
Quantum Topol. 15 (2024), 503–536
DOI 10.4171/QT/209

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

˛-induction for bi-unitary connections

Yasuyuki Kawahigashi

Abstract. The tensor functor called ˛-induction produces a new unitary fusion category from
a Frobenius algebra object, or a Q-system, in a braided unitary fusion category. In the operator
algebraic language, it gives extensions of endomorphism of N to M arising from a subfactor
N � M of finite index and finite depth, which gives a braided fusion category of endomor-
phisms of N . It is also understood in terms of Ocneanu’s graphical calculus. We study this
˛-induction for bi-unitary connections, which provides a characterization of finite-dimensional
nondegenerate commuting squares, and present certain 4-tensors appearing in recent studies of
2-dimensional topological order. We show that the resulting ˛-induced bi-unitary connections
are flat if we start with a commutative Frobenius algebra, or a localQ-system. Examples related
to chiral conformal field theory and the Dynkin diagrams are presented.

1. Introduction

A fusion category [13] has recently emerged as a new type of symmetry in a wide
range of topics in mathematics and physics. Theory of operator algebras gives a nice
framework to study this type of new symmetries, as exemplified by discovery of the
Jones polynomial for knots [24] from the Jones theory of subfactors [23]. We have
three operator algebraic realizations of a fusion category based on endomorphisms
of a type III factor [37, 38], bimodules over type II1 factors [15, Chapter 9], and
bi-unitary connections [1, Section 3]. The last approach based on bi-unitary connec-
tions recently has renewed interest because of its relations to 2-dimensional statistical
physics [9, 29].

A certain 4-tensor, a (finite) family of complex numbers indexed by four indices, is
studied in physics literature, such as [9,41]. This has been identified with a bi-unitary
connection in the subfactor sense in [29], and further studies [30–32] have followed
in this direction. Also, see [20] for a recent development. Bi-unitary connections and
related topics are also recently studied in [10, 11]. This approach to a fusion cate-
gory based on bi-unitary connections has advantage that everything is described with
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finite-dimensional matrices and thus in principle computable on computers, while
endomorphisms of a type III factor and bimodules over type II1 factors are infinite
dimensional. This computability is one reason why physicists are interested in this
approach recently. Our aim in this paper to study ˛-induction in this framework of
bi-unitary connections.

The tensor functor ˛-induction originates in the operator algebraic studies of chi-
ral conformal field theory [40]. In this context, our basic object is a conformal net,
which is a family of von Neumann algebras parametrized by intervals contained in
the circle S1. It has a representation theory of superselection sectors and this has a
structure of braiding [16,17]. If a conformal net has a certain finiteness property called
complete rationality, we obtain a modular tensor category of its representations [34].
See a short review [28] and a longer review [27] for a general theory of this topic.

In a classical representation theory, if we have a representation of a subgroupH �
G, we have a method of induction to obtain a representation of G. We have a similar,
but more subtle, induction machinery for representation theory of conformal nets,
depending on braiding structure. Suppose we have an inclusion A � B of completely
rational conformal nets and � is a representation of A given as a Doplicher–Haag–
Roberts endomorphism of A.I / for some fixed interval I in S1. Then, we can extend
this endomorphism to B.I / using the braiding. This was first defined by Longo–
Rehren [40] and further studied by Xu [51] and Böckenhauer–Evans [4–6], where
this was named as ˛-induction.

In a completely different setting, Ocneanu had a machinery of flat connections to
study subfactors [43, 44], which consists of entries of a large unitary matrix. Then,
using a braiding structure of flat connections on the Dynkin diagrams of type A,
he introduced a graphical calculus to construct new fusion categories related to the
Goodman-de la Harpe subfactors [18] in [45]. We have unified the two theories of
˛-induction and Ocneanu’s graphical calculus in a fully general setting of braided
fusion categories and proved various basic properties such as appearance of modular
invariants in [7, 8] in the framework of endomorphisms of type III factors. In this set-
ting, ˛-induction is understood as a method of extending an endomorphism of a factor
N to another factor M � N using braiding, where we do not assume anything about
conformal field theory. This ˛-induction has been also understood in the language of
bimodules and more abstract braided fusion category.

Our motivation for this paper is as follows. First, it is nice to have a concrete
realization of ˛-induction in the setting of bi-unitary connections due to its finite
dimensionality and relations to statistical physics. Secondly, it gives a generalization
of Ocneanu’s graphical calculus in a much more general setting. We also note that
the same mathematical structure as ˛-induction appears in the context of anyon con-
densation [2], which gives another reason to study ˛-induction in this setting. (See
[36, Table 1] for this direction.)
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Our main result is Theorem 3.6 which shows our bi-unitary connection defined in
Definition 3.5 is a correct description of ˛-induction. We have a remark that though
we use an endomorphism framework [7, 8], we only need abstract properties of ˛-
induction, so we can also use a bimodule framework or a setting based on more
abstract fusion categories for ˛-induction for our results.

2. Preliminaries on braided fusion categories, subfactors, and
˛-induction

We give our setting for ˛-induction for a subfactorN �M and endomorphisms ofN
as in [7]. Let N be a type III factor. Throughout this paper, we assume the following
for � which is a finite set of mutually inequivalent irreducible endomorphisms of N
of finite dimension. (See [7, Definition 2.1].)

Assumption 2.1. We have the following for �.

(1) The identity automorphism is in �.

(2) For any � 2 �, we have another element � 2 � which is equivalent to N�.

(3) For any �; � 2 �, the composition �� decomposes into a direct sum of irre-
ducible endomorphisms each of which is equivalent to one in �.

