that Na. ; T / denotes the number of pairs involving the node a sampled
by the strategy  up to time T . Let N bad

a . ; T / be the number of pairs ¹a; bº with b
not in the community of a sampled up to time T . Hereafter in the proof, the strategy 
is fixed and, to simplify notations, the dependency of Na and N bad

a on  is dropped
out: N bad

a . ; T / is denoted Na.T / and N bad
a . ; T / is denoted N bad

a .T /. Let also

N good
a .T / D Na.T / �N

bad
a .T /:
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The number of between-group sampled pairs is

N bad.T / D
1

2

nX
aD1

N bad
a .T /:

Let us also recall that N¹a;bº. ; T / 2 ¹0; 1º (denoted N¹a;bº.T /), is the number of
times the pair ¹a; bº has been sampled before time T . Likewise, let

NaB.T / D
X
b2B

N¹a;bº.T /

be the number of times a pair between node a and the set of nodesB has been sampled
before time T . For t � 0, let Ft be the � -algebra gathering information available up
to time t : Ft is the � -algebra generated by . yEt ; .Ae/e2yEt ; U0; : : : ; Ut /.

The main tools for proving equation (A.1) are given by the next two lemmas. The
first lemma is directly adapted from [18, 28]. It is a derivative of the data processing
inequality, and it merely states that the Kullback–Leibler divergence between two
distributions of observation stopped at some stopping time is larger than the Kullback–
Leibler divergence of processed versions of these distributions.

Lemma 4. Let zT be a stopping time with respect to the filtration .Ft /t�0. Let �;�0 2
cSBM.n=2; n=2; p; q/ and let � D .�ab/a<b and �0 D .�0

ab
/a<b denote their con-

nection probabilities, that is �ab D �.¹a; bº 2 E/ and �ab D �0.¹a; bº 2 E/ for all
a;b 2 V . If zT � T a.s., then for any F zT -measurable random variable Z taking values
in Œ0; 1�, X

a<b

E�
�
N¹a;bº. zT /

�
kl.�ab; �

0
ab/ � kl

�
E�ŒZ�;E�0 ŒZ�

�
; (A.2)

where kl.p;q/D p log.p=q/C .1� p/ log..1� p/=.1� q// is the Kullback–Leibler
divergence between two Bernoulli distributions with parameters p and q.

Proof. The lemma follows directly from [28, Lemma 1] and [18, Lemma 1]. As dis-
cussed in Section 2.1, the pair-matching problem can be seen as a bandit problem
with restrictions on the set of admissible strategies. Since [28, Lemma 1] and [18,
Lemma 1] hold for any strategy, inequality (A.2) holds in particular for any strategy 
satisfying the constraints  t . yEt ; : : : / … yEt and Na.t/ � BT .

While the previous lemma is only based on the bandit nature of the problem, the
next lemma is based on the constraint that arms can only be sampled once.

Lemma 5. Let M be a positive real number and consider T � 1. Then

nX
aD1

�
Na.T / ^M

�
�

�
.M
p
T / _

MT

BT

�
^
T

2
:
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Proof. Let S1 D ¹a W Na.T / �M º and S2 D ¹a W Na.T / > M º. IfX
a2S1

Na.T / � T=2;

then
nX
aD1

�
Na.T / ^M

�
�

X
a2S1

Na.T / � T=2:

Assume now that
P
a2S1

Na.T / < T=2. Since 2T D
Pn
aD1Na.T /, we have

2T � T=2C
X
a2S2

Na.T /

D T=2C
X
a2S2

NaS1.T /C
X
a2S2

NaS2.T /

D T=2C
X
a2S1

NaS2.T /C
X
a2S2

NaS2.T /

� T C jS2j
�
BT ^ jS2j

�
:

Hence, jS2j �
p
T _ .T=BT / and

nX
aD1

�
Na.T / ^M

�
� jS2jM � .M

p
T / _ .MT=BT /:

The proof is complete.

With these two lemmas, the core inequality of the proof can be established. This
inequality shows that if Na.t/ D O.1=zs/, then N bad

a .t/ is of the same order of mag-
nitude than Na.t/.

Let G D .G1; G2/ be a partition of ¹1; : : : ; nº with G1 D ¹1; : : : ; n=2º and G2 D
¹n=2C 1; : : : ; nº. Let � 2 cSBM.n=2; n=2; p; q/ be the distribution of a conditional
SBM with classes G1 and G2, within-group connection probability p and between-
group connection probability q. Unless specified, E D E� in the following.

Lemma 6. Let M be a positive integer such that 16Mzs � 1 and define the stopping
time

zT D T ^ inf
®
t W max

�
N1.t/; Nn.t/

�
�M

¯
:

SettingN1Cn.T /DN1.T /CNn.T / andN bad
1Cn.T /DN1G2.T /CNnG1.T /, we have

E
�
N bad
1Cn.
zT /
�
�
1

4
E
�
N1Cn. zT /

�
�
1

4
E
�
N1.T / ^M

�
: (A.3)
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Proof. Some arguments of this proof are inspired by [18]. The last inequality in (A.3)
follows directly from

N1Cn. zT / � N1.T /1 zTDT CM1 zT<T � N1.T / ^M:

It remains to show the first inequality. Consider the transposition � D .1; n/ of 1
and nwhich switches the labels 1 and nwhile keeping other nodes unchanged. Let ��

be the distribution of .A�.a/;�.b//ab . The partition G� D ¹G�1 ; G
�
2 º associated to �� ,

corresponds to G with 1 and n switched, that is

G�1 D ¹n; 2; : : : ; n=2º and G�2 D ¹n=2C 1; : : : ; n � 1; 1º:

Let M be a positive integer and set

Z D
N1G2.

zT /CNnG1.
zT /

2.M ^ BT /
2 Œ0; 1�:

By invariance to labelling,

E��
�
N1G2.

zT /CNnG1.
zT /
�
D E��

�
N1G�

2
. zT /CNnG�

1
. zT /C 2N¹1;nº. zT /

�
D E�

�
N1G1.

zT /CNnG2.
zT /C 2N¹1;nº. zT /

�
:

Hence, setting zM DM ^ BT , Lemma 4 ensures that�
kl.p; q/ _ kl.q; p/

�
E�
�
N1. zT /CNn. zT /

�
� kl

�
E�
�
N1G2.

zT /CNnG1.
zT /
�
=.2 zM/;E��

�
N1G2.

zT /CNnG1.
zT /
�
=.2 zM/

�
D kl

�
E�
�
N1G2.

zT /CNnG1.
zT /
�
=.2 zM/;

E�
�
N1G1.

zT /CNnG2.
zT /C 2N¹1;nº. zT /

�
=.2 zM/

�
�

1

2.M ^ BT /

�

�
E�
�
N1G2.

zT /CNnG1.
zT /
�
� E�

�
N1G1.

zT /CNnG2.
zT /C 2N¹1;nº. zT /

��2
E�
�
N1G2.

zT /CNnG1.
zT /
�
_ E�

�
N1G1.

zT /CNnG2.
zT /C 2N¹1;nº. zT /

� ;

where the last line follows from Lemma 19. Setting

N
good
1Cn.T / D N1G1.T /CNnG2.T /;

the last inequality can be written as

2.M ^ BT /zsE
�
N1Cn. zT /

��
E
�
N

good
1Cn.

zT /C 2N¹1;nº. zT /
�
_ E

�
N bad
1Cn.
zT /
��

�
�
E
�
N

good
1Cn.

zT /C 2N¹1;nº. zT /
�
� E

�
N bad
1Cn.
zT /
��2
: (A.4)
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If EŒN good
1Cn.

zT /� � EŒN bad
1Cn.
zT /�, then

2E
�
N bad
1Cn.
zT /
�
� E

�
N

good
1Cn.

zT /
�
C E

�
N bad
1Cn.
zT /
�
D E

�
N1Cn. zT /

�
and Lemma 6 follows.

Assume therefore that EŒN good
1Cn.

zT /� � EŒN bad
1Cn.
zT /�. It follows that

2E
�
N

good
1Cn.

zT /
�
� E

�
N

good
1Cn.

zT /
�
C E

�
N bad
1Cn.
zT /
�
D E

�
N1Cn. zT /

�
;

so inequality (A.4) implies

4.M ^ BT /zsE
�
N

good
1Cn.

zT /C 2N¹1;nº. zT /
�2

�
�
E
�
N

good
1Cn.

zT /C 2N¹1;nº. zT /
�
� E

�
N bad
1Cn.
zT /
��2
:

Rearranging the expression gives

E
�
N bad
1Cn.
zT /
�
� E

�
N

good
1Cn.

zT /C 2N¹1;nº. zT /
��
1 �

p
4.M ^ BT /zs

�
�
1

2
E
�
N

good
1Cn.

zT /
�
�
1

4
E
�
N1Cn. zT /

�
;

since M ^ BT � 1=.16zs/ by assumption. The proof is complete.

The lower bound in Theorem 2 can now be proved. Recall that for any strategy
 2 ‰BT ;T , Assumption (IL) implies that the sampling-regret E�ŒN bad. ; T /� does
not depend on � 2 cSBM.n=2; n=2; p; q/; see Remark 2. Therefore, it is sufficient to
prove (A.1) for any strategy  invariant by labelling, with the distribution � defined
above Lemma 6.

