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Quantum smooth uncertainty principles
for von Neumann bi-algebras

Linzhe Huang, Zhengwei Liu, and Jinsong Wu

Abstract. In this article, we prove various smooth uncertainty principles on von Neumann bi-
algebras, which unify a number of uncertainty principles on quantum symmetries, such as sub-
factors, fusion bialgebras, etc., studied in quantum Fourier analysis. We also obtain Wigderson–
Wigderson type uncertainty principles for von Neumann bi-algebras. Moreover, we give a
complete answer to a conjecture proposed by A. Wigderson and Y. Wigderson.

1. Introduction

Uncertainty principles have been investigated for more than hundred years in mathe-
matics and physics inspired by the famous Heisenberg uncertainty principle [7,16,25]
with significant applications in information theory [3, 4].

Recently, quantum uncertainty principles on subfactors, an important type of quan-
tum symmetries [6, 13], have been established for support and for von Neumann
entropy in [11] and for Rényi entropy in [20]. These quantum uncertainty principles
have been generalized on other types of quantum symmetries, such as Kac alge-
bras [19], locally compact quantum groups [12] and fusion bialgebras [18], etc., in
the unified framework of quantum Fourier analysis [10]. Such quantum inequalities
were applied in the classification of subfactors [17] and as analytic obstructions of
unitary categorifications of fusion rings in [18].

In 2021, A. Wigderson and Y. Wigderson [26] introduced k-Hadamard matri-
ces, as an analog of discrete Fourier transforms, and they proved various uncertainty
principles such as primary uncertainty principles, support uncertainty principles, etc.
Their work unifies a number of proofs of uncertainty principles in the classical set-
tings.

In this paper, we unify several quantum (support, entropic) uncertainty principles
on quantum symmetries and we further generalize the results to various smooth sup-
ports �

p
" and smooth entropies Hp

" whose definitions are stated in the following. Let
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M be a finite von Neumann algebra with a normal faithful trace �M. The smooth
support �

p
" .x/ of x with p � 1, 0 � " � 1 is defined as

�p" .x/ WD inf
®
�M.yR.x// W y 2M; 0 � y � I; k.I � y/xkp � "kxkp

¯
;

where k � kp is the p-norm on M, R.x/ is the range projection of x. The smooth
entropy Hp

" .jxj
2/ of jxj2 with p � 1, 0 � " � 1 is defined as

Hp
" .jxj

2/ WD inf
®
H.jyj2/ W y 2M; kx � ykp � "

¯
;

whereH.jyj2/ is the von Neuman entropy of jyj2, i.e.,H.jyj2/D��M.jyj
2 log jyj2/.

Inspired by the notion of k-Hadamard matrices, we introduce k-transforms F between
a pair of finite von Neumann algebras A;B with normal faithful traces �; d , respec-
tively. Precisely, F is a linear map from A into B satisfying the following conditions:

(i) kF k1!1 � 1,

(ii) kF �F .x/k1 � kkxk1 for x 2 A.

We call their combination .A;B; �; d;F / a von Neumann k-bi-algebra (see Defini-
tion 2.3).

In [14], Jones introduced subfactor planar algebras as an axiomatization of the
standard invariant in the flavor of topological quantum field theory. The quantum
Hausdorff–Young inequality related to quantum Fourier transform on subfactor pla-
nar algebras was established in [11]. The proof essentially used topological struc-
tures in planar algebras, such as Wenzl’s formula [24] and the local relation. Quan-
tum Donoho–Stark uncertainty principle and quantum Hirchman–Beckner uncertainty
principle on subfactor planar algebras were subsequently established using the quan-
tum Hausdorff–Young inequality. We axiomatize these topological structures in pla-
nar algerbas in the framework of von Neumann k-bi-algebras. More specifically, the
pair of von Neumann algebras A and B are infinite-dimensional generalizations of
2-box spaces P2;˙ of a subfactor planar algebra P, and � and d are corresponding to
Markov traces on P2;˙. The value k is the Jones index � of P when the k-transform
F reduces to the string Fourier transform Fs from P2;˙ into P2;�, which is a 90ı-
rotation in picture. The first inequality condition kF k1!1 � 1 comes from the fact
k�1=2Fsk1!1 � 1, while the second is a weaker condition of .�1=2Fs/

�.�1=2Fs/D

kI , which comes from the fact that Fs is a unitary operator.
In this axiomatized framework, the quantum smooth uncertainty principles on von

Neumann k-bi-algebras in this paper imply those for subfactor planar algebras and for
the corresponding higher relative commutants of inclusions of simple C �-algebras
studied in [1].

With the smooth supports, entropies, we prove the corresponding uncertainty prin-
ciples for von Neumann k-bi-algebras as follows.
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Main theorem 1 (See Theorems 3.9 and 3.13). Let the quintuple .A;B; d; �;F / be
a von Neumann k-bi-algebra. Let x 2 A be a nonzero operator. Then

�1" .x/�
1
� .F .x// � k.1 � "/.1 � �/ 8 "; � 2 Œ0; 1�:

Furthermore, if A, B are finite dimensional and F �F D kI , then

�2" .x/�
2
� .F .x// � k.1 � " � �/

2
8 "; � 2 Œ0; 1�; "C � � 1:

For a von Neumann k-bi-algebra .A;B; d; �;F / such that A and B are finite
dimensional, we set

˛ D max
®
d.e/�1 W e is a projection in A

¯
and

ˇ D max
®
�.e/�1 W e is a projection in B

¯
:

Main theorem 2 (See Theorems 3.22 and 3.28). Let the quintuple .A;B; d; �;F / be
a von Neumann k-bi-algebra. Suppose A and B are finite dimensional and F �F D

kI . Then, for any nonzero x 2 A, "; � 2 Œ0; 1� and p; q 2 Œ1;1�, we have

H
p
" .jxj

2/

kxk22
C
H
q
� .jF .x/j

2/

kF .x/k22

� �4 log kxk2 �
C1.x/

kxk22
d.I /1�

1
p " �

C2.x/

kF .x/k22
�.I /1�

1
q �;

where

C1.x/ D f .kxk C 1C ˛
1=p/;

C2.x/ D f .kF .x/k C 1C ˇ
1=q/;

f .t/ D 4t log t C 2t:

On the one hand, our results generalize a number of uncertainty principles for
quantum symmetries in [11,18]. On the other hand, these results are slightly stronger
than uncertainty principles for k-Hadamard matrices in [26].

The primary uncertainty principle for k-Hadamard matrices plays a key role in [26]
and we call this type of uncertainty principle the Wigderson–Wigderson uncertainty
principle. We prove the Wigderson–Wigderson uncertainty principle for von Neu-
mann k-bi-algebras in Theorem 2.8 and for subfactors in Theorem 3.19. In [26], A.
Wigderson and Y. Wigderson proposed a conjecture on the Wigderson–Wigderson
uncertainty principle for the real line R. We give a complete answer to the conjecture.
Let �.R/ be the space of Schwartz functions on the real line R.
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Main theorem 3 (See Theorem 4.3). For any nonzero f 2 �.R/, q 2 .1;1�, define
Fq.f / as

Fq.f / D
kf kqk Of kq

kf k2k Of k2
D
kf kqk Of kq

kf k22
:

Then, the following statements hold.