(4) The set � has a braiding ".�; �/ 2 Hom.��;��/ as in [7, Definition 2.2].

We further make an assumption on connectedness of certain bipartite graphs as
follows, which will be necessary in the following Section. Note that this assumption
depends on a choice of �, an irreducible endomorphism of N in �. This is assumed
throughout the paper, except for Section 6.

Assumption 2.2. Consider a bipartite graph defined as follows. Let both even and
odd vertex sets be labeled with the elements in �. The number of edges between the
even vertex �1 and the odd vertex �2 is given by dim Hom.�1�; �2/. We assume that
this graph is connected.

Endomorphisms of N with finite dimension whose irreducible decompositions
give endomorphisms equivalent to ones in� produce a fusion category where objects
are such endomorphisms and morphisms are intertwiners between endomorphisms.
(See [7, Section 2.1] for more details on intertwiners. Also, see [3] for a recent treat-
ment of fusion categories and subfactors. See [13] for a more abstract and algebraic
treatment of fusion categories.) We consider a subfactor N � M with finite index
whose canonical endomorphism � decomposes into a sum of endomorphisms equiv-
alent to ones in �. Such a subfactor automatically has a finite depth. For a fixed N
and a fusion category of such endomorphisms, an extension M of N is in a bijective
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Figure 1. The chiral generator pC
�

.

correspondence to a Q-system as in [39, Section 6]. In algebraic literature, this is
often called a Frobenius algebra. (In this paper, we only consider C �-tensor cate-
gories. Also, see [42, Theorem 2.3] for a bimodule formulation of a Q-system.)

Since we assume to have a braiding, our fusion category is a braided fusion cat-
egory. If a braiding is nondegenerate in the sense of [7, Definition 2.3], we say that
this braided fusion category is a modular tensor category, but we do not assume this
nondegeneracy in this paper. We have a notion of locality, ".�; �/.v/ D .v/, for a
Q-system corresponding to a subfactor N � M . (Here,  is the canonical endomor-
phism of M and an isometry v 2M satisfies vx D .x/v for x 2M and M D Nv.)
The name “locality” comes from the locality of an extension of a conformal net in the
setting of [40, Theorem 4.9], and it was called chiral locality in [7]. A localQ-system
is also called a commutative Frobenius algebra in algebraic literature. We deal with
both local and non-local Q-systems in this paper.

The procedure called ˛-induction was defined in [40, Proposition 3.9] as follows:

˛˙� D N�
�1
� Ad."˙.�; �// � � � N�;

where � is an endomorphism in�, � is the inclusion mapN ,!M , � D N� � � is the dual
canonical endomorphism of N � M , and ˙ stands for a choice of positive/negative
braiding. It is a nontrivial fact that Ad."˙.�; �// � � � N�.x/ is in the image of N� for
x 2M . We have ˛˙

�
.x/D �.x/ for x 2 N and ˛˙

�
.v/D "˙.�; �/�v. See [7, Section

3] for basic properties of ˛-induction in this setting.
In a very different setting, Ocneanu used Figure 1 to represent a chiral generator

in the double triangle algebra. (Also, see [7, Figure 47].) It was identified with the
˛-induction in [7, Theorem 5.3]. (See [7, Section 4] for the double triangle algebra
and [7, Figure 4.1] for a graphical convention involving small half circles.)

For various diagrams, we use the convention in [7, Section 3]. In particular, our
convention is as in Figure 2, where T is an isometry in Hom.�; ��/ as in [7, Fig-
ure 21]. Note that rotation invariance of this type of diagrams is due to the Frobenius
reciprocity for endomorphisms due to Izumi [21, 22]. Also, as in [7, Section 4], we
draw a thin wire for anN -N morphism, a thick wire for anN -M orM -N morphism,
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Figure 2. Graphical convention for normalization of an intertwiner.

and a very thick wire for an M -M morphism. For a thick wire, we can tell whether it
stands for an N -M or M -N morphism from a diagram.

3. ˛-induction for bi-unitary connections

We now produce a family of new bi-unitary connections from the setting as in the
previous section. We simply say a connection for a bi-unitary connection in this paper.

We first recall the definition of a connection. (See [15, Section 11.3], [1, Section
3], and [32, Section 2]. There is an issue of connectedness of certain graphs and we
follow conventions of [1, Section 3] on this matter.)

We have four finite bipartite graphs G ; G 0;H ;H 0. The vertex set V0 is common
for even vertices of G and H . Similarly, the vertex sets V1; V2; V3 are common for
odd vertices of H and G 0, even vertices of G 0 and H 0, and odd vertices of G and
H 0, respectively. The four graphs satisfy some properties about the Perron–Frobenius
eigenvalues and eigenvectors as in [32, Section 2]. We choose edge �0; �1; �2; �3 from
the graphs H ; G 0;H 0; G , respectively, so that they make a closed square called a
cell. A map W called a connection assigns a complex number to each of such cells.
This complex value is represented with a diagram in Figure 3. This map W satisfies
axioms called bi-unitarity as in [32, Definition 2.2]. (See also Figures 8, 9, and 10
below.) The name “bi-unitarirty” means that each number in Figure 3 is an entry of a
unitary matrix in two ways, one after normalization arising from the Perron–Frobenius
eigenvector entries. Now, we require that the graphs G and G 0 to be connected, but
we do not require this for H and H 0. (This convention is different from the one
in [32], and the same as in [1].) We have an equivalence relation for connections on the
same four graphs as in remark after [1, Theorem 3]. We call the graphs G ;G 0;H ;H 0

the horizontal top graph, the horizontal bottom graph, the vertical left graph and the
vertical right graph of W , respectively. We also call the vertices in V0; V1; V2; V3 the
upper left vertices, the lower left vertices, the lower right vertices and the upper right
vertices, respectively.
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Figure 3. The four graphs for a connection.