Let M be a positive integer such that

1 �M ^ BT �
1

16zs
:

First, Lemma 3 ensures that, for any pair ¹a;bº 2 Ebad, EŒN¹a;bº.T /�DEŒN¹1;nº.T /�,
and hence

E
�
N bad.T /

�
D
n2

4
E
�
N¹1;nº.T /

�
D
n

4
E
�
N bad
1Cn.T /

�
:

Lemma 3 also ensures that EŒNa.T / ^M� D EŒN1.T / ^M� for all a 2 ¹1; : : : ; nº.
By Lemma 6, it follows that

16E
�
N bad.T /

�
D 4nE

�
N bad
1Cn.T /

�
� 4nE

�
N bad
1Cn.
zT /
�

� nE
�
N1.T / ^M

�
D

nX
aD1

E
�
Na.T / ^M

�
:
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Hence, by Lemma 5

16E
�
N bad.T /

�
�

�
.M
p
T / _

MT

BT

�
^
T

2
:

For zs � 1=16, taking M equal to the integer part of 1=.16zs/ gives

16E
�
N bad.T /

�
�

�p
T

32zs
_

T

32zsBT

�
^
T

2
:

Since the sampling-regret does not depend on the choice of �, the proof is complete.

B. Proof of the unconstrained upper bound

This section proves the following result, from which follows the upper bound of The-
orem 1, as explained below Theorem 7.

Theorem 7. There exist numerical constants c1; c2 > 0, such that, for any T � c2n2,
with probability at least 1 � 13=T , the algorithm described in Section 3.2 fulfils

N bad. ; T / � c1

�
T ^

p
T

s

�
:

Let us explain how the upper bound of Theorem 1 follows from Theorem 7. First,
let us note that the upper bound of Theorem 7 also holds in expectation. Indeed, since
N bad. ; T / � T , the algorithm described in Section 3.2 fulfils

E
�
N bad. ; T /

�
� c1

�
T ^

p
T

s

�
C 13 � c01

�
T ^

p
T

s

�
: (B.1)

Second, we can get an horizon free algorithm by applying a doubling trick. For any
integer l , let tl D 2l . At each time tl , discard all nodes and pairs involved in the previ-
ous iterations of the algorithm and restart the algorithm described in Section 3.2 with
time horizon tlC1 � tl . The resulting strategy does not depend on any time horizon.
Let us prove that this horizon-free algorithm also has a O.T ^ .

p
T =s// sampling

regret. The argument for this proof is classical: according to the upper bound (B.1),
for any tl�1 � T � tl < c2n2,

E
�
N bad. ; T /

�
� c1

�p
t0

s
^ t0 C

p
t1 � t0

s
^ .t1 � t0/C � � � C

p
tl � tl�1

s
^ .tl � tl�1/

�
� c1

�
1

s
C
1

s

l�1X
rD0

2r=2
�
^ tl � c1

� p
tl

.
p
2 � 1/s

^ tl

�
� 4c1

�pT
s
^ T

�
:
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Hence, we have proved that the upper bound of Theorem 1 is a consequence of The-
orem 7.

The proof of Theorem 7 is quite lengthy. To help the reader to understand the
organization of this demonstration, the section starts with a sketch of proof.

B.1. Outline of the proof of Theorem 7

As any strategy has at most linear regret, it is sufficient to prove that there exist two
positive numerical constants cthresh and c1 such that, for any T � cthresh=s

2, the number
N bad. ; T / of pairs sampled among Ebad by the strategy  described in Algorithm 1
in Section 3.2 is smaller than c1

p
T =s with probability at least 1 � 13=T . As a con-

sequence, in the proof, without loss of generality, it is assumed that T � cthresh=s
2, for

a sufficiently large constant cthresh. To prove the theorem, it is sufficient to show that
neither Steps 1, 2 nor 3 of the algorithm sample more than O.

p
T =s/ “bad” pairs,

where a bad pair involves one node from Community 1 and one from Community 2.

Step 1. In the first step, the algorithm samples at random a core-set N of N D
d
p
T = log.s

p
T /e nodes (point (1) in the algorithm). In this core-set, with large prob-

ability, at least dN=4e nodes from each community are sampled. This result follows
from Hoeffding’s concentration inequality for hypergeometric random variables, it is
rigorously established in Lemma 8 (2).

Each pair of the core-set is sampled with probability proportional to
p
T =
�
s
�
N
2

��
(point (2) of the algorithm). With high probability, the set of sampled pairs O0 has
cardinality jO0j �

p
T =s; see Lemma 8 (3). At this point, the observed graph follows

a cSBM with connection probabilities

zp � p
p
T =

�
s

�
N

2

��
and zq � q

p
T =

�
s

�
N

2

��
:

By (3.2), setting zs D . zp � zq/2=. zp C zq/ the proportion of misclassified nodes by
GOODCLUST is upper bounded by

exp
�
�cGC

1 Nzs
�
D exp

�
�c

p
T =s

N
s

�
D exp

�
� log.s

p
T /
�
�

1

Ns
;

with probability at least 1 � cGC
2 =N 3. In particular, at most 1=s nodes of the core-set

are misclassified. A rigorous proof of this last statement is provided in Lemma 8 (4).
Let us comment briefly the choice of the cardinalities N of the core-set and jO0j

of the sampled pairs in this first step of the algorithm. These are chosen to guarantee
the following properties:
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(1.i) N is sufficiently large to make the probability cGC=N 3 small and, on the
other hand, N is sufficiently small so that one can classify a large propor-
tion of N with less than jO0j D O.

p
T =s/ observed pairs;

(1.ii) jO0j is large enough to ensure that the proportion of misclassified nodes
in N satisfies exp.�cGC

1 EŒjO0j�s=N / � 1=.Ns/;

(1.iii) on the other hand, jO0j is small enough, namely jO0j D O.
p
T =s/, to

ensure a regret O.
p
T =s/ in this exploratory phase of the algorithm.

Before moving to the screening step (Step 2) of the algorithm, the estimator

y� D
1

jO0j

X
¹x;x0º2O0

A¹x;x0º

of � D .p C q/=2 is shown to satisfy, with large probability,

jy� � pj ^ jy� � qj � jy� � � j:

This property is obtained by a careful application of Bernstein inequality for hyper-
geometric random variables in Lemma 8 (5). This estimation of � is sufficient for the
screening step.

Step 2. The second step of the algorithm samples uniformly at random a set A0 of
d8
p
2T e nodes. These nodes are screened with the following objectives:

(2.i) a set of at least d
p
2T e nodes among A0 are selected containing at most

1=s members of Community 2;

(2.ii) a set of at most O.
p
T =s/ bad pairs is sampled during this screening.

Claims (2.i) and (2.ii) are formally established in Lemma 9 (8), (10) and Lemma 9 (9),
respectively.

The main tool for proving these two properties is Lemma 10. It ensures that the
probability that a node from Community 2 is not removed after i steps of screening
decreases exponentially fast with i . Therefore, after I � log.s

p
T / screening steps,

each node from Community 2 remains with probability at most e�c log.s
p
T /. Since

there are O.
p
T / nodes in A0, the expected number of remaining nodes from Com-

munity 2 is upper bounded, when T & 1=s2, by

O
�p
T e�c log.s

p
T /
�

.
1

s
:

The same bound holds with high probability. Similar arguments are used to obtain
that, with large probability, less than d8

p
2T e � d

p
2T e nodes are removed during

the screening step, which shows property (2.i).
The proof of property (2.ii) is more involved. At point (7.b) of the algorithm, a

bad pair is sampled when it involves either:
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(2.ii.a) a node of Community 2 and a well-classified node of the core-set;

(2.ii.b) a node of Community 1 and a misclassified node of the core-set.

The number of pairs in the case (2.ii.a) is simply bounded from above by jA0j D

O.
p
T / multiplied by the number of misclassified nodes in the core-set. We have

checked in Step 1, that the number of misclassified nodes in the core-set is bounded
from above by O.1=s/. So, on this event, the number of such bad pairs is at most
O.
p
T � 1=s/.

The number of pairs in the case (2.ii.b) is bounded from above as follows. During
each screening step (point (7)), a node is queried k DO.1=s/ times. Thus, the number
of queries of a node from Community 2 during this screening step is k times the
number of screening steps before it is removed. Recall that, from Lemma 10, the
probability that a node of Community 2 remains after i screening steps decreases
exponentially fast with i . Hence, the expected number of queries of a node from
Community 2 is bounded from above by

k
X
i�1

e�ci D O.k/ D O.1=s/:

The number of sampled pairs in case (2.ii.b) is smaller than the total number of queries
on nodes from Community 2 in A0, which is smaller than O.jA0jk/ D O.

p
T =s/.

This bound also holds with high probability, which proves property (2.ii.b).

Step 3. During Step 3 of the algorithm, pairs within AI are sampled until T pairs have
been sampled overall. On the event where jAI j is larger than

p
2T , this sampling is

possible. In addition, on the event where the number of nodes from Community 2
in AI is upper bounded by 1=s, the number of bad pairs in AI is smaller than

O
�
jAI j=s

�
D O

�
jA0j=s

�
D O

�p
T =s

�
:

B.2. Proof of Theorem 7

All we need is to prove that there exists a numerical constant cthresh � 1, such that, for
any T � cthresh=s

2, the upper bound N bad. ; T / � c1
p
T =s holds with probability at

least 1 � 13=T . We focus then on the case where T � cthresh=s
2.