(i) When 1 < q < 2, take 1=p C 1=q D 1, then

Fq.f / � Œp
1=p=q1=q�1=2 8f 2 �.R/ n ¹0º:

(ii) When q > 2, the image of Fq is R>0.

The paper is organized as follows. In Section 2, we introduce k-transforms and
von Neumann k-bi-algebras with examples from quantum Fourier analysis. We prove
some basic uncertainty principles for von Neumann k-bi-algebras. In Section 3, we
prove uncertainty principles on von Neumann bi-algebras for smooth support and von
Neumann entropy perturbed by p-norms. We prove Wigderson–Wigderson uncer-
tainty principles on von Neumann bi-algebras, with a better constant in the case of
subfactors. In Section 4, we provide a bound for Wigderson–Wigderson uncertainty
principle on the real line R and this answers a conjecture proposed by A. Wigderson
and Y. Wigderson in [26].

2. von Neumann bi-algebras and k-transforms

In this section, we recall some basic definitions and results about von Neumann alge-
bras. We introduce von Neumann bi-algebras with interesting examples and we prove
some basic properties and uncertainty principles.

A von Neumann algebra M is said to be finite if it has a faithful normal tracial
positive linear functional �M (not necessarily normalized), see, e.g., [15]. We will call
this linear functional as trace in the rest of the paper. We denote kxkp D �M.jxj

p/
1
p ,

for p > 0. When 1 � p <1, k � kp is called the p-norm. Moreover, kxk1 D kxk,
the operator norm of x. It is clear that kxkp D kx�kp D kjxjkp for p > 0.

The following inequalities will be used frequently in the rest of the paper.

Proposition 2.1 (Hölder’s inequalities, see, for example, [11, Proposition 4.3]). For
any x; y; z 2M, we have the following:

(i) j�M.xy/j � kxkpkykq , where 1 � p; q � 1, 1
p
C

1
q
D 1;

(ii) j�M.xyz/j � kxkpkykqkzkr , where 1 � p; q; r � 1, 1
p
C

1
q
C

1
r
D 1;

(iii) kxykr � kxkpkykq , where 0 < p; q; r � 1, 1
r
D

1
p
C

1
q

.
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Notation 2.2. Suppose A and B are two finite von Neumann algebras with traces d
and � , respectively. Let F W A! B be a linear map. For any 0 < p; q � 1, define

kF kq!p WD sup
®
kF .x/kp W x 2 A; kxkq D 1

¯
:

Definition 2.3. Suppose A and B are two finite von Neumann algebras with traces d
and � , respectively. For k > 0, a k-transform F from A into B is a linear map such
that kF k1!1 � 1 and kF �F .x/k1 � kkxk1 for any x 2 A. We call the quintuple
.A;B; d; �;F / a von Neumann k-bi-algebra. Here, F WL2.A/!L2.B/ is assumed
to be bounded and F � is the adjoint operator.

Example 2.4. The definition of the k-transform is inspired by the definition of the
k-Hadamard matrix of A. Wigderson and Y. Wigderson (see [26, Definition 2.2]). In
particular, a k-Hadamard matrix F can be extended to a von Neumann k-bi-algebra
.A;B; d; �; F /, such that A and B are finite-dimensional abelian von Neumann
algebras, d and � are counting measures.

Example 2.5. Let the quintuple .A;B; d; �;F / be a fusion bialgebra (see Definition
2.12 in [18]), where A and B are finite-dimensional von Neumann algebras with
traces d and � , respectively, and A is abelian, and F WA!B is unitary with respect
to theL2 inner products. By the quantum Hausdorff–Young inequality kF k1!1D 1,
(see [18, Theorem 4.5]), we have that .A;B; d; �;F / is a von Neumann 1-bi-algebra.

Example 2.6. Suppose P� is an irreducible subfactor planar algebra with finite Jones
index (See Definition on page 4 in [13]) �, � > 0. Let Trn;˙ be the unnormalized
Markov trace of Pn;˙, for n 2 N, and Fs W Pn;C ! Pn;� be the string Fourier trans-
form, which is unitary with respect to the L2 inner products. Then, by the quantum
Hausdorff–Young inequality, (see [11, Theorems 4.8 and 7.3]), we have that for any
n 2 N, 2 � p � 1 and 1=p C 1=q D 1,

kFskq!p D �
1
p�

1
2 :

Therefore, k�1=2Fsk1!1 D 1 and the quintuple .Pn;C;Pn;�;Trn;C;Trn;�; �1=2Fs/

is a von Neumann �-bi-algebra.

Remark 2.7. The quantum Hausdorff–Young inequality, [11, Theorem 7.3], also
applies to reducible subfactor planar algebras, and in that case �1=2 is replaced by
a certain constant ı0 (see the last sentence on page 301 in [11] for the definition.)
Then, .Pn;C;Pn;�;Trn;C;Trn;�; ı0Fs/ is a von Neumann ı20-bi-algebra.

In [26], Wigderson and Wigderson proved what they call the primary uncertainty
principles (see [26, Theorem 2.3]) for any k-Hadamard matrix A,

kvk1kAvk1 � kkvk1kAvk1; v 2 Cn; (2.1)
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which is the fundamental result of that paper. We call Inequality (2.1) as Wigderson–
Wigderson uncertainty principle. In this paper, we establish the quantum version of
Wigderson–Wigderson uncertainty principle for von Neumann k-bi-algebras. When a
von Neumann k-bi-algebra is obtained from Example 2.4, then, our theorem implies
Theorem 2.3 in [26].

Theorem 2.8 (The quantum Wigderson–Wigderson uncertainty principle). Let the
quintuple .A;B; d; �;F / be a von Neumann k-bi-algebra. For any x 2 A, we have

kxk1kF .x/k1 � kkxk1kF .x/k1:

Proof. When 1� p;q �1 and 1=pC 1=q D 1, we have that kF �kp!q D kF kp!q ,
because

kF kp!q D sup
®
kF .x/kq W x 2 A; kxkp D 1

¯
D sup

®
j�.F .x/y�/j W x 2 A; y 2 B; kxkp D 1; kykp D 1

¯
D sup

®
jd.x.F �.y//�/j W x 2 A; y 2 B; kxkp D 1; kykp D 1

¯
D sup

®
kF �.y/kq W y 2 B; kykp D 1

¯
DkF �kp!q:

This implies that kF �k1!1 D kF k1!1 � 1. Then, for any x 2 A, we have

kF .x/k1 � kxk1; kkxk1 � kF
�F .x/k1 � kF .x/k1:

Multiplying the above two inequalities, we obtain

kxk1kF .x/k1 � kkxk1kF .x/k1:

This completes the proof of the theorem.

Using the primary uncertainty principle, A. Wigderson and Y. Wigderson further
prove the Donoho–Stark uncertainty principle for arbitrary k-Hadamard matrices (see
[26, Theorem 3.2]). In this paper, we prove the Donoho–Stark uncertainty principle
for von Neumann k-bi-algebras using the quantum Wigderson–Wigderson uncertainty
principle. Firstly, let us recall the notion of the support in a finite von Neumann alge-
bra.