It is well known that this bi-unitarity condition is characterized in terms of a com-
muting square as we now explain below. A commuting square of finite-dimensional
C �-algebras

A � B

\ \

C � D

with a trace on D is characterized by the following mutually equivalent conditions.
(See [15, Proposition 9.51], for example.)

(1) The conditional expectation EB from D to B with respect to trace restricted
to C coincides with the conditional expectation EA from C to A with respect to trace.

(2) The conditional expectation EC from D to C with respect to trace restricted
to B coincides with the conditional expectation EA from B to A with respect to trace.

This notion was originally considered in [46]. We say that this commuting square
is nondegenerate if the span BC is equal to D. (Being nondegenerate is also some-
times said to be symmetric.) A nondegenerate square of finite dimensionalC �-algebras
is described with a connection, for which we do not know yet whether it satisfies bi-
unitarity, as in [15, Section 11.2]. Then, it has been proved in [49, Theorem 1.10] that
the square gives a commuting square if and only the connection satisfies bi-unitarity.
(Also, see [15, Theorem 11.2].) In this sense, having a bi-unitary connection and
having a nondegenerate commuting square of finite-dimensional C �-algebras are the
same thing.

A commuting square also naturally appears from a subfactor N � M with finite
Jones index as

M 0 \Mk � M 0 \MkC1

\ \

N 0 \Mk � N 0 \MkC1

;

where N � M � M1 � M2 � � � � is the Jones tower arising from the Jones basic
construction [23]. (Also, see [15, Section 9.6] for such a commuting square.) If the
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�3� �4

��1� ��2
�.T1/

T4

T3 T2

Figure 4. The diagram for the connection W1.�; �/ in Figure 5.

�3 �4

�1 �2

T4

T1

T3 T2W1.�; �/

Figure 5. The standard diagram for the connection W1.�; �/.

original subfactor N � M is hyperfinite, of type II1 and of finite depth, then the
above commuting square recovers the original subfactor N � M by Popa’s theorem
[47]. In this sense, a connection encodes complete information about such a subfactor.
A connection corresponding to such a commuting square arising from a subfactor
N � M satisfies a special extra property called flatness, which was introduced by
Ocneanu [43,44] and studied in [26]. (See [15, Section 11.4] for more discussions on
flatness.)

We first define the connectionW1.�;�/, but we make a remark on one issue again.
In this paper, we use operator algebraic realization of a braided fusion category and
˛-induction based on endomorphisms of a type III factor as in [7, 8], such as [7, Fig-
ure 30], but this is simply because this was the first place where all necessary details
were worked out, and we can equally use other formulations based on bimodules or
abstract fusion categories. Such a choice of formulation does not cause any change in
our results here.

Definition 3.1. Let �1; �2; �3; �4 2 �. Consider the diagram in Figure 4. By com-
posing isometries T1 2 Hom.�1�; �2/, T2 2 Hom.��2; �4/, T3 2 Hom.��1; �3/, and
T4 2 Hom.�3�; �4/, we obtain a complex number T4T3�.T �1 /T

�
2 2 Hom.�4; �4/. We

define the connection W1.�; �/ by this number and draw Figure 5.
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�3 �4

�1 �2

Figure 6. The standard diagram for a connection W1.�; �/.

�3

�2

� �1 � N�4

Figure 7. The diagram for the connection W1.�; �/ in Figure 5.

We note that the left vertical bipartite graph in this definition is defined as follows.
One set of vertices is given by � and the other is the same. The number of edges
between the vertices �1 and �3 is given by dim Hom.��1; �3/. The other graphs are
defined similarly, and this remark applies to all the definitions of the connections in
this section.

We often drop labels for the connection and/or intertwiners as long as no confusion
arises, and simply draw a diagram in Figure 6.

We draw a diagram as in Figure 7 which represents a complex number in the
standard convention as in [7, Section 3]. (Note that in Figure 7, we drop orientations
of wires which go from the top to the bottom.) This complex number is equal to
the one represented by the composition of isometries as in Figure 4 multiplied byp
d�d�d�1d�4 by the standard convention in Figure 2.
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D ıT1;T 01
ıT2;T 02

Figure 8. Unitarity (1) for the connection W1.�; �/.

�3 �4

�1 �2

T4

T1

T3 T2

�03
�4

�1 �2

T 04

T1

T 03 T2
P
�2;T1;T2

D ıT3;T 03
ıT4;T 04

Figure 9. Unitarity (2) for the connection W1.�; �/.

�4 �3

�2 �1

zT4

zT1

T2 T3

�3 �4

�1 �2

T4

T1

T3 T2D

r
d�1d�4
d�2d�3

Figure 10. Crossing symmetry for the connection W1.�; �/.

Then, unitarity of the connection W1.�; �/ is represented as in Figures 8 and 9.
Here, the bars above the right squares denote the complex conjugates.

Crossing symmetry for the connectionW1.�;�/ is given as in Figure 10, where zT1
and zT4 stand for the Frobenius duals of T1 and T4, respectively. This is a well-known
relation arising from the tetrahedral symmetry of the 6j -symbols as in [15, Definition
12.15], but we include a simple argument for this, because we need a similar argument
later for W3.�/ as in Figure 21.