Denote by yG D ¹ yG1; yG2º the partition of N output by the GOODCLUST algorithm
and by S�S 0 the symmetric difference between two sets S;S 0. Define the community
labelling vectors Z and yZ by Zx D j for all x 2 Gj and yZx D j for all x 2 yGj . The
following lemma controls the first step of the algorithm.

Lemma 8. There exists numerical constants cthresh � e and T0 � 1 such that, if T0 �
T � n2=16 and s

p
T � cthresh, then with probability at least 1 � 9=T :

(1) only a small part of the nodes has been sampled: N � n=4;
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(2) the two communities of the sampled nodes are approximately balanced, that
isN1 ^N2 � N=4, whereNj WD j¹Z D j º \N j is the number of nodes from
community j in N ;

(3) the cardinality of the sample pairs fulfils cO0

p
T =2s � jO0j � 3 cO0

p
T =2s;

(4) the fraction of misclassified nodes is upper bounded by

"N D inf
� permutation on ¹1;2º

1

2N

2X
kD1

j¹Z D kº�¹ yZ D �.k/ºj �
1

sN
I

(5) jy� � .p C q/=2j � .p � q/=4.

We refer to Section B.3.1 for a proof of this lemma.
At the end of the first step, jO0j D O.

p
T =s/ pairs have been sampled according

to Lemma 8 (3), thus resulting in a number of sampled bad pairs O.
p
T =s/. Let us

now turn to the second step of the algorithm.
Assume without loss of generality that the community labelling yZ of the nodes

in N is mostly in agreement with Z, i.e., the infimum in the definition of "N is
achieved for the identity permutation:

"N D
1

2N

2X
kD1

j¹Z D kº�¹ yZ D kºj:

If it is not the case, the remaining of the proof still holds but with ¹Z D 1º replaced
by ¹Z D 2º.

For each x 2 A0, the (distinct) nodes ¹yx1 ; : : : ; y
x
kI
º are sampled uniformly at

random in N \ ¹ yZ D 1º. Let Vx;0 D ; for all x 2 A0 and Vx;i D ¹y
x
1 ; : : : ; y

x
ki
º

for i D 1; : : : ; I . Note that jVx;j j D kj for all x 2 A0. By induction, construct the
sequences of sets .Ai /0�i�I , which contain the “active” nodes remaining at each
iteration, and .Oi /0�i�I , which contain the sampled pairs.

More formally, for i � 1 and all x 2 Ai�1, the pairs ¹¹x; yx
.i�1/kCa

º; 1 � a � kº

are observed at iteration i , so that

Oi D Oi�1 [
[

x2Ai�1

®
¹x; yx.i�1/kCaº; 1 � a � k

¯
:

We remind the reader that we estimate the connectivity between x and Commu-
nity 1 by

ypx;i D
1

ki

X
y2Vx;i

Ax;y ;

and only keep the nodes whose estimated connectivity is large enough in the active
set:

Ai D ¹x 2 Ai�1 W ypx;i � y�º:
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After I iterations, the total number of sampled pairs is

jOI j D jO0j C k

I�1X
iD0

jAi j

and the number of sampled bad pairs from this step is upper bounded by

k

I�1X
iD0

jAi \ ¹Z ¤ 1ºj C jA0 \ ¹Z D 1ºj � jN \ ¹ yZ ¤ Zºj; (B.2)

where the first term comes from the pairs connecting Community 2 to the core-set
and the second term comes from the pairs connecting Community 1 to a misclassified
vertex of the core-set.

The following lemma controls this screening step.

Lemma 9. There exists numerical constants T 00, c0thresh larger than 1 such that if
T 00 � T � .3n=64

p
2 /2and s

p
T � c0thresh, then with probability at least 1 � 13=T ,

Lemma 8 holds and

(6) the algorithm does not run out of connections with the core-set of the first
step: kI � N ;

(7) it is possible to take jA0j new vertices: jA0j � 3n=4 � n �N ;

(8) few vertices from the wrong community remain: jAI \ ¹Z ¤ 1ºj � 1=s;

(9) the number of sampled bad pairs from nodes in the wrong community is
controlled:

k

I�1X
iD0

jAi \ ¹Z ¤ 1ºj � Cfail

p
T

s

for a numerical constant Cfail;

(10) enough vertices from Community 1 remain for the next step:

jAI \ ¹Z D 1ºj �
p
2T :

We refer to Section B.3.2 for a proof of this lemma.
Equation (B.2) together with Lemma 9 (9) and Lemma 8 (4) entail that the number

of sampled bad pairs during the screening step is again O.
p
T =s/.

Finally, during the last step, the algorithm uses the remaining budget to observe
pairs uniformly at random between vertices of AI . Lemma 9 (10) ensures that the
number of possible pairs is larger than T �

p
T=2, which allows to spend the whole

budget (since at least d
p
T=2e pairs have been observed in the previous steps), and

Lemma 9 (8) ensures that the number of sampled bad pairs of this step is again
O.
p
T =s/. Hence, the total number of bad pairs sampled during the whole process

is O.
p
T =s/.
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B.3. Proofs of the technical lemmas

B.3.1. Proof of Lemma 8. (1) The proof of Lemma 8 (1) is straightforward: since
p
T � n=4 by assumption, the condition N � n=4 holds as soon as N �

p
T , that is� p

T

log.s
p
T /

�
�
p
T

by definition of N . Therefore point (1) holds true as soon as s
p
T � cthresh for some

numerical constant cthresh.
(2) There are only two communities, so it is enough to consider the first one.

Since the communities are balanced, the number N1 of nodes from Community 1
in the core-set follows an hypergeometric distribution with parameters .N; 1=2; n/.
Therefore,

P

�ˇ̌̌
N1 �

N

2

ˇ̌̌
�
p
2N logN

�
�

2

N 4

using equation (D.1). Since N D d
p
T = log.s

p
T /e, we have

2

N 4
�
2 log.s

p
T /4

T 2
�
.logT /4

8T 2

using s � 1, which is upper bounded by 1=T for all T � 1. Assuming s
p
T � cthresh

for some numerical constant cthresh � e, one has
p
T = log

p
T � N �

p
T , so that

p
2N logN
N=4

� 4
p
2

s
log.
p
T /

p
T = log

p
T
� 4
p
2

s
log.
p
T /2

p
T

:

Therefore, it is smaller than 1 as soon as T � T0;2 for some numerical constant T0;2,
which entails

P

�ˇ̌̌
N1 �

N

2

ˇ̌̌
�
N

4

�
�
1

T
;

and the same for N2.
(3) The number jO0j of sampled pairs in the core-set N follows a binomial distri-

bution with parameters .
�
N
2

�
; cO0

p
T =s

�
N
2

�
/. Therefore,

P

 ˇ̌̌
jO0j � cO0

p
T

s

ˇ̌̌
�

s
2cO0

p
T

s
log.2T /C log.2T /

!
�
1

T

using Bernstein’s inequality (D.3). This implies that

1

2
cO0

p
T

s
� jO0j �

3

2
cO0

p
T

s
(B.3)

as soon as T � T0;3 for some numerical constant T0;3.
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Let us check that the probability parameter of the binomial distribution is well
defined, that is, the condition cO0

p
T =s

�
N
2

�
2 Œ0; 1� is satisfied. One can show that

N � 8 as soon as T � T0;3 for some numerical constant T0;3. Then�
N

2

�
�
N 2

4
;

so that the condition holds as soon as cO0

p
T =s � N 2=4, which is implied by

cO0

p
T =s �

1

4

T

.log.s
p
T //2

;

or equivalently
s
p
T

.log.s
p
T //2

� 4cO0 :

Hence, the condition cO0

p
T =s

�
N
2

�
2 Œ0; 1� holds as soon as s

p
T � cthresh for some

numerical cthresh. This, together with (B.3), concludes the proof of Lemma 8 (3).
(4) Since each pair of N is sampled with probability cO0

p
T =s

�
N
2

�
, the matrix zA

defined by zAx;x0 D Ax;x0 if the pair ¹x; x0º has been sampled and zero otherwise
has the same distribution as the adjacency matrix of a fully observed SBM with con-
nection probabilities zp D p cO0

p
T =s

�
N
2

�
and zq D q cO0

p
T =s

�
N
2

�
. Therefore, the

proportion "N of misclassified nodes in N by the GOODCLUST algorithm is upper
bounded by

"N � exp
�
�cGC

1 N
. zp � zq/2

zp C zq

�
with probability at least 1 � cGC=N 3. Hence, with probability at least 1 � 1=T , we
have

"N � exp
�
�2 cGC

1 cO0

log.s
p
T /

2

�
using N WD d

p
T = log.s

p
T /e � 2

p
T = log.s

p
T / as soon as T � T0;4 for some

numerical constant T0;4. Hence, by taking cO0 � 1=.c
GC
1 /, with probability at least

1 � 1=T , one has

"N � exp
�
� log.s

p
T /
�
D

1

s
p
T
;

so that
"N �

1

sN

as soon as N �
p
T , which holds true when s

p
T � cthresh for some numerical con-

stant cthresh.
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(5) Let Owithin WD O0 \ Egood be the subset of within-group pairs, and Oout WD

