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Abelian TQFTS and Schrödinger local systems

Aleksei Andreev, Anna Beliakova, and Christian Blanchet

Abstract. In this paper, we construct an action of 3-cobordisms on the finite dimensional
Schrödinger representations of the Heisenberg group by Lagrangian correspondences. In addi-
tion, we review the construction of the abelian Topological Quantum Field Theory (TQFT)
associated with a q-deformation of U.1/ for any root of unity q. We prove that, for 3-cobor-
disms compatible with Lagrangian correspondences, there is a normalization of the associated
Schrödinger bimodule action that reproduces the abelian TQFT.

The full abelian TQFT provides a projective representation of the mapping class group
Mod.†/ on the Schrödinger representation, which is linearizable at odd root of 1. Motivated by
homology of surface configurations with Schrödinger representation as local coefficients, we
define another projective action of Mod.†/ on Schrödinger representations. We show that the
latter is not linearizable by identifying the associated 2-cocycle.

To the memory of Vaughan Jones
The founder of quantum topology

1. Introduction

The discovery of the Jones polynomial revolutionized low-dimensional topology. The
new link invariants constructed by Jones, Kauffman, HOMFLY-PT, and Reshetikhin–
Turaev, etc. were extended to mapping class group representations, later shown to
be asymptotically faithful, and to 3-manifold invariants. These developments have
reached their peak in constructions of Topological Quantum Field Theories (TQFTs)
[11, 36]. The scope of ideas initiated by Vaughan Jones built the foundations for the
new domain of mathematics—the quantum topology. One of the main open problems
in quantum topology is to understand the topological nature of quantum invariants.

In the 1990s, Lawrence [28] initiated a program aimed at homological inter-
pretation of quantum invariants. In 2001, Bigelow [8] was able to read the Jones
polynomial from the intersection pairing on the twisted homology of the configu-
ration space Confn.D2

m/ of n points in m-punctured disc D2
m. This construction led
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to a family of representations (indexed by n) of the braid group Bm, which recov-
ers for n D 1 the Burau representation. A spectacular achievement was the proof by
Bigelow [10] and Krammer [27] that this braid group representation for nD 2 is faith-
ful, showing the linearity of the braid group. Bigelow’s construction was extended
later to other quantum link invariants (see [1, 2, 9, 30] and references therein).

Recently, homological mapping class group representations were constructed by
the third author together with Palmer and Shaukat [13]. The idea here was to use a
Heisenberg cover of the space Confn.†/ of unordered n configurations in a surface†
with one boundary component, whose group of deck transformations is the Heisen-
berg group H .†/. Recall that H .†/ D Z �H1.†;Z/ has the group law

.k; x/.l; y/ D .k C l C x � y; x C y/;

where x � y is the intersection pairing. In detail, the surface braid group Bn.†/ WD
�1.Confn.†// surjects onto H .†/ (see Section 4.1). The kernel of this map is a char-
acteristic normal subgroup of the surface braid group by [13, Proposition 8], which
determines the Heisenberg cover eConfn.†/.

Since the group of deck transformations H .†/ acts on the chain groups of the
Heisenberg cover, any H .†/-module M can be used to construct a twisted homol-
ogy as follows. We first extend the action of the group to its group algebra CŒH �!

End.M/ by linearity and then construct a complex

C�
�eConfn.†/˝CŒH.†/�M

�
:

Its homology, known as twisted homology of Confn.†/ with coefficients in M , is
denoted byH�.Confn.†/;M/ (compare [18, Chapter 5], [25, Chapter 3.H]). An inter-
esting choice ofM provides a finite dimensional Schrödinger representationWq.L/ of
a finite quotient of H .†/, which depends on a choice of a Lagrangian L �H1.†;Z/
and a root of unity q. If the order of q is odd, the resulting mapping class group rep-
resentations were recently shown to contain the quantum representations arising from
the non-semisimple TQFT for the small quantum sl2 by De Renzi and Martel [35]. In
particular, they defined the action of the quantum sl2 on the Schrödinger homology
explicitly and showed that it commutes with the action of the mapping class group.

To complete Lawrence–Bigelow program we are lacking homological interpreta-
tion of quantum 3-manifold invariants and of the action of 3-cobordisms on Schröding-
er homologies. This paper is a first step in this direction. Here, we construct an action
of 3-cobordisms on Schrödinger representations by Lagrangian correspondences. In
addition, we show that on a certain subcategory of extended 3-cobordisms and after a
suitable normalization this action recovers the abelian TQFT.

Abelian TQFTs are functorial extensions of 3-manifold invariants constructed by
Murakami–Ohtsuki–Okada from linking matrices [34]. Their connections with theta
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functions and Schrödinger representations, in the case when the quantum parameter
(called t in these papers) is a root of unity of order divisible by 4, were extensively
studied by Gelca and collaborators [19–22]. Here, we work with an arbitrary root of
unity. We show that interesting cases are if the order is either odd or divisible by 4.
In the latter case, we complete the work of Gelca et al. by constructing TQFTs via
modularization functor. In addition, we discuss refined TQFTs corresponding to the
choice of a spin structure or a first cohomology class on 3-manifolds.

Our preferred cobordism category is the Crane–Yetter category 3Cob of connected
oriented 3-cobordisms between connected surfaces with one boundary component
and with the boundary connected sum as the monoidal structure. This category has
a beautiful algebraic presentation: it is monoidally generated by the Hopf algebra
object—the torus with one boundary component [5, 14]. By the result of [7], for any
finite unimodular ribbon category C , there exists a monoidal TQFT functor from
3Cob� to C determined by sending the torus with one boundary component to the
terminal object of C , called the end. Here, 3Cob� is the category of extended 3-
cobordisms, whose objects are connected surfaces with one boundary component
equipped with a choice of Lagrangian, and morphisms are 3-cobordisms equipped
with natural numbers called weights. The composition includes a correction term
given by a Maslov index. Note that if C is the category of modules over a unimodular
ribbon Hopf algebraH , then the end of C is the adjoint representation .H;B/, where
B denotes the adjoint action.

Let us define a subcategory 3CobLC of 3Cob� having the same objects, but a
smaller set of morphisms. A cobordism C D .C; 0/ belongs to 3CobLC..†�; L�/,
.†C; LC// if and only if LC D LC :L�, where

LC � L� D
®
y 2 H1.†C/ j 9 x 2 L�; .x; y/ 2 LC

¯
;

LC D Ker
�
i� W H1.@C;Z/ D H1.�†�;Z/˚H1.†C;Z/! H1.C;Z/

�
:

We say that LC is determined by the Lagrangian correspondence given by C .
In subcategory 3CobLC, all anomalies vanish. We get a linear representation of

the subgroup of the mapping class group fixing a Lagrangian. The full mapping class
group is replaced by a groupoid whose objects are Lagrangians and morphisms are
compatible mapping classes. This action groupoid is a subcategory in 3CobLC.

Assume q 2C is a primitive pth root of unity of order p � 3 and p 6� 2 .mod 4/.
Let p0 D p if p is odd, and p0 D p=2 otherwise. We define the finite Heisenberg
group Hp.†/ as a quotient of H .†/ by the normal subgroup

Ip WD
®
.pk; p0x/ j k 2 Z; x 2 H1.†;Z/

¯
:

The group Hp.†/ is isomorphic to a Zp-extension of H1.†;Zp0/, where we use the
shorthand Zp for Z=pZ (see Section 4.2 for more details).
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For a given Lagrangian submoduleL�H1.†;Z/, letLpDL˝Zp0�H1.†;Zp0/

and zLp D Zp � Lp � Hp.†/ be a maximal abelian subgroup.
Denote by Cq a 1-dimensional representation of zLp , where .k; x/ acts by qk .

Then, inducing from Cq , we obtain

Wq.L/ D CŒHp.†/�˝CŒzLp�
Cq

a p0g -dimensional Schrödinger representation of Hp.†/. Note that as a CŒHp.†/�-
module Wq.L/ is generated by 1 2 Cq . Given a cobordism in the category 3CobLC,
C W .†�;L�/! .†C;LC/, withLCDLC :L�, we have a Schrödinger representation
W.LC / of the Heisenberg group H .@C / which can be considered as a .CŒH .†C/�;

CŒH .†�/�/-bimodule, after identifying the subgroup H .�†�/ � H .@C / with the
group H .†�/

op, and defining a right action of H .†�/ on Wq.LC / as the left action
of the same element of H .�†�/.