We first make a vertical reflection of the diagram in Figure 7 to obtain Figure 11.
We then redraw Figure 11 to obtain Figure 12, which represents the complex number
given by the diagram in Figure 13 multiplied by

p
d�d�2d�d�3 .

This shows we have crossing symmetry, Figure 10. This, together with the unitar-
ity of the left-hand side of Figure 10, shows bi-unitarity of the connection W1.�; �/.



Y. Kawahigashi 512

�3

�2

� �1 � N�4

Figure 11. A vertical reflection of Figure 7.

�4

�1

� �2 N� N�3

Figure 12. Redrawing of Figure 11.

We now prove that the fusion category of endomorphisms of N arising from �

and the one arising from the connections W1.�; �/ for various � and fixed � are
equivalent. This is where we need Assumption 2.2. Then, we have the following the-
orem.

Theorem 3.2. Under Assumptions 2.1 and 2.2, the fusion category arising from the
connections W1.�; �/ for all � 2 � is equivalent to the one arising from endomor-
phisms � 2 � of N .

Proof. By the description of the intertwiners between open string bimodules in the
proof of [1, Theorem 3], we have a natural injective linear map from Hom.�1�2; �3/
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�4 �3

�2 �1

zT4

zT1

T2 T1W1.�; N�/

Figure 13. The diagram for the connection W1.�; N�/.

to Hom.W1.�1; �/W1.�2; �/; W1.�3; �// for �1; �2; �3 2 �. The morphism space
Hom.W1.�1; �/W1.�2; �/;W1.�3; �// is described with the higher relative commu-
tants of the corresponding subfactor by the proof of [1, Theorem 3]. These higher
relative commutants are described with Ck;�1 for the subfactorM0 �M1 in the proof
of [48, Theorem 3.3]. They are described with the intertwiner spaces of theN -N mor-
phisms as in the proof of [48, Theorem 3.3]. This means that the dimensions of the
two intertwiner spaces Hom.�1�2; �3/ and Hom.W1.�1; �/W1.�2; �/; W1.�3; �//
are the same, and thus, the above natural linear map is surjective. The compositions
of intertwiners in the two fusion categories are also compatible with this identification,
so they are equivalent.

Then, we see that the structure of the braided fusion category of these endomor-
phisms of N passes to that of these connections.

We next introduce two types of connections. The first is the easier one W2.�/.

Definition 3.3. Let �1; �2 2 � and a1; a2 be irreducible M -N morphisms arising
from � and the subfactor N �M . Figure 14 represents the complex number

T4T3�.T1/
�T �2 2 Hom.a2; a2/

for isometries

T1 2 Hom.�1�; �2/; T2 2 Hom.��2; a2/;

T3 2 Hom.��1; a1/; T4 2 Hom.a1�2; a2/;

where a1 and a2 areM -N morphisms. We define the connectionW2.�/ by this num-
ber and use the diagram as in Figure 15 to represent this connection.

Note that remark after Definition 3.1 applies here again. For example, the left
vertical bipartite graph in this definition is defined as follows. One set of vertices
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a1� a2

��1� ��2
�.T1/

T4

T3 T2

Figure 14. The diagram for the connection W2.�/.

a1 a2

�1 �2

Figure 15. The standard diagram for the connection W2.�/.

is given by � and the other is given by the representatives of the irreducible M -N
morphisms. The number of edges between the vertices �1 2� and anM -N morphism
a1 is given by dim Hom.��1; a1/.

We next introduce the other connection, W3.�/.

Definition 3.4. Let �1; �2 2 � and a1; a2 be irreducible M -N morphisms arising
from � and the subfactor N �M . Figure 16 represents the complex number

T4˛
C

�
.T3/E

C.�; �/��.T1/
�T �2 2 Hom.a2; a2/

for isometries T1 2 Hom.��1; �2/, T2 2 Hom.��2; �4/, T3 2 Hom.��1; a1/, T4 2
Hom.˛C

�
a1; a2/, which is represented with the connection diagram in Figure 17. We

define the connection W3.�/ by this number. Here, E˙ is defined in [7, page 455
below equation (14)] and we recall Figure 18, which is taken from [7, Figure 30].
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˛C
�
a1

˛C
�
��1

a2

���1 ��2
�.T1/

T4

EC.�; �/�

˛C
�
.T3/

T2

Figure 16. The diagram for the connection W3.�/.

a1 a2

�1 �2

Figure 17. The standard diagram for the connection W3.�/.

The complex number represented by the diagram in Figure 19 is equal to the one
represented by the connection diagram in Figure 17 multiplied by

p
d�d�d�1da2 by

the standard convention in Figure 2. Note that we drop orientations of wires which go
from the top to the bottom in Figure 19.

We make a vertical reflection of Figure 19 to get Figure 20. We again drop orien-
tations of wires which go from the top to the bottom. Note that the complex number
values given by these two diagrams are complex conjugate to each other.

By redrawing Figure 20, we have Figure 21.
The complex number represented by the diagram in Figure 21 is equal to the

one represented by the connection diagram in Figure 22 multiplied by
p
d�d�d�2da1

This means that the value of the connection diagram in Figure 22 for W3. N�/ is equal
to the complex conjugate of the value of the connection diagram in Figure 17 for
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˛C
�

�

� �

Figure 18. The braiding operator EC.�; �/�.

a2

�2

� � �1

˛C
� a1

Figure 19. The diagram for the connection W3.�/ in Figure 17.

W3.�/ multiplied by
r
d�1da2
d�2da1

. This proves bi-unitarity of W3.�/, as Figure 10 gave

bi-unitarity of W1.�; �/.
We next introduce the connection W4.˛C� ; �/, which is the ˛C-induced connec-

tion.