Definition 2.9. Let M be a finite von Neumann algebra with a trace �M. For any
x 2M, let R.x/ be the range projection of x. The support �.x/ of x is defined as
�M.R.x//. When M is a matrix algebra, �.x/ is the rank of x.

The support has been used in the quantum Donoho–Stark uncertainty principles
on quantum symmetries such as subfactors and fusion rings, see [11, Theorem 5.2]
and [18, Theorem 4.8], respectively. We generalize the Donoho–Stark uncertainty
principles to von Neumann k-bi-algebras.
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Theorem 2.10 (Quantum Donoho–Stark uncertainty principle). Let the quintuple
.A;B;d;�;F / be a von Neuman k-bi-algebra. Then, for any nonzero operator x 2A,
we have

�.x/�.F .x// � k:

Proof. We already have, from Theorem 2.8, that for any nonzero x 2 A,

kxk1kF .x/k1 � kkxk1kF .x/k1:

Thus, all we need is to bound the 1-norm by the support of x, which can be imple-
mented through Hölder’s inequality, for any x 2 A,

kxk1 D kR.x/xk1 � kxk1kR.x/k1 D kxk1�.x/:

Applying this bound to both x and F .x/, we obtain the result.

Remark 2.11. Our theorem is a generalization of the Donoho–Stark uncertainty prin-
ciple in [5] and some variations.

(i) In Example 2.4 and Theorem 2.10 implies Theorem 3.2 in [26].

(ii) In Example 2.5 and Theorem 2.10 implies Theorem 4.8 in [18].

(iii) In Example 2.6 and Theorem 2.10 implies Theorem 5.2 in [11].

The Meshulam’s uncertainty principle [21] for a finite non-abelian group G is a
special case of Examples 2.5 and 2.6. More precisely, take A WD L1.G/, functions
on G, with the discrete measure d . Let � be the left regular representation of G, and
B WD LG, the group algebra of G acting on L2.G/ with the (unnormalized) trace � .
The Fourier transform F W A! B is defined as

F .x/ WD
X
g

x.g/�.g/ 8 x 2 A:

Then, F �F .x/ D jGjx and kF k1!1 D 1, because �.g/ is a unitary and

kF .x/k �
X
g

jx.g/j D kxk1:

Therefore, F is a jGj-transform and we obtain the Meshulam’s uncertainty principle,

�.x/�.F .x// � jGj 8 x ¤ 0:

In this case, �.F .x// is the rank of F .x/.
Furthermore, in Example 2.6, jGj is replaced by the Jones index ı2 of the subfac-

tor which takes values in²
4 cos2

�

n
; n D 3; 4; 5; : : :

³
[ Œ4;1�;
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the remarkable Jones-index theorem in [14]. The quantum Donoho–Stark uncertainty
principle

�.x/�.F .x// � ı2

is established in [11, Main Theorem 1]. The inequality is sharp and the extremizers
are characterized as bishifts of biprojections in [11, Main Theorem 2].

An entropic uncertainty principle was proved in [11, Main Theorems 1 and 2] as
well, which could be regarded as a quantum analog of Hirschman–Beckner uncer-
tainty principle [2,8]. We will study these uncertainty principles up to small perturba-
tions in Section 3.

3. Quantum smooth uncertainty principles

In this section, we prove a series of smooth uncertainty principles for von Neumann
bi-algebras. We firstly prove the quantum smooth support uncertainty principles in
Section 3.1. Then, we proceed to prove quantum Wigderson–Wigderson uncertainty
principles for general p-norms, 1 � p � 1, and give an example concerning the
quantum Fourier transform on subfactor planar algebras in Section 3.2. Finally, we
also prove quantum smooth Hirschman–Becker uncertainty principles in Section 3.3.

3.1. Quantum smooth support uncertainty principles

We firstly introduce a new smooth support which is slightly different from the classi-
cal smooth support.

Definition 3.1. Let M be a finite von Neumann algebra with a trace �M. Let " 2 Œ0; 1�
and p 2 Œ1;1�. For any element x 2M, we define the .p; "/ smooth support to be

�p" .x/ D inf
®
�M.HR.x// W H 2M; 0 � H � I; k.I �H/xkp � "kxkp

¯
;

where R.x/ is the range projection of x.

Remark 3.2. Since the set

S."; p; x/ WD
®
H 2M W 0 � H � I; k.I �H/xkp � "kxkp

¯
is compact in the weak operator topology and the trace is normal, there exists an
H0 2 S such that �

p
" .x/ D �M.H0R.x//.

Remark 3.3. Take " D 0, then .I �H/x D 0 and this implies HR.x/ D R.x/. In
this case, �

p
0 .x/ D �.x/ for every p 2 Œ1;1�.

Besides Definition 3.1, there are at least three other natural candidate notions of
smooth support.
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Definition 3.4. Let M be a finite von Neumann algebra with a trace �M. Let " 2 Œ0; 1�
and p 2 Œ1;1�. For any element x 2M, define

f1."; p; x/ WD inf
®
�M.R.y// W y 2M; kx � ykp � "kxkp

¯
;

f2."; p; x/ WD inf
®
�M.R.Hx// W H 2M; 0 � H � I; k.I �H/xkp � "kxkp

¯
;

f3."; p; x/ WD inf
®
�M.R.Qx// W Q 2M;QDQ�DQ2; k.I �Q/xkp � "kxkp

¯
:

Proposition 3.5. For any x 2M, we have

�p" .x/ � f1."; p; x/ D f2."; p; x/ D f3."; p; x/:

Proof. It is clear that f1."; p; x/ � f2."; p; x/ � f3."; p; x/.
For any y 2M, we claim that

�M.R.R.y/x// � �M.R.y//; k.I �R.y//xkp � kx � ykp:

If the claim holds, then f3."; p; x/ � f1."; p; x/. Since R.R.y/x/ � R.y/, the first
inequality holds.

Next, we prove the second inequality in the claim. It is enough to prove that jx �
R.y/xj � jx � yj. Since

p
� is an operator-monotone function, it reduces to prove

.x �R.y/x/�.x �R.y/x/ � .x � y/�.x � y/. For any normal state � on M, by the
Cauchy–Schwarz inequality, we have

2j�.y�x/j D 2jhx; yi�j

D 2jhR.y/x; yi�j

� 2hR.y/x;R.y/xi
1
2
� hy; yi

1
2
�

� �.x�R.y/x/C �.y�y/:

Therefore,
�.x�y/C �.y�x/ � �.x�R.y/x/C �.y�y/:

Rearranging the above inequality, we obtain

�..x �R.y/x/�.x �R.y/x// � �..x � y/�.x � y//:

Thus,
.x �R.y/x/�.x �R.y/x/ � .x � y/�.x � y/:

The claim holds and we have f1."; p; x/ D f2."; p; x/ D f3."; p; x/.
For any H 2M, 0 � H � I , we have

�M.R.x/H/ � �M.jR.x/H j/ � �M.kR.x/HkR.Hx// � �M.R.Hx//:
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The first inequality is true by Hölder’s inequality. The second one uses the fact that
jy�j � kykR.y/, y 2M. The last inequality is due to kR.x/Hk � 1. So, we have

�p" .x/ � f2."; p; x/:

In summary, the statement holds.

In [26], A. Wigderson and Y. Wigderson introduced the following smooth support
for the finite-dimensional and abelian case.