The main results of this paper can be formulated as follows.

Theorem 1. Assume that p 6� 2 .mod 4/. For any cobordism C from .†�; L�/ to
.†C; LC/ in 3CobLC, there exists an isomorphism of ZŒH .†C/�-modules

 C W Wq.LC /˝CŒHp.†�/� Wq.L�/
�
�! Wq.LC/

sending 1˝ 1 to 1. In addition, the map

FC W Wq.L�/! Wq.LC/;

w 7!  C .1˝ w/;

defines a monoidal functor F W 3CobLC
! VectC which associates with an object

.†;L/ the finite dimensional Schrödinger representation Wq.L/.

The proof uses a modification of the Juhasz’s presentation of cobordisms cate-
gories, which works for 3CobLC and is presented in appendix. Throughout this paper,
we refer to the functor F as Schrödinger TQFT.

Our second result compares the abelian and Schrödinger TQFTs. In particular, we
will show that TQFT maps for a given cobordism C coincide up to a normalization.
The normalising coefficient, which we denote by Z. {C/, is actually the Murakami–
Ohtsuki–Okada invariant of a closed 3-manifold {C obtained from C by gluing of two
standard handlebodies .H˙;L˙/ with @H˙D†˙;L˙ generated by meridians, along
diffeomorphisms identifying the Lagrangians. This leads to the following theorem.

Theorem 2. The monoidal functor {F W 3CobLC
! VectC sending a cobordism C to

{FC W Wq.L�/! Wq.LC/;

w 7! Z. {C/ C .1˝ w/

coincides with the abelian TQFT at q restricted to 3CobLC.
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Observe that the normalization coefficient Z. {C/ is equal to zero if and only if
there exists ˛ 2 H 1. {C ;Zp0/ with non zero triple product ˛ [ ˛ [ ˛ [34, Theorem
3.2], however the Schrödinger action is always non vanishing.

Finally, in Section 4, we study the projective action of the full mapping class
group Mod.†/ on the Schrödinger representations. We use here the Stone–von Neu-
mann theorem to identify Schrödinger representations for different Lagrangians. The
symplectic action sends f 2Mod.†/ to the automorphim .k; x/ 7! .k; f�.x// of the
Heisenberg group. We use this automorphism to build a projective action of Mod.†/
on the Schrödinger representation Wq.L/ known as Weil representation. However, if
we ask the natural Mod.†/ action on the surface braid group Bn.†/ to commute with
the projection to H .†/ we get a different automorphism

fH .k; x/ D .k C �f .x/; f�.x//

with f 7! �f 2 Hom.H1.†/;Z/ a crossed homomorphism. For odd p, fH can be
used to construct another projective action on the Schrödinger representations. This
action is actually compatible with the corresponding local systems on Confn.†/. Our
analysis shows that in the odd case the symplectic action on Schrödinger representa-
tions is linearizable; however, the latter action intertwining fH does not.

We plan to use these results to construct an action of cobordisms on the homology
of Confn.†/ twisted by Schrödinger representations and provide a homological inter-
pretation of the Kerler–Lyubashenko TQFTs. Our long term goal will be to use infinite
dimensional Schrödinger representations to construct TQFTs with generic quantum
parameter q, rather than at a root of unity. An existence of such TQFTs was pre-
dicted by physicists. They are expected to play a crucial role in the categorification
of quantum 3-manifold invariants [24]. Lagrangian Floer homology may serve as an
inspiration for this purpose.

The paper is organized as follows. In Section 2, we review representation theoret-
ical and skein constructions of abelian TQFTs, we discuss modularization functors,
refinements as well as the action of the mapping class group and its extensions. In
Section 3, we prove the two main theorems. In Section 4, we define the two projective
mapping class group actions on the Schrödinger representations and study the asso-
ciated 2-cocycles. Juhasz construction for Lagrangian cobordisms is recalled in the
appendix.

2. Abelian TQFTs

In this section, we review representation theoretical and skein constructions of abelian
TQFTs, we discuss modularization functors, refinements as well as the action of the
mapping class group and its extensions.
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D q D q�1 D 1

Figure 1. U.1/ skein relations.

2.1. Algebraic approach

Let q 2 S1 � C be a primitive pth root of 1 and p � 3 is an integer. Let p0 D p if p
is odd and p0 D p=2 if p even. Consider the group algebra H D CŒK�=.Kp � 1/ of
the cyclic group. This algebra can be identified with the Cartan part of the quantum
sl2 at q by extending the group monomorphism

U.1/! SL.2;C/;

z !

 
z 0

0 Nz

!
:

For this reason, abelian TQFTs are also called U.1/ TQFTs.
The algebra H has a natural Hopf algebra structure with a grouplike generator,

i.e., �.K/ D K ˝ K, S.K/ D K�1. Moreover, H is a ribbon Hopf algebra with
R-matrix, and its inverse is given by

R D
1

p

X
0�i;j�p�1

q�ijKi ˝Kj ; R�1 D
1

p

X
0�i;j�p�1

qijK�i ˝K�j ;

the ribbon elements

v D
1

p

X
0�i;j�p�1

qi.j�i/Kj ; v�1 D
1

p

X
0�i;j�p�1

qi.i�j /K�j ;

and the trivial pivotal structure.
Similarly to the Uq.sl2/ case, the representation category H�mod has p simple

modules Vk for 0� k � p � 1. However, here, Vk is the 1-dimensional representation
determined by its character K 7! qk . Also, in our case, the fusion rules are very
simple: Vi ˝ Vj D ViCj , where the index i C j is taken modulo p. Hence, all objects
Vj are invertible, meaning that for each j there exists k D p � j such that Vj ˝ Vk D
V0, where V0 is the tensor unit ofH�mod. TheR-matrix is acting by qkl on Vk ˝ Vl .

2.2. Skein approach

For explicit computations, it is more convenient to work with a skein theoretic con-
struction.
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Consider the skein relations depicted in Figure 1. Given a 3-manifold M , a skein
module S.M/ is a C-vector space generated by framed links in M modulo the skein
relations. For a surface F it is customary to denote by S.F / the skein algebra S.F �
Œ0; 1�/. We will usually identify a coloring of a component K of a framed link with
an element of the skein algebra S.A/, where the annulus A is embedded along K by
using the framing. For example, Vj -coloring is represented by an element yj , where
y is the core of A. Here, we use the usual algebra structure on S.A/ to identify yj

with j parallel copies of y. The Kirby color is

� �

p�1X
kD0

yk 2 S.A/:

The �-colored .C1/-framed unknot gets value

G �

p�1X
kD0

qk
2

D

8̂̂̂̂
<̂
ˆ̂̂:
"
p
p.1C

p
�1/ if p � 0 (mod 4);

˙
p
p if p � 1 (mod 4);

0 if p � 2 (mod 4);

˙
p
�p if p � 3 (mod 4);

(1)

by the well-known Gauss formula, where " is a 4th root of 1. For p D 0 .mod 4/, we
explain in the next section, why the sums for G and� should be taken till p0 � 1, and
we denote them by

g �

p0�1X
kD0

qk
2

and ! �

p0�1X
kD0

yk : (2)

Recall that for p odd, p0 D p and g D G, ! D �. Define � and � by jgj D ��1

and � D �g. Then, ��1 D
p
p0 while � is an eighth root of unity for p � 0 .mod 4/

and � 2 ¹1;
p
�1º for p odd. Hence, for all p except p � 2 .mod 4/, we can define

the invariant of a closed 3-manifold M obtained by surgery on S3 along a framed n
component link L as follows:

Z.M/ D ��sign.L/�h�!; : : : ; �!iL;

where sign.L/ is the signature of the linking matrix and hx1; : : : ; xniL denotes the
evaluation of L whose i th component is colored by xi in the skein algebra S.R3/.

