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Ahlfors regular conformal dimension and
Gromov–Hausdorff convergence

Nicola Cavallucci

Abstract. We prove that the Ahlfors regular conformal dimension is upper semicon-
tinuous with respect to Gromov–Hausdorff convergence when restricted to the class
of uniformly perfect, uniformly quasi-selfsimilar metric spaces. Moreover, we show
the continuity of the Ahlfors regular conformal dimension in case of limit sets of
discrete, quasiconvex-cocompact group of isometries of uniformly bounded codia-
meter of ı-hyperbolic metric spaces under equivariant pointed Gromov–Hausdorff
convergence of the spaces.

1. Introduction

The Ahlfors regular conformal gauge of a metric space .X; d/ is the set JAR.X; d/ of
all metrics on X that are quasisymmetric equivalent to d and are Ahlfors regular. By
definition, a homeomorphism F W .X; dX /! .Y; dY / is a quasisymmetric equivalence if
there exists a strictly increasing map �W Œ0;C1/! Œ0;C1/ with �.0/ D 0 such that

dY .F.x/; F.x
0//

dY .F.x/; F.x00//
� �

� dX .x; x0/
dX .x; x00/

�
for every x; x0; x00 2 X with dX .x; x00/ > 0. The notion of quasisymmetric maps was
introduced in [25], and it has played an important role in the study of quasiconformal
structure on metric spaces. The Ahlfors regular conformal dimension of a metric space
.X; d/ is defined as

(1.1) CD.X; d/ WD inf¹HD.X; d 0/ such that d 0 2 JAR.X; d/º;

where HD denotes the Hausdorff dimension. In general, JAR.X; d/ can be empty, imply-
ing CD.X; d/ D C1. On the other hand, the conformal dimension of every doubling,
uniformly perfect metric space is always finite by Corollary 14.5 in [17]. There is a spe-
cial class of metric spaces that are doubling and uniformly perfect: the class of perfect
quasi-selfsimilar metric spaces (see Proposition 2.2).
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Definition 1.1. Let �0 > 0 and L0 � 1. A compact metric space .X; d/ is said to be
.L0; �0/-quasi-selfsimilar (shortly, .L0; �0/-q.s.s.) if for every open ball B.x; �/ in X
with 0 < � � �0, there is a map ˆW .B.x; �/; .�0=�/ � d/! X which is L0-biLipschitz
and is such that ˆ.B.x; �// � B.ˆ.x/; �0=L0/.

The notation .�0=�/ � d means the metric obtained by multiplying the original metric d
by the positive number �0=�. In other words, a metric space is .L0; �0/-quasi-selfsimilar
if every ball of radius smaller than �0 is, up to rescaling it to the right size, biLipschitz
comparable to a ball of radius exactly �0 of the same space.

This notion arises naturally in the study of limit sets of Gromov-hyperbolic groups and
semi-hyperbolic rational fractions, see [1, 3, 16, 24]. Examples of spaces that are quasi-
selfsimilar include Lipschitz manifolds with uniform Lipschitz constants and a positive
lower bound on the injectivity radius, simplicial complexes with a metric of fixed constant
curvature on each simplex and a lower bound on the injectivity radius, self-similar fractals,
boundaries of cocompact Gromov-hyperbolic spaces, and Julia sets of semi-hyperbolic
rational fractions. If one puts natural geometric constraints to each of the above classes,
then it is possible to quantify the quasi-selfsimilarity constants in terms of the constraints.

For perfect quasi-selfsimilar spaces that are connected and locally connected, the
Ahlfors regular conformal dimension CD.X; d/ can be equivalently computed as the
infimum of the Hausdorff dimension of all metrics d 0 that are quasisymmetric to d , but
not necessarily Ahlfors regular. This is proved in Theorem 1.6 of [15].

The aim of this paper is to study the behaviour of the Ahlfors regular conformal dimen-
sion on quasi-selfsimilar metric spaces under Gromov–Hausdorff convergence, whose
definition will be recalled in Section 5.

Theorem A. Let .Xn; dn/ be a sequence of compact, a0-uniformly perfect, .L0; �0/-
q.s.s. spaces. Suppose it converges in the Gromov–Hausdorff sense to .X1; d1/. Then
CD.X1; d1/ � lim supn!C1 CD.Xn; dn/:

For quasi-selfsimilar spaces, uniform perfectness is quantitatively equivalent to a uni-
form lower bound of the diameter of the ballsB.ˆ.x/;�0=L0/ appearing in Definition 1.1,
see Proposition 2.2.

Theorem A is false if the spaces are not .L0; �0/-q.s.s.: the sequence Xn D Œ0; 1=n�
� R converges in the Gromov–Hausdorff sense to X1 D ¹0º, but CD.Xn; dE / D 1 for
every n, while CD.X1; dE / D 0. Here, dE is the standard Euclidean metric. Moreover,
the upper semicontinuity in Theorem A cannot be improved to continuity in general.

Example 1.2. Let Xn be the set built in this way: we start with Œ0; 1�, and we remove
the central segment of length 1=.2nC 1/. We do the same for each of the two remaining
parts. We continue this procedure infinitely many times and we callXn the resulting metric
space endowed with the Euclidean metric dE . For instance, X1 is the standard Cantor set.
The sequence Xn is made of compact, uniformly perfect, quasi-selfsymilar spaces with
uniform constants. It converges toX1 D Œ0; 1� in the Gromov–Hausdorff sense. However,
CD.Xn; dE / D 0 for every n by Proposition 15.11 in [13] (see also Theorem 2.16 in [5]),
while CD.X1; dE / D 1.

On the other hand, we have continuity in a particular setting. In [8], the author studied
the class M.ı;D/ of triples .X;x;�/, whereX is a proper ı-hyperbolic metric space, � is
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a discrete, non-elementary, quasiconvex-cocompact, torsion-free group of isometries ofX
with codiameter bounded above by D, and x belongs to the quasiconvex hull of the limit
set ƒ.�/. We refer to Section 6 for more details about these terms. One of the main
results of [8] is the closure of M.ı; D/ under equivariant pointed Gromov–Hausdorff
convergence. We refer to Section 6 for the precise definition; let us just mention here
that, if we denote by B�.x; r/ the subset of elements 
 2 � moving x 2 X less than r ,
saying that a sequence of groups .�j ; Xj / converges towards a limit action .�1; X1/
simply means that there exist Gromov–Hausdorff "-approximations f"WBXj .xj ; 1="/!
BX1.x1; 1="/ between larger and larger balls of Xj and X1 centered at basepoints xj
and x1, which are "-equivariant with respect to maps �"WB�j .xj ; 1="/! B�1.x1; 1="/

(that is, with an equivariancy error smaller than "), for "! 0.
Under this convergence, it is possible to prove that the limit sets ƒ.�n/ and ƒ.�1/

are quasisymmetric equivalent for n big enough (see Section 6.1). As a consequence, we
get the following.

Theorem B. Let .Xn; xn; �n/ � M.ı; D/ be a sequence of triples converging in the
equivariant pointed Gromov–Hausdorff sense to .X1; x1; �1/. Then, for suitable met-
rics, the sequence ƒ.�n/ is uniformly perfect and uniformly q.s.s., and converges in the
Gromov–Hausdorff sense to ƒ.�1/. Moreover, CD.ƒ.�1// D CD.ƒ.�n// for n big
enough.

Here the Ahlfors regular conformal dimension is computed with respect to any visual
metric on the limit sets, see Proposition 6.3 and the discussion below. Motivated by The-
orem B, we propose the following question.

Question 1.3. Are there conditions on the metric spaces Xn that ensure continuity of the
conformal dimension under Gromov–Hausdorff convergence?

It is useful to consider the following example (the author thanks M. Murugan for
bringing the reference [26] to his attention).

Example 1.4. Let us repeat the construction of Example 1.2 in dimension 2. For every n,
we define Xn in the following way: we start with Œ0; 1�2, we divide it into 1=.2nC 1/2

squares and we delete the central one. Now we do the same for every remaining squares.
We repeat the procedure infinitely many times. We endow Xn with the Euclidean met-
ric dE . For instance, the spaceX1 is the standard Sierpiński carpet. The sequence .Xn;dE /
converges in the Gromov–Hausdorff sense to X1 D Œ0; 1�2, whose Ahlfors regular con-
formal dimension is 2. In this case, we have limn!C1 CD.Xn; dE / D 2 by a well-known
argument (see, for instance, Theorem 3.4 and Example 3.2 in [26]).

We will briefly discuss Question 1.3 and the example above at the end of Section 5.

2. Preliminaries

We denote a metric space by .X; d/. The open (respectively, closed) ball of center x 2 X
and radius � > 0 is denoted by B.x; �/ (respectively, B.x; �/). Given r > 0 and Y � X ,
we say that a subset S of Y is r-separated if d.x;y/ > r for all x;y 2 S , while a subsetN
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of Y is a r-net if for all y 2 Y there exists x 2N such that d.x;y/� r . It is straightforward
from the definitions that a maximal r-separated subset of Y is a r-net.

A metric space .X; d/ is said D-doubling if the cardinality of any .�=2/-separated
subset inside any ball of radius � is at most D.

A metric space .X;d/ is perfect if it has no isolated points, while it is said a-uniformly
perfect, 0 < a < 1, ifB.x;�/ nB.x;a � �/¤; for all x 2X and 0� � <Diam.X/, where
Diam denotes the diameter. Clearly, every uniformly perfect metric space is perfect.

Gromov–Hausdorff convergence will be considered in the class of compact metric
spaces. A pointed and equivariant version will be defined in Section 6. Let .X; dX / and
.Y; dY / be two metric spaces, and let " > 0. A "-approximation from X to Y is a function
f WX ! Y such that
• jdY .f .x1/; f .x2// � dX .x1; x2/j < " for all x1; x2 2 X ;
• for all y 2 Y , there exists x 2 X such that dY .f .x/; y/ < ".