Definition 3.6 (See [26, Definition 3.15]). Let M D Cn, n 2 N�, and �M be the
counting measure. Let " 2 Œ0; 1� and p 2 Œ1;1�. For an operator x 2M, the .p; "/
support-size of x is defined to be

jsuppp" .x/j D min
®
�M.Q/ W Q 2M;Q D Q� D Q2; k.I �Q/xkp � "kxkp

¯
:

Remark 3.7. When M is finite dimensional and abelian and �M is the counting mea-
sure, then f3."; p; x/ is equal to jsuppp" .x/j. In this case, �

p
" .x/ � jsuppp" .x/j.

Lemma 3.8. For any x 2M, we have �
p
" .x/ is continuous with respect to ".

Proof. When 0 < c < 1, take an H 2M such that

�p" .x/ D �M.HR.x//; k.I �H/xkp � "kxkp; 0 � H � I:

Let H 0 D I � c.I �H/, then 0 � H 0 � I . Moreover, we have

�M.H
0R.x// D .1 � c/�M.R.x//C c�

p
" .x/; k.I �H

0/xkp � c"kxkp:

Therefore,
�p" .x/ � �pc".x/ � .1 � c/�M.R.x//C c�

p
" .x/: (3.1)

So,
lim
c!1�

�pc".x/ D �p" .x/:

When c > 1, replacing c by c�1 and " by c" in Inequality (3.1), we have

�pc".x/ � �p" .x/ �

�
1 �

1

c

�
�M.R.x//C

1

c
�pc".x/:

So,
lim
c!1C

�pc".x/ D �p" .x/:

From the above discussions, �
p
" .x/ is continuous with respect to ".

We have the following quantum L1 smooth support uncertainty principle.
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Theorem 3.9 (The quantum L1 smooth support uncertainty principle). Let the quin-
tuple .A;B; d; �; F / be a von Neumann k-bi-algebra and x 2 A be a nonzero
operator. For any "; � 2 Œ0; 1�, we have

�1" .x/�
1
� .F .x// � k.1 � "/.1 � �/:

Proof. Take a positive operator H in A such that

�1" .x/ D d.R.x/H/; k.I �H/xk1 � "kxk1; 0 � H � I:

By Hölder’s inequality, we have

d.jx�j.I �H// � d.jx�.I �H/j/ D k.I �H/xk1 � "kxk1:

Thus,

�1" .x/ D d.R.x/H/

D
1

kxk1
d.kxk1R.x/H/

�
1

kxk1
d.jx�jH/ D

1

kxk1
d.jx�j/ �

1

kxk1
d.jx�j.I �H//

�
kxk1

kxk1
.1 � "/:

Repeating the above process for F .x/, we obtain

�1� .F .x// �
kF .x/k1

kF .x/k1
.1 � �/:

Multiplying these two inequalities, we have

�1" .x/�
1
� .F .x// �

kxk1

kxk1
�
kF .x/k1

kF .x/k1
.1 � "/.1 � �/ � k.1 � "/.1 � �/:

The second inequality uses Theorem 2.8, the quantum Wigderson–Wigderson uncer-
tainty principle.

Remark 3.10. We can obtain Theorem 2.10, the quantum Donoho–Stark uncertainty
principle, from Theorem 3.9 by assuming " D � D 0.

Applying Theorem 3.9 to the quantum Fourier transform on subfactor planar alge-
bras, we obtain the following corollary.

Corollary 3.11. Suppose P� is an irreducible subfactor planar algebra with finite
Jones index �. Let Fs be the Fourier transform from Pn;˙ onto Pn;�. Then, for any
nonzero n-box x 2 Pn;˙, we have

�1" .x/�
1
� .Fs.x// � �.1 � "/.1 � �/:
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When p D 2 in Definition 3.1, we are able to choose a positive contraction H in
the abelian *-subalgebra generated by jx�j such that the .2; "/ support-size is exactly
the trace of H . More precisely, we have the following proposition.

Proposition 3.12. Suppose M is a finite von Neumann algebra with a trace �M. Let
x 2M, and let N be the abelian von Neumann subalgebra generated by jx�j in M.
For any " 2 Œ0; 1�, we have

�2" .x/ D min
®
�M.H/ W H 2 N ; 0 � H � R.x/; k.I �H/xk2 � "kxk2

¯
:

Proof. Let ˆ be the trace-preserving conditional expectation from M onto N . For
any H 2M, 0 � H � I . Take H 0 D ˆ.H/R.x/, then

�M.H
0/ D �M.ˆ.H/R.x// D �M.R.x/H/;

and H 0 2 N and 0 � H 0 � R.x/.
Note that any pure state � on N is multiplicative, so �.jˆ.y/j2/ D j� ı ˆ.y/j2,

for any y 2M. Moreover, � ıˆ is a state on M, by the Cauchy–Schwarz inequality,
j� ı ˆ.y/j2 � � ı ˆ.jyj2/. So, �.jˆ.y/j2/ � �.ˆ.jyj2//, and therefore jˆ.y/j2 �
ˆ.jyj2/.

Take y D I �H , then

k.I �H 0/xk22 D kˆ.I �H/R.x/xk
2
2

D �M.jˆ.I �H/j
2
jx�j2/

� �M.ˆ.jI �H j
2/jx�j2/

D �M.jI �H j
2
jx�j2/

D k.I �H/xk22:

Therefore, the statement holds.

We have the following quantum L2 smooth support uncertainty principle, in the
special case of finite-dimensional algebras A;B and unitary k-transform.

Theorem 3.13 (The quantumL2 smooth support uncertainty principle). Let the quin-
tuple .A;B; d; �;F / be a von Neumann k-bi-algebra. Suppose A and B are finite
dimensional and F �F D kI . For any nonzero operator x 2 A, we have

�2" .x/�
2
� .F .x// � k.1 � " � �/

2
8 "; � 2 Œ0; 1�; "C � � 1:

Proof. Take W D F =
p
k, then W �W D I . Since the definition of �2� is invariant

under rescaling, we have that �2� .W.x// D �2� .F .x//.
Let xD jx�jU and y DW.x/D jy�jV be the polar decompositions, whereU and

V are the polar parts in A and B, respectively. Let A0 be the abelian von Neumann
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subalgebra of A generated by jx�j and B0 be the abelian von Neumann subalgebra
of B generated by jy�j. Let ˆ be the trace-preserving conditional expectation from
B onto B0 andM D ˆRV �WRU , where RV � and RU are the right multiplications
by V � and U , respectively. Then, M is a linear operator from A0 into B0 such that
M jx�j D jy�j. Let ¹eiºniD1 and ¹fj ºmjD1 be mutually orthogonal minimal projections
in A0 and B0 such that

Pn
iD1 ei D IA and

Pm
jD1 fj D IB . The linear operator M is

a m � n matrix .aij /1�i�m;1�j�n with jaij j � d.ej /=
p
k by kW k1!1 � 1=

p
k.