The normalization is chosen in such a way that

Z.S2 � S1/ D �h�!i0-framed unknot D �
2

p0�1X
kD0

hykiunknot D �
2p0 D 1;

Z.S3/ D � D 1=
p
p0:
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The right Dehn twist along a curve 
 is represented by coloring the curve 
 with

�!� D �

p0�1X
kD0

q�k
2

yk;

where y is the core of 
 .
If p � 0 .mod 4/, then we split ! D !0C !1 into even and odd colors. Then, we

define an additional topological structure on M that determines a Z=2Z-grading on
the components of L, and thus a Z=2Z-grading on their colorings. In particular, for
p � 4 .mod 8/, we construct an invariant of the pair .M; s/:

Z.M; s/ D ��sign.L/�h�!s1 ; : : : ; �!sniL;

where .s1; : : : ; sn/ 2 .Z=2Z/n satisfying

nX
jD1

Lij sj D Li i .mod 2/

determines a characteristic sublink of L corresponding to the spin structure s on M .
Analogously, for p � 0 .mod 8/, we construct invariants of a pair .M; h/:

Z.M; h/ D ��sign.L/�h�!h1 ; : : : ; �!hniL;

where .h1; : : : ; hn/ 2 .Z=2Z/n satisfying

nX
jD1

Lijhj D 0 .mod 2/

determines the first cohomology class h 2H 1.M;Z=2Z/. In both cases,Z.M/ is the
sum of the refined invariants over all choices of the additional structure.

2.3. Modularization and refinements

A C-linear ribbon category with a finite number of dominating simple objects is called
premodular. If, in addition, the monodromy S -matrix is invertible, then the category
is modular. In our case, the S -matrix, whose .i; j / component is the invariant q2ij of
the .i; j /-colored Hopf link, is invertible only for odd p, and in this case, H�mod is
modular, providing an abelian TQFT by standard constructions [36] or [11].

We call a premodular category C modularizable, if there exists a braided monoidal
essentially surjective functor from C to a modular category, sending the subcategory
of transparent objects to the tensor unit. In [16, Proposition 4.2], Bruguières gave
a simple criterion for a premodular category to be modularizable, see also [33]. In
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particular, such category cannot contain transparent objects with twist coefficient �1.
Recall that an object is called transparent if it has trivial braiding with any other
object. Observe that the row in the S -matrix corresponding to the transparent object
is colinear with the one for the tensor unit.

If p is even, H -mod is a premodular category. The object Vp0 is transparent and
has twist coefficient qp

02
, which is 1 if p0 is even and �1 if p0 is odd. Using results

of [16], we deduce that in the case when p � 0 .mod 4/, H -mod is modularizable.
The resulting modular category has p0 simple objects, that are all invertible. The new
Kirby color is given in (2). Hence, we have � D jgj�1 D .

p
p0/�1 in all cases when

invariant is defined.
Furthermore, if p�4 .mod 8/, the object Vp0=2 has twist coefficient�1. From [4],

we deduce that our category in this case is actually spin modular, hence providing an
abelian spin TQFT for 3-cobordisms equipped with a spin structure. Analogously, if
p � 0 .mod 8/, we can construct a refined TQFT that gives rise to invariants of 3-
cobordisms equipped with first cohomology classes over Z=2Z. We refer to [4] for
details about the construction of the refined invariants and their properties.

In the case p � 2 .mod 4/, H�mod is not modularizable. The best we can do in
this case to obtain 3-manifold invariants is to consider the degree 0 subcategory with
respect to the Z=2Z-grading given by the action ofKp

0

. The corresponding invariants
will coincide with those obtained with the quantum parameter of odd order equals p0.

To construct a map associated by an abelian TQFT with a 3-cobordism C W†�!

†C, we first need to choose parametrizations of surfaces †˙, i.e., diffeomorphisms
�˙ W †g˙ ! †˙, where †g is the standard genus g surface. If p 6� 2 .mod 4/,
the TQFT vector space associated with †g has dimension p0g . A basis ¹y i; i D
.i1; : : : ; ig/; 0 � ij � p

0 � 1º is given by p0 colorings of g cores of the 1-handles of a
bounding handlebody Hg . The .i; j/-matrix element of the TQFT map is constructed
as follows: We glue the standard handlebodies Hg˙ to C along the parametrizations.
Inside Hg� we put the link yj and inside HgC the link y i. The result is a closed
3-manifold {M D S3.L/ with a collection of circles cC [ c� inside; then,

Z.C/ij WD �
�sign.L/�gCh�!; : : : ; �!; y i; yj

iL[cC[c� :

By using the universal construction [11], this map can also be computed by gluing
just one handlebody .Hg� ; y

j/ to C and by evaluating the result in the skein of C [
Hg� . The parametrization reduces in this approach to the choice of Lagrangian L �
H1.†;Z/, which is equal to ker W H1.†;Z/! H1.Hg ;Z/, and its complement L_.
Since all curves representing elements of L are trivial in the skein of Hg , the basis
curves yj of the TQFT vector space are parametrized by a basis of L_.

In this paper, we will be particularly interested in the Crane–Yetter category 3Cob
of connected 3-cobordisms between connected surfaces with one boundary compo-
nent. In this category, the monoidal product is given by the boundary connected sum
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rather than by the disjoint union, thus leading to a rich algebraic structure [14]. By
the result of [7], the category 3Cob� of extended 3-cobordisms is universal in the
sense that for any finite unimodular ribbon category C , there exists a TQFT functor
F W 3Cob� ! C defined by sending the torus with one boundary component to the
end of C . In our case, for odd p,

end.H�mod/ D
p�1M
jD0

Vj :

Modularization creates an isomorphism Vk Š Vk ˝ Vp0 ; hence, for p � 0 .mod 4/,
we have

end.H�mod/ D
p0�1M
jD0

Vj :

In both cases, the vector space associated by F to a genus g surface with one boundary
component has dimension p0g .

For even p0, refined TQFTs on 3Cob� can be constructed along the lines of [6].
On the standard cobordism category, this was done in [3, 12].

2.4. Extended cobordisms and Lagrangian correspondence

Let us recall that the skein or Reshetikhin–Turaev TQFT constructions give rise to
projective representations of the mapping class group and the gluing formula has a
so-called framing anomaly which can be resolved by using extended cobordisms. The
latter are given by a pair: a 3-cobordism between surfaces equipped with Lagrangian
subspaces in the first homology group and a natural number. This approach leads to a
representation of a certain central extension of the mapping class group.

If p is odd, then the framing anomaly �, defined as g
jgj

, where the Gauss sum g in
(1), is a 4th root of 1. From [23, Remark 6.9], we can deduce that the corresponding
TQFT contains a native representation of the mapping class group. This is because,
the central generator of the extension acts by �4 D 1; hence, the index 4 subgroup
described in [23] is the trivial extension. Recall that the metaplectic group Mp2g is the
non trivial double cover of the symplectic group Sp2g . The metaplectic mapping class
group is the pull back of this double cover using the symplectic action. In the case
p � 0 (mod 4), the framing anomaly � is a primitive 8th root of unity and the above
argument shows that the TQFT contains a native representation of the metaplectic
mapping class group.

To avoid anomaly issues in general, we will work with a subcategory 3CobLC of
the category of connected extended 3-cobordisms between connected surfaces with
one boundary component equipped with Lagrangians. Objects of 3CobLC are as in
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3Cob� , namely, pairs: a connected surface with one boundary component † and a
Lagrangian subspace L �H1.†;Z/. Recall that a Lagrangian is a maximal submod-
ule with vanishing intersection pairing. For any 3-cobordismC W†�!†C, we define
a Lagrangian correspondence

LC D Ker
�
i� W H1.@C;Z/ D H1.�†�;Z/˚H1.†C;Z/! H1.C;Z/

�
:

Now, given Lagrangians L˙ � H1.†˙;Z/ the action of LC on L� is defined as
follows:

LC � L� D
®
y 2 H1.†C/ j 9 x 2 L�; .x; y/ 2 LC

¯
:

The pair .C;0/ belongs to 3CobLC..†�;L�/; .†C;LC// if and only ifLC �L�DLC.
If we restrict to mapping cylinders, we obtain the so-called action groupoid of the
mapping class group action on Lagrangian subspaces.

Restriction of the TQFT functor to 3CobLC kills all Maslov indices needed to
compute framing anomalies in gluing formulas (compare [23, Section 2]).

3. Proofs

In this section, we prove our two main results. We will always assume that p � 3,
p 6� 2 .mod 4/ and p0 D p if p is odd and p0 D p=2 if p is even.