O0 nOwithin the subset of pairs between two different communities. Then

y� D
jOwithinj

jO0j

1

jOwithinj

X
.x;x0/2Owithin

Ax;x0 C
jOoutj

jO0j

1

jOoutj

X
.x;x0/2Oout

Ax;x0 :

Conditionally to the number of sampled pairs jO0j and the number of within-
group pairs jOwithinj, the sum

P
.x;x0/2Owithin

Ax;x0 (respectively,
P
.x;x0/2Oout

Ax;x0) is
independent of O0, and is a sum of i.i.d. Bernoulli random variables with parameter p
(respectively, q). Therefore, Bernstein’s inequality (D.2) ensures that with probability
at least 1 � 4=T , we have

jOwithinj

jO0j

ˇ̌̌̌
1

jOwithinj

X
.x;x0/2Owithin

Ax;x0 � p

ˇ̌̌̌
�

s
2p

logT
jO0j

C
logT
jO0j

;

jOoutj

jO0j

ˇ̌̌̌
1

jOoutj

X
.x;x0/2Oout

Ax;x0 � q

ˇ̌̌̌
�

s
2q

logT
jO0j

C
logT
jO0j

:

Using point (3), one has jO0j � cO0

p
T =.2s/ with probability at least 1 � 1=T , so

thatˇ̌̌̌
y� �

�
jOwithinj

jO0j
p C
jOoutj

jO0j
q

�ˇ̌̌̌
� 2

s
2ps

logT

cO0

p
T =2

C 2s
logT

cO0

p
T =2

� 2.p � q/

s
2

logT

cO0

p
T =2

C 2.p � q/
logT

cO0

p
T =2

with probability at least 1 � 5=T , using s D .p � q/2=p � p � q. Finally, since
cO0=2 � 1 and jOwithinj D jO0j � jOoutj,ˇ̌̌
y� �

p C q

2

ˇ̌̌
�

ˇ̌̌̌
jOwithinj

jO0j
p C
jOoutj

jO0j
q �

p C q

2

ˇ̌̌̌
C 2.p � q/

s
2

logT
p
T
C 2.p � q/

logT
p
T

�

ˇ̌̌̌�
2
jOoutj

jO0j
� 1

�
p � q

2

ˇ̌̌̌
C
jp � qj

16
(B.4)

as soon as T � T0;4 for some numerical constant T0;4.
Conditionally to the number of pairs jO0j and the sizes N1 and N2 of the two

communities sampled in N , the number jOoutj of between group pairs follows an
hypergeometric distribution with parameters .jO0j; r;

�
N
2

�
/with r DN1N2=

�
N
2

�
. Con-

ditionally to jO0j and the event 3=8 � r � 5=8, the random variable jOoutj dominates
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stochastically an hypergeometric random variable with parameters .jO0j; 3=8;
�
N
2

�
/

and it is stochastically dominated by an hypergeometric random variable with parame-
ters .jO0j;5=8;

�
N
2

�
/. There exists a real 
 > 0 such thatN1D 
N andN2D .1� 
/N ,

so that

r D

N.1 � 
/N

N.N � 1/=2
D 2
.1 � 
/

�
1C

1

N � 1

�
D 2
.1 � 
/

�
1C

1
p
T = log.s

p
T / � 1

�
:

Using point (2), one has with probability at least 1 � 1=T that 1
4
� 
 � 3

4
which

entails 3
8
� r � 5

8
as soon as T � T0;5 for some numerical constant T0;5. Therefore,

P

 
jOoutj �

3jO0j

8
�

r
jO0j logT

2

!
�
1

T
C
1

T

using equation (D.1), and similarly

P

 
jOoutj �

5jO0j

8
C

r
jO0j logT

2

!
�
1

T
C
1

T
:

Using point (3), one has with probability at least 1 � 1=T that jO0j � cO0

p
T =.2s/,

which entails that r
jO0j logT

2
�
jO0j

16
;

as soon as T � T0;6 for some numerical constant T0;6. Hence,

5

16
�
jOoutj

jO0j
�
11

16

with probability 1 � 5=T . This, together with equation (B.4), concludes the proof of
Lemma 8 (5) (which holds with probability 1 � 8=T ).

B.3.2. Proof of Lemma 9. (6, 7) There exists a constant c0thresh such that

4CICk �
s
p
T

.log.s
p
T //2

as soon as s
p
T � c0thresh. It follows that kI � N .

(7) Lemma 9 (7) follows by straightforward algebra.
(8) For all x 2A0, denote by Tx D max¹i W x 2Aiº the index of the last iteration

where the vertex x was in the active set. Let us first show that if x is not in the first
community, then Tx has sub-exponential tails.
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Lemma 10. Set �0 D 1=2000. If Ck � .log 3/=�0, then

8i 2 N�; P .Tx � i/ � e
��0Ck i : (B.5)

We refer to Section B.4 for a proof of this lemma.

Proof of Lemma 9, cont. Let us now finish the proof of point (8). Let T .1/ D jO0j
and Vx D 1Tx�I . Conditionally on FT .1/ , the variables .Vx/x2A0\¹Z¤1º are i.i.d.
Bernoulli random variables with parameter r � e��

0CkI by equation (B.5). Therefore,
for all i 2 N,

P

� X
x2A0\¹Z¤1º

Vx D i

�
�
jA0j

i

i Š
r i ;

so that

P
�
jAI \ ¹Z ¤ 1ºj � i

�
�

X
j�i

jA0j
j

j Š
rj

�
.jA0jr/

i

i Š

X
j�0

�
jA0jr

i

�j
� 2

.jA0jr/
i

i Š

as soon as i � 2jA0jr . For i Dd1=se, this condition holds if 16
p
2� .s

p
T /�

0CkCI�1,
which holds when CICk � 4=�0 and s

p
T � c0

th
.

Taking i D d1=se and using that i Š � .i=e/i for all i � 1, it follows that

P
�
jAI \ ¹Z ¤ 1ºj �

1

s

�
� 2

�ejA0jr

d1=se

�d1=se
� 2

�
sejA0jr

�1=s
as soon as sejA0jr � 1.

We want to take r small enough such that 2.sejA0jr/
1=s � 1=T , that is

log
�
sejA0j

�
C s log.2T / � .� log r/;

which holds as soon as

�0CkI � log.s
p
T /C log.32e

p
2 /C s logT:

using jA0j � 16
p
2T .

Note that
s logT

log.s
p
T /
D 2

s
p
T

log.s
p
T /

log
p
T

p
T
� 2;
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since log.x/=x is decreasing for x > e and s
p
T �
p
T , so that there exists a numer-

ical constant c0thresh such that if s
p
T � c0thresh, then point (8) is implied by

�0CkI � 4 log.s
p
T /;

which holds when CICk � 4=�0.
(9) Note that

k

I�1X
iD0

jAi \ ¹Z ¤ 1ºj D k
X

x2A0\¹Z¤1º

Tx :

Conditionally on A0, the random variables .Tx/x2A0\¹Z¤1º are i.i.d. random
variables which are stochastically dominated by random variables Yx � E.�0Ck/ by
equation (B.5). These exponential random variables satisfy

E
�
Yx �

1

�0Ck

�2
�

1

.�0Ck/2

and for all a 2 N such that a � 3, we have

E

�
Yx �

1

�0Ck

�a
C

�
aŠ

.�0Ck/a
:

It follows that, by Bernstein’s inequality (see, for instance, [34, Proposition 2.9]), for
all t > 0, we have

P

� X
x2A0

Yx �
jA0j

�0Ck
�
2
p
jA0jt

�0Ck
C

t

�0Ck

�
� e�t ;

and therefore by taking t D logT , with probability at least 1 � 1=T , we obtain

X
x2A0\¹Z¤1º

Tx �
16
p
2T

�0Ck
C
2

q
16
p
2T logT

�0Ck
C

logT
�0Ck

�
32
p
T

�0Ck

as soon as T � T 00 for some numerical constant T 00. Hence, with probability at least
1 � 1=T ,

k

I�1X
iD0

jAi \ ¹Z ¤ 1ºj �
64
p
T

�0s
;

using k � 2CK=s.
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(10) The same proof as that of equation (B.6) shows that for all x2A0 \ ¹Z D 1º,
for all i � 1 and for all t > 0,

P

�
ypx;i < p �

jp � qj

8
� jp � qj

r
t

2ki
� 2

r
2p

t

ki
� 2

t

ki

�
� 3e�t ;

so that by union bound and the inequality k � Ck , we have

P

 
9i � 1; ypx;i <

7p C q

8

� jp � qj

"s
log.2�2i2/

Cki

� 1
p
2
C 2
p
2
�
C 2

log.2�2i2/
Cki

#!
�
1

4
:

Therefore, if Ck is larger than a numerical constant,

P
�
9i � 1; ypx;i <

3p C q

4

�
�
1

4
;

which, combined with point (5) of Theorem 8, implies

P
�
9i � 1; ypx;i < y�

�
�
1

4
:

Let Vx D 1x2AI for all x 2 A0 \ ¹Z D 1º. The above inequality ensures that,
conditionally on A0, the .Vx/x2A0\¹ZD1º are i.i.d. Bernoulli random variable with
parameter r � 3=4. Therefore, Hoeffding’s inequality entails

P

�
jAI \ ¹Z D 1ºj �

3jA0 \ ¹Z D 1ºj

4
�

r
jA0j

logT
2

�
�
1

T
:

Let us assume for now that jA0 \ ¹Z D 1ºj � 2
p
2T with probability 1 � 1=T .