By Proposition 3.12, we can find two positive operators H in A0 and K in B0

such that

0 � H � R.x/; 0 � K � R.y/;

k.I �H/xk2 � "kxk2; k.I �K/yk2 � �kyk2;

d.H/ D �2" .x/; �.K/ D �2� .y/:

By direct computations, we have

H D

nX
iD1

d.eiH/

d.ei /
ei ; K D

mX
jD1

�.fjK/

�.fj /
fj :

Let zM D KMH , then zM is a linear operator from A0 into B0. For any v 2 A0,
v D

Pn
iD1 vj ej , vj 2 C, we have

k zMvk22 D

mX
iD1

�.fi /

ˇ̌̌̌
�.fiK/

�.fi /

nX
jD1

aij
d.ejH/

d.ej /
vj

ˇ̌̌̌2
�

mX
iD1

�.fiK/
2

�.fi /

nX
jD1

jaij j
2d.ejH/

2

d.ej /3

nX
jD1

d.ej /jvj j
2

D

mX
iD1

�.fiK/
2

�.fi /

nX
jD1

jaij j
2d.ejH/

2

d.ej /3
kvk22

�
1

k

mX
iD1

�.fiK/
2

�.fi /

nX
jD1

d.ejH/
2

d.ej /
kvk22

�
d.H/�.K/

k
kvk22:

The first inequality is true by the Cauchy–Schwarz inequality and the second one
uses the fact that jaij j � d.ej /=

p
k and the third one is due to �.fiK/ � �.fi / and

d.ejH/ � d.ej / because K;H are contractions. This implies

k zMk2!2 �
p
d.H/�.K/

.p
k D

q
�2" .x/�

2
� .y/

.p
k: (3.2)
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For the lower bound of zM , we firstly observe that

kM.I �H/jx�jk2 D kˆRV �WRU .I �H/jx
�
jk2

� kRV �WRU .I �H/jx
�
jk2

D k.I �H/jx�jk2:

Since K is a contraction, so

kKM.I �H/jx�jk2 � kM.I �H/jx
�
jk2 � k.I �H/jx

�
jk2:

Therefore, we have

kM jx�j � zM jx�jk2 D kM jx
�
j �KMH jx�jk2

D k.I �K/M jx�j CKM.I �H/jx�jk2

� k.I �K/jy�jk2 C k.I �H/jx
�
jk2

� ."C �/kjx�jk2:

This implies

k zM jx�jk2 � kM jx
�
jk2 � ."C �/kjx

�
jk2

D kjy�jk2 � ."C �/kjx
�
jk2

D .1 � " � �/kjx�jk2: (3.3)

Finally, combining equations (3.2) and (3.3) we see that

�2" .x/�
2
� .F .x// � k.1 � " � �/

2:

This completes the proof of the theorem.

Remark 3.14. When F is a k-Hadamard matrix, A. Wigderson and Y. Wigderson
proved the following results (see [26, Theorems 3.17 and 3.20]):

(i) for any x 2M,

jsupp1".x/jjsupp1�.F .x//j � k.1 � "/.1 � �/ 8 "; � 2 Œ0; 1�I

(ii) if F �F D kI , then for any x 2M,

jsupp2".x/jjsupp2�.F .x//j � k.1 � " � �/
2
8 "; � 2 Œ0; 1�; "C � � 1:

By Remark 3.7, we have

jsupp1".x/jjsupp1�.F .x//j � �1" .x/�
1
� .F .x// � k.1 � "/.1 � �/;

jsupp2".x/jjsupp2�.F .x//j � �2" .x/�
2
� .F .x// � k.1 � " � �/

2:

So, Theorems 3.9 and 3.13 imply Theorems 3.17 and 3.20 in [26].
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When F is a k-Hadamard matrix, Theorems 3.9 and 3.13 are strictly stronger than
Theorems 3.17 and 3.20 in [26]. We construct the following example.

Example 3.15. Let A D B D C ˚ C and d.f / D �.f / D f .0/C f .1/, f 2 C2.
Take x D .1; 1/ 2 C2 and " D � D 1=3. Then, jsupp1".x/j D jsupp2".x/j D 2 while
�1" .x/ D �2" .x/ D 4=3. Let F D I be the 1-transform, we have

4 D jsupp1".x/jjsupp1�.F .x//j > �1" .x/�
1
� .F .x// D

16

9
;

4 D jsupp2".x/jjsupp2�.F .x//j > �2" .x/�
2
� .F .x// D

16

9
:

Applying Theorem 3.13 to the quantum Fourier transform on subfactor planar
algebras, we obtain the following corollary.

Corollary 3.16. Suppose P� is an irreducible subfactor planar algebra with finite
Jones index �. Let Fs be the Fourier transform from Pn;˙ onto Pn;�. Then, for any
nonzero n-box x 2 Pn;˙, we have

�2" .x/�
2
� .Fs.x// � �.1 � " � �/

2
8 "; � 2 Œ0; 1�; "C � � 1:

3.2. Quantum Wigderson–Wigderson uncertainty principle

In this section, we prove the quantum .p; q/-Wigderson–Wigderson uncertainty prin-
ciple for von Neumann k-bi-algebras for 1=p C 1=q D 1, and for quantum Fourier
transform on subfactor planar algebras for any 0 < p; q � 1.

We prove the quantum Hausdorff–Young inequality for k-transforms using the
standard interpolation method.

Theorem 3.17. Let the quintuple .A;B; d; �;F / be a von Neumann k-bi-algebra
such that F �F D kI . For any x 2 A, we have

kF .x/kp � k
1
p kxkq;

where 2 � p � 1 and 1=p C 1=q D 1.

Proof. Note that

kF .x/k1 � kxk1; kF .x/k2 D
p
kkxk2:

Applying the Riesz–Thorin interpolation theorem (see [22, Theorem IX.17]), we have
that kF .x/kp � k

1
p kxkq .

Then, we have the following quantum .p; q/-Wigderson–Wigderson uncertainty
principles for k-transforms, which generalize Theorem 2.8.
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Theorem 3.18. Let the quintuple .A;B; d; �;F / be a von Neumann k-bi-algebra
such that F �F D kI . For any x 2 A, we have

kxkqkF .x/kq � k
1� 2

p kxkpkF .x/kp;

where 2 � p � 1 and 1=p C 1=q D 1.

Proof. By Theorem 3.17, we have

kF .x/kp � k
1
p kxkq:

For the adjoint operator F �, we have

kF �k1!1 � 1; kF
�
k2!2 D

p
k:

Applying the same process in Theorem 3.17 to F �, we also have

kF �F .x/kp � k
1
p kF .x/kq:

Multiplying the above two inequalities, we obtain

kxkqkF .x/kq � k
� 2

p kF �F .x/kpkF .x/kp D k
1� 2

p kxkpkF .x/kp:

This completes the proof of the theorem.

Next, we introduce the quantum .p; q/-Wigderson–Wigderson uncertainty prin-
ciple for quantum Fourier transform for any 0 < p; q � 1, based on the norm of
quantum Fourier transform computed in [20].

Theorem 3.19 (The norm of quantum Fourier transform). Suppose P� is an irre-
ducible subfactor planar algebra. Let Fs be the Fourier transform from P2;˙ onto
P2;�. Let x 2 P2;˙ be a 2-box and 0 < p; q � 1. Then

K

�
1

p
;
1

q

��1
kxkq � kFs.x/kp � K

�
1

q
;
1

p

�
kxkq:

We refer the readers to Appendix A for the specific definition of the function
K. 1

p
; 1
q
/ D kFskp!q .