A sequence of compact spaces .Xn; dn/ converges in the Gromov–Hausdorff sense to
the compact space .X1; d1/ if for every " > 0, there exists n" � 0 such that if n � n",
then there is a "-approximation fnWXn ! X1. In this case, we use the notation

.Xn; dn/ �!
GH

.X1; d1/:

2.1. Ahlfors regular spaces

A metric space .X; d/ is said .A; s/-Ahlfors regular, for given A; s � 0, if there is a
measure � on X satisfying

1

A
� �s � �.B.x; �// � A � �s

for all x 2 X and all 0 < � � Diam.X/. The following lemma is classical.

Lemma 2.1. Let A0 � 1 and s0 > 0. Then there exists 0 < a0 D a0.A0; s0/ < 1 such that
every .A; s/-Ahlfors regular metric space .X; d/ with A � A0 and s � s0 is a0-uniformly
perfect.

Proof. We claim that .X; d/ is a-uniformly perfect for all a < A�2=s . Indeed, for every
such a, for every x 2 X and every 0 < � � Diam.X/, we have

�.B.x; �// �
1

A
�s and �.B.x; a � �// � A � as�s <

1

A
� �s :

Hence �.B.x; �/nB.x; a � �// > 0, and in particular, this set is not empty. It is then clear
we can choose every a0 < A

�2=s0
0 .

2.2. Quasi-selfsimilar spaces

We collect now some basic properties of the quasi-selfsimilar metric spaces from Defini-
tion 1.1. We say a quasi-selfsimilar metric space .X; d/ has diameters bounded below by
some c0 > 0 if the ball B.ˆ.x/; �0=L0/ that appears in Definition 1.1 has diameter � c0
for every x 2 X and every 0 < � � �0.
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Proposition 2.2 (Compare with Lemma 2.2 and Proposition 2.3 in [5]). Let .X; d/ be a
quasi-selfsimilar metric space as in Definition 1.1. Then

(i) it is doubling;
(ii) if it is perfect, then it is uniformly perfect;
(iii) it is uniformly perfect if and only if it has diameters bounded below, quantitatively

in terms of the relative constants and the diameter of X .

Proof. If (i) is not true, then for every n2N, there exist xn 2 X and �n > 0 such that
there is a .�n=2/-separated set inside B.xn; �n/ of cardinality � n. Up to passing to a
subsequence, we can suppose that limn!C1 �n D �1 2 Œ0;C1/ and that xn converges
to x1 2 X . If �1 > 0, then X is not totally bounded, a contradiction. If �1 D 0, we
can find L0-biLipschitz maps ˆnW .B.xn; �n/; .�0=�n/ � d/ ! X . Hence there exists a
.�0=2L0/-separated set inside B.ˆn.xn/; L0�0/ with cardinality � n. Once again, this
contradicts the compactness of X .

Now we show (ii). Since X is perfect and compact, we have the following property, as
in Lemma 2.2 of [5]: for all � > 0, there exists d.�/ > 0 such that Diam.B.x; �// � d.�/
for every x 2 X . Suppose now X is not uniformly perfect: then for all n 2 N, there exist
xn 2X and 0 < �n � Diam.X/ such that B.xn; �n/nB.xn; �n=n/ D ;. Up to taking a
subsequence, we can suppose that xn converges to x1 and �n converges to �1. Suppose
first �1 > 0. Let y be a point inside B.x1; �1/. It also belongs to B.xn; �n/ for n big
enough, and so it belongs to B.xn; �n=n/. In other words, d.x1; y/ � d.x1; xn/C �n=n
for every n big enough, i.e., d.x1; y/D 0 and x1 is an isolated point. This shows that X
is not perfect, a contradiction. Suppose now �1 D 0. For all n big enough, we take the
map ˆnWB.xn; �n/! X given by Definition 1.1. Therefore

B
�
ˆn.xn/;

�0

L0

�
� ˆn.B.xn; �n// D ˆn

�
B
�
xn;

�n

n

��
:

From one side we have Diam.B.ˆ.xn/; �0=L0// � d.�0=L0/ > 0 for every n. On the
other hand,

Diam
�
ˆn

�
B
�
xn;

�n

n

���
� L0 �

�0

�n
�
2�n

n
�!
n!C1

0;

which is a contradiction.
Finally, we prove (iii). Let us suppose X has diameters bounded below by c0 > 0. We

fix x 2 X and 0 < � � �0. We take the map ˆWB.x; �/! X given by the definition of
quasi-selfsimilarity. Since ˆ.B.x; �// contains a set with diameter � c0, then there exists
y 2 B.x; �/ such that d.ˆ.x/;ˆ.y// � c0=2. Therefore

d.x; y/ �
1

L0
�
�

�0
�
c0

2
D a.L0; �0; c0/ � �;

with 0< a.L0; �0; c0/DW a < 1. If � is bigger than �0, then we apply what said above to �0
finding B.x; �0/nB.x; a � �0/ ¤ ;, so B.x; �/nB.x; a��0

�
� �/ ¤ ;. Since X is compact,

we have
a � �0

�
�

a � �0

Diam.X/
DW a0 > 0;
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showing that X is a0-uniformly perfect and that a0 depends only on L0, �0, c0, and
the diameter of X . Vice versa, if X is a0-uniformly perfect, then B.ˆ.x/; �0=L0/ n
B.ˆ.x/; a0 � �0=L0/ ¤ ; for all x 2 X and ˆ as in Definition 1.1. Therefore,

Diam
�
B
�
ˆ.x/;

�0

L0

��
� a0 �

�0

L0
DW c0:

We remark that the diameter bounded below condition is part of the definition of quasi-
selfsimilar spaces in [20] and in [5]. However, the definition in [20] differs from the one in
Definition 1.1 from the fact that ˆ.B.x; �// is required to contain an open set of diameter
bounded from below, but which is not necessarily a ball. When an upper bound on the
diameter of the metric space is fixed, the diameter bounded below condition is equivalent
to bounded uniform perfectness of the metric space by Proposition 2.2. For instance, in the
context of Theorem A, there is a uniform upper bound on the diameter of the spaces Xn,
since they are converging in the Gromov–Hausdorff sense to the compact space X1, so
the spaces Xn have all diameter bounded below by some c0 > 0 if and only if they are all
a0-uniformly perfect for some 0 < a0 < 1.

3. Combinatorial modulus

It is known that the conformal dimension of a metric space is closely related to the com-
binatorial modulus, see for instance [3, 6, 22] and the references therein. In this section,
we recall the definition of combinatorial modulus and we prove some technical lemmas.

From now on, we fix a D-doubling metric space .X; d/. For every k 2 N, we choose
a finite 10�k-netXk ofX . To simplify notation, given a real number � > 0 and k 2 N, we
will denote byB�;k.x/ the open ball of center x and radius ��10�k , namelyB.x;� � 10�k/.
The same convention holds for closed balls.

A .�; k/-path is a finite collection 
 D ¹qj ºMjD0 of elements ofXk satisfying B�;k.qj /
\B�;k.qjC1/¤; for all j D 0; : : : ;M � 1. The points q0 and qM are called, respectively,
the starting and the ending point of the path.

Given two subsets E; F � X , we denote by P�;k.E; F / the set of .�; k/-paths with
starting point in E and ending point in F . We denote by A�;k.E;F / the set of admissible
functions, i.e., functions f WXk! Œ0;C1/ such that

PM
iD0 f .qi /� 1 for every ¹qiºMiD0 2

P�;k.E; F /.
Given a real number p � 0, we define

p-Mod�;k.E; F / D inf
f2A�;k.E;F /

X
q2Xk

f .q/p;

and we call it the p-modulus of the couple .E;F / at level .�; k/. The infimum is actually
realized: any admissible function realizing the minimum is said optimal. If there are no
.�; k/-paths joining E and F , we set p-Mod�;k.E; F / D 0.

Lemma 3.1. If E 0 � E and F 0 � F , then p-Mod�;k.E 0; F 0/ � p-Mod�;k.E; F /.

Proof. If P�;k.E 0; F 0/ D ;, then the result is trivial by definition. Otherwise, every path
in P�;k.E 0; F 0/ belongs to P�;k.E; F /. This implies that A�;k.E; F / � A�;k.E

0; F 0/,
and the result follows from the definition.
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Let 1� L1 <L2 be two real numbers. For every i 2N and every point y 2Xi , we set

p-ModL1;L2
�;k

.y/ WD p-Mod�;iCk.BL1;i .y/; X nBL2;i .y//:

We remark that this is a modulus at level .�; i C k/. Finally, we define

p-ModL1;L2
�;k

.X/ D sup
i2N

sup
y2Xi

p-ModL1;L2
�;k

.y/:

We want to control how this quantity changes whenL1;L2 and � change. We recall thatD
denotes the doubling constant of X .

Lemma 3.2 (Lemma 4.4 in [5]). Let k, � and p be fixed quantities as above. Let 1�L01 �
L1 < L2 � L

0
2. Then there exist ` 2 N and C > 0, depending only on L1, L01, L2, L02

and D, such that
p-ModL

0
1;L
0
2

�;k
.X/ � p-ModL1;L2

�;k
.X/

and
p-ModL1;L2

�;kC`
.X/ � C � p-ModL

0
1;L
0
2

�;k
.X/:

Proof. For every y 2 Xi , i 2 N, we have that BL01;i .y/ � BL1;i .y/ and X nBL02;i .y/ �
X nBL2;i .y/, so the first inequality follows by Lemma 3.1.

In order to prove the second inequality, we define ` as the minimum integer satisfying
10�` � .L2 � L1/=.L

0
2 C L

0
1/. We fix y 2 Xi for some i 2 N, and we consider the set

XiC`.y/ D ¹z 2 XiC` such that BL01;iC`.z/ \ BL1;i .y/ ¤ ;º:

We fix any .�; i C ` C k/-path 
 D ¹qj ºMjD0 joining BL1;i .y/ and X nBL2;i .y/. This
means in particular that d.y; q0/ � L1 � 10�i and d.y; qM / � L2 � 10�i . We can find z 2
XiC` such that d.z;q0/� 10�i�`, so by definition, z 2XiC`.y/. We claim that the .�; i C
` C k/-path 
 joins BL01;iC`.z/ and X nBL02;iC`.z/. Indeed, we know that d.z; q0/ �
10�i�` � L01 � 10

�i�`. Moreover, d.z; y/ � L1 � 10�i C L01 � 10
�i�`. Therefore,

d.z; qN / � L2 � 10
�i
� L1 � 10

�i
� L01 � 10

�i�`
� L02 � 10

�i�`

by the choice of `. This means that any path 
 2P�;iC`Ck.BL1;i .y/;XnBL2;i .y// belongs
to P�;iC`Ck.BL01;iC`.z/; X nBL02;iC`.z// for some z 2 XiC`.y/.