For a Lagrangian submodule L � H1.†;Z/ let L_ be a complement of L. Then,
we setLp WDL˝Zp0 , andL_p WDL

_˝Zp0 . The finite quotient Hp.†/WD H .†/=Ip

of the Heisenberg group defined in introduction, coincides with the semidirect product

Hp.†/ Š .Zp � Lp/ Ë L_p ;

where the multiplication on the right-hand side is given by .k; a; b/.k0; a0; b0/D .kC
k0 C 2a:b0; aC a0; b C b0/. The isomorphism between two models is induced by the
homomorphism

H .†/! .Zp �Lp/ËL_p W .k;aC b/ 7! .kC a � b .modp/;a .modp0/; b .modp0//;

where a 2 L, b 2 L_ (see [22, Proposition 2.3] for more details).
Using this isomorphism it is easy to check that zLp D Zp � Lp � Hp.†/ is a

maximal abelian subgroup. Let q be a primitive pth root of unity. Denote by Cq a
1-dimensional representation of zLp , where .k; x/ acts by qk . Then, inducing from Cq
we define

Wq.L/ D CŒHp.†/�˝CŒzLp�
Cq;

a p0g -dimensional Schrödinger representation of the finite Heisenberg group Hp.†/.
Let us denote by 1 the canonical generator ofWq.L/ as CŒHp.†/�-module. Moreover,
throughout this section to simplify notation, we denote L˝ Zp0 by L.
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Any LagrangianL_ �H1.†;Z/ complementary toL provides a basis forWq.L/
indexed by L_. Given b 2 L_, we denote by vb the corresponding basis vector. In this
basis the left action of the Heisenberg group is as follows.

• The central generator u D .1; 0/ acts by vb 7! qvb .

• For y 2 L_, .0; y/ acts by translation: vb 7! vbCy , where the index is modulo p0.

• For x 2 L, .0; x/ acts by vb 7! q2x�b vb , where x � b is computed by lifting b to
any preimage in H1.†/ and is well defined since q is a pth root of unity.

In the last step, we used the rule .0; x/.0; b/ D .x � b; x C b/ D .0; b/.2x � b; x/.

Proof of Theorem 1. Let C 2 3CobLC..†�; L�/; .†C; LC//. Then, we have three
Heisenberg groups H .†�/, H .†C/ and H .@C /, and respective Schrödinger rep-
resentations Wq.L�/, Wq.LC/ and Wq.LC /.

Using that @C D �†�
S
S1 †C and the inclusions H1.�†�;Z/! H1.@C;Z/,

H1.†C;Z/! H1.@C;Z/ we have commuting actions of H .�†�/ and H .†C/ on
Wq.LC /. Actually, Wq.LC / can be viewed as a .CŒH .†C/�;CŒH .†�/�/-bimodule,
after identifying the group H .�†�/ with H .†�/

op, and defining a right action of
H .†�/ onWq.LC / as the left action of the same element of H .�†�/. Then, we can
form the tensor product Wq.LC /˝CŒH.†�/� Wq.L�/ and compare it with Wq.LC/.

Any morphism in 3CobLC can be decomposed into simple ones, which are map-
ping cylinders and index 1 or 2 surgeries (see Section 5 for details). We will first prove
the isomorphism Wq.LC /˝CŒH.†�/� Wq.L�/ Š Wq.LC/ and compute the induced
maps FC WWq.L�/!Wq.LC/ for simple cobordisms. Then, we use Corollary 16 to
argue that the bimodule associated with a composition of simple cobordisms does not
depend on the choice of the decomposition.

For a mapping cylinder Cf W .†�; L�/! .†C; LC/, where the diffeomorphism
f W †� ! †C sends L� to f�.L�/ D LC, we have

LCf D
®
.�x; f�.x//; x 2 H1.†�;Z/

¯
:

We choose a Lagrangian L_� complementary to L�. Then, L_C D f�.L
_
�/ is comple-

mentary to LC. The submodule

L_Cf D L� ˚ L
_
C � H1.@Cf ;Z/

is Lagrangian and complementary to LCf . Indeed, if .�x; f�.x// belongs to L_Cf ,
then x 2 L� and f�.x/ 2 L_C \ LC D ¹0º, showing that L_Cf \ LCf D ¹0º. Recall
that for all kinds of Lagrangians L, the notation L means L˝ Zp0 . A C-basis bCy for
Wq.LC/ is labeled by elements y 2 L_C. In all computations below, we use the same
notation for elements of L_ as elements of H .†/ acting on a module and L_ as the
indexing set of a basis of Wq.L/. It should not be confusing since in the second case
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they are just considered modulo p0. Likewise for any element .k; x/ 2 zL its image in
zLp is just .k .mod p/; x .mod p0//; hence, it acts again by qk on Cq .

We have bases ¹Bz; z 2 L_Cf º for Wq.LCf /, and ¹b�x ; x 2 L
_
�º for Wq.L�/. As a

vector space the tensor product is generated by®
Bz ˝ b

�
x ; z 2 L

_
Cf
; x 2 L_�

¯
with relations coming from the action by elements in H .†�/. We write z 2 L_Cf as
z D .z�; zC/, z� 2 L�, zC 2 L_C D f�.L

_
�/.

For an element y 2 L�, we get the relation:

q2y:xB.z�;zC/ ˝ b
�
x D B.z�;zC/.0; y/˝ b

�
x D .0; .y; 0//B.z�;zC/ ˝ b

�
x

D B.z�Cy;zC/ ˝ b
�
x :

This reduces the set of generators to ¹B.0;zC/ ˝ b
�
x ; x 2 L

_
�; zC 2 L

_
Cº.

For an element x 2 L_�, we get another relation

B.0;zC/ ˝ b
�
x D B.0;zC/.0; x/˝ 1 D .0; .x; 0//B.0;zC/ ˝ 1
D .0; .0; f�.x//.0; .x;�f�.x////B.0;zC/ ˝ 1

D q�2f�.x/�zCB.0;zCCf�.x// ˝ 1; (3)

where the intersection is written on the positively oriented †C. This further reduces
the generators to ¹B.0;zC/˝ 1; zC 2 L_Cº. Since any relation coming from any element
in H .†�/ can be deduced from the previously written ones, we get that ¹B.0;y/ ˝
1; y 2 L_Cº represents a C-basis for the tensor product Wq.LC /˝CŒH.†�/� Wq.L�/.
It follows that the CŒH .†C/�-module map

 C W Wq.LC /˝CŒH.†�/� Wq.L�/! Wq.LC/;

which sends 1˝ 1 to 1 is an isomorphism. Moreover, the map

FC W Wq.L�/! Wq.LC /˝CŒH.†�/� Wq.L�/ Š Wq.LC/;

b�x 7!  C .1˝ b�x /

sends a basis vector b�x to bC
f�.x/

, for any x 2 L_�, by using (3) with zC D 0.
In the case of a simple cobordism C W .†�; L�/! .†C; LC/ corresponding to

an index 1 surgery, the genus increases by 1. We have

LC D
®
.�x�; xC/; x� 2 H1.†�;Z/

¯
˚ Z.0; �/;

where � is a meridian of the new handle and xC is the class x� pushed in †C. Let
� be a longitude for the new handle. We choose a Lagrangian L_� complementary
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to L�. By pushing through the cobordism, we may also consider L_� as a subspace
in H1.†C;Z/. The span of L_� and � gives a Lagrangian L_C complementary to LC.
Then,L_C DL

_
�˚L

_
C is complementary toLC and the previous argument constructs

the isomorphism. Here, the map

FC W Wq.L�/! Wq.LC /˝CŒH.†�/� Wq.L�/ Š Wq.LC/

sends a basis vector b�x to bCx , where x 2 L_� D L
_
� ˝ Zp0 .