The following theorem follows immediately from Theorem 3.19.

Theorem 3.20. Suppose P� is an irreducible subfactor planar algebra. Let Fs be the
Fourier transform from P2;˙ onto P2;�. Let x 2 P2;˙ be a 2-box and 0 < p; q � 1.
Then

kxkqkFs.x/kq � K

�
1

q
;
1

p

��2
kxkpkFs.x/kp:
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Proof. By Theorem 3.19, we have

kFs.x/kp � K

�
1

q
;
1

p

�
kxkq; kxkp � K

�
1

q
;
1

p

�
kFs.x/kq:

Multiplying the above two equations, we can obtain the result.

3.3. Quantum Hirschman–Beckner uncertainty principle

In this subsection, we will prove the quantum (smooth) Hirschman–Beckner uncer-
tainty principle (See Theorems 3.22 and 3.28) for von Neumann k-bi-algebras. For
classical Hirschman–Beckner uncertainty principle [2,8], the Shannon entropy is used
to describe the uncertainty principle on R. For a finite von Neumann algebra with a
trace, the von Neumann entropy is a noncommutative version of Shannon entropy.

Definition 3.21. Let M be a finite von Neumann algebra with a trace �M. The von
Neumann entropy of jxj2 2M is defined as follows:

H.jxj2/ WD ��M.jxj
2 log jxj2/ D ��M.x

�x log x�x/:

We have the quantum Hirschman–Beckner uncertainty principle for von Neumann
k-bi-algebras.

Theorem 3.22. Let the quintuple .A;B; d; �;F / be a von Neumann k-bi-algebra.
Suppose A and B are finite dimensional and F �F D kI . Let x be a nonzero element
in A. Then, we have

H.jxj2/

kxk22
C
H.jF .x/j2/

kF .x/k22
� � log kxk22 � log kF .x/k22 C log k:

In particular, since kF .x/k22 D kkxk
2
2, we have

H.jxj2/

kxk22
C
H.jF .x/j2/

kF .x/k22
� 0;

whenever kxk2 D 1.

Proof. By Theorem 3.17, we have

kF .x/kq � k
1
q kxkp;

where 2 � q � 1 and 1
p
C

1
q
D 1. Let

f .q/ D log kF .x/kq � log kxkp �
1

q
log k;
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then f .q/ � 0 and f .2/ D 0, which implies f 0.2/ � 0. Let

jF .x/j D

nX
iD1

�iei

be the spectral decomposition, we have

d

dq
kF .x/kqq

ˇ̌̌̌
qD2

D
d

dq

nX
iD1

j�i j
q�.ei /

ˇ̌̌̌
qD2

D

nX
iD1

j�i j
2 log j�i j�.ei /

D �
1

2
H.jF .x/j2/:

Analogously,

d

dq
kxkpp

ˇ̌̌̌
qD2

D
dp

dq

ˇ̌̌̌
qD2

d

dp
kxkpp

ˇ̌̌̌
pD2

D
1

2
H.jxj2/:

Thus,
d

dq
log kF .x/kq

ˇ̌̌̌
qD2

D �
1

4
log kF .x/k22 �

H.jF .x/j2/

4kF .x/k22
;

and
d

dq
log kxkp

ˇ̌̌̌
qD2

D
1

4
log kxk22 C

H.jxj2/

4kxk22
:

We have

f 0.2/ D �
1

4
log kF .x/k22 �

H.jF .x/j2/

4kF .x/k22
�
1

4
log kxk22 �

H.jxj2/

4kxk22
C
1

4
log k:

Since f 0.2/ � 0, we obtain

H.jxj2/

kxk22
C
H.jF .x/j2/

kF .x/k22
� � log kxk22 � log kF .x/k22 C log k:

This completes the proof.

Remark 3.23. Using the inequality log �.x/ � H.jxj2/ when kxk2 D 1, we have

log �.F .x// D log �.F .x/=
p
k/

� H.jF .x/j2=k/ .kF .x/=
p
kk2 D 1/

D
1

k
H.jF .x/j2/C log k:

So,

log �.x/C log �.F .x// � H.jxj2/C
1

k
H.jF .x/j2/C log k � log k:



Quantum smooth uncertainty principles for von Neumann bi-algebras 491

Exponentiating both sides of the above inequality, we could obtain

�.x/�.F .x// � k;

the quantum support uncertainty principle (see Theorem 2.10).

A natural question is to consider the perturbations of the inequality in Theo-
rem 3.22. We firstly consider the smooth von Neumann entropy.

Definition 3.24. Let M be a finite von Neumann algebra. For any x 2M, " 2 Œ0; 1�
and p 2 Œ1;1�, the .p; "/ smooth entropy of jxj2 is defined by

Hp
" .jxj

2/ WD inf
®
H.jyj2/ W y 2M; kx � ykp � "

¯
;

Remark 3.25. We thank Kaifeng Bu for referring us to another smooth Rényi entropy
studied by R. Renner and S. Wolf in quantum information in [23].

The von Neumann entropy is continuous with respect to the operator norm and
satisfies the Lipschitz condition.

Let x D .xi /, y D .yi / 2 Rn be two real vectors. It is said that x majorizes y (see
[9, Definition 4.3.41]) if

max
1�i1<���<ik�n

kX
jD1

xij � max
1�i1<���<ik�n

kX
jD1

yij

for each kD1; : : : ; n, with equality for kDn. We use x�y to denote x majorizes y.

Lemma 3.26. Let A;B be two matrices in Mn.C/. Let �1 � � � � � �n � 0 and �01 �
� � � � �0n � 0 be the eigenvalues of jAj and jBj, respectively. Then, we have

nX
iD1

j�i � �
0
i j � kA � Bk1;

where the Schatten 1-norm of A � B is defined by Tr.jA � Bj/ and Tr is the unnor-
malized trace.

Proof. Let

zA D

 
0 A

A� 0

!
;

zB D

 
0 B

B� 0

!
;

AA � B D
 

0 A � B

A� � B� 0

!
:
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Let �001 � � � � � �
00
n � 0 be the eigenvalues of jA � Bj, then

�. zA/ D .�1; : : : ; �n;��n; : : : ;��1/;

�. zB/ D .�01; : : : ; �
0
n;��

0
n; : : : ;��

0
1/;

�.AA � B/ D .�001; : : : ; �00n;��00n; : : : ;��001/

are eigenvalues of zA, zB and AA � B , respectively. We have

�. zA/ � �. zB/ D .�1 � �
0
1; : : : ; �n � �

0
n; �
0
n � �n; : : : ; �

0
1 � �1/:

The maximum value of the sum of n components of �. zA/ � �. zB/ is
Pn
iD1 j�i � �

0
i j.