For each z 2 XiC`.y/, we take optimal functions fz 2 A�;iC`Ck.BL01;iC`.z/; X n

BL02;iC`.z//, and we define the function f WXiC`Ck ! Œ0;C1/ as

f .q/ D max
z2XiC`.y/

fz.q/:

We claim that f 2 A�;iC`Ck.BL1;i .y/; X nBL2;i .y//: Indeed, every path ¹qj ºMjD0 2
P�;iC`Ck.BL1;i .y/; X nBL2;i .y// belongs to P�;iC`Ck.BL01;iC`.z/; X nBL02;iC`.z// for
some z 2 XiC`.y/, therefore

MX
jD0

f .qj / �

MX
jD0

fz.qj / � 1:
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Finally, we haveX
q2XiC`Ck

f .q/p D
X

q2XiC`Ck

max
z2XiC`.y/

fz.q/
p
�

X
z2XiC`.y/

X
q2XiC`Ck

fz.q/
p

D

X
z2XiC`.y/

p-ModL
0
1;L
0
2

�;k
.z/ � C � p-ModL

0
1;L
0
2

�;k
.X/;

where C is a constant depending only on the doubling constant D, on ` and on L01. This
shows that

p-ModL1;L2
�;kC`

.y/ � C � p-ModL
0
1;L
0
2

�;k
.X/:

Since this is true for every y 2 Xi and for every i , we get

p-ModL1;L2
�;kC`

.X/ � C � p-ModL
0
1;L
0
2

�;k
.X/:

Lemma 3.3. Let k 2N, p � 0, 1 � L1 < L2 and 2 < � � �0. Then there exist ` 2N and
C > 0, depending only on �, �0 and D, such that

p-ModL1;L2
�;k

.X/ � p-ModL1;L2
�0;k

.X/

and
p-ModL1;L2

�0;kC`
.X/ � C � p-ModL1;L2

�;k
.X/

for all k > k0 D log10.
2

L2�L1
/.

Proof. For every y 2 Xi , i 2 N, we have

P�;k.BL1;i .y/; X nBL2;i .y// � P�0;k.BL1;i .y/; X nBL2;i .y//:

Therefore, arguing as in the proof of Lemma 3.1, we get

p-ModL1;L2
�;k

.y/ � p-ModL1;L2
�0;k

.y/:

Taking the supremum on i 2 N and y 2 Xi , we obtain the first inequality.
In order to show the second inequality, we define ` as the smallest integer such that

�0 � 10�` � �=2� 1. It is well defined since �> 2. We restrict the attention to the integers k
bigger than k0, so that 10�k < .L2 �L1/=2. We fix y 2 Xi , i 2N, and a .�0; i C k C `/-
path 
 D ¹qj ºMjD0 joining BL1;i .y/ to X nBL2;i .y/. For every j D 0; : : : ;M , we take a
point Qqj 2XiCk such that d.qj ; Qqj /� 10�i�k . We claim Q
 D ¹Qqj ºMjD0 is a .�; i C k/-path
joining BL01;i .y/ to X nBL02;i .y/, where L01 D L1 C 10

�k and L02 D L2 � 10
�k . Indeed,

we have

d.y; Qq0/ � d.y; q0/C d.q0; Qq0/ � L1 � 10
�i
C 10�i�k D L01 � 10

�i ;

d.y; QqM / � d.y; qM / � d.qM ; QqM / � L2 � 10
�i
� 10�i�k D L02 � 10

�i ;

and

d. Qqj ; QqjC1/ � d. Qqj ; qj /C d.qj ; qjC1/C d.qjC1; QqjC1/

� 2 � 10�i�k C 2�0 � 10�i�k�` � 2 � 10�i�k C 2
��
2
� 1

�
� 10�i�k D � � 10�i�k

for every j D 0; : : : ;M � 1. Observe that the condition on k implies L01 < L
0
2.
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We are ready to compare the combinatorial moduli. We take an optimal function Qf 2
A�;iCk.BL01;i .y/; X nBL

0
2;i
.y//, and we define the function f WXiCkC` ! Œ0;C1/ by

f .q/ WD max¹ Qf . Qq/ such that Qq 2 XiCk and d.q; Qq/ � 10�i�kº:

First of all, we show that f 2 A�0;iCkC`.BL1;i .y/; X nBL2;i .y//. Indeed, we have seen
that given any .�0; i C k C `/-path ¹qj ºMjD0 joining BL1;i .y/ to X nBL2;i .y/, there is an
associated .�; i C k/-path ¹ Qqj ºMjD0 joiningBL01;i .y/ toX nBL02;i .y/ such that d.qj ; Qqj /�
10�i�k for every j D 0; : : : ;M . Therefore, by definition of f , we have

MX
jD0

f .qj / �

MX
jD0

Qf . Qqj / � 1:

Finally, we observe that

p-ModL1;L2
�0;kC`

.y/ �
X

q2XiCkC`

f p.q/ � C 0 �
X
Qq2XiCk

Qf p. Qq/

D C 0 � p-ModL
0
1;L
0
2

�;k
.y/ � C 0 � p-ModL

0
1;L
0
2

�;k
.X/;

where C 0 is a constant depending only onD and `. Since this is true for every y 2 Xi and
for every i 2 N, we conclude that

p-ModL1;L2
�0;kC`

.X/ � C 0 � p-ModL
0
1;L
0
2

�;k
.X/:

This inequality is true for all k � k0. Choosing L001 D L1 C 10
�k0 and L002 D L2 � 10

�k0 ,
one concludes, using the easy inequality in Lemma 3.2, that

p-ModL1;L2
�0;kC`

.X/ � C 0 � p-ModL
00
1;L
00
2

�;k
.X/

for all k � k0. An application of the non-trivial inequality of Lemma 3.2 concludes the
proof.

In order to normalize the notation, from now on we choose, for technical reasons,
� D 10, L1 D 3, L2 D 4, and we set

p-Modk.y/ WD p-Mod10;iCk.B3;i .y/; X nB4;i .y//

for every i 2 N and every point y 2 Xi . In the same way, we put

p-Modk.X/ D sup
i2N

sup
y2Xi

p-Modk.y/:

4. Combinatorial modulus on quasi-selfsimilar spaces

In this section, we consider the class of quasi-selfsimilar metric spaces as given in Defin-
ition 1.1. On these spaces, the computation of the combinatorial moduli is easier. Before
that, we need an easy result.

Lemma 4.1. If X is .L0; �0/-q.s.s., then it is .L0; �1/-q.s.s. for every 0 < �1 � �0.
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Proof. We fix x 2 X and 0 < � � �1. We apply the definition of .L0; �0/-quasi-self-
similarity to the ball B.x; �0

�1
�/: we can find a L0-biLipschitz map

ˆ W
�
B
�
x;
�0

�1
�
�
;
�1

�
� d
�
! X

such that ˆ.B.x; �0
�1
�// � B.ˆ.x/; �0=L0/. Then it is straightforward to see that the

restriction of ˆ to .B.x; �/; .�1=�/ � d/ is still L0-biLipschitz. We now take a point
z 2 B.ˆ.x/; �1=L0/. We know there exists a point y 2 B.x; �0

�1
�/ such that z Dˆ.y/. By

the property ofˆ, we get d.x;y/ < �. This shows thatˆ.B.x;�//�B.ˆ.x/;�1=L0/.

Let X be a .L0; �0/-q.s.s. space.
We denote by i0 the smallest integer such that 2.L0 C 5/2 � 10�i0 � �0. We define

I0 D ¹i 2 N such that .L0 C 5/ � 10�i � 10�i0º. Observe that the set I0 is of the form
¹1; : : : ; n0º, where n0 depends only on L0 and �0. We fix this value of n0 for the rest of
the section. We set

p-Modk.X; n0/ WD sup
i�n0

sup
y2Xi

p-Modk.y/:

The following is the main result of the section: it allows to use the fixed sizes up to n0
to estimate the combinatorial modulus. Since the explicit doubling constant of our metric
space plays an important role, we sometimes add it in the definition: we say a metric space
is .L0; �0;D0/-q.s.s. if it is .L0; �0/-q.s.s. and D0-doubling.

Proposition 4.2. Let X be .L0; �0;D0/-q.s.s. Then there exist a constant C0 � 1 and an
integer `0, both depending only on L0 and D0, such that

p-ModkC`0.X; n0/ � p-ModkC`0.X/ � C0 � p-Modk.X; n0/

for every integer k � 1.