Definition 3.5. Let a1; a2; a3; a4 be irreducibleM -N morphisms arising from� and
the subfactor N � M . Consider the diagram in Figure 23. By composing isometries
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a2

a1˛C
�

� � �1

�2

Figure 20. A vertical reflection of Figure 19.

T1 2Hom.a1�;a2/, T2 2Hom.˛C
�
a2;a4/, T3 2Hom.˛C

�
a1;a3/, and T4 2Hom.a3�;

a4/, we obtain a complex number T4T3˛C� .T
�
1 /T

�
2 2 Hom.a4; a4/. We define the

connection W4.˛C� ; �/ by this number and represent this as in Figure 24.

By a very similar argument to the one for bi-unitarity of W1.�; �/, we obtain
bi-unitarity of W4.˛C� ; �/.

We then have the intertwining Yang–Baxter equation forW1.�;�/,W3.�/,W3.�/,
and W4.˛C� ; �/ as in Figure 25, which was given in [25, Axiom 7]. The meaning of
this diagram is as follows. On both hand sides of the identity, the six isometries are
fixed for the six boundary edges of the hexagons in the same way. The left-hand
side means the summation of the product of the three connection values W1.�; �/,
W3.�/, and W2.�/ over all possible choices of the three isometries corresponding to
the three internal edges of the hexagon. The right-hand side means the summation
of the product of the three connection values W3.�/, W2.�/, and W4.˛C� ; �/ over all
possible choices of the three isometries corresponding to the three internal edges of
the hexagon. Both hand sides are equal because they are both equal to the composition
of the six (co-)isometries corresponding to the six boundary edges of the hexagons.

We have seen that ˛-induction applied toN �M produces bi-unitary connections.
From this construction and the description of intertwiner spaces for connections as in
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a1

�1

� N� �2

˛C
N� a2

Figure 21. Redrawing of Figure 20.

a2 a1

�2 �1

Figure 22. The standard diagram for the connection W3. N�/.

[1, Theorem 3] again, we have the following theorem under Assumption 2.2 with the
same arguments as in the proof of Theorem 3.2.

Theorem 3.6. Under Assumptions 2.1 and 2.2 for a fixed �, the fusion category aris-
ing from the connections W4.˛˙� ; �/ for all � 2 � is equivalent to the one arising
from endomorphisms ˛˙

�
of M given by ˛-induction.

Note that it is nontrivial that we have only finite many irreducible endomorphisms
of M up to equivalence when we consider those arising from ˛˙

�
. This has been

proved in [7, Theorem 5.10].
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a3� a4

˛C
�
a1� ˛C

�
a2

˛C
�
.T1/

T4

T3 T2

Figure 23. The diagram for the connection W4.˛
C

�
; �/ in Figure 5.

a3 a4

a1 a2

Figure 24. The standard diagram for the connection W4.˛
C

�
; �/.

4. RewritingW4.˛C

�
; �/ and switching of positive and negative

braiding

Though we have defined the ˛-induced connection W4.˛C� ; �/ as in Figure 23, we
need to know full information about ˛C

�
to compute this value. Since we are now

in the process of defining the new connection W4.˛C� ; �/ before knowing ˛C
�

, we
certainly hope to compute this number without using the information about ˛C

�
. We

show in this section that this is possible.
Figure 26 represents the complex number

T4T
0
3E
C.�; a1/˛

C

�
.T1/

�EC.�; a2/
�T 02
�
2 Hom.a4; a4/

for isometries T1 2 Hom.a1�; a2/, T 02 2 Hom.a2�; a4/, T 03 2 Hom.a1�; a3/, T4 2
Hom.a3�; a4/, which is represented with the connection diagram in Figure 24. This
composition corresponds to the diagram in Figure 27 up to normalization constant,
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D

W2.�/

W1.�; �/

W3.�/ W3.�/

W4.˛
C

�
; �/

W2.�/

Figure 25. The intertwining Yang–Baxter for W1.�; �/, W3.�/, W3.�/, and W4.˛
C

�
; �/.

a3�

a1��

˛C
�
a1�

a4

a2�

˛C
�
a2

˛C
�
.T1/

T4

EC.�; a1/

T 03

EC.�; a2/

T 02

Figure 26. The diagram for the connection W4.˛
C

�
; �/.

and we can redraw this as in Figure 28. Note that we drop orientations of wires which
go from the top to the bottom in Figures 27 and 28. The complex number represented
by the diagram in Figure 28 is equal to the one represented by the connection diagram
in Figure 26 multiplied by

p
d�d�da1da4 . Since Figure 28 does not involve ˛C

�
, this

diagram gives W4.˛C� ; �/, up to normalization constant, in terms of N -N and M -N
morphisms and intertwiners including the braiding operators. This is what we asked
for at the beginning of this section.

We next study what the effect of switching the positive and negative braiding is.
Vertical reflection of Figure 28 gives Figure 29. The complex numbers given by these
two figures are mutually complex conjugate. By comparing these two figures, we have
the following proposition.

Proposition 4.1. We have the identity as in Figure 30.

We also show that we can rewrite W3.�/ into the form without using ˛C
�

as fol-
lows.
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�a2

˛C
�

a1 � �

a3

a4

Figure 27. The diagram for the connection in Figure 26.