Let us consider a simple cobordism C W .†�; L�/! .†C; LC/ corresponding to
an index 2 surgery on a curve 
 . Let ı be a curve in †� such that 
:ı D 1. The curves

 and ı determine a genus one subsurface †1. Outside †1 the cobordism is trivial.
Denote by † � †� the complement of †1 which we consider also as a subsurface
of †C. We arrange the splitting so that †� D † \ †1 is a boundary connected sum.
Then, all Lagrangian subspaces and Schrödinger modules split. Over† the cobordism
is trivial and the expected result is clear, so that it is enough to compute in the genus
1 case, †� D †1 and †C D D2. The Lagrangian L� is generated by a simple curve
m. A complementary Lagrangian L_� is generated by l with m:l D 1. We have 
 D
˛mC ˇl , gcd.˛; ˇ/ D 1. The Lagrangian correspondence is

LC D Z.
; 0/ with complement L_C D Z.ı; 0/;

where ı D umC vl , ˛v � ˇu D 1. Then, m D v
 � ˇı, l D �u
 C ˛ı. We have
bases Bkı and b�l , 0 � k; � < p0 forWq.LC / andWq.L�/, respectively. Using l , we
get the relation

Bkı ˝ b.�C1/l D Bkı.0;�u
 C ˛ı/˝ b�l D .0; ˛ı/.u˛;�u
/Bkı ˝ b�l

D qu˛C2kuB.˛Ck/ı ˝ b�l ;

where we used intersection on �†�. This reduces the set of generators to Bkı ˝ 1,
0 � k < p0. The relation coming from m then gives

Bkı ˝ 1DBkı.0;v
 �ˇı/˝ 1D .0;�ˇı/.ˇv;v
/Bkı ˝ 1D qˇv�2kvB.k�ˇ/ı ˝ 1:
(4)

If the surgery curve 
 is inL�, we can choosemD 
 , l D ı. The last relation gives
in this case Bkı ˝ 1 D q�2kBkı ˝ 1. Hence, we have Bkı ˝ 1 D 0 for 0 < k < p0

and the tensor product is C-generated by 1˝ 1. The equalities

Bkı ˝ 1 D

´
1 if k � 0 .mod p0/;

0 else

define an isomorphism Wq.LC /˝CŒH.†�/� Wq.L�/ Š Cq . In particular,

FC .bkl/ D

´
1 if k � 0 .mod p0/;

0 else:
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If the surgery curve 
 is not in L�, then ˇ ¤ 0. Let d D gcd.ˇ;p0/; then, the order of
ˇ modulo p0 is a D p0

d
. Hence, relation (4) reduces the generators to ¹Bkı ˝ 1; 0 �

k < dº. Finally, the action of .0; am/�†� gives the following relation:

Bkı ˝ 1D.0;av
�aˇı/Bkı ˝ 1D.0;�aˇı/.a2ˇv;av
/Bkı ˝ 1Dq�2kavBkı ˝ 1;

since qa
2ˇ D 1 and the intersection pairing is taken on �†�. It follows Bkı ˝ 1 D 0

unless k is divisible by d ; hence, 1˝ 1 generatesWq.LC /˝CŒHp.†�/�W.L�/ŠCq ,
as expected.

We are left with computing FC . The action of .0; a
/ D .0; a˛mC aˇl/ gives

1˝ bkl D 1˝ .0; aˇl/.a2˛ˇ; a˛m/bkl D q�2ka˛1˝ bkl

implying that 1˝ bkl D 0 if d − k. If d j k, we set k˛ D k0ˇ and compute

1˝ bkl D 1.0;�ku
 C k˛ı/˝ 1 D .0; k˛ı/.k2u˛;�ku
/1˝ 1

D qk
2u˛Bk˛ı ˝ 1 D qkk

0ˇuBk0ˇı ˝ 1:

From the action of .0; k0m/, we get

1˝ bkl D qkk
0ˇu.0; k0v
 � k0ˇı/Bk0ˇı ˝ 1

D qkk
0ˇu.�.k0/2vˇ; k0v
/.0;�k0ˇı/Bk0ˇı ˝ 1

D qkk
0ˇu�kk0˛v1˝ 1 D q�kk

0

1˝ 1 D q�˛k
2=ˇ1˝ 1:

We deduce that

FC .bkl/ D

´
0 if d − k;
q�˛k

2=ˇ else:

In order to complete the proof and construct Schrödinger TQFT, we need to check
the conditions in Corollary 16 for F .

The first relation holds trivially since any d 2 Diff.†/, which is isotopic to iden-
tity, induces identity automorphism of H1.†/ and as follows, identity automorphism
of the corresponding Schrödinger representation.

The second relation also holds since d and dS can be extended to a diffeomor-
phism M.S/!M.S0/ which induces the relation.

If attaching and belt spheres S and S0 of two index 1 or 2 surgeries do not inter-
sect on a surface † 2 SurfLC, then it can be cut into two pieces † D †1\†2, such
that S � †1 and S0 � †2. It can be naturally extended to M.S/ and M.S0/ so that
all Lagrangians splits into direct sums, and Schrödinger representations into tensor
product (see discussion of monoidality below). It follows that FM.S/ and FM.S0/ act
independently on the corresponding factors, hence commute. It proves that relation 3
holds.
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Since definition of F does not depend on the choice of the orientation on S, rela-
tion .5/ holds.

The rest of the proof deals with checking that F preserves relation .4/. For that,
we compute Lagrangian correspondences and the composition of two F maps using
some choice of bases.

Consider a composition of two cobordisms

M.S2/ ıM.S1/ W .†�; L�/! .†;L/! .†C; LC/ (5)

of indices 1 and 2, such that the belt sphere b.S1/ and the attaching a.S2/ intersect
at a single point. Denote by LM.S1/ and LM.S2/ the Lagrangian correspondences
induced by these cobordisms. Let � be the meridian of the handle attached in the
first surgery (i.e., � D b.S1/). Let 
 D a.S2/ be the attaching sphere of the second
surgery. The composition (5) defines a diffeomorphism ' W †� ! †C uniquely up
to isotopy by the property 'j†�\†C D id [26]. Then, it induces the isomorphism
'� W H1.†�/! H1.†C/.

Let us choose some orientation on 
 and �, such that �:
 D 1.
The first homology group of† can be represented asH1.†/'H1.†�/˚Z.�;
/

since � � 
 D 1. Let i0 W H1.†�/! H1.†/ be the corresponding embedding.
Since LM.S1/ D ¹.x;�i0.x// j x 2 H1.†�/º ˚ Z.0; �/ � H1.�†�/˚H1.†/

the image of L� in H1.†/ equals

L D LM.S1/ � L� D i0.L�/˚ Z.�/:

The manifoldM.S2/ is homotopy equivalent to†
S
@D2D

2, where @D2 D S1!

† is the inclusion of 
 . Hence, H1.M.S2// ' H1.†/=Œ
�.
Let h1' S1 �D1 be the handle glued in the first surgery and h2'D2 �S0 in the

second. Then, ' maps .†� \ Im.S2// [ Im.S1/ ' D2 to .h1nIm.S2// [ h2 ' D2

and is identical on † \†�.
Consider a cycle x representing a class in H1.†�/. Let us first consider the case

when Œx�:
 D 1 and x \ Im.S2/D Ix ' Œ0; 1�. Then, 'jxnIx D id and ' maps Ix to an
interval on .h1nIm.S2// [ h2 connecting two points on its boundary. It can be repre-
sented (up to homotopy) as .�nImS2/[ y [ y0, where y and y0 are two chords—one
on each of two discs of h2. This means that the class '�.x/ can be represented as
Œx� � Œ�� in M.S2/. If we consider now a class Œx� 2 H1.†�/ with an arbitrary inter-
section number Œx� � 
 , an analogous construction gives '�.x/ D Œx� � .Œx� � 
/� in
H1.M.S2//. Hence, the image of .i0.x/C 
:x;�'�.x//2H1.†/˚H1.†C/ is equal
to zero under the homomorphism H1.†/˚H1.†C/! H1.M.S2//. Therefore,

LM.S2/ D
®
.i0.x/C .
:x/�;�'�.x//jx 2 H1.†�/

¯
˚ Z.
; 0/:
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Let L_� be a complement to L�. Then, L_ D i0.L
_
�/ ˚ Z.�/ is a complement

to L and L_
M.S2/

D ¹.i0.x/; '�.y// j x 2 L�; y 2 L
_
�º ˚ Z.�; 0/ is a complemen-

tary Lagrangian to LM.S2/. Indeed, if .x; y/ 2 L� ˚ L_� and .i0.x/C k�; '�.y// 2
LM.S2/ then x D �y D 0, k D 0 since L� \L_� D ¹0º, so LM.S2/ \L

_
M.S2/

D ¹0º.
Restriction of the intersection pairing on L_

M.S2/
is equal to zero since it is a direct

sum of two Lagrangians, and LM.S2/ C L
_
M.S2/

D H1.†/˚H1.†C/ since any ele-
ment .i0.u/C n�C k�; '�.v//; u; v 2 H1.†�/ can be decomposed as

.i0.u/C n�C k
; '�.v//

D
�
i0.uL_� � vL�/C .
 � i0.uL_� � vL�//�C k
;�'�.uL_� � vL�/

�
C
�
i0.uL� C vL�/C .n � .
 � i0.uL_� � vL�///�; '�.uL_� C vL_�/

�
; (6)

where u D uL� C uL_� , v D vL� C vL_� and uL� ; vL� 2 L�, uL_� ; vL_� 2 L
_
�.