Proof. The first inequality is trivial, since we are doing a supremum among less elements.
In order to show the second inequality, we fix i 2 N and y 2 Xi . Clearly, we can suppose
that i > n0. By Lemma 4.1, we know that X is also .L0; 2.L0 C 5/2 � 10�i0/-q.s.s.. Since
2.L0 C 5/

3 � 10�i < 2.L0 C 5/
2 � 10�i0 , then there is a L0-biLipschitz map

ˆW
�
B.y; 2.L0 C 5/

3
� 10�i /;

10�i0

.L0 C 5/ � 10�i
� d
�
! X:

We choose a point x 2 Xi0 such that d.x;ˆ.y// � 10�i0 . We consider a .10; i C k/-path
¹qj º

M
jD0 joining B1;i .y/ to X nB.L0C5/3;i .y/. This means that

• q0 2 B.y; 10
�i / and qM … B.y; .L0 C 5/3 � 10�i /;

• B.qj ; 10 � 10
�i�k/ \ B.qjC1; 10 � 10

�i�k/ ¤ ; for every j D 0; : : : ;M � 1.
Suppose that qj 2 B2.L0C5/3;i .y/ for every j D 0; : : : ; M . Then we can choose a

point Qqj 2 Xi0Ck�1 such that d. Qqj ; ˆ.qj // � 10�i0�kC1 for every j D 0; : : : ;M . By the
property of ˆ, we get

d.ˆ.y/;ˆ.q0// �
L0

L0 C 5
� 10�i0 and d.ˆ.y/;ˆ.qM // �

.L0 C 5/
2

L0
� 10�i0 :
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Therefore we have

d.x; Qq0/ � d.x;ˆ.y//C d.ˆ.y/;ˆ.q0//C d.ˆ.q0/; Qq0/ � 3 � 10
�i0 ;

d.x; QqM /�d.ˆ.y/;ˆ.qM //�d.x;ˆ.y//�d.ˆ.qM /; QqM /�.L0C3/10
�i0 � 4 �10�i0 :

Moreover, we know that d.qj ; qjC1/� 20 � 10�i�k for every j D 0; : : : ;M � 1. Therefore
we get

d. Qqj ; QqjC1/ � d. Qqj ; ˆ.qj //C d.ˆ.qj /; ˆ.qjC1//C d.ˆ.qjC1/; QqjC1/

� 10�i0�kC1 C 20 � 10�i0�k C 10�i0�kC1 � 10 � 10�i0�kC1:

In other words, ¹ Qqj ºMjD0 is a .10; i0 C k � 1/-path joining B3;i0.x/ to X nB4;i0.x/.
We take an optimal map Qf 2 A10;i0Ck�1.B3;i0.x/; X nB4;i0.x//. We define the map

f WXiCk ! Œ0;C1/ by

f .q/ WD max¹ Qf . Qq/ W Qq 2 Xi0Ck�1 \ B.ˆ.q/; 10
�i0�kC1/º

if q 2 B.y; 2.L0 C 5/3 � 10�i / and 0 otherwise.
We want to show that f 2 AiCk.B1;i .y/; X nB.L0C5/3;i .y//. We consider any path

¹qj º
M
jD0 2 P10;iCk.B1;i .y/; X nB.L0C5/3;i .y//. First of all, we can extract the minimal

subpath ¹qj ºM
0

jD0 such that qM 0 … B.L0C5/3;i .y/. Clearly, if
PM 0

jD0 f .qj / � 1, then alsoPM
jD0 f .qj / � 1, so it is enough to check the admissibility condition on this minimal

subpath. For such a minimal subpath, we can construct the path ¹ Qqj ºM
0

jD0 as in the first part
of the proof, since qj 2 B2.L0C5/3;i .y/ for every j D 0; : : : ;M 0. By definition, it holds

M 0X
jD0

f .qj / �

M 0X
jD0

Qf . Qqj / � 1:

Moreover, we haveX
q2XiCk

f .q/p � C 0 �
X

Qq2Xi0Ck�1

Qf . Qq/p � C 0 � p-Modk�1.x/ � C 0 � p-Modk�1.X; n0/;

since x 2 Xi0 and 1 � i0 � n0 by definition. Here C 0 is a constant depending only onD0.
By the arbitrariness of i 2 N and y 2 Xi , we conclude

p-Mod1;.L0C5/
3

10;k
.X/ � C 0 � p-Modk�1.X; n0/

for every k � 1. Using Lemma 3.2, we obtain the second inequality; indeed,

p-Modk.X/D p-Mod3;4
10;k

.X/�C �p-Mod1;.L0C5/
3

10;k�`
.X/�C �C 0 �p-Modk�`�1.X;n0/;

where C and ` are constants depending only on L0 and D0. The thesis follows choosing
C0 D C � C

0 and `0 D `C 1.

The Ahlfors regular conformal dimension of a compact, doubling, uniformly perfect
metric space .X; d/ coincides with the critical exponent of the combinatorial modulus.
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Theorem 4.3 (Theorem 4.5 in [5]). Let .X; d/ be a compact, doubling, uniformly perfect
metric space. Then

CD.X; d/ D inf
®
p � 0 such that lim inf

k!C1
p-Modk.X/ D 0

¯
:

By Lemma 3.2 and Lemma 3.3, the right-hand quantity does not depend on our specific
choices of � D 10, L1 D 3 and L2 D 4 in the definition of p-Modk.X/: the critical
exponent associated to any other admissible choice of �, L1 and L2 equals the Ahlfors
regular conformal dimension of .X; d/. Moreover, following again [5] and [3], in the
quasi-selfsimilar setting it is possible to find a uniform estimate which will be the key
ingredient of the proof of Theorem A.

Proposition 4.4. Let .X; d/ be a perfect .L0; �0; D0/-q.s.s. metric space and let p <
CD.X; d/. Then there exists a constant �0, depending only on D0, L0 and p, such that

p-Modk.X; n0/ � �0 > 0

for every k > 0.

Proof. The space .X; d/ is uniformly perfect and doubling, by Proposition 2.2, so the
Ahlfors regular conformal dimension of .X; d/ can be computed as in Theorem 4.3. The
result follows by a submultiplicative estimate. Lemma 4.9 in [5] proves

p-Mod1;4
10;kCh

.X/ � C � p-Mod11=10;39=10
10;k

.X/ � p-Mod1;4
10;h

.X/

for all k; h � 0. Here C is a constant depending only on p andD0. Applying Lemma 3.2,
we get

p-ModkCh.X/ � C 0 � p-Modk�`.X/ � p-Modh.X/

for all k � ` and h � 0, where C 0 is a constant depending only on p and D0, and ` is a
universal constant. Let us denote by ak the quantity p-Modk.X/. The inequality above is
akCh � C

0 � ak�` � ah. By Theorem 4.3, lim infk!C1 ak > 0 since p < CD.X; d/. This
implies that ak � 1=C 0 for all k > 0. Indeed, if there exists k > 0 such thatC 0 � ak < .1� "/
for some " > 0, then

an.kC`/ � C
0
� ak � a.n�1/.kC`/ � � � � � .1 � "/

n

for all n 2 N. Therefore the subsequence ¹an.kC`/ºn2N would converge to 0, which is a
contradiction. Hence we have found a constant � > 0, depending only on p and D0, such
that ak � � for all k > 0. An application of Proposition 4.2 gives the thesis.

5. Upper semicontinuity of the conformal dimension

Our scope is to study the behaviour of the Ahlfors regular conformal dimension under
Gromov–Hausdorff convergence. For technical reasons, it is often useful to study ultralim-
its instead of Gromov–Hausdorff limits. It essentially avoids to extract converging sub-
sequences. For more detailed notions on ultralimits, we refer to [14] and [10]. A non-
principal ultrafilter ! is a finitely additive measure on N such that !.A/ 2 ¹0; 1º for
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every A �N and !.A/D 0 for every finite subset of N. Accordingly, we write !-a.s. and
for !-a.e..n/ in the usual measure theoretic sense.

Given a bounded sequence .an/ of real numbers and a non-principal ultrafilter !, there
exists a unique a 2 R such that for every " > 0 the set ¹n 2 N such that jan � aj < "º has
!-measure 1, see, for instance, Lemma 10.25 in [14]. The real number a is called the
ultralimit of the sequence an, and it is denoted by !-lim an.

If .Xn; dn; xn/ is a sequence of pointed metric spaces, we denote by .X! ; d! ; x!/
the ultralimit pointed metric space. It is the set of sequences .yn/, where yn 2Xn for
every n, such that !-limd.xn; yn/ < C1, modulo the relation .yn/ � .y0n/ if and only if
!-limd.yn; y0n/D 0. The point ofX! defined by the class of the sequence .yn/ is denoted
by y! D !-lim yn. The formula d!.!-lim yn; !-lim y0n/ D !-lim d.yn; y

0
n/ defines a

metric on X! which is called the ultralimit distance on X! .
The relation between Gromov–Hausdorff convergence and ultralimits is summarized

here.

Proposition 5.1 (Proposition 3.11 in [18] and Proposition 3.13 in [8]). Let .Xn; dn; xn/
be a sequence of pointed, compact metric spaces, and let ! be a non-principal ultrafilter.

(i) If .Xn; dn/ �!
GH

.X1; d1/, then .X! ; d!/ is isometric to .X1; d1/. In particular,

the ultralimit does not depend on the choice of the basepoints.

(ii) If .X! ;d! ;x!/ is compact, then .Xnk ;dnk/�!GH
.X! ;d!/ for some subsequence ¹nkº.

Let .Xn; dXn ; xn/; .Yn; dYn ; yn/ be two sequences of pointed metric spaces, and let !
be a non-principal ultrafilter. A sequence of maps fnW Xn ! Yn is said admissible if
!-lim dYn.fn.xn/; yn/ < C1. A sequence of admissible L-Lipschitz maps fn defines a
L-Lipschitz map f! D !-limfnW .X! ; x!/! .Y! ; y!/ by f!.!-limxn/D !-limfn.xn/.

The class of uniformly perfect .L0; �0/-quasi-selfsimilar metric spaces is closed under
Gromov–Hausdorff convergence.

Proposition 5.2. Let .Xn; dn/ be a sequence of compact, a0-uniformly perfect, .L0; �0/-
q.s.s. metric spaces. Suppose it converges in the Gromov–Hausdorff sense to a metric
space .X1; d1/. Then .X1; d1/ is a compact, a0-uniformly perfect, .L0; �0/-q.s.s.
metric space.

Proof. The set X1 is compact by our definition of Gromov–Hausdorff convergence. We
fix a non-principal ultrafilter ! and we call X! the ultralimit space: it does not depend
on the basepoints, and it is isometric to X1 by Proposition 5.1. We fix a point x! D
!-limxn2X! and a positive real number �� �0. For every n, there exists aL0-biLipschitz
map ˆnW .B.xn; �/; .�0=�/ � dn/! Xn with ˆn.B.xn; �// � B.ˆn.xn/; �0=L0/. The se-
quence of mapsˆn is clearly admissible, so it defines a ultralimitL0-biLipschitz mapˆ! ,
which is defined on the ultralimit space of the sequence .B.xn; �/; .�0=�/ � dn/. We
observe that this ultralimit space contains B.x! ; �/. Indeed, if y! D !-limyn 2 B.x! ; �/,
then dn.yn; xn/ < � !-a.s. Moreover, the ultralimit metric of the metrics .�0=�/ � dn
is .�0=�/ � d! . So we can restrict ˆ! to a L0-biLipschitz map from .B.x! ; �/; .�0=�/ �

d!/! X! . We need to show that ˆ!.B.x! ; �// � B.ˆ!.x!/; �0=L0/. We take y! D
!-lim yn such that d!.y! ; ˆ!.x!// � .1 � 2"/ �0=L0, with " > 0. By definition, we
have dn.yn; ˆn.xn// � .1 � "/ �0=L0 for !-a.e..n/. By assumption, we can find points
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zn 2 B.xn; �/ such that ˆn.zn/ D yn, !-a.s. These points satisfy

�0

�
� dn.zn; xn/ � L0 � dn.yn; ˆn.xn// � .1 � "/ � �0;

so dn.xn; zn/ � .1 � "/ � �. Clearly, the point z! D !-lim zn belongs to B.x! ; �/ and
satisfies ˆ!.z!/ D y! .