5. Locality of theQ-system and flatness ofW4.˛C

�
; �/

In the case of Ocneanu’s construction [45], he obtained flat connections only for An,
D2n, E6, and E8 as we see in the next section in detail. (Note that Assumption 2.2
does not hold for these examples. We will treat this issue in the following section.
Also, see [15, Theorem 11.24].) It has been observed that these cases exactly corre-
spond to the Q-systems with locality ".�; �/.v/ D .v/ as in [8, Section 5] (where
this property was called chiral locality). So, we expect some relations between locality
of theQ-system and flatness of the corresponding ˛˙-induced connection in general.
We show that this is indeed the case in this section.

We now assume locality. Note that we then have irreducibility of � W N ,! M

by [4, Corollary 3.6]. (Having a Q-system with locality in a general modular tensor
category is enough in [4] rather than a conformal net.)

We prove flatness of the connection W4.˛C� ; �/ in the sense of Figure 33, which
is taken from [15, Figure 11.21]. We first need a lemma.

Lemma 5.1. Suppose �; � are irreducible endomorphisms of N contained in � . We
then have the identity as in Figure 34.
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a4

a2

a1

�

�

a3

Figure 28. Redrawing of Figure 27.

Proof. Locality gives Figure 35, where the triple vertices on both hand sides represent
.v/. We then have the identity in Figure 36, where small black circles represent co-
isometries in Hom.�; �/ and Hom.�; �/. We next have the identity in Figure 37 by a
property of braiding and then the identity in Figure 38 by rewriting � with N��. Pulling
the thick wires straight and rotating this diagram for 90 degrees gives the desired
conclusion.

Theorem 5.2. Under Assumption 2.1, the connection W4.˛C� ; �/ is flat.

Proof. We prove the identity in Figure 33. Both horizontal and vertical sizes of the
large diagram in Figure 33 are supposed to be even, but we can take both of them to
be 1 in our current setting, so we first give a proof for this case.

Now, our � vertex in Figure 33 corresponds to �. Because all the four corner ver-
tices in Figure 33 are now �, we set a1 D a2 D a3 D a4 D � in Figure 28. We then have
Figure 39 and the complex value this diagram represents is equal to the one given by
the partition function in Figure 33 multiplied by

p
d�d�d�.

By Lemma 5.1, the value Figure 39 represents is equal to the one Figure 40 rep-
resents. The latter is equal to

p
d�d�d�, so the complex value given by the partition

function in Figure 33 is 1.
When the horizontal and vertical sizes of the large diagram in Figure 33 are arbi-

trary, we replace � and � in the above arguments by N�� � � �� and � N� � � � N�. Then, the
same arguments give the value 1 and we are done.
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a4

a3

a1

�

�

a2

Figure 29. Vertical reflection of Figure 28.

a3

a1

a4

a2

W4.˛
C

�
; �/ D W4.˛

�
� ; �/

a2

a1

a4

a3

Figure 30. Complex conjugate and opposite braiding.

6. Examples

Ocneanu considered connections on A-D-E Dynkin diagrams in [45]. We revisit this
topic from our viewpoint now and would like to apply the results in Section 3. Here,
we have a nontrivial issue since Assumption 2.2 does not hold now for any choice of
�.

Let � be the set of endomorphisms of a type III factor N corresponding to the
Wess–Zumino–Witten model SU.2/k , where k is a positive integer called a level.
(See [12, Subsection 16.2.3], for example.) We label the irreducible objects of the
modular tensor category with 0; 1; 2; : : : ; k, using the Dynkin diagram of type AkC1
as in Figure 41, where the label 0 denotes the vacuum representation, that is, the iden-
tity automorphism of N . Such a system of endomorphisms with braiding has been
constructed from a conformal net by Wassermann [50] and this braiding is nondegen-
erate by [34, Corollary 37] and [52, Theorem 4.1].
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�2�
�

�1

a1˛C
�

�

a2

Figure 31. Redrawing of W3.�/.

All Q-systems on � for all k have been classified in [33, Section 2.5] for the
local case and in [35, Section 2] for the general case. They are classified with a pair
consisting of one of the A-D-E Dynkin diagrams and its vertex. We explain this from
a viewpoint of the Goodman–de la Harpe–Jones subfactor in [18, Section 4.5].

Let G be one of the A-D-E Dynkin diagrams and choose the vertex with the
smallest entry of the Perron–Frobenius eigenvector entry. We have the Goodman–
de la Harpe–Jones subfactor as in [18, Section 4.5] or [15, Section 11.6], and the
corresponding Q-system. If G is of type A, then this Q-system has index 1 and is
trivial. If G is of type D, then the Q-system has index 2 and corresponds to a crossed
product by Z=2Z. If G is E6 or E8, then the Q-systems correspond to the subfactors
arising from conformal embeddings SU.2/10 � S.5/1 and SU.2/28 � .G2/1 by [8,
Proposition A.3]. Also, see [8, Appendix] for the case of E7.

We next choose �D �D 1 in the setting of Section 3 and consider the connection
W4.˛

˙
�
; �/. Since the irreducible N -M morphisms are labeled with the vertices of

G by the arguments in [15, Section 11.6], all the four vertex sets for W4.˛˙� ; �/ are
also labeled with the vertices of G . Then, the requirements for the Perron–Frobenius
eigenvalues and the Perron–Frobenius eigenvector entries force all the four graphs
of W4.˛˙� ; �/ to be G , but Assumption 2.2 does not hold, since the horizontal top
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�2

�

�
�1

a1

a2

Figure 32. Further redrawing of W3.�/.

and bottom graphs are never connected, due to a Z=2Z-grading on the vertices of the
Dynkin diagrams. This issue is resolved as follows.