ChooseL_CD '�.L
_
�/. Then, we can choose bases of Schrödinger representations

as follows:

Wq.L�/ W
®
b�x jx 2 L

_
�

¯
I

Wq.L/ W
®
bxCn�jx 2 L_�; n 2 Z

¯
I

Wq.LC/ W
®
bCx jx 2 L

_
�

¯
I

Wq.LM.S2// W
®
B.xCa�;y/j.x; y/ 2 L� ˚ L_�; a 2 Z

¯
:

The map FM.S1/ sends b�x to bx then. Consider 1˝ bx 2 Wq.LM.S2//˝Wq.L/ for
x 2 L_�. It can be rewritten using (6) as follows:

1˝ bx D 1˝ .0; i0.x//1 D .0; .i0.x/; 0//1˝ 1

D .0; .�.
 � i0.x//�; '�.x///.0; .i0.x/C .
 � i0.x//�/;�'�.x//1˝ 1

D .0; .0; '�.x///1˝ .0;�.
 � i0.x//�/1 D .0; .0; '�.x///1˝ 1;

which means that the image of bx is b'�.x/ and it coincides with the action of the
mapping cylinder C' associated to '.

Finally, we have to prove that F preserves the monoidal structure. The monoidal
product †1\†2 of two surfaces †1; †2 2 3CobLC with one boundary component is
induced by boundary connected sum @†1#@†2'S1. SinceH1.†1\†2/DH1.†1/˚
H1.†2/, the new Lagrangian is L D L1 ˚ L2. It means that the Heisenberg group is
the direct product over the center of the two Heisenberg groups associated to .†1;L1/
and .†2;L2/. It induces the isomorphsmWq.L/'Wq.L1/˝Wq.L2/. Similarly, one
can check that F preserves the monoidal structure on morphisms.

It remains to compare F with the abelian TQFT.
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Proof of Theorem 2. We will use the skein model from Section 2. Following [22,
Theorem 4.5] the Heisenberg group algebra CŒH .†/� can be identified with theU.1/-
skein algebra S.†/. This makes the TQFT vector space V.†; L/ to a module over
CŒH .†/�. Actually, it is isomorphic to the Schrödinger representation (see [22, The-
orem 4.7] for p even).

Here, we construct the isomorphism explicitly. Let us denote by Sp.†/ the reduced
U.1/ skein algebra, where q is specified to the pth root of unity and a p0 copies of any
curve are removed [22, def 4.3]. Then, Sp.†/ is identified with CŒHp.†/� by sending
a simple closed curve 
 with blackboard framing to the class of the image of

.0; Œ
�/ 2 Z �H1.†;Z/ D H .†/

in Hp.†/. Let H be a handlebody with boundary † such that L is the kernel of
the inclusion H1.†;Z/ ,! H1.H;Z/. Then, the TQFT vector space V.†;L/ is the
quotient of Sp.†/ by the subspace generated by 
 � 1, where 
 is a simple curve
that bounds in H or equivalently such that Œ
� 2 L. Using the isomorphism S.†/ Š

CŒH .†/�, we deduce that the quotients V.†;L/ and Wq.L/ are isomorphic.
A basis ¹bx; x 2 L_º forWq.L/ can be represented by skein elements ¹yx; x 2 L_º

inH providing a basis for V.†;L/. Here, for an embedded curve x in†, the element
yx is obtained by pushing x in H with blackboard framing and then by taking its
skein class. For example, the element y3x corresponds to the three parallel copies of
yx obtained by using the blackboard framing. We are now able to compare {FC D
Z. {C/FC with the TQFT map on simple cobordisms.

Let us consider a mapping cylinder Cf W .†�;L�/! .†C;LC/ with g� D gC D
g. A basis for the TQFT vector space (identified with the Schrödinger representation
Wq.L�/) is represented by a handlebody H�, with @H� D †� and with the cores li ,
1 � i � g, of its handles colored by yk , 0 � k � p0. The TQFT map is represented
by gluing the mapping cylinder Cf to the handlebody H�. This results in a handle-
body HC with boundary †C. Moreover, when pushing the colored curve l across the
cylinder, we get a curve parallel to f .l/. Hence, the TQFT map sends yk in H� to
f .yk/ inHC, matching FCf . Note that {Cf is an integral homology connected sum of
g copies of S2 � S1, since f preserves the Lagrangians. Hence, in our normalization,
Z. {Cf / D 1.

In the case of an index 1 surgery C W .†�; L�/ ! .†C; LC/, the TQFT map
is represented by the inclusion of a handlebody H� ,! HC D H�

S
†�

C , where
@H� D †� and

ker.H1.†;Z/ ,! H1.H�;Z// D L�:

This inclusion map matches again FC with Z. {C/ D 1.
In the case of an index 2 surgery on a curve 
 , we only need to consider the case

where †� is a genus 1 surface. Then, the TQFT map Z.C/ W V.†�; L�/! Cq is
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yk �! �! �! �! �!

0 m1 m2 m3 mn�1 mn

Figure 2. Surgery link for the lens space where the upper indices correspond to the framings
and the lower ones to the colors.

given by the evaluation of the skein .H�; x/ inside M
 D .H�
S
†�
C/
S
S2 D

3. If

 D m, M
 D S1 � S2 and the evaluation reduces to a Hopf link with one Kirby-
colored component, which is zero unless x D 0, when it is 1.

If 
 D l , M
 D S
3 and the evaluation is 1 for all x D yk . Hence, in both cases,

we recover FC .
More generally, for 
 D ˛mC ˇl with ˇ ¤ 0, the manifold M
 is the lens space

L.ˇ; ˛/. Let us choose a continued fraction decomposition ˇ=˛ D Œm1; : : : ; mn� as
in [29]. Then, a surgery link L for M
 is the length n Hopf chain with framings mi
(see Figure 2). Hence, the TQFT map sends yk to the following number:

Z.C/.yk/ D ��sign.L/�n
p0X

j1;:::;jnD1

q
Pn
iD1mij

2
i q2kj1q2

Pn�1
iD1 jijiC1 :

Since a recursive computation of this sum was done in [29], we present here just
the result:

Z.C/.yk/ D

8<: 0 d − k;

q�
˛k2

ˇ Z.L.ˇ; ˛// else;

where d D gcd.ˇ; p0/. This coincides with FC on this cobordism with

Z. {C/ D Z.L.ˇ; ˛//:

Since any cobordism is a composition of simple ones and FC is functorial, for any
cobordism C , we have the TQFT map

Z.C/ W V.†�/ Š Wq.L�/! V.†C/ Š Wq.LC/

which equals, up to a coefficient, the inclusion map Wq.L�/! Wq.LC /˝CŒHp.†/�

Wq.L�/ composed with the isomorphism from Theorem 1. Closing with handle-
bodies compatible with the Lagrangians, we get that the coefficient is Z. {C/ which
completes the proof.
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ˇg
˛g ˇ1 ˛1

�1

Figure 3. Model for †.

4. Schrödinger local systems on surface configurations

In this section, we construct and study two projective representations of Mod.†/ on
Schrödinger representations. Note that the results of this section are independent from
the rest of the paper.

4.1. Heisenberg group as a quotient of the surface braid group

Let † be an oriented surface of genus g with one boundary component. For n � 2,
the unordered configuration space of n points in † is

Confn.†/ D
®
¹c1; : : : ; cnº � † j ci ¤ cj for i ¤ j

¯
:

The surface braid group is then defined as Bn.†/ D �1.Confn.†/;�/. To construct a
presentation, we fix based loops, ˛1; : : : ; ˛g ; ˇ1; : : : ; ˇg on†, as depicted in Figure 3.
The base point �1 on† belongs to the base configuration � in Confn.†/. By abuse of
notation, we use ˛r , ˇs also for the loops in Confn.†/ where only the point at �1 is
moving along the corresponding curve. We write composition of loops from right to
left. The braid group Bn.†/ has generators ˛1; : : : ; ˛g , ˇ1; : : : ; ˇg together with the
classical braid generators �1; : : : ; �n�1, and relations8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Œ�i ; �j � D 1 for ji � j j � 2;

�i�j�i D �j�i�j for ji � j j D 1;

Œ�; �i � D 1 for i > 1 and all � among the ˛r ; ˇs;

Œ�; �1��1� D 1 for all � among the ˛r ; ˇs;

Œ�; ��11 ��1� D 1 for all � ¤ � among the ˛r ; ˇs with ¹�; �º ¤ ¹˛r ; ˇrº;

�1ˇr�1˛r�1 D ˛r�1ˇr for all r:
(7)
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We denote by x:y the standard intersection form on H1.†;Z/. The Heisenberg
group H .†/ is the central extension of the homology group H1.†;Z/ by the inter-
section 2-cocycle .x; y/ 7! x � y. As a set, H .†/ is equal to Z �H1.†;Z/, with the
group structure

.k; x/.l; y/ D .k C l C x � y; x C y/: (8)

We use the notation ar , bs for the homology classes of ˛r , ˇs , respectively. Let
us denote by Œ�1; Bn.†/� the normal subgroup of the surface braid group Bn.†/ gen-
erated by the commutators ¹Œ�1; x�, x 2 Bn.†/º. From the presentation above, we
obtain the following (see [13] for more details).