It remains only to prove thatX! is a0-uniformly perfect. We fix x! D !-lim xn 2 X!
and 0 < ��Diam.X!/. For every " > 0, we have .1� "/��Diam.Xn/ for !-a.e..n/, and
thus there exists a point y"n 2Xn with d.xn; y"n/� .1� "/� and d.xn; y"n/� a0.1� "/� for
!-a.e..n/. We consider the ultralimit point y"! D !-limy"n 2 X! . It satisfies d.x! ; y"!/ �
.1 � "/� and d.x! ; y"!/ � a0.1 � "/�. Since this is true for every " > 0, and since X!
is compact, we can find a point y! 2 X! such that d.x! ; y!/ � � and d.x! ; y!/ � a0�,
showing that X! is a0-uniformly perfect.

Remark 5.3. This proposition, together with Proposition 2.2, implies that the Gromov–
Hausdorff limit of a sequence of compact .L0; �0/-q.s.s. metric spaces with diameters
bounded below by c0 > 0, as considered by [20] and [5], is still uniformly perfect.

We can now give the:

Proof of Theorem A. We notice that since X1 is compact, then the diameters of Xn are
uniformly bounded above by some �0 � 0. We proceed in several steps.

Step 1. There exists D0 � 0 such that Xn is D0-doubling for every n.
Suppose it is not true: then for every j 2 N, there exist nj , xnj 2 Xnj and �nj > 0

such that there is a .�nj /=2/-separated set inside B.xnj ; �nj / of cardinality � j . Up to
passing to a subsequence, we can suppose lim �nj D �1 2 Œ0;C1/. Clearly X1 is not
totally bounded when �1 > 0, and this is impossible since X1 is compact. If �1 D 0,
we use the quasi-selfsimilarity to get L0-biLipschitz maps ĵ W .B.xnj ; �nj /; .�0=�nj / �

dnj / ! Xnj for every j for which �nj � �0. Hence we can find a �0
2L0

-separated set
inside B. ĵ .xnj /; L0�0/ with cardinality � j . Once again this contradicts the compact-
ness of X1.

In order to simplify the notations, we fix a non-principal ultrafilter ! and we call X!
the ultralimit space, which is isometric to X1 by Proposition 5.1.

Step 2. Let k 2 N. We fix a maximal 10�k-separated subset Xk;n of Xn. Then

(i) the cardinality of Xk;n is uniformly bounded from above, and each Xk;n is a 10�k-
net of Xn ;

(ii) the set Xk;! WD ¹!- lim qn such that qn 2 Xk;nº is a 10�k-net of X! ;
(iii) there exists Ak � N, with !.Ak/ D 1, such that the function �nWXk;! ! Xk;n,

�n.!- lim qn/ WD qn, is well defined and bijective for all n2Ak .

By Step 1, we know that each Xn is D0-doubling, therefore the cardinality of Xk;n
is uniformly bounded above in terms of D0 and k. The second statement of (i) has been
explained at the beginning of Section 2.

We take two points !-limqn, !-limq0n 2Xk;! . If d!.!-limqn;!-limq0n/<10
�k , then

dn.qn; q
0
n/<10

�k !-a.s., and by definition qnDq0n !-a.s., implying !-lim qnD!-lim q0n.
SinceX! is compact, we conclude that the setXk;! is finite, being 10�k�1-separated, and
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that �n is well defined !-a.s. Indeed, the proof given above shows that for every q! D
!-lim qn 2 Xk;! , there exists a set Aq! � N such that !.Aq! / D 1 and such that if q! D
!-limq0n with q0n 2Xk;n, then q0n D qn. Therefore, for every n2Ak WD

T
q!2Xk;!

Aq! , the
map �n is well defined. Since the cardinality of Xk;! is finite, we have that !.Ak/ D 1.

We suppose Xk;! is not a 10�k-net of X! . Therefore we can find y! D !-lim yn
2 X! such that d!.y! ; q!/ > 10�k for all q! 2 Xk;! . Since Xk;! is finite, we know that
dn.yn; qn/ > 10

�k for all qn 2Xk;n, !-a.s. This contradicts the fact thatXk;n is a 10�k-net
for every n, so also Xk;! is a 10�k-net of X! . Since

jd!.q! ; q
0
!/ � dn.qn; q

0
n/j <

10�k

2

for all q! D !-lim qn; q
0
! D !-lim q0n 2 Xk;! and for !-a.e..n/, we conclude that �n is

injective !-a.s. Finally, suppose �n is not surjective !-a.s. Then it is possible to find a set
A 2 ! such that for every n2A there exists qn 2Xk;n which is not in the image of �n.
In this case, we consider the point !-lim qn that belongs to Xk;! , finding a contradiction.
This ends the proof of (iii).

Since we have fixed 10�k-nets Xk;n and Xk;! of Xn and X! , respectively, every path
will be intended with respect to these sets.

Step 3. Let k 2 N. There exists a subset Bk � N of !-measure 1 such that

(i) the map �nWXk;! ! Xk;n from Step 2 is well defined and bijective for every n2Bk ;
(ii) for every n2Bk and for every .10;k/-path 
n D ¹qnj º

M
jD0 of Xn, the associated path


! D ¹�
�1
n .qnj /º

M
jD0 is a .30; k/-path of X! .

Since Xk;! is finite, we can find a subset Bk of Ak with !-measure 1 such that

jd!.q! ; q
0
!/ � dn.�n.q!/; �n.q

0
!//j � 10 � 10

�k

for all q! ; q0! 2 Xk;! and for all n2Bk . Let us take a .10; k/-path 
n D ¹qnj º
M
jD0 of Xn,

for n2Bk . This means dn.qnj ; q
n
jC1/ � 20 � 10

�k for all j D 0; : : : ; M � 1. Therefore
d!.�

�1
n .qnj /; �

�1
n .qnjC1// � 30 � 10

�k , i.e., the thesis.

Step 4. Let i; k 2 N and p � 0. Then p-Mod13=4;15=4
30;k

.y!/ � !- limp-Modk.yn/ for
every y! D !-limyn 2 Xi;! .

We apply Step 3 to the integer i C k finding BiCk � N, !.BiCk/ D 1, and biject-
ive maps �nW XiCk;! ! XiCk;n for all n2BiCk . We take an optimal function f! 2
A30;iCk.B13=4;i .y!/; X! nB15=4;i .y!//. By definition, f! maps points of XiCk;! to
Œ0;C1/. For all n2BiCk , we define the functions fnWXiCk;n ! Œ0;C1/ by fn.q/ D
f!.�

�1
n .q//. We find another subset CiCk;y! � BiCk of !-measure 1 such that

jd!.q! ; y!/ � dn.�n.qn/; yn/j �
1

4
� 10�i

for all q! 2 XiCk;! and for all n2CiCk;y! .
We want to check that fn 2A10;iCk.B3;i .yn/; XnnB4;i .yn// for all n2CiCk;y! . We

fix n2CiCk;y! and take a .10; i C k/-path 
n D ¹qnj º
M
jD0 such that dn.yn; qn0 / � 3 � 10

�i
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and dn.yn; qnM / > 4 � 10�i . We denote by 
! D ¹��1n .qnj /º the .30; i C k/-path given
by Step 3. We observe that d!.y! ; ��1n .qn0 // �

13
4
� 10�i and d!.y! ; q!M / >

15
4
� 10�i ,

i.e., the .30; i C k/-path 
! joins B13=4;i .y!/ and X! nB15=4;i .y!/. By definition of fn,
we get

MX
jD0

fn.q
n
j / D

MX
jD0

f!.�
�1
n .qnj // � 1:

Moreover, it holds

p-Modk.yn/ �
X

q2XiCk;n

f pn .q/ D
X

q2XiCk;!

f p! .�
�1
n .q// D p-Mod13=4;15=4

30;k
.y!/:

Since this is true for all n2CiCk;y! , we get

p-Mod13=4;15=4
30;k

.y!/ � !- limp-Modk.yn/:

Step 5. Conclusion.
We fix k 2 N and 0 � p < !-lim CD.Xn; dn/. By Proposition 4.4, we find a constant

�0 > 0 depending only on D0, L0 and p such that

(5.1) sup
i�n0

sup
y2Xi;n

p-Modk.y/ � �0

for !-a.e..n/. For all these n’s, we take a point yn 2 Xin;n, 1 � in � n0, realizing the
supremum in (5.1). The sequence in is !-a.s. equal to some i� 2 ¹1; : : : ; n0º. So the limit
point y! belongs to Xi�;! . By Step 4, we get

p-Mod13=4;15=4
30;k

.X!/ � p-Mod13=4;15=4
30;k

.y!/ � !- limp-Modk.yn/ � �0:

Applying the easy inequalities of Lemmas 3.2 and 3.3, we conclude that p-Modk.X!/
� �0 for every k. This shows lim infk!C1 p-Modk.X!/ > 0. As X! is a compact, doub-
ling and uniformly perfect metric space by Proposition 5.2 and Proposition 2.2, we can
apply Theorem 4.3 to get p � CD.X! ; d!/. In conclusion, we proved

!-lim CD.Xn; dn/ � CD.X! ; d!/:

This inequality is true for every non-principal ultrafilter !, so by Lemma 6.3 of [8], we
have lim supn!C1 CD.Xn; dn/ � CD.X1; d1/:

The main tools used in this proof are: the reduction of the computation of the combin-
atorial modulus to a finite set of scales and the uniform lower bound on the combinatorial
modulus, independent of k, given by Proposition 4.4. The approach to the lower semicon-
tinuity problem is more difficult because from one side it is still possible to reduce the
computation to a finite set of scales, but from the other side there is no more any control
on the behaviour of the p-modulus, independent of k. If we take some p > CD.Xn; dn/
for every n, then by Theorem 4.3 it holds lim infk!C1 p-Modk.Xn/ D 0. But a priori it
is not possible to conclude that lim infk!C1 p-Modk.X1/ D 0. Indeed, for given " > 0,
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we cannot control the threshold k" such that p-Modk.Xn/ < " for k � k". Clearly, if we
have this kind of uniform control on the spaces Xn, then the Ahlfors regular conformal
dimension of X1 is equal to the limit of the Ahlfors regular conformal dimensions of Xn.