By [9, Theorem 4.3.37 (b)], �.AA � B/ majorizes �. zA/ � �. zB/. Therefore,

nX
iD1

j�i � �
0
i j �

nX
iD1

�00i D kA � Bk1:

Proposition 3.27 (Lipschitz condition). Let M be a finite-dimensional von Neumann
algebra with a trace �M. For any x; y 2M, let t D max¹kxk; kyk; 1º, we have

jH.jxj2/ �H.jyj2/j � f .t/�M.I /
1� 1

p kx � ykp; 1 � p � 1;

where
f .t/ D 4t log t C 2t:

Proof. Since M is finite dimensional, we may assume that

M D

mM
iD1

Mni
.C/:

Let Tri be the unnormalized trace on Mni
.C/, then we have �M D

Pm
iD1 ıi Tri . Sup-

pose x D
Pm
iD1 xi and y D

Pm
iD1 yi . Let ˛i1 � � � � � ˛ini

and ˇi1 � � � � � ˇini
be

eigenvalues of jxi j and jyi j, respectively. Then, we have

jH.jyj2/ �H.jxj2/j D j�M.jyj
2 log jyj2 � jxj2 log jxj2/j

�

mX
iD1

ıi jTri .jyi j2 log jyi j2 � jxi j2 log jxi j2/j

D

mX
iD1

ıi j

niX
jD1

.˛2ij log˛2ij � ˇ
2
ij logˇ2ij /j

�

mX
iD1

ıi

niX
jD1

j˛ij � ˇij j � .4t log t C 2t/:
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By Lemma 3.26, we have
Pni

jD1 j˛ij � ˇij j � kxi � yik1. Then

jH.jyj2/ �H.jxj2/j � .4t log t C 2t/
mX
iD1

ıikxi � yik1 D f .t/kx � yk1:

By Hölder’s inequality, we further have

jH.jxj2/ �H.jyj2/j � f .t/�M.I /
1� 1

p kx � ykp; 1 � p � 1:

For a von Neumann k-bi-algebra .A;B; d; �;F / such that A and B are finite
dimensional, we set ˛ D max¹d.e/�1 W e is a projection in Aº and ˇ D max¹�.e/�1 W
e is a projection in Bº. We have the quantum smooth Hirschman–Beckner uncertainty
principle.

Theorem 3.28. Let the quintuple .A;B; d; �;F / be a von Neumann k-bi-algebra.
Suppose A and B are finite dimensional and F �F D kI . Let x be a nonzero element
in A. For any "; � 2 Œ0; 1� and p; q 2 Œ1;1�, we have

H
p
" .jxj

2/

kxk22
C
H
q
� .jF .x/j

2/

kF .x/k22
��4 log kxk2�

C1.x/

kxk22
d.I /1�

1
p "�

C2.x/

kF .x/k22
�.I /1�

1
q �;

whereC1.x/D f .kxkC 1C ˛1=p/ andC2.x/D f .kF .x/kC 1Cˇ1=q/ and f .t/D
4t log t C 2t .

Proof. For any y 2 A with kx � ykp � ", we have

kyk � kxk C kx � yk � kxk C ˛1=pkx � ykp � kxk C ˛
1=p:

Note that f .t/ is positive and monotonically increasing when t � 1. From Proposi-
tion 3.27, we have

jH.jyj2/ �H.jxj2/j � C1.x/d.I /
1� 1

p kx � ykp � C1.x/d.I /
1� 1

p ":

Thus,
Hp
" .jxj

2/ � H.jxj2/ � C1.x/d.I /
1� 1

p ":

Analogously, we have

H q
� .jF .x/j

2/ � H.jF .x/j2/ � C2.x/�.I /
1� 1

q �:

Adding the above two equations and applying Theorem 3.22, we obtain the result.

Applying Theorem 3.28 to quantum Fourier transform on subfactor planar alge-
bras, we have the following quantum smooth Hirschman–Beckner uncertainty princi-
ple for quantum Fourier transform.
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Corollary 3.29. Suppose x is a nonzero 2-box in an irreducible subfactor planar
algebra. For any "; � 2 Œ0; 1� and p; q 2 Œ1;1�, we have

Hp
" .jxj

2/CH q
� .jFs.x/j

2/ � kxk22.log� � 4 log kxk2/ � C.x/.�1�
1
p "C �1�

1
q �/;

where C.x/ D f .kxk2 C 2/ and f .t/ D 4t log t C 2t and � is the Jones index.

Remark 3.30. When p D q D 1, then the remaining item �C.x/.�1�
1
p "C �1�

1
q �/

in Corollary 3.29 is independent of Jones index.

Remark 3.31. We have the following statements.

(i) In Example 2.5, taking "D �D 0, then Theorem 3.28 implies Theorem 4.9
in [18].

(ii) In Example 2.6, taking "D �D 0, then Theorem 3.28 implies Theorem 5.5
in [11].

In [11], the minimizers of Hirschman–Beckner uncertainty principle on subfactor
planar algebras were characterized as bi-shifts of biprojections (see [11, Theorems
6.4 and 6.13]). So, it is natural to ask the following inverse problem.

Problem 3.32. Find positive functionC.";�/ for ";�>0 such that lim"!0C.";�/!

0, and for any 2-box x of any irreducible subfactor planar algebra with Jones index
�, kxk2 D 1, if

H.jxj2/CH.jFs.x/j
2/ � 2 log� � ";

then kx � yk � C."; �/ for some bi-shift of biprojection y.

4. An answer to a conjecture of Wigderson and Wigderson

The famous Heisenberg uncertainty principle in [7] could be mathematically formu-
lated in terms of Schwarz functions on R (see, e.g., [16, 25] and [26, Theorem 4.9])
as follows.

Theorem 4.1 (Heisenberg’s uncertainty principle). Let �.R/ be the space of Schwartz
functions. For any f 2 �.R/,Z

R
x2jf .x/j2dx

Z
R
�2j Of .�/j2dx �

1

16�2
kf k22k

Of k22;

where
Of .�/ D

Z
R
f .x/e�2�ix�dx

is the Fourier transform of f .
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In [26], A. Wigderson and Y. Wigderson proved the following generalization of
Heisenberg’s uncertainty principle for arbitrary q-norm.

Theorem 4.2 (See [26, Theorem 4.11]). For any f 2 �.R/, and any 1 < q � 1,Z
R
x2jf .x/j2dx

Z
R
�2j Of .�/j2dx � 2�

10q�8
q�1 kf k2qk

Of k2q:

In order to compare these inequalities for different q, they proposed the following
conjecture.

Conjecture 1 (See [26, Conjecture 4.13]). For any nonzero f 2 �.R/, q 2 .1;1�,
define

Fq.f / D
kf kqk Of kq

kf k2k Of k2
D
kf kqk Of kq

kf k22
:

Then, the image of Fq W �.R/ n ¹0º ! R>0 is R>0 for all q ¤ 2.

Moreover, they proved the conjecture for q D1 in [26, Theorem 4.12].
In the following theorem, we verify Conjecture 1 for q > 2 and disprove Conjec-

ture 1 for 1 < q < 2. More precisely, we have the following theorem.

Theorem 4.3. The following statements hold.

(i) If 1 < q < 2, taking 1=p C 1=q D 1, then

Fq.f / � Œp
1=p=q1=q�1=2 8f 2 �.R/ n ¹0º:

(ii) If q > 2, then the image of Fq is R>0.

To prove Theorem 4.3, we firstly prove a technical lemma.