Proposition 3. For each g � 0 and n � 2, the quotient

Bn.†/=Œ�1; Bn.†/�
�
�! H .†/

is isomorphic to the Heisenberg group. An isomorphism is induced by the surjective
homomorphism

�WBn.†/! H .†/

sending each �i to u D .1; 0/, ˛r to Qar D .0; ar/, ˇs to Qbs D .0; bs/.

It follows that any representation of the Heisenberg group H .†/ is also a repre-
sentation of the surface braid group Bn.†/ D �1.Confn.†/;�/ and hence provides a
local system on the configuration space Confn.†/.

Let us denote by AutC.H .†// the group of automorphisms of H .†/ acting by
identity on the center hui D Z � 0; namely, an element of this group sends .n; x/ to
.c.x/C n; l.x// for some l 2 Sp.H1.†// and c 2 H 1.†/. By [13, Lemma 15], we
have the following split short exact sequence:

1! H 1.†;Z/
j
�! AutC.H .†//

l
�! Sp.H1.†//! 1;

where j.c/ D Œ.k; x/! .k C c.x/; x/� and Sp.H1.†// is the symplectic group pre-
serving the intersection pairing. The homomorphism l has a section

s W g 7! Œ.k; x/ 7! .k; g.x//� (9)

providing a semi-direct decomposition AutC.H .†// Š Sp.H1.†// ËH 1.†IZ/.
Let us denote by Mod.†/ the mapping class group. Its action on H1.†;Z/ pre-

serves the symplectic form, and hence, using the section s from (9), we get a symplec-
tic action of the mapping class group on the Heisenberg group, where f 2 Mod.†/
acts by

.k; x/ 7! .k; f�.x//: (10)

On the other hand, the quotient map � W Bn.†/! H .†/ induces a different action
of Mod.†/ on H .†/. The following proposition is proved in [13, Section 3].
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Proposition 4. For f 2Mod.†/, there exists a unique homomorphism fH WH .†/!

H .†/ such that the following square commutes:

Bn.†/ Bn.†/

H .†/ H .†/

�

fBn.†/

�

fH

(11)

We obtain an action of Mod.†/ on the Heisenberg group H .†/ given by

Mod.†/! AutC.H .†//;

f 7! fH W .k; x/ 7! .k C �f .x/; f�.x//; (12)

where the map � WMod.†/!H 1.†;Z/ sending f to �f 2Hom.H1.†/;Z/ satisfies
the crossed homomorphism property �gıf .x/ D �f .x/ C �g.f�.x//. Clearly, both
actions coincide on Sp.H1.†//, i.e., l.fH / D f�. However, f� and fH are different
on H .†/.

It is shown in [13, Proposition 19] that the crossed homomorphism � is given by
a formula due to Morita [31, Section 6], which is stated as follows. For 
 2 �1.†/,
let us denote by 
i the element in the free group generated by ˛i , ˇi that is the image
of 
 under the homomorphism that maps the other generators to 1. Then, we have a
decomposition


i D ˛
�1
i ˇ

�1
i � � �˛

�m
i ˇ

�m
i ;

where �j and �j are 0, �1 or 1. The integer di .
/ is then defined by

di .
/ D

mX
jD1

�j

mX
kDj

�k �

mX
jD1

�j

mX
kDjC1

�k

D

mX
jD1

mX
kD1

�jk�j�k;

where �jk D C1 when j � k and �jk D �1 when j > k. The formula for the crossed
homomorphism is

�.f /.Œ
�/ D

gX
iD1

di .f].
// � di .
/:

4.2. A variant of Weil representation

Recall that for a Lagrangian subspace L and q a pth root of unity, we defined the
Schrödinger representation Wq.L/ of the finite quotient Hp.†/ of the Heisenberg
group. The following finite dimensional version of the famous Stone–von Neumann
theorem holds.
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Theorem 5 (Stone–von Neumann). For q a root of unity of order p, Wq.L/ is the
unique irreducible unitary representation of Hp.†/, up to unitary isomorphism, where
the central generator u D .1; 0/ acts by q.

A proof for even p can be found in [22, Theorem 2.4]. The odd case works simi-
larly.

For the rest of this section, we fix an odd integer p � 3. Denote by � W Hp !

GL.Wq.L// the Schrödinger representation. For any automorphism � 2 AutC.Hp/,
we have another representation � ı � W Hp ! GL.Wq.L// called twisted representa-
tion of Hp and denoted by �Wq.L/. From the Stone–von Neumann theorem, we get an
isomorphism of representation Wq.L/ � �Wq.L/ which is well defined up to a scalar
in S1.

For odd p, the action of Mod.†/ on the Heisenberg group from Proposition 4
passes to the finite quotient, and we denote by fHp the resulting automorphism for
every f 2 Mod.†/.

Hence, for a mapping classf , we obtain a unitary isomorphism �H .f / WWq.L/
�
�!

fHp
Wq.L/ defined by the following commutative diagram:

Wq.L/ fHp
Wq.L/

Wq.L/ fHp
Wq.L/

�H .f /

�.k;x/ �.fHp .k;x//

�H .f /

Applying the Stone–von Neumann theorem, this provides a homomorphism

�H W Mod.†/! PU.Wq/; where PU.Wq/ D U.Wq.L//=S1

is the projective unitary group which does not depend on the choice of L.
Denotef�Wq.L/ the Schrödinger representation twisted by the symplectic action,

we also have an isomorphism �.f / W Wq.L/
�
�! f�Wq.L/ defined, up to a scalar in

S1 � C, by the condition

�.k; f�.x// ı �.f / D �.f / ı �.k; x/ for any .k; x/ 2 Hp.†/: (13)

This provides another homomorphism:

� W Mod.†/! PU.Wq/:

The next result was proven independently by Gelca with collaborators [22, Theorem
8.1], [21], [19, Chapter 7].

Corollary 6. The homomorphism � W Mod.†/! PU.Wq/ given by the symplectic
action is isomorphic to the one resulting from the abelian TQFT on 3Cob described
in Section 2.
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In general, any projective representation of a group G can be linearized on an
appropriate central extension. Given an homomorphism R W G ! PGL.V /, where
V is a complex vector space, a choice of lift (as a set map) zR W G ! GL.V / defines
a defect map c W G � G ! C�, by zR.gg0/ D c.g; g0/ zR.g/ zR.g0/. In the case of a
projective unitary representation, the map c takes values in S1. It is well known from
basic group cohomology theory that c is a 2-cocycle defining a central extension of
G on which R can be linearized. This central extension is classified by the class
Œc� 2 H 2.G;C�/. If this class can be reduced to a subgroup, then the linearization
already arises on a smaller extension. If Œc� D 0, the minimal extension is G itself.

Projective actions of Mod.†/ on the Schrödinger representations are naturally
equipped with such cohomology classes, determined by the Stone–von Neumann iso-
morphisms. As explained in Section 2.4, the homomorphism � can be linearized and
we use the same notation for a linearization � WMod.†/! U.Wq.L//. We will show
that the extension which linearizes the projective representation �H is non trivial by
computing its classifying 2-cocycle.

A key observation is that, for a mapping class f , the automorphism fHp WHp.†/!