Then Question 1.3 can be rephrased in the following way: are there (interesting)
geometric conditions on a quasi-selfsimilar space that gives a uniform control on the
thresholds k" defined above?

This question seems to be related to (uniform) weak super-multiplicative properties of
the sequence p-Modk.X/, as studied in relation with the combinatorial Lowner property
in Sections 4 and 8 of [3], and in the special case of the Sierpiński carpet in Theorem 1.3
of [21]. This weak super-multiplicative property seems to hold true only for spaces in
which curves are uniformly distributed in some sense, as suggested by the arguments used
again in Lemmas 4.3 and 8.1 of [3]. This observation gives a possible approach to the
question presented in the introduction in case of spaces satisfying a uniform combinatorial
Lowner property.

6. Gromov-hyperbolic spaces

In this second part of the paper, we prove Theorem B. We briefly recall the definition of
Gromov-hyperbolic metric spaces. Good references are for instance [4] and [12]. Let X
be a metric space. Given three points x; y; z 2 X , the Gromov product of y and z with
respect to x is

.y; z/x D
1

2
.d.x; y/C d.x; z/ � d.y; z//:

The space X is said ı-hyperbolic, ı � 0, if for every four points x; y; z; w 2 X , the
following 4-points condition holds:

(6.1) .x; z/w � min¹.x; y/w ; .y; z/wº � ı;

or, equivalently,

(6.2) d.x; y/C d.z; w/ � max¹d.x; z/C d.y;w/; d.x;w/C d.y; z/º C 2ı:

The space X is Gromov hyperbolic if it is ı-hyperbolic for some ı � 0.
LetX be a ı-hyperbolic metric space, and let x be a point ofX . The Gromov boundary

of X is defined as the quotient

@X D
®
.zn/n2N � X j lim

n;m!C1
.zn; zm/x D C1

¯
=�;

where .zn/n2N is a sequence of points in X and � is the equivalence relation defined
by .zn/n2N � .z

0
n/n2N if and only if limn;m!C1.zn; z

0
m/x D C1. We will write z D

Œ.zn/� 2 @X for short, and we say that .zn/ converges to z. This definition does not depend
on the basepoint x. There is a natural topology onX [ @X that extends the metric topology
of X . The Gromov product can be extended to points z; z0 2 @X by

.z; z0/x D sup
.zn/;.z

0
n/

lim inf
n;m!C1

.zn; z
0
m/x ;
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where the supremum is taken among all sequences such that .zn/ 2 z and .z0n/ 2 z
0. For

every z; z0; z00 2 @X , it continues to hold

(6.3) .z; z0/x � min¹.z; z00/x ; .z0; z00/xº � ı:

Moreover, for all sequences .zn/ and .z0n/ converging to z and z0, respectively, it holds

(6.4) .z; z0/x � ı � lim inf
n;m!C1

.zn; z
0
m/x � .z; z

0/x :

The Gromov product between a point y 2 X and a point z 2 @X is defined in a similar
way, and it satisfies a condition analogue of (6.4).

The boundary of a ı-hyperbolic metric space is metrizable. A metric Dx;a on @X is
called a visual metric of center x 2 X and parameter a 2 .0; 1

2ı �log2 e
/ if there exists V > 0

such that for all z; z0 2 @X , it holds

(6.5)
1

V
e�a.z;z

0/x � Dx;a.z; z
0/ � Ve�a.z;z

0/x :

A visual metric is said standard if for all z; z0 2 @X , it holds

(6.6) .3 � 2eaı/e�a.z;z
0/x � Dx;a.z; z

0/ � e�a.z;z
0/x :

For all a as before and x 2 X , there exists always a standard visual metric of center x and
parameter a (cf. [2,23]). Every two different visual metrics are quasisymmetric equivalent,
and the quasisymmetric homeomorphism is the identity (Lemma 6.1 in [2]). This defines
a well-defined quasisymmetric gauge on @X , that we denote by JAR.@X/. If C is a subset
of @X , then the restriction of two visual metrics on C define again two quasisymmetric
distances, so the quasisymmetric gauge JAR.C / is well defined.

We will deal with proper metric spaces, i.e., spaces in which every closed ball is com-
pact. A metric spaceX isK-almost geodesic if for all x;y 2X and for all t 2 Œ0; d.x;y/�,
there exists z 2 X such that jd.x; z/ � t j � K and jd.y; z/ � .d.x; y/ � t /j � K. If
we do not need to specify the value of K, we simply say that X is almost geodesic. A
metric space is geodesic if it is 0-almost geodesic. Let X be a proper, geodesic, Gromov-
hyperbolic metric space. Every geodesic ray � defines a point �C D Œ.�.n//n2N � of the
Gromov boundary @X . Moreover, for every z 2 @X and every x 2 X , it is possible to find
a geodesic ray �x;z such that �x;z.0/D x and �Cx;z D z. Analogously, given different points
z D Œ.zn/� and z0 D Œ.z0n/� 2 @X , there exists a geodesic line 
 joining z to z0, i.e., such
that 
 jŒ0;C1/ and 
 j.�1;0� join 
.0/ to z and z0, respectively. We call z and z0 the positive
and negative endpoints of 
 , respectively, denoted 
˙.

The quasiconvex hull of a subset C of @X is the union of all the geodesic lines joining
two points of C , and it is denoted by QC-Hull.C /. If X is proper and geodesic and C has
more than one point, then QC-Hull.C / is non-empty by the discussion above. We can say
more, see also Lemma 3.6 in [19].

Proposition 6.1. Let X be a proper, geodesic, ı-hyperbolic metric space and let C � @X
be a closed subset with at least two points. Then QC-Hull.C / is proper, 36ı-almost
geodesic and ı-hyperbolic. Moreover, JAR.@QC-Hull.C // Š JAR.C /, in the sense that
there exists a homeomorphism F WC ! @QC-Hull.C / which is a quasisymmetric equival-
ence when we equip C and @QC-Hull.C / with every metrics in the gauges JAR.C / and
JAR.@QC-Hull.C //, respectively.
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We need the following approximation result.

Lemma 6.2 (Lemma 4.6 in [8]). Let X be a proper, geodesic, ı-hyperbolic metric space.
Let C � @X be a subset with at least two points and let x 2 QC-Hull.C /. Then

d.�x;z.t/;QC-Hull.C // � 14ı

for all z 2C , every geodesic ray �x;z with �x;z.0/D x and �Cx;z D z and every t 2 Œ0;C1/.

Proof of Proposition 6.1. We have that QC-Hull.C / is closed and is 36ı-quasiconvex
(Lemma 4.5 in [8]), i.e., every point of every geodesic segment joining every two points y
and y0 of QC-Hull.C / is at distance at most 36ı from QC-Hull.C /. This implies that
QC-Hull.C / is 36ı-almost geodesic and proper. Condition (6.1) involves only the dis-
tance function, so QC-Hull.C / is ı-hyperbolic. We define a map F WC ! @QC-Hull.C /
in the following way. We fix x 2 QC-Hull.C /. For every z 2 C , we take a sequence
.zn/ 2 QC-Hull.C / such that d.�x;z.n/; zn/ � 14ı, as provided by Lemma 6.2. The
sequence .zn/ defines a point Oz 2 @QC-Hull.C /, since limn;m!C1.zn; zm/x D C1. We
set F.z/ WD Oz. It is straightforward to check that F is well defined, i.e., it does not depend
on the choice of the sequence .zn/. The Gromov products on C and @QC-Hull.C / are
comparable by (6.4), namely

(6.7) .z; z0/x � ı � .F.z/; F.z
0//x � .z; z

0/x :

Fix visual distances Dx;a and ODx;a on @X and @QC-Hull.C /. By (6.7) and (6.5), we
have that F is injective. If moreover it is surjective, then it is a quasisymmetric homeo-
morphism from .C; Dx;a/ to .QC-Hull.C /; ODx;a/, which is the thesis. So fix a point
Oz 2 @QC-Hull.C /. By definition, it is represented by a sequence .zn/ 2 QC-Hull.C / such
that limn;m!C1.zn; zm/x D C1. Let 
n be a geodesic line of X such that 
˙n 2 C and
zn 2 
n. We claim that, up to changing the orientation of 
n, it holds limn!C1.


C
n ; zn/x D

C1, so that 
Cn converges to Oz 2 @X as n goes toC1. Since C is closed, we deduce that
Oz 2 C . Let us suppose the claim is false, so both .zn; 
˙n /x �M for every n, for someM .
By Lemma 3.2 in [11] applied to both the segments Œzn; 
˙n �, we get d.x; Œzn; 
˙n �/ �
M C 4ı. Let us call p˙n points on the rays Œzn; 
˙n � realizing the distance from x. The
4-point condition (6.2) gives

d.x; zn/C d.p
C
n ; p

�
n / � max¹d.x; pCn /C d.zn; p

�
n /; d.x; p

�
n /C d.zn; p

C
n /º C 2ı:

Since d.pCn ; p
�
n / D d.zn; p

�
n /C d.zn; p

C
n /, the inequality above implies

d.x; zn/ � max¹d.x; pCn /; d.x; p
�
n /º C 2ı � 2M C 10ı:

But this is impossible since limn!C1 d.x; zn/ D C1.