Then this ensures that for T larger than some numerical constant,

P
�
jAI \ ¹Z D 1ºj �

p
2T

�
�
1

T
C
1

T
:

To conclude, note that conditionally on N , the random variable jA0 \ ¹Z D 1ºj

is an hypergeometric random variable with parameters .d8
p
2T e; r 0; n �N/, where

r 0 D
n=2 � jN \ ¹Z D 1ºj

n �N
�
n=2 � 3=4 � n=4

n
�
5

16

by points (1) and (2) of Theorem 8. Therefore, equation (D.1) implies that

P

 
jA0 \ ¹Z D 1ºj �

5

16
8
p
2T �

s
16
p
2T logT
2

!
�
1

T
;

so that for T larger than a numerical constant

P
�
jA0 \ ¹Z D 1ºj � 2

p
2T
�
�
1

T
:
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B.4. Proof of Lemma 10

Let x 2 A0 \ ¹Z ¤ 1º and assume that we are in the event of probability at least
1 � 9=T where Theorem 8 holds. For all i 2 N�,

P .Tx � i/ D P .8j 2 ¹1; : : : ; iº; ypx;j � y�/

� P . ypx;i � y�/

� P
�
ypx;i �

p C 3q

4

�
;

using Lemma 8 (5).
Following the same proof as in Theorem 8 (5), one can show that for all x 2

A0 \ ¹Z ¤ 1º, all i � 1 and all t > 0,

P

�
ypx;i � q C

jV�x;i j

jVx;i j
jp � qj C 2

r
2p

t

ki
C 2

t

ki

�
� 2e�t ;

where V�x;i WD Vx;i \ ¹Z ¤ 1º.
For s
p
T � c0thresh, with c0thresh such that log.s

p
T /=s
p
T � 1=64, one has 1=s �

N=64. Then, points (2) and (4) of Lemma 8 imply that

jN \ ¹ yZ D 1º \ ¹Z ¤ 1ºj �
N

64
and yN1 WD jN \ ¹ yZ D 1ºj �

N

8
:

Therefore, the proportion of misclassified vertices in N \ ¹ yZ D 1º is at most 1=8,
so that conditionally on yN1 and the event of Lemma 8, jV�x;i j is stochastically domi-
nated by an hypergeometric distribution with parameters .ki; 1=8; yN1/. Hence, equa-
tion (D.1) entails

P

�
jV�x;i j

jVx;i j
�
1

8
C

r
t

2ki

�
� e�t ;

so that for all i � 1 and t > 0,

P

�
ypx;i � q C

jp � qj

8
C jp � qj

r
t

2ki
C 2

r
2p

t

ki
C 2

t

ki

�
� 3e�t : (B.6)

Note that

p C 3q

4
�

�
q C
jp � qj

8
C jp � qj

r
t

2ki
C 2

r
2p

t

ki
C 2

t

ki

�
�
jp � qj

8
�

r
t

Cki

�
jp � qj

p
s

p
2

C 2
p
2ps

�
� 2

ts

Cki

� jp � qj

�
1

8
�

r
t

Cki

�
1
p
2
C 2
p
2

�
� 2

t

Cki

�
;

since s D .p � q/2=p � 1.



Pair-matching: Link prediction with adaptive queries 275

Thus, there exists a numerical constant � D 10�3 such that by taking t D �Cki ,

p C 3q

4
� q C

jp � qj

8
C jp � qj

r
t

2ki
C 2

r
2p

t

ki
C 2

t

ki
;

so that
P
�
ypx;i �

p C 3q

4

�
� 3e��Ck i ;

and finally by letting �0 D �=2 and if Ck � .log 3/=�0, then

8i 2 N�; P .Tx � i/ � e
��0Ck i :

C. Proof of the constrained upper bound

This section proves the upper bound in Theorem 2. Recall that B D .BT ^
p
T /=2 in

the constrained algorithm (Algorithm 2).
It is enough to prove the upper bound in Theorem 2 in the case where sB �

cthresh for some numerical constant cthresh � 1. Indeed, if sB � cthresh, equation (4.1)
automatically holds with c2 � cthresh. Hereafter, it is then assumed that sB � cthresh.

The first step of the constrained algorithm (Algorithm 2) is almost identical to
that of the unconstrained algorithm after replacing

p
T by B D .BT ^

p
T /=2 in the

cardinality of the core-set. The following lemma is a slight variant of Lemma 8 in this
setting. The proof is omitted.

Lemma 11. There exist numerical constants cthresh � e and B0 � 1, such that, if
B �B0 and sB � cthresh and T=B � n=136, then with probability at least 1� 9=.sB/:

(1) the number Ninit of sampled nodes satisfies

Ninit �
n

8
� 4

tf �1X
tD1

N .t/
I

(2) at least Ninit=4 nodes of each community have been sampled, that is

j¹Z D j º \Ninitj � Ninit=4

for each j 2 ¹1; 2º;

(3) the proportion "Ninit of misclassified nodes satisfies

"Ninit D inf
� permutation on ¹1;2º

1

2Ninit

2X
kD1

j¹Z D kº�¹ yZ D �.k/ºj �
4

5122
1

sB
I

(4) jy� � .p C q/=2j � .p � q/=4.
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At the end of the first step, jO0j pairs have been sampled and the sampling-regret
therefore does not exceed EŒjO0j�D cO0B=s � cO0T=.sB/ since, by definition of B ,
T � B2.

Let us proceed with the second step. To show that the sampling regret in the second
step does not exceedO.T=.sB//, it is sufficient to prove that there exist two numerical
constants cproba and cregret such that for any .T; B/ satisfying sB � cthresh and T=B �
n=136, the number of bad pairs sampled during the second step is bounded from above
by cregretT=.sB/ with probability at least 1� cproba=.sB/. Indeed, since the number of
bad pairs sampled in the second step N bad

Step2. ; T / cannot be larger than T , it directly
follows that the sampling-regret during the second step is upper bounded by

E
�
N bad

Step2. ; T /
�
� cregret

T

sBT
C T

cproba

sBT
� c0

T

sBT
:

The following lemma provides such a control of the number of bad pairs accumu-
lated in Step 2, as well as an upper bound on the number of misclassified nodes. It is
a counterpart to Lemma 9 of the unconstrained case.

Lemma 12. There exist two numerical constants B 00 � 1 and c0thresh � e such that if
B � B 00, sB � c0thresh and T=B � n=136, then with probability at least 1 � 63=.sB/,
Lemma 11 holds. In addition, for all iterations of SCREENING in point (6) of the con-
strained algorithm,

(5) it is always possible to sample jA0j new vertices:

jV .0/j � � � � � jV .tf �1/j �
7n

8
I

(6) no node from A0 has more than 2B adjacent pairs sampled during the whole
execution of the constrained algorithm;

(7) the algorithm does not run out of connections with the reference core-set:

kI � N .0/
� : : : � N .tf �1/I

and further there exists a numerical constant Cfail such that, for all t 2 ¹1; : : : ; tf º,
during the call SCREENING.N .t�1/; N .t/; B; y�; V .t�1//,

(8) the number of bad pairs sampled during the t -th call to SCREENING from
nodes in A0 is controlled:X

x2A0

j¹yxa W .x; y
x
a / sampled and Zyxa ¤ Zxºj � Cfail

N .t/

s
I

(9) few vertices from the wrong community remain:

jN .t/
\ ¹Z ¤ 1ºj � 8N .t/=.sB/I
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(10) enough vertices from Community 1 remain for the construction of the core-
set N .t/ of N .t/ nodes:

mX
jD1

jA
.j /
I \ ¹Z D 1ºj � N

.t/:

As a consequence, the total number of bad pairs sampled during the second step is
upper bounded by

Cfail

tfX
tD1

N .t/

s
� 2Cfail

Ntf

s
� 4Cfail

T

sB
;

with probability larger than 1 � 63=.sB/.

We refer to Section C.1 for a proof of Lemma 12.
Let us now conclude the proof of the upper bound of Theorem 2. In the third step,

the core-set N .tf / has dT=Be � 2T=B nodes and a proportion of misclassified nodes
smaller than 8=.sB/with probability larger than 1� 63=.sB/ by Lemma 12 (9). Since
each node of N .tf / is sampled at most B times, the number of bad pairs sampled
during the third step is smaller than 16T=.sB/ with probability at least 1 � 63=.sB/,
and smaller than T otherwise.

Hence, using again that we always haveN bad. ;T /� T , the total sampling-regret
EŒN bad. ;T /� during the whole process isO.T=.sB//. The proof of the upper bound
of Theorem 2 is complete.

C.1. Proof of Lemma 12

Lemma 12 simultaneously controls all the iterations of SCREENING. To prove this, we
use the following lemma, which controls each iteration.