The connectionW4.˛˙� ;�/ splits into two connections on mutually disjoint graphs
both of which are isomorphic to G . Then, both of the two connections must be of the
following form as given in [44]. (Also see [15, Figure 11.32].) Let n be its Coxeter
number of G and set " D

p
�1 exp �

p
�1

2.nC1/
. We write �x for the Perron–Frobenius

eigenvector entry for a vertex x. Then, our connection is given as follows. (We can
replace " with N". By the arguments in [15, Section 11.5], these two choices give the
only possible connections on G . If G is of type A, they give equivalent connections.
If G is of type D or E, they are not mutually equivalent. Here, we allow only vertical
gauges while horizontal gauges are also allowed in [15, Section 11.5], but this does
not cause problems since our graph G is a tree. See remark after [1, Theorem 3].)

The horizontal top and bottom graphs for W4.˛˙j ; 1/ always have exactly two
connected components. This is still valid after we make irreducible decomposition
of such connections. Let W be a pair of two such connections Wa and Wb arising
from irreducible decomposition of W4.˛˙j ; 1/ for some j and W 0 be a pair of two
such connections W 0a and W 0

b
from W4.˛

˙
k
; 1/ for some k. We can compose Wa with

exactly one of W 0a and W 0
b
, and compose Wb with the other one, since they have

the matching horizontal bottom and top graphs. For the fusion rules and intertwiner
spaces of this composition product, we can use either of the two compositions and
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�

�

�

�

D 1

� �

�

�

Figure 33. Flatness as in [15, Figure 11.21].

� �

D

�

�

�

�

Figure 34. A consequence of locality.

have the same results, by the same arguments as the ones in the proof of Theorem
3.6. In this way, we obtain a fusion category of connections which is equivalent to the
one of M -M morphisms arising from ˛˙-induction. We now obtain the diagrams of
decompositions of connections which are the same as in [6, Figures 2, 5, 8, and 9] and
[8, Figures 40 and 42]. These were originally found by Ocneanu for such connections.
We also know that the results in the previous section on flatness apply to these cases,
though Assumption 2.2 does not hold now. For this type of computations, we do not
need exact information of the connections, and simply having the graphs involved is
often sufficient. See [19] for such computations.

We now discuss the issue of complex conjugate connections. For W4.˛˙1 ; 1/, the
connection Figure 42 is symmetric in j andm, so the effect of switching positive and
negative braiding in Proposition 4.1 now amounts to taking simply complex conju-
gate connections. That is,W4.˛C1 ; 1/ andW4.˛�1 ; 1/ are mutually complex conjugate.
Now, consider the case of G D E6. The connections W4.˛C2 ; 1/ and W4.˛�2 ; 1/ are
also mutually complex conjugate. Both of the connections W4.˛C3 ; 1/ and W4.˛�3 ; 1/
decompose into two irreducible connections each. Since irreducible decomposition
of a complex conjugate connection gives the complex conjugate connections of those
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D

� � � �

� �

Figure 35. Locality of a Q-system.

D

� �

� �

� �

� � � �

Figure 36. A consequence of Figure 35.

appearing in the irreducible decomposition in general, the complex conjugates of the
two irreducible connections arising from W4.˛

C
3 ; 1/ appear in the irreducible decom-

position of W4.˛�3 ; 1/. In this way, we see that switching the positive and negative
braiding for the ˛-induced connections amounts to taking complex conjugate con-
nections. The same argument also works for E7 and E8. This was also observed by
Ocneanu [45], but is special to the A-D-E Dynkin diagrams. The decomposition
rules for E7 as in [8, Figure 42] follow from our computations in [14] showing that
the principal graph of the subfactor arising from the E7 connection is D10.

The modular tensor categories corresponding to the Wess–Zumino–Witten model
SU.N/k also have Z=NZ-grading, and a similar method to the above shows how to
handle this issue.

We add a remark on the effect of Assumption 2.2. Even without this Assump-
tion, our Definitions 3.1, 3.3, 3.4, and 3.5 on our new connections make sense. The
only problem is that if horizontal graphs are disconnected, we cannot compose two
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D

� �

� �

� �

� � � �

Figure 37. A consequence of Figure 36.

D

N� �

�

� �

N� �

�

� �

Figure 38. A consequence of Figure 37.

connections in a usual way in Theorem 3.6, and other results such as Theorem 5.2
are not affected. Another way of handling the issue in Assumption 2.2 is to make �
smaller. For example, if we choose �D �D 2 in the numbering of irreducible objects
for the fusion category SU.2/k as in Figure 41 and consider only irreducible objects
numbered with even integers, then everything in the above sections works fine.

7. Triple sequence of string algebras and another interpretation of the
˛-induction in terms of bi-unitary connections

Let � be the vertex corresponding to the identity automorphism of N in �. We con-
struct a triple sequence ¹Ajklºjkl as in [25, Section 2]. This is a triple sequence
version of the standard construction of the double sequence of string algebras in [15,
Section 11.3]. A new property we need for compatibility of the identification is the
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�

�

�

�

�

�

Figure 39. A diagram for the connection W4.˛
C

�
; �/ for a1 D a2 D a3 D a4 D �.

intertwining Yang–Baxter equations as in [25, Axiom 7], and we now have this iden-
tity as in Figure 25.