The quasisymmetric gauge of an almost geodesic Gromov-hyperbolic space is pre-
served by quasi-isometries. Recall that a quasi-isometry is a map f WX ! Y between
metric spaces for which there exist K � 0 and � � 1 such that

(i) f .X/ is K-dense in Y ;
(ii) 1

�
d.x; x0/ �K � d.f .x/; f .x0// � �d.x; x0/CK for all x; x0 2 X .
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Proposition 6.3 (Theorem 6.5 in [2]). Let X and Y be two almost geodesic, Gromov-
hyperbolic metric spaces, and let f WX ! Y be a quasi-isometry. Then f induces a
quasisymmetric homeomorphism @f W @X ! @Y .

This statement means that for one (hence every) choice of metrics on JAR.@X/ and
on JAR.@Y /, the map @f is a quasisymmetric homeomorphism. In this case, we write
JAR.@X/Š JAR.@Y / as in Proposition 6.1.

6.1. The proof of Theorem B

We recall the definition of the class M.ı;D/ appearing in Theorem B. Let X be a proper,
geodesic, ı-hyperbolic metric space. Every isometry of X acts naturally on @X , and the
resulting map on X [ @X is a homeomorphism. A group of isometries � of X is said
discrete if it is discrete in the compact-open topology. The limit set ƒ.�/ of a discrete
group of isometries � is the set of accumulation points of the orbit �x on @X , where x is
any point ofX . The group � is called elementary if #ƒ.�/� 2. The setƒ.�/ is closed and
�-invariant, so it is its quasiconvex hull. A discrete group of isometries � is quasiconvex-
cocompact if its action on QC-Hull.ƒ.�// is cocompact, i.e., if there exists D � 0 such
that for all x;y 2 QC-Hull.ƒ.�//, it holds d.gx;y/�D for some g 2 � . The smallestD
satisfying this property is called the codiameter of � .

Given two real numbers ı � 0 and D > 0, we define M.ı; D/ to be the class of
triples .X;x;�/, whereX is a proper, geodesic, ı-hyperbolic metric space, � is a discrete,
non-elementary, torsion-free, quasiconvex-cocompact group of isometries with codiameter
� D, and x 2 QC-Hull.ƒ.�//.

Let � be a finitely generated. Given a finite generating set † of � , one can con-
struct the Cayley graph Cay.�; †/ of � relative to †. Any two Cayley graphs, made
with respect to different generating sets, are quasi-isometric. The group � is said to be
Gromov-hyperbolic if one (and hence all) of its Cayley graphs is Gromov-hyperbolic.
If it is the case, the Gromov boundaries of every two Cayley graphs are quasisymmet-
ric equivalent, by Proposition 6.3. We denote the corresponding quasisymmetric gauge
by JAR.@�/. A straightforward modification of the classical proof of the Svarc–Milnor
lemma (along the same lines of Lemma 5.1 in [8]) says that every Cayley graph of �
is quasi-isometric to QC-Hull.ƒ.�//, if .X; x; �/ 2M.ı; D/. So both these spaces are
Gromov-hyperbolic and almost geodesic. By Proposition 6.3, the gauges JAR.@�/ and
JAR.@QC-Hull.ƒ.�///Š JAR.ƒ.�// are quasisymmetric equivalent. The last equality is
Proposition 6.1. This is enough, together with the results of [8], to prove the last part of
Theorem B. Before that, we recall the definition of equivariant pointed Gromov–Hausdorff
convergence.

A triple is .X; x; �/, where X is a proper metric space, x 2 X is a basepoint, and � is
a group of isometries ofX . GivenR > 0, we define†R.�;x/ WD ¹g 2 � W d.x;gx/�Rº.
Let .X; x; �/; .Y; y; ƒ/ be two triples and " > 0. An equivariant "-approximation from
.X; x; �/ to .Y; y;ƒ/ is a triple of functions .f; �;  /, where
• f WB.x; 1="/! B.y; 1="/ is a map such that f .x/ D y and satisfying

– jd.f .x1/; f .x2// � d.x1; x2/j < ", for all x1; x2 2 B.x; 1="/;
– for all y1 2 B.y; 1="/, there exists x1 2 B.x; 1="/ such that d.f .x1/; y1/ < ";
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• �W†1=".�; x/! †1=".ƒ; y/ is a map satisfying d.f .gx1/; �.g/f .x1// < " for all
g 2 †1=".�; x/ and for all x1 2 B.x; 1="/ such that gx1 2 B.x; 1="/;

•  W†1=".ƒ; y/! †1=".�; x/ is a map satisfying d.f . .g/x1/; gf .x1// < " for all
g 2 †1=".ƒ; y/ and for all x1 2 B.x; 1="/ such that  .g/x1 2 B.x; 1="/.
A sequence of triples .Xn; xn; �n/ converges in the equivariant, pointed Gromov–

Hausdorff sense to .X1; x1; �1/ if for every " > 0, there exists n" � 0 such that, if
n � n", there exists an equivariant "-approximation from .Xn; xn; �n/ to .X1; x1; �1/.
In this case, we write

.Xn; xn; �n/ �!
eq-pGH

.X1; x1; �1/:

This convergence can be also expressed via ultralimits, similarly to Proposition 5.1.
Namely, given a sequence of triples .Xn; xn; �n/ and a non-principal ultrafilter !, we
define the ultralimit group

�! D ¹!-limgn W gn 2�n and .gn/ is admissibleº;

where we recall that !-limgn acts by isometries on X! via

!-limgn.!-limyn/ WD !-lim.gnyn/;

and that .gn/ is admissible if !-lim d.xn; gnxn/ < C1. Then the following holds.

Proposition 6.4 (Proposition 3.13 in [8]). Let .Xn; xn; �n/ be a sequence of triples, and
let ! be a non-principal ultrafilter.

(i) If .Xn;xn;�n/ �!
eq-pGH

.X1;x1;�1/, then .X! ;x! ;�!/ is isometric to .X1;x1;�1/.

(ii) If .X! ; x! ; �!/ is proper, then .Xnk ; xnk ; �nk / �!eq-pGH
.X! ; x! ; �!/ for some sub-

sequence ¹nkº.

If the triples .Xn; xn; �n/ belong to M.ı;D/ and .Xn; xn; �n/ �!
eq-pGH

.X1; x1; �1/,

then also .X1; x1; �1/ 2M.ı;D/, by Theorem A in [8]. In particular, it is meaningful
to talk about ƒ.�1/. Recall that the conformal dimensions are the conformal dimensions
of the quasisymmetric gauges JAR.ƒ.�n//, n2N [ ¹1º.

Proposition 6.5. If .Xn;xn;�n/ �!
eq-pGH

.X1;x1;�1/, with .Xn;xn;�n/2M.ı;D/, then

limn!C1 CD.ƒ.�n// D CD.ƒ.�1//.

Proof. By Theorem A in [8], the triple .X1; x1; �1/ belongs to M.ı; D/. Moreover,
Corollary 7.7 in [8] implies that �n is isomorphic to �1 for n big enough. Using Proposi-
tion 6.3, we conclude that JAR.@�n/Š JAR.@�1/. The discussion above about the defin-
ition of equivariant pointed Gromov–Hausdorff convergence says that JAR.ƒ.�n// Š

JAR.ƒ.�1//. Therefore, by definition, CD.ƒ.�n// D CD.ƒ.�1// for n big enough.

The next step is to show that, under the assumptions of Theorem B, the spaces ƒ.�n/
are uniformly perfect and uniformly quasi-selfsimilar, when equipped with suitable visual
metrics. Let .X;x;�/ 2M.ı;D/. We always consider a standard visual metricDx center-
ed at x and with parameter aı D 1

4ı log2 e
. All the estimates will be done with respect to

this metric Dx .
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The following three results are essentially known, see for instance [20]. We provide
quantified version of them. The critical exponent of � is

h� WD lim
T!C1

1

T
log #�x \ B.x; T /:

For more details on its geometric meaning, see for instance [7, 9].

Proposition 6.6. Let ı; D; H � 0. There exists A D A.ı; D; H/ > 0 such that, for all
.X; x; �/ 2M.ı;D/ with h� � H , the limit set ƒ.�/ is .A; h�=aı/-Ahlfors regular.

Proof. It follows from Theorem 6.1 and Lemma 4.9 in [8].

Corollary 6.7. Let ı;D;H � 0. There exists a0 D a0.ı;D;H/ such that, for all .X;x;�/
2M.ı;D/ with h� � H , the limit set ƒ.�/ is a0-uniformly perfect.

Proof. Proposition 5.2 in [8] says that h� �
log2

99ıC10D
. The conclusion follows by Propos-

ition 6.6 and Lemma 2.1.

Proposition 6.8. Let ı; D � 0. There are L0 D L0.ı; D/ and �0 D �0.ı; D/ such that
for all .X; x; �/ 2M.ı;D/, the set ƒ.�/ is .L0; �0/-q.s.s.

Before the proof of this last property, we need a bit of preparation.

Lemma 6.9 (Lemma 4.2 in [8]). Let X be a proper, geodesic, ı-hyperbolic metric space,
and let z; z0 2 @X and x 2 X .

(i) If .z; z0/x � T , then d.�x;z.T � ı/; �x;z0.T � ı// � 4ı.

(ii) If d.�x;z.T /; �x;z0.T // < 2b, then .z; z0/x > T � b, for all b > 0.

Lemma 6.10 (Lemma 4.4 in [8]). LetX be a proper, geodesic, ı-hyperbolic metric space.
Then every two geodesic rays � and � 0 with the same endpoints at infinity are at distance
at most 8ı. More precisely, there exist t1; t2 � 0 such that t1 C t2 D d.�.0/; � 0.0// and
d.�.t C t1/; �

0.t C t2// � 8ı for all t � 0.

Recall that, on @X , we always consider a visual metrics of parameter aı .

Corollary 6.11. Let .X; x; �/ 2M.ı; D/, and let z; z0 2 @X . Let � > 0 and R be such
that e�aıR D �. If Dx.z; z0/ � �, then d.�x;z.R/; �x;z0.R// � 14ı.

Proof. With this choice of aı , we have 1
2
e�aı .z;z

0/x � Dx.z; z
0/ � e�aı .z;z

0/x . So, if
Dx.z;z

0/� �, then .z;z0/x �R� log.2/=aı DR� 4ı. By Lemma 6.9, we get d.�x;z.R�
5ı/; �x;z0.R � 5ı// � 4ı, so by the triangle inequality, d.�x;z.R/; �x;z0.R// � 14ı.