Lemma 13. There exists a numerical constant c0thresh � e such that the following
holds: Let N � Vinit, N 0 2 N, B > 0, � 2 Œ0; 1� and V � Vinit, and

.N 0; V 0/ D SCREENING.N ; N 0; B; �; V /:

Write N D jN j. Assume that sB � c0thresh, that B � 4N 0 � 4N log.sB/, that the pro-
portion of misclassified nodes jN \ ¹Z ¤ 1ºj=jN j is upper bounded by cmisclas=.sB/

for some constant cmisclas 2 Œ8=512
2; 8�, that � 2 Œ.p C 3q/=4; .3p C q/=4�, that

jV j � 7n=8, and that no node in V is adjacent to a pair sampled before this call
to SCREENING. Then with probability at least 1 � 6=.sN 0/,
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(1) the proportion jN 0 \ ¹Z ¤ 1ºj=jN 0j of misclassified nodes after SCREENING
is upper bounded by cafter

misclas=.sB/, where

cafter
misclas D cmisclas _ 8 if N 0 � B log.sB/3=2, and

cafter
misclas D 512cmisclas otherwise:

(2) the number of sampled bad pairs is controlled: there exists a numerical con-
stant Cfail (for instance, Cfail D 26Ck C 2 D 65002) such thatX

x2A0

j¹yxa W .x; y
x
a / was sampled and Zyxa ¤ Zxºj � Cfail

N 0

s
I

(3) no node in N 0 or V has more than B adjacent pairs sampled during this call
to SCREENING;

(4) jV 0j � jV j � 4N 0;

(5) it is possible to construct the core-set N 0 with N 0 nodes after point (3):

mX
jD1

jA
.j /
I \ ¹Z D 1ºj � N

0:

(6) no node in V 0 is adjacent to a pair sampled before or during this call to
SCREENING.

Lemma 13 is proved in Section C.2.
To prove Lemma 12, we control the tf screening calls at the second step of the

constrained algorithm (Algorithm 2) as follows. For the first step, denote by E0 the
event of probability 1 � 9=.sB/ where all the points of Lemma 11 are true. For each
t 2 ¹1; : : : ; tf º, denote by Et the event where all the points of Lemma 13 are satisfied
by the output of SCREENING at the t -th call, which is

.N .t/; V .t// D SCREENING
�
N .t�1/; N .t/; B; y�; V .t�1/

�
:

On the event
T
0�t�tf

Et , all the points of Lemma 12 can be easily derived; see
Section C.1.1 for a detailed proof.

Therefore, Lemma 12 holds with a probability at least P .
T
0�t�tf

Et /. To prove
that

T
0�t�tf

Et holds with high probability, we proceed by induction. First, the
event E0 holds with probability at least 1 � 9=.sB/ by Lemma 11. Next, for any
t 2 ¹1; : : : ; tf º, we check in Section C.1.2, that, on the event E0 \ � � � \ Et�1, the
assumptions of Lemma 13 holds at the t -th call of the SCREENING routine. Hence,
according to Lemma 13, conditionally on the event E0 \ � � � \ Et�1, the event Et
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holds with probability at least 1 � 6=.sN .t//. By induction, we thus have

P

� \
0�t�tf

Et

�
D P .E0/P .E1 j E0/ : : :P .Etf j Etf �1; : : : ; E0/

�

�
1 �

9

sB

� tfY
tD0

�
1 �

6

sN .t/

�
;

which is larger than

1 �
9

sB
�

tfX
tD1

6

sN .t/
D 1 �

9

sB
�

6

sN .0/

tf �1X
tD1

blog.sB/c�t �
6

sdT=Be

� 1 �
9

sB
�
12 log.sB/

sB
�
blog.sB/c�1

1 � blog.sB/c�1
�

6

s.T=B/

� 1 �
9

sB
�
48

sB
�
6

sB
D 1 �

63

sB
;

using for the last inequality that B �
p
T =2 and sB � c0thresh for some numerical

constant c0thresh > 0.
To conclude, Lemma 12 holds with probability at least 1� 63=.sB/, provided that

the conclusions of Lemma 12 hold on the event
T
0�t�tf

Et , and that the assumptions
of Lemma 13 are satisfied at each call of SCREENING. These two points are proved in
the next two subsections.

C.1.1. The conclusions of Lemma 12 hold on
T

0�t�tf
Et . Assume that the eventT

0�t�tf
Et holds, and let us show that all the points of Lemma 12 are fulfilled.

(7, 8, 10) Points (8) and (10) of Lemma 12 follow directly from Lemma 13 (2), (5).
As for point (7), it is satisfied when

4CkCI
log.sB/
s

�
B

2 log.sB/
;

which holds as soon as sB � c0thresh for some numerical constant c0thresh.
(9) In the initial core-set, the proportion of misclassified nodes is upper bounded

by Lemma 11 as follows:

jN .0/
\ ¹Z ¤ 1ºj=jN .0/

j � 2"N �
8

5122
�
1

sB
:

For the next core-set N .1/, it implies that

jN .1/
\ ¹Z ¤ 1ºj=jN .1/

j � 512
8

5122
�
1

sB
D

8

512
�
1

sB
;
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using cmisclas D 8=512
2 in Lemma 13 (1). For the subsequent core-sets, the proportion

of misclassified nodes is upper bounded as above, updating the value of cmisclas at each
step. We thus have

jN .2/
\ ¹Z ¤ 1ºj=jN .2/

j � 512
8

512
�
1

sB
D

8

sB
;

and for all t � 3,

jN .t/
\ ¹Z ¤ 1ºj=jN .t/

j �
8

sB
;

since N .t/ � B log.sB/3=2 as soon as t � 3 and sB � c0thresh for some numerical
constant c0thresh.

(5) At the t -th call to SCREENING, the output of “new” nodes V .t/ satisfies the
recursive inequality jV .t/j � jV .t�1/j � 4N .t/ by construction of the algorithm. The
sequence of inequalities telescopes, leaving

jV .t/j � jV .0/j �

tX
sD1

4N .s/;

which is larger than 7n=8 since jV .0/j D n �Ninit and

Ninit �
n

8
�

tf �1X
sD1

4N .s/

by Lemma 11 (1).
(6) A node can fall into four categories:

(i) it is never used;

(ii) it is used in Step 1 and possibly in the first iteration of SCREENING. Then the
number of adjacent sampled pairs is at most Ninit C B by construction of Step 1 and
Lemma 13 (3), which is smaller than 2B as soon as sB � cthresh for some numerical
constant cthresh;

(iii) it is used in (at most) two consecutive iterations of SCREENING (and nowhere
else). Then the number of adjacent sampled pairs is at most 2B by Lemma 13;

(iv) it is used in the last iteration of SCREENING and (possibly) in Step 3. Then the
number of adjacent sampled pairs is at mostB CB by Lemma 13 and by construction
of Step 3.

C.1.2. Checking the assumptions of Lemma 13. Assume that the events E0; : : : ;
Et�1 hold together, and let us check the assumptions of Lemma 13.

First, the condition sB � c0thresh comes from Lemma 12. Then, following the proof
of point (9), we can check that

jN .t�1/
\ ¹Z ¤ 1ºj=jN .t�1/

j � cmisclas=.sB/
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for cmisclas2Œ8=512
2; 8�. For the threshold y� taking a value in Œ.pC3q/=4; .3pCq/=4�,

it is stated in Lemma 11. The input of “new” nodes V .t�1/ satisfies

jV .t�1/j �
7n

8
;

as seen above in the proof of point (5). Finally, the inequality

B � 4N .t/
� 4N .t�1/ log.sB/

is satisfied by construction of the algorithm, as soon as sB � c0thresh for some numerical
constant c0thresh.

C.2. Proof of Lemma 13: Control of SCREENING

In this section, we work conditionally to FTstart where Tstart is the number of pairs
sampled before the current call to SCREENING.

Let us state the two main technical results that allow to prove Lemma 13. Write
V.x/ WDVj for each j 2 ¹1; : : : ;mº and x 2A

.j /
0 . The first one controls the properties

of the sets .V.x//x2A0 . Given a subset of nodes S , denote by misclas.S/ the set of
misclassified nodes in S , that is the set of all x 2 S such that Zx ¤ 1 in SCREENING.

Lemma 14. The sets .V.x//x2A0 satisfy the following:

(1) for all y 2 N , j¹x 2 A0 W y 2 V.x/ºj � B;

(2) P .j¹x 2 A0 W jmisclas.V.x//j � kI=16ºj � cafter
misclas=2 �N

0=sB/ � 2=sN 0,
where cafter

misclas is defined as in Lemma 13;

(3)
P
x2A0

jmisclas.V.x//j � N 0=s.

The proof of the above lemma is postponed to Section C.3. The next lemma allows
one to control the effectiveness of point (3) of SCREENING. Its proof follows the same
lines as those of Lemma 10 (for proving (C.1)) and Lemma 9 (10) (for proving (C.2)),
it is therefore omitted.

Lemma 15. Conditionally to the choice of the set A0 and .V.x//x2A0 , the variables
.Tx/x2A0 are independent and for all x 2 A0 and all i 2 ¹1; : : : ; I º,

P
�
Tx � i j Zx ¤ 1 and jmisclas.V.x//j �

kI

16

�
� e�i ; (C.1)

P
�
Tx � I j Zx D 1 and jmisclas.V.x//j �

kI

16

�
�
3

4
: (C.2)

Let us now prove Lemma 13.
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Proof of Lemma 13. Note that points (4) and (6) follow from the construction of the
algorithm and that point (3) follows straightforwardly from Lemma 14 (1) (for the
nodes from N ) and from the construction of the algorithm (for the nodes from A0).