Lemma 4.4. Let 1 < p < q �1, and define a function Fp;q: �.R/ n ¹0º ! R>0 by

Fp;q.f / D
kf kqk Of kq

kf kpk Of kp
:

If there exist two sequences ¹fnº1nD1 and ¹gnº1nD1 in �.R/ n ¹0º such that

lim
n!1

Fp;q.fn/ D 0; lim
n!1

Fp;q.gn/ D1;

and �fn C .1 � �/gn ¤ 0 for any � 2 Œ0; 1� and all n � 1, then the image of Fp;q is
all of R>0.

Proof. We define
hn.�/ D Fp;q.�fn C .1 � �/gn/;

then hn.�/ is a continuous function for any n� 1. Thus, hn.�/ can take all real values
between Fp;q.fn/ and Fp;q.gn/. The result follows immediately from the assump-
tions.
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Theorem 4.5. Let 1 < p < q � 1, and define a function Fp;q: �.R/ n ¹0º ! R>0
by

Fp;q.f / D
kf kqk Of kq

kf kpk Of kp
:

When 1
p
C

1
q
< 1, then the image of Fp;q is all of R>0.

Proof. We will consider two special families of Schwartz functions. Let a > b > 0 be
real numbers. Define

fa;b.x/ D e
��..aCib/x/2

D e��.a
2�b2/x2

e�2�iabx
2

:

From the definition, we see that jfa;b.x/j D e��.a
2�b2/x2

. We can compute the r-
norm of fa;b as follows:

kfa;b.x/kr D

�Z 1
�1

e�r�.a
2�b2/x2

dx

� 1
r

D

�
1p

r.a2 � b2/

� 1
r

; 1 < r � 1:

When r D 1, the above equality means kfa;b.x/k1 D 1. The Fourier transform of
fa;b is

bfa;b.�/ D
1

aC bi
e��.�=.aCbi//

2

D
1

aC bi
e���

2.a2�b2/=.a2Cb2/2e2�i�
2ab=.a2Cb2/2 :

In particular, ˇ̌bfa;b.�/ˇ̌ D 1
p
a2 C b2

e���
2.a2�b2/=.a2Cb2/2 :

Similarly, we can compute the r-norm of bfa;b.�/ as follows:

kbfa;b.�/kr D
1

p
a2 C b2

�
a2 C b2p
r.a2 � b2/

� 1
r

; 1 < r � 1:

When r D1, kbfa;b.�/k1 D 1p
a2Cb2

. This implies that

Fp;q.fa;b/ D
kfa;bkqkbfa;bkq
kfa;bkpkbfa;bkp

D

p
p
p.a2 C b2/

1
q�

1
p

q
p
q.a2 � b2/

1
q�

1
p

; 1 < p < q � 1:

If a > 1 and b D
p
a2 � 1, then we get

Fp;q.fa;
p
a2�1

/ D
p
p
p

q
p
q
.2a2 � 1/

1
q�

1
p :

So,
lim
a!1

Fp;q.fa;
p
a2�1

/ D 0; 1 < p < q � 1: (4.1)
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Next, we consider another family of functions:

gc.x/ D
1
p
c
e��.x=c/

2

C
p
ce��.cx/

2

; c > 0:

Both items of gc are positive, so

1

2

� 1
p
c
ke��.x=c/

2

krC
p
cke��.cx/

2

kr

�
<kgckr<

1
p
c
ke��.x=c/

2

krC
p
cke��.cx/

2

kr

for any 1 < r � 1, namely,

c
1
r�

1
2 C c

1
2�

1
r

2 2r
p
r

< kgckr <
c

1
r�

1
2 C c

1
2�

1
r

2r
p
r

:

Note that bgc D gc , so we obtain an estimation of Fp;q.gc/:

p
p
p.c

1
q�

1
2 C c

1
2�

1
q /2

4 q
p
q.c

1
p�

1
2 C c

1
2�

1
p /2

< Fp;q.gc/ <
4 p
p
p.c

1
q�

1
2 C c

1
2�

1
q /2

q
p
q.c

1
p�

1
2 C c

1
2�

1
p /2

; 1 < p < q � 1:

Therefore,

lim
c!1

Fp;q.gc/ D

8̂̂̂<̂
ˆ̂:
1;

1

p
C
1

q
< 1; 1 < p < q � 1;

0;
1

p
C
1

q
> 1; 1 < p < q � 1:

(4.2)

Combining equation (4.1) and equation (4.2), we have

lim
a!1

Fp;q.fa;
p
a2�1

/ D 0; lim
c!1

Fp;q.gc/ D1;

when 1
p
C

1
q
< 1. Then, by Lemma 4.4, we can obtain the conclusion.

In particular, take p D 2, then 2 < q �1, which implies that Conjecture 1 holds
for all 2 < q � 1.

Theorem 4.6. When 1 < q < 2, we have

Fq.f / D
kf kqk Of kq

kf k2k Of k2
D
kf kqk Of kq

k Of k22

� Œp1=p=q1=q�1=2;

where
1

p
C
1

q
D 1

for any f 2 �.R/ n ¹0º.
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Proof. By the sharp Hausdorff–Young inequality (see [2, Theorem 1]), we have

k Of kp � Œq
1=q=p1=p�1=2kf kq

for any f 2 �.R/ n ¹0º. By Hölder’s inequality, we further have

k Of k22 � k
Of kpk Of kq:

Combining the above two equations, we obtain

Fq.f / � Œp
1=p=q1=q�1=2

k Of kpk Of kq

k Of k22

� Œp1=p=q1=q�1=2:

Now, we give the proof of Theorem 4.3.

Proof of Theorem 4.3. Combining Theorems 4.5 and 4.6, we can obtain the conclu-
sion.

By Theorem 4.3, we have known that

Fq.f / � Œp
1=p=q1=q�1=2

for all f 2 �.R/ n ¹0º when 1 < q < 2. Let

Cq D inf¹Fq.f / W f 2 �.R/ n ¹0ºº;

then Cq � Œp1=p=q1=q�1=2 by Theorem 4.6. So, it is natural to ask what the optimal
constant Cq is.

Problem 4.7. Determine the constant

Cq D inf
®
Fq.f / W f 2 �.R/ n ¹0º

¯
when 1 < q < 2.

A. The function K.1=p; 1=q/

The first quadrant is divided into three regions RT ; RF ; RTF as follows:

RF W D
®
.1=p; 1=q/ 2 Œ0;1�2 W 1=p C 1=q � 1; 1=q � 1=2

¯
;

RT W D
®
.1=p; 1=q/ 2 Œ0;1�2 W 1=p C 1=q � 1; 1=p � 1=2

¯
;

RTF W D
®
.1=p; 1=q/ 2 Œ0;1�2 W 1=p � 1=2; 1=q � 1=2

¯
:
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K.1=p; 1=q/ D

0

1
q

0:5
�

1
�

1
p

0:5�

1� �
1
q�

1
p

RTF

RF �
1
2�

1
p

�
1
q�

1
2

RT

Figure 1. The norm of the Fourier transform Fs .

The function K.1=p; 1=q/ on Œ0;1/2 (see Figure 1) is given by

K.1=p; 1=q/ D

8̂̂<̂
:̂
�1=2�1=p for .1=p; 1=q/ 2 RF ;

�1=q�1=2 for .1=p; 1=q/ 2 RT ;

�1=q�1=p for .1=p; 1=q/ 2 RTF :
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