We can finally give the:

Proof of Proposition 6.8. We claim that �0 D e�aı �D works. We fix 0 < � � �0, and
we call R � 0 the real number such that � D e�aı �R. Let z 2 ƒ.�/ and let �x;z be a
geodesic ray joining x to z. By Lemma 6.2, there is a point y 2 QC-Hull.ƒ.�// such that
d.�x;z.R/; y/ � 14ı. Moreover, by definition of quasiconvex-cocompactness, there exists
g 2 � such that d.y; gx/ � D, so d.�x;z.R/; gx/ � 14ı CD. Observe that d.x; gx/ �
RC 14ı CD. We call ˆ the map induced by g�1 on ƒ.�/, which is well defined since
ƒ.�/ is �-invariant. We claim it satisfies the properties required by Definition 1.1.
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Letw andw0 be two points ofB.z;�/\ƒ.�/, soDx.w;z/,Dx.w0; z/ < �. Let T � 0
be the real number such that e�aı �T DDx.w;w0/. SinceDx.w;w0/ < 2�, we get e�aı �T <
2e�aı �R and, by definition of aı , T > R � 4ı. We apply three times Corollary 6.11 to get

d.�x;z.R/;�x;w.R//�14ı; d.�x;z.R/;�x;w 0.R//�14ı; d.�x;w.T /;�x;w 0.T //�14ı:

By the triangle inequality, we have

jT �Rj �D � 28ı � d.x; g�1�x;w.T // � jT �Rj CD C 28ı:

Similar estimates hold for d.x; g�1�x;w 0.T //.
We want to estimate d.�x;g�1w.jT � Rj/; g�1�x;w.T //. The two rays �x;g�1w and

g�1�x;w define the same point g�1w of @X , and d.x; gx/ � R C 14ı C D. Thus, by
Lemma 6.10, there exist t1; t2 � 0with t1C t2 �RC14ıCD such that d.�x;g�1w.tC t1/;
g�1�x;w.t C t2// � 8ı for all t � 0. We apply this property to t D T � t2 C 18ı CD,
which is non-negative since T � R � 4ı, finding

d
�
�x;g�1w.T � t2 C t1 C 18ı CD/; g

�1�x;w.T C 18ı CD/
�
� 8ı:

By this inequality and the estimates on d.x; g�1�x;w.T //, we get

jT �Rj � 2D � 54ı � d
�
x; �x;g�1w.T � t2 C t1 C 18ıCD/

�
� jT �Rj C 2DC 54ı;

so
jT �Rj � 2D � 54ı � T � t2 C t1 C 18ı CD � jT �Rj C 2D C 54ı:

Therefore, by the triangle inequality,

d.�x;g�1w.jT �Rj/; g
�1�x;w.T // � 80ı C 3D:

Analogously, we get d.�x;g�1w 0.jT � Rj/; g�1�x;w 0.T // � 80ı C 3D. Combining these
two estimates, we conclude d.�x;g�1w.jT � Rj/; �x;g�1w 0.jT � Rj// � 174ı C 6D. By
Lemma 6.9, we have .g�1w; g�1w0/x > jT �Rj � 87ı � 3D, so

Dx.g
�1w; g�1w0/ � e�aı .jT�Rj�87ı�3D/ � eaı .87ıC4D/ �

e�aıD

e�aıR
� e�aıT

D eaı .87ıC4D/ �
�0

�
�Dx.w;w

0/;

where we used the definition of standard visual metric, jT �Rj � T �R and �0 D e�aıD .
We prove now the other inequality. We have Dx.w; w0/ D e�aıT � e�aı .w;w

0/x , so
.w; w0/x � T . We set b D 47ı CD and T 0 D T C b. By Lemma 6.9(ii), we know that
d.�x;w.T

0/; �x;w 0.T
0// � 2b. We can argue in the same way as before with t D T 0 � t2,

finding
d.�x;g�1w.T

0
�R/; g�1�x;w.T

0// � 44ı CD;

and the analogous estimate for w0. Therefore,

d.�x;g�1w.T
0
�R/; �x;g�1w 0.T

0
�R// � 2b � 88ı � 2D > 4ı:

By Lemma 6.9(i), we have .g�1w; g�1w0/x < T 0 �RC ı D T �RC 48ı CD. Thus,

Dx.g
�1w; g�1w0/ �

1

2
e�aı .T�RC48ıCD/ D

1

2
e�48�aı �ı �

�0

�
�Dx.w;w

0/:



N. Cavallucci 24

Thus,ˆ is L0-biLipschitz, with L0 D L0.ı;D/D max¹eaı .87ıC4D/; 2e48�aı �ıº, from
.B.z; �/ \ƒ.�/; .�0=�/ �Dx/! ƒ.�/.

It remains to show thatˆ.B.z; �/\ƒ.�//� B.ˆ.z/; �0=L0/\ƒ.�/. The mapˆ is
a well-defined self-homeomorphism ofƒ.�/, so every w 2 B.ˆ.z/; �0=L0/\ƒ.�/ is of
the form ˆ.w0/ for some w0 2 ƒ.�/. Moreover, the same proof as above implies that the
map ˆ�1 induced by g is L0-biLipschitz from .B.z; �0/\ƒ.�/; .�=�0/ �Dx/! ƒ.�/.
We know that Dx.ˆ.w0/; ˆ.z// � �0=L0, then

Dx.w
0; z/ D Dx.ˆ

�1.ˆ.w0//; ˆ�1.ˆ.z/// � L0 �
�

�0
�Dx.ˆ.w

0/; ˆ.z// � �;

i.e., w0 2 B.z; �/ \ƒ.�/. This concludes the proof.

Corollary 6.12. Let .Xn; xn; �n/ �!
eq-pGH

.X1; x1; �1/, with .Xn; xn; �n/ 2 M.ı; D/.

Then the spaces ƒ.�n/ are uniformly q.s.s. and uniformly perfect.

Proof. By Proposition 6.8, all the spacesƒ.�n/ are compact and .L0; �0/-q.s.s. By Corol-
lary 5.9 in [8], there exists H � 0 such that h�n � H for all n2N. Then ƒ.�n/ is
a0-uniformly perfect for the same 0 < a0 < 1, by Corollary 6.7.

The last step we need is the following.

Proposition 6.13. If .Xn; xn; �n/ �!
eq-pGH

.X1; x1; �1/, with .Xn; xn; �n/ 2M.ı; D/,

there exist visual metricsDn 2 JAR.ƒ.�n// for n2N [ ¹1º such that .ƒ.�n/;Dn/ �!
GH

.ƒ.�1/;D1/, up to a subsequence.

Proof. We fix a non-principal ultrafilter !. We denote by .X! ; x! ;�!/ the ultralimit triple
of the sequence .Xn; xn; �n/: it is equivariantly isometric to .X1; x1; �1/, by Propos-
ition 6.4. We equip each ƒ.�n/ with a standard visual metric Dn of center xn and para-
meter aı . Every point of the space !-lim.ƒ.�n/;Dn/ is an equivalence class of sequences
.zn/ with zn 2ƒ.�n/. Associated to this sequence, there is a sequence of geodesic rays
�xn;zn of Xn. It is classical (cf. [10], Lemma A.7) that this sequence of geodesic rays
define a limit geodesic ray �x! ;z! , with z! 2 @X! . The map‰W!-lim.ƒ.�n/;Dn/! @X!
defined by ‰..zn// D z! is a well-defined homeomorphism, by Proposition 5.11 in [8].
Moreover, the proof of Theorem A(i) in [8] shows that the image of ‰ is exactly ƒ.�!/.
We denote by D! the distance induced by ‰ on ƒ.�!/. By definition, the two spaces
!-lim.ƒ.�n/; Dn/ and .ƒ.�!/; D!/ are isometric. Proposition 5.1 implies that, up to
a subsequence, .ƒ.�n/; Dn/ �!

GH
.ƒ.�!/; D!/. We claim that D! is a visual metric on

ƒ.�!/. This would imply, since .X1; x1; �1/ and .X! ; x! ; �!/ are equivariantly iso-
metric, that .ƒ.�n/;Dn/ �!

GH
.ƒ.�1/;D1/ for a visual metric D1 on ƒ.�1/.

Let us prove the claim. We take two points ‰.z/;‰.z0/ 2 ƒ.�!/, with z D !-lim zn,
z0D !-limz0n 2 !-lim.ƒ.�n/;Dn/. By definition,D.‰.z/;‰.z0//D !-limDn.zn; z0n/D
e�aıR for some R � 0. From (6.6), we have that !-lim.zn; z0n/xn � R � 4ı, and then
!-lim d.�xn;zn.R � 5ı/; �xn;z0n.R � 5ı// � 4ı, by Lemma 6.9(i). This implies that

d.�x! ;z! .R � 5ı/; �x! ;z0! .R � 5ı// � 4ı;



Ahlfors regular conformal dimension and Gromov–Hausdorff convergence 25

and so .‰.z/;‰.z0//x! > R � 8ı by Lemma 6.9(ii). This means

D!.‰.z/;‰.z
0// D e�aıR � e�aı �8ı � e�aı .‰.z/;‰.z

0//x! D
1
4
� e�aı .‰.z/;‰.z

0//x! :

Analogously, with the same notation as above, we have !-lim.zn; z0n/xn � R and so

! � lim d.�xn;zn.RC 3ı/; �xn;z0n.RC 3ı// � 6ı

by Lemma 6.9.(ii).
By definition, d.�x! ;z! .RC 3ı/; �x! ;z0! .RC 3ı//� 6ı; so .ˆ.z/;ˆ.z0//x! �RC 4ı

by Lemma 6.9.(i). This means

D!.‰.z/;‰.z
0// D e�aıR � eaı �4ı � e�aı .‰.z/;‰.z

0//x! D 2 � e�aı .‰.z/;‰.z
0//x! :

This shows that D! is a visual metric on ƒ.�!/ and concludes the proof.

Theorem B follows from Corollary 6.12, Proposition 6.13 and Proposition 6.5.
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