(1) We first observe that

jN 0 \ ¹Z ¤ 1ºj �

mX
jD1

jmisclas.A.j /
I /j

D

mX
jD1

X
x2A0 s.t.

jmisclas.V.x//j>kI=16

1
x2A

.j/
I

andZx¤1
C

mX
jD1

X
x2A0 s.t.

jmisclas.V.x//j�kI=16

1
x2A

.j/
I

andZx¤1

�

X
x2A0

1jmisclas.V.x//j�kI=16 C
X

x2A0 s.t.
jmisclas.V.x//j�kI=16

1Tx�I andZx¤1

�
cafter

misclas

2

N 0

sB
C

X
x2A0 s.t.

jmisclas.V.x//j�kI=16

1Tx�I andZx¤1

with probability at least 1 � 2=.sN 0/ by Lemma 14 (2).
The second term is dominated by a binomial random variable with parameters

.jA0j; e
�I / by Lemma 15, so it is dominated by a binomial random variable X with

parameters .4N 0; 1=.sB/1026/ since I � 1026 log.sB/. Equation (D.5) implies that
for sB � 512 (which is implied by c0thresh � 512),

P
� 1

4N 0
X �

1

512sB

�
� exp

�
�
1

2
4N 0

1

512sB
log
�
.sB/1025

512

��
� exp

�
�4N 0

log.sB/
sB

�
:

We want this probability to be smaller than 1=.sN 0/, that is

log.sB/
sB

� s
log.sN 0/
4sN 0

;

which is true since s � 1, and the function x 7! .logx/=x is non-increasing for x � e,
and 4sN 0 � sB � e by assumption. Therefore,

P

�
jN 0 \ ¹Z ¤ 1ºj �

cafter
misclas C .8=512/

2
�
N 0

sB

�
�

3

sN 0
;

which implies point (1) (since cafter
misclas � 8=512 by definition).



Pair-matching: Link prediction with adaptive queries 283

(2) Given a subset S of A0, denote by bad.S/ the number of sampled bad pairs
coming from nodes in S during SCREENING, that is

bad.S/ D
X
x2S

j¹yxi W i � k..Tx C 1/ ^ I / and Zyx
i
¤ Zxºj:

The total number of bad pairs sampled during SCREENING can be decomposed
into

bad.A0/ D
X
x2A0

bad.¹xº/1jmisclas.V.x//j>kI=16

C

X
x2A0\¹ZD1º

bad.¹xº/1jmisclas.V.x//j�kI=16

C

X
x2A0\¹Z¤1º

bad.¹xº/1jmisclas.V.x//j�kI=16

� kI
X
x2A0

1jmisclas.V.x//j�kI=16 (C.3)

C

X
x2A0\¹ZD1º

jmisclas.V.x//j (C.4)

C

X
x2A0\¹Z¤1º

k.Tx C 1/1jmisclas.V.x//j�kI=16 (C.5)

The first sum is controlled by Lemma 14 (2):

P
�

(C.3) �
cafter

misclas

2

N 0kI

sB

�
�

2

sN 0
:

Thus, since kI=B � 4CkCI log.sB/=.sB/ by definition, there exists a constant c0thresh
such that kI=B � 2=cafter

misclas as soon as sB � c0thresh, so that

P
�

(C.3) �
N 0

s

�
�

2

sN 0
:

Likewise, by Lemma 14 (3),

(C.4) �
N 0

s
:

By Lemma 15, the variables Tx in the third sum are stochastically dominated by
i.i.d. exponential random variables with parameter 1. Therefore, using the inequality
k � 2Ck=s, the term (C.5) is stochastically dominated by

8Ck
N 0

s
C 2

Ck

s

4N 0X
iD1

Yi ;
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where .Yi /i2N� are i.i.d. exponential random variables with parameter 1. These expo-
nential random variables satisfy

E.Yi � 1/
2
� 1;

and for all a 2 N such that a � 3, we have

E.Yi � 1/
a
C � aŠ:

It follows that Bernstein’s inequality (see, for instance, [34, Proposition 2.9]) entails
for all t > 0,

P

� 4N 0X
iD1

Yi � 4N
0
� 4
p
N 0t C t

�
� e�t :

Thus, by taking t DN 0, with probability at least 1� e�N
0

� 1� 1=N 0 � 1 � 1=.sN 0/,
we have

4N 0X
iD1

Yi � 9N
0:

Hence, with probability at least 1 � 3=.sN 0/,

bad.A0/ � .26Ck C 2/
N 0

s
:

(5) Write AI D
Sm
jD1A

.j /
I and for each x 2A0, let Vx D 1x2AI indicate whether

x has been kept until the end of point (3) of SCREENING. Lemma 15 ensures that
the random variables .Vx/x2A0\¹ZD1º s.t. jmisclas.V.x//j�kI=16 dominate i.i.d. Bernoulli
random variables with parameter 3=4. Therefore, Hoeffding’s inequality (D.1) entails

P

 ˇ̌
AI \ ¹Z D 1º

ˇ̌
�
3jA0 \ ¹Z D 1º \ ¹x W jmisclas.V.x//j � kI=16ºj

4

�

r
jA0j

log.sN 0/
2

!
�

1

sN 0
:

Note that ˇ̌̌°
x 2 A0 s.t. jmisclas.V.x//j >

kI

16

±ˇ̌̌
�
cafter

misclas

2
�
N 0

.sB/

with probability at least 1 � 2=.sN 0/ by Lemma 14. Since jA0j D 4N
0, the previous

equation entails

P

 
jAI \ ¹Z D 1ºj �

3jA0 \ ¹Z D 1ºj

4
�
3 cafter

misclasN
0

8sB
�

r
4N 0

log.sN 0/
2

!
�

3

sN 0
:
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Let us assume for now that jA0 \ ¹Z D 1ºj � .11=7/N
0 with probability at least

1 � 1=.sN 0/. Then this ensures that for N 0 and sB larger than some numerical con-
stants (which is guaranteed by B � B0 and sB � c0thresh),

P
�
jAI \ ¹Z D 1ºj � N

0
�
�

4

sN 0
;

which gives point (5), provided that jA0 \ ¹Z D 1ºj � .11=7/N
0.

The random variable jA0 \ ¹Z D 1ºj is an hypergeometric random variable with
number of draws 4N 0 and initial probability of a winning draw r 0 2 Œ3=7;4=7� because
the number of nodes that have not been sampled at the start of SCREENING is bigger
than 7n=8 by assumption and because the true communities are balanced.

Therefore, Hoeffding’s inequality (D.1) implies

P

 
jA0 \ ¹Z D 1ºj �

3

7
4N 0 �

r
4N 0 log.sN 0/

2

!
�

1

sN 0
;

so that for N 0 large enough (which is implied by B � B0 for some numerical con-
stant B0),

P
�
jA0 \ ¹Z D 1ºj �

11

7
N 0
�
�

1

sN 0
:

C.3. Proof of Lemma 14

(1, 3) To check point (1), it suffices to check that d4N 0=me � B . For sB � c0thresh with
a numerical constant c0thresh large enough, one has

m D
j N

.kI /

k
�

N

.2kI /

and l4N 0
m

m
�
16N 0kI

N
� 64CkCI

.log.sB//2

s
� B: (C.6)

For point (3), note thatX
x2A0

jmisclas.V.x//j �
l4N 0
m

m mX
jD1

jmisclas.Vj /j � 16kI
N 0

N
jmisclas.N /j

� 64CkCI
log.sB/
s

cmisclas
N 0

sB
� 64CkCI

log.sB/
sB

cafter
misclas

N 0

s

�
N 0

s

by assumption on the number of misclassified nodes in N , and as soon as sB�c0thresh
for some numerical constant c0thresh.



C. Giraud, Y. Issartel, L. Lehéricy, and M. Lerasle 286

(2) Small core-sets. In this section, we assume N 0 < B log.sB/3=2. By equa-
tion (C.6), we haveˇ̌̌°

x 2 A0 W jmisclas.V.x//j �
kI

16

±ˇ̌̌
�

l4N 0
m

m mX
jD1

1jmisclas.Vj /j�kI=16

� 16
N 0

N
kI

mX
jD1

1jmisclas.Vj /j�kI=16:

Note that

kI

16

mX
jD1

1jmisclas.Vj /j�kI=16 �

mX
jD1

jmisclas.Vj /j D jmisclas.N /j �
cmisclasN

sB

by assumption, so thatˇ̌̌°
x 2 A0 W jmisclas.V.x//j �

kI

16

±ˇ̌̌
� 16

N 0

N
kI �

16

kI
�
cmisclasN

sB

D 256cmisclas
N 0

sB
D
cafter

misclas

2
�
N 0

sB
:

This bound is not random, it holds with probability 1.

(2) Large core-sets. In this section, we assume N 0 � B log.sB/3=2.
The number of misclassified nodes in each Vj can be controlled more easily by

introducing a coupling with i.i.d. Bernoulli random variables. Note that this coupling
is a theoretical tool and does not appear in the algorithm.