For the commuting squares

A2j;2k;2l � A2j;2kC1;2l
\ \

A2jC1;2k;2l � A2jC1;2kC1;2l

;

A2j;2k;2lC1 � A2j;2kC1;2lC1
\ \

A2jC1;2k;2lC1 � A2jC1;2kC1;2lC1

;

A2j;2k;2l � A2j;2kC1;2l
\ \

A2j;2k;2lC1 � A2j;2kC1;2l

;

A2jC1;2k;2l � A2jC1;2kC1;2l
\ \

A2jC1;2k;2lC1 � A2jC1;2kC1;2l

;

A2j;2k;2l � A2jC1;2k;2l
\ \

A2j;2k;2lC1 � A2jC1;2k;2lC1

;

A2j;2kC1;2l � A2jC1;2kC1;2l
\ \

A2j;2kC1;2lC1 � A2jC1;2kC1;2lC1

;



Y. Kawahigashi 530

�

�

�

�

�

�

Figure 40. Redrawing of Figure 39 with Lemma 5.1.

0 1 2 3 k � 1 k

Figure 41. Irreducible objects for the SU.2/k WZW-model.

we use the connections W1.�; �/, W4.˛C� ; �/, W2.�/, W2.�/, W3.�/, and W3.�/,
respectively. We then have the following identification between the string algebras
and the endomorphism spaces:

A2j;2k;2l D End.. N��/j .N��/l.� N�/k/;

A2j;2kC1;2l D End.. N��/j .N��/l.� N�/k�/;

A2jC1;2k;2l D End.�. N��/j .N��/l.� N�/k/;

A2jC1;2kC1;2l D End.�. N��/j .N��/l.� N�/k�/;

A2j;2k;2lC1 D End..˛C
N�
˛C
�
/j �.N��/l.� N�/k/;

A2j;2kC1;2lC1 D End..˛C
N�
˛C
�
/j �.N��/l.� N�/k�/;

A2jC1;2k;2lC1 D End.˛C
�
.˛C
N�
˛C
�
/j �.N��/l.� N�/k/;

A2jC1;2kC1;2lC1 D End.˛C
�
.˛C
N�
˛C
�
/j �.N��/l.� N�/k�/:
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W

l

j

m

k

D ıkl"C
q

�k�l
�j�m

ıjm N"

Figure 42. A connection on the Dynkin diagram.

W1.�1; �/

W1.�2; �/

S T D

W1.�2; �/

W1.�1; �/

Figure 43. Braiding "C.�1; �2/.

Note that for inclusions such as A2j;2k;2l � A2j;2k;2lC1, we use unitary equiva-
lences ˛C

�
�Š ��, ˛C

N�
�Š � N�, �N�Š N�˛C

�
, and N�N�Š N�˛C

N�
. These are compatible with ways

of identification of strings with the connections. (The only nontrivial identification is
done with W3.�/, where we use unitary equivalence of �� and ˛�� as in Figure 16.)

By taking unions over k and making the GNS-completions with respect to the
compatible trace, we have a commuting square of hyperfinite type II1 factors as in
[25, Assumption 1.1]. We see that our triple sequence of string algebras arise from
this commuting square as in [25, Section 3]. See [25, Section 5] for the case of the
Dynkin diagrams of type A-D-E.

Our construction of ˛-induced connections from N �M uses information on all
the N -M morphisms and their intertwiners. This is also true for Ocneanu’s chiral
generator picture in Figure 1 in the double triangle algebra. This is theoretically fine,
but we would like to have a method to obtain the ˛-induced connections purely in
terms of connections. We discuss such a method at the end of this paper.

In the original setting of the set� of irreducible endomorphisms ofN , we fix � 2
� and suppose we have a family of connectionsW1.�;�/ for �2� and the horizontal
top and bottom graphs for all of them are the same finite bipartite graph G . Let �
be the vertex of G corresponding to the identity automorphism in �. Our positive
braiding gives equivalence of the two composite connections W1.�1; �/ �W1.�2; �/
and W2.�1; �/ �W1.�1; �/. This is given by Figure 43, where S and T give unitary
matrices giving vertical gauge choices arising from a positive braiding between �1
and �2.
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Suppose that we have a flat connection W0 with respect to � (in the sense of
[15, Definition 11.16]) with the horizontal top and bottom graphs being finite bipartite
graphs G and H such that the composition W0 � NW0 decomposes into a direct sum of
irreducible connections each of which is equivalent to one of W1.�; �/. This is a
connection version of our setting in Section 2 and our connection W0 must be of the
form W2.�/ for some �.

Construct a double sequence of string algebras ¹Bklºkl as in [15, Section 11.3]
from the connection W0. That is, the commuting square

B2l;2k � B2l;2kC1
\ \

B2lC1;2k � B2lC1;2kC1

is described with W0. We further construct a double sequence of string algebras
¹Cklºkl so that

B2l;2k � B2l;2kC1
\ \

C2l;2k � C2l;2kC1

is described with W1.�; �/ and

C2l;2k � C2l;2kC1
\ \

C2lC1;2k � C2lC1;2kC1

is described with W0 . Because of the braiding between W1.�; �/ and W0 � NW0, we
have compatibility between

B2l;k � B2l;kC1
\ \

C2l;k � C2l;kC1
\ \

C2lC2;k � C2lC2;kC1

and
B2l;k � B2l;kC1
\ \

B2lC2;k � B2lC2;kC1
\ \

C2lC2;k � C2lC2;kC1

as in the case of the intertwining Yang–Baxter equation.
Consider an element inB2lC1;k . It is embedded intoB2lC2;k and then intoC2lC2;k .

It is not a priori clear whether the image in C2lC2;k or not, but actually the image is in
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C2lC1;k because we are in the setting of the triple sequence of string algebras intro-
duced in this Section. This gives an embedding of B2lC1;k into C2lC1;k . Then, the
results in section 3 mean that the connection describing the commuting square

B2lC1;2k � B2lC1;2kC1
\ \

C2lC1;2k � C2lC1;2kC1

is W4.˛C� ; �/.
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