Lemma 16. Let K be a random variable taking values in ¹0; : : : ; N º. Let .Xx/x2N

be a vector of random variables taking values in ¹0; 1º such that

•
P
x2N Xx D K;

• the distribution of .Xx/x2N is invariant under permutation of N .

Note that these two points together with the distribution of K characterize the distri-
bution of .Xx/x2N . Then for all u > 0, there exists a coupling with i.i.d. Bernoulli
random variables .Yx/x2N with parameter u such that by writing M D

P
x2N Yx ,

M is independent of .Xx/x2N and

M � K H) .8x 2 N ; Xx � Yx/: (C.7)

Proof. Let M be a binomial random variable with parameters .N; u/ such that M
andK are independent. Let . zXi /1�i�N and . zYi /1�i�N be random variables such that
conditionally to M and K and for all 1 � i � N ,

zXi D

´
1 if i � K;

0 otherwise;
zYi D

´
1 if i �M;

0 otherwise:
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Let � be a uniform random variable in the set of bijections from ¹1; : : : ; N º
to N that is independent of K, M , . zXi /i and . zYi /i , and define X 0x D zX��1.x/ and
Yx D zY��1.x/ for all x 2 N .

Then the random vector .X 0x/x2N has the same distribution as the random vector
.Xx/x2N , the random variables .Yx/x2N are i.i.d. Bernoulli random variables with
parameter u, and equation (C.7) holds for these two vectors.

Let M and .Yx/x2N be the random variables given by Lemma 16 applied to

.Xx/x2N D .1 yZx¤Zx /x2N ; K D jmisclas.N /j; u D
2cafter

misclas

.sB/
C
4 log.sB/2

B
:

Note that the algorithm is invariant by permutation of the nodes of N , so that we may
assume without loss of generality that the distribution of these .Xx/x2N is invariant
by permutation of N .

By Assumption of Lemma 13, we have K � cmisclas=.sB/. Let us show that M �
cmisclas=.sB/ with probability at least 1� 1=.sN 0/, which implies M � K with prob-
ability at least 1 � 1=.sN 0/. Since M is a binomial random variable with parameters
.N; u/, Bernstein’s inequality (D.2) entails

P
�
M � Nu �

p
2Nut � t

�
� e�t :

Since
p
2ab � a=2C b for all a; b > 0, it holds with probability at least 1� 1=.sN 0/

that

M � Nu �
Nu

2
� log.sN 0/ � log.sN 0/

�
cmisclasN

sB
C 2N

log.sB/2

B
� 2 log.sN 0/:

Note that

2 log.sN 0/
2N log.sB/2=B

�
log.sN log.sB//=N

log.sB/2=B
D

log.sN log.sB//=sN log.sB/
log.sB/=sB

� 1;

as soon as sB � e since the application x 7! .log x/=x is non-increasing for x � e
and sN log.sB/ � sB � e (the second to last inequality comes from the assumption
N 0 D N blog.sB/c � B log.sB/3=2 made at the beginning of the current subsection).
Therefore,

P
�
M �

cmisclasN

sB

�
�

1

sN 0
;

and finally, according to Lemma 16,

P
�
8x 2 N ; 1 yZx¤Zx � Yx

�
� 1 �

1

sN 0
: (C.8)
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We can now proceed to the conclusion of the proof of point (2) when N 0 �
B log.sB/3=2. We haveˇ̌̌°

x 2 A0 W jmisclas.V.x//j �
kI

16

±ˇ̌̌
�

l4N 0
m

m mX
jD1

1jmisclas.Vj /j�kI=16

� 16
N 0

N
kI

mX
jD1

1P
x2Vj

Yx�kI=16

with probability at least 1 � 1=.sN 0/ by equations (C.6) and (C.8).
Note that the random variable

Pm
jD1 1P

x2Vj
Yx�kI=16 is a binomial random vari-

able with parameters �
m;P

� X
x2Vj

Yx �
kI

16

��
;

and that
P
x2Vj

Yx is a binomial random variable with parameters .kI; u/ with

u D
2cafter

misclas

.sB/
C
4 log.sB/2

B
:

Since 5u � 1=16 for sB � c0thresh, we can apply equation (D.5) to obtain

P

� X
x2Vj

Yx �
kI

16

�
� exp

�
�
kI

32
log

1

16u

�
: (C.9)

Note that

log
1

16u
� log

sB

256.1 _ .s log.sB/2//

D log.sB/ � log 256 � 0 _ log
�
s log.sB/2

�
�
2

3
log.sB/ � 0 _ log

�
.sB/1=3

�
�
2

3
log.sB/ �

1

3
log.sB/ D

1

3
log.sB/;

when sB � c0thresh for c0thresh large enough. Therefore, equation (C.9) implies

P

� X
x2Vj

Yx �
kI

16

�
� exp

�
�
kI

96
log.sB/

�
:

It remains to control the probability that a binomial random variable with param-
eters �

m; exp
�
�
kI

96
log.sB/

��
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exceeds
cafter

misclas

2
�
N 0=.sB/

16kIN 0=N
:

To apply equation (C.9), check that

cafter
misclas=2 � ..N

0=.sB//=.16kIN 0=N//

m exp.�.kI=96/ log.sB//

D
cafter

misclas

2
�

N 0=m

16kIN 0=N
�
1

sB
exp

�kI
96

log.sB/
�

�
cafter

misclas

2
�

1

16sB
exp

�kI
96

log.sB/
�

[since m � N=kI ]

� exp
� kI
200

log.sB/
�
� 5;

for sB � c0thresh. Thus, equation (D.5) and cafter
misclas D cmisclas _ 8 imply

P

�
16
N 0

N
kI

mX
jD1

1P
x2Vj

Yx�kI=16 �
cmisclas _ 8

2
�
N 0

sB

�
� exp

�
�
cmisclas _ 8

4
�
N 0=.sB/

16kIN 0=N
�
kI

200
log.sB/

�
� exp

�
�
N log.sB/
1600sB

�
� exp

�
�

N 0

1600sB

�
[since N log.sB/ � N 0]:

We want this probability to be smaller than 1=.sN 0/, that is

N 0

1600sB
� log.sN 0/;

which holds as soon as N 0 � Œ2 � 1600sB log.1600s2B/�, which is implied by the
assumption N 0 � B log.sB/3=2 for sB � c0thresh. Thus,

P

�ˇ̌̌°
x 2 A0 W jmisclas.V.x//j �

kI

16

±ˇ̌̌
�
cafter

misclas

2
�
N 0

sB

�
�

2

sN 0
:

The proof is complete.

D. Probabilistic inequalities

We recall Bernstein and Hoeffding inequalities for binomial and hypergeometric dis-
tributions.
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Lemma 17. For n � 1, p 2 Œ0; 1� and N � n, let X be either a binomial random
variable with parameters .n;p/ or a sum ofm i.i.d. hypergeometric random variables
with parameters .n=m; p;N /. Then, for all t > 0,

P

�
X � np �

r
nt

2

�
� e�t and P

�
jX � npj �

r
nt

2

�
� 2e�t ; (D.1)

and

P
�
X � np �

p
2npt C t

�
� e�t ; (D.2)

P
�
jX � npj �

p
2npt C t

�
� 2e�t : (D.3)

The following lemma allows to control large deviations of binomial and hyperge-
ometric random variables.

Lemma 18. Let X be either a binomial random variable with parameters .n; p/ or a
sum ofm i.i.d. hypergeometric random variables with parameters .n=m;p;N /. Then
for all c 2 Œp; 1�,

P .X � nc/ � e�n�kl.c;p/; (D.4)

where kl.c;p/D c log.c=p/C .1� c/ log..1� c/=.1� p//. In particular, if c � 5p,

P .X � nc/ � e�
1
2nc log.c=p/: (D.5)

Proof of Lemma 18. The large deviation inequality (D.4) is derived by the classical
Cramèr–Chernoff’s method; see, for instance, [34, Chapter 2].

For inequality (D.5), note that for all 0 < ˛ < 1=p,

kl.˛p; p/ D
˛p

2
log˛ C

h˛p
2

log˛ � .1 � ˛p/ log
1 � p

1 � ˛p

i
D
˛p

2
log˛ C

h˛p
2

log˛ � .1 � ˛p/ log
�
1C p

˛ � 1

1 � ˛p

�i
�
˛p

2
log˛ C

h˛p
2

log˛ � p.˛ � 1/
i

�
˛p

2
log˛ C p

h˛ log˛
2
C 1 � ˛

i
;

and the term inside the square brackets is positive as soon as ˛ � 5.

We also recall some classical controls on the Kullback–Leibler divergence bet-
ween two Bernoulli distribution.

Lemma 19. For any p1; p2 2 Œ0; 1�,

.p1 � p2/
2

p1 _ p2
� kl.p1; p2/ �

.p1 � p2/
2

p1.1 � p1/ ^ p2.1 � p2/
:
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In particular, for any q � p � 1=2,

s D
.p � q/2

p C q
�
.p � q/2

p

� kl.p; q/ _ kl.q; p/ �
2.p � q/2

q
D 2

�
1C

p

q

�
s:

Miscellaneous inequalities. The following inequality is used repeatedly in the proofs.

Lemma 20. For all x > 0 and y � 0,

x � .2y logy/ _ e H)
x

log x
� y:
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