Hp.†/ is equal to the symplectic one composed with an inner automorphism

fHp .k; x/ D .k C �f .x/; f�.x// D .0; f�.tf //.k; f�.x//.0;�f�.tf //;

where 2tf 2H1.†;Zp/ is the Poincaré dual of �f , i.e., �f .x/D 2tf � x. Here, we use
that 2 is invertible modulo p and that f�.tf / � f�.x/ D tf � x. Acting on Wq.L/, we
get the following commutative diagram:

Wq.L/ f�Wq.L/ fHp
Wq.L/

Wq.L/ f�Wq.L/ fHp
Wq.L/

�.f /

�.k;x/

�.0;f�.tf //

�.k;f�.x// �.fHp .k;x//

�.f / �.0;f�.tf //

Hence, the two projective actions are related as follows:

�H .f / D �.0; f�.tf // ı �.f / D �.f / ı �.0; tf /:

We can now compute the cocycle from the intertwining isomorphism

Wq.L/ Š .fg/HWq.L/ D gH
.fH

Wq.L//;

�H .f / ı �H .g/ D �.f / ı �.0; tf / ı �.g/ ı �.0; tg/

D �.f / ı �.g/ ı �.0; g�1� .tf // ı �.0; tg/

D �.f / ı �.g/ ı �.g�1� .tf / � tg ; g
�1
� .tf /C tg/

D qg
�1
� .tf /�tg�H .fg/:



Abelian TQFTS and Schrödinger local systems 711

Here, we used that the crossed homomorphism property �fg D �g C g�.�f / implies
for the Poincaré dual tfg D tg C g

�1
� .tf /. Using tgg�1 D tg�1 C g�.tg/ D 0, we

get that the cocycle is equal to qc.f;g/ where c.f; g/ D g�1� .tf / � tg D tf � g�.tg/ D
�tf � tg�1 .

Morita studied in [32] the intersection cocycle .f; g/ 7! cMor.f; g/ D tf �1 � tg D

c.g; f / which represents 12c1, where c1 is the Chern class generating H 2.Mod.†/;
Z/ D Z for surfaces of genus at least 3. The Meyer cocycle �.f; g/ is the signature
of the oriented 4-dimensional manifold defined as the surface bundle over the pair
of pants with monodromy f and g on 2 boundary components. This definition is
symmetric in f and g so that we have �.f; g/ D �.g; f /. From Morita work we
have that ŒcMor� D 3Œ�� D 12c1. By switching the variable, we get Œc� D 3Œ�� D 12c1.
It follows that for odd p the projective action �H W Mod.†/! PU.Wq/ cannot be
linearized on the mapping class group while the symplectic action does.

By Corollary 6, abelian, and hence, the Schrödinger TQFT, reproduces symplectic
action

� W Mod.†/! PU.Wq/

after restricting to mapping classes preserving Lagrangians. We just argued that �H

is essentially different from � . This leads us to the following problem.

Problem 7. Construct a TQFT on 3CobLC using Schrödinger representations that
recovers the action �H on mapping cylinders.

5. Appendix

For the reader’s convenience, we adapt here the Juhász presentation of cobordism
categories from [26] to 3CobLC.

Let us define the category SurfLC, which is an analog of Man2 in [26], as fol-
lows. An object of SurfLC is an oriented compact surface † with S1-parametrized
boundary S1

'
�! @† equipped with a Lagrangian L � H1.†IZ/. A morphism from

.†�; L�/ to .†C; LC/ is a diffeomorphism d W †� ! †C preserving the boundary
and Lagrangians so that d�.L�/ D LC.

A framed sphere in .†; L/ 2 SurfLC is a smooth orientation-preserving embed-
ding S W Sk �D2�k ,! † for k D 0; 1 such that Im.S/ \ @† D ¿. By performing
surgery on † along S, we construct

†.S/ D .†nIm.S//
[

Sk�S1�k

DkC1
� S1�k

for k D 0; 1. The trace of the surgery

M.S/ D .† � I /
[

Im.S/�¹1º

DkC1
�D2�k
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is a 3-cobordism from † to †.S/ obtained by attaching the handle DkC1 �D2�k to
† � I with the Lagrangian

LM.S/ WD Ker
�
i� W H1.†/˚H1.†.S//! H1.M.S//

�
:

Let us now define the induced Lagrangian in H1.†.S/IZ/ as LM.S/ � L. We con-
clude that the surgery along S induces a morphism in 3CobLC between .†; L/ and
.†.S/; LM.S/ � L/ which we denote by .M.S/; LM.S//.

Let G LC be the directed graph obtained from the category SurfLC by adding an
edge e†;S from .†;L/ to .†.S/; LM.S/ � L/ for every .†;L/ and S in †.

Let F .G LC/ be the free category generated by G LC.

Definition 8 ([26, Definition 1.4]). The set of relations R in F .G LC/ is defined as
follows:

(1) ed ı ed 0 D edıd 0 , where ed ; ed 0 and edıd 0 are edges corresponding to diffeo-
morphisms. If d is isotopic to the identity, then ed D id†. Also, e†;¿ D id;

(2) for an orientation-preserving diffeomorphism d W†!†0 sending the Lagran-
gian L to L0 and for a framed sphere S � †, let S0 D d ı S and dS be the
induced diffeomorphism, then e†;S0 ı ed D edS ı e†;S;

(3) if S and S0 are two disjoint framed spheres in †, .†;L/ 2 3CobLC, then e†;S
and e†;S0 commute;

(4) if S0 � †.S/ is a framed sphere of index 1, S is a framed sphere of index 2
and the attaching sphere a.S0/ intersects the belt sphere b.S/ transversely at
one point. Then, e†.S/;S0 ı e†;S D e' , where ' W †! †.S/.S0/ is a diffeo-
morphism which is identical on † \†.S/.S0/ and unique up to isotopy (see
details in [26, Definition 2.17]);

(5) e†;S D e†;xS, where xS is the same sphere with the opposite orientation.

Define the functor P W F .G LC/! 3CobLC by sending vertices to itself, diffeo-
morphisms to mapping cylinders and the edges eM;S to cobordisms M.S/. The aim
of this section is to prove that P descends to a functor on F .G LC/=R, which is an
isomorphism of categories.

5.1. Morse data and Cerf decompositions

Given two objects .†�; L�/ and .†C; LC/ in 3CobLC and ŒM � 2 3CobLC..†�; L�/,
.†C;LC//, whereL��H1.†�/,LC�H1.†C/ andLM �H1.†�/˚H1.†C/ are
the corresponding Lagrangians withLC DLM :L�. Here, we write ŒM � to emphasize
that we refer to an equivalence class of 3-cobordisms. Recall that two 3-cobordisms
are equivalent if they are diffeomorphic and the restriction of the diffeomorphism to
the boundary respects the parametrizations (compare [26, Definition 2.2]).
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Let us choose a representativeM of the equivalence class ŒM �. The boundary @M
is decomposed as

@M D @�.M/ [ @0.M/ [ @C.M/;

where @˙.M/ is identified with †˙ and @0.M/ is parametrized by I � S1.

Definition 9. A Morse datum for M consists of a pair .f; b; v/ of a Morse function
on M , an ordered tuple

b D .0 D b0 < b1 < � � � < bm D 1/ � R;

and a gradient-like field v for f such that the following statements hold:

• on I � S1, f coincides with the first coordinate map .t; x/ 7! t and v D @
@t

;

• †� D f
�1.b0/ and †C D f �1.bm/ are the sets of minima and maxima of f ;

• each f �1.b/ is connected, and f has no critical points of indices 0 and 3;

• f has different values at critical points;

• all critical points belong to the interior of M ;

• b1; : : : ; bm�1 are regular values of f , such that each .bi ; biC1/ contains at most
one critical point.

Lemma 2-1 in [15] can be applied here with Y D @0.M/ proving that Morse func-
tions with the required boundary conditions exist on any morphism M in 3CobLC.
Using that Morse functions with different values at critical points are generic, in par-
ticular, dense in the space of functions the proof given there show existence of a Morse
function with the required boundary conditions and distinct values at critical points.
We obtain a gradient-like vector field by using a Riemannian metric (cf. Lemma 1-6
in [15]). We first choose a collar of @0.M/, � � 1; 0� � I � S1 � M on which we
put the product Riemannian metric g1. Then, we take any Riemannian metric g2 on
Mn� � 1

2
; 0� � I � S1. Using a partition of unity we build a metric g on M which

coincides with g1 on Œ�1
2
; 0� and g2 on Mn�� 1; 0� � I � S1. Using g, we get a gra-

dient vector field rf for the Morse function f and obtain a Morse datum (compare
with Lemma 1.7 in [15]).

We call a 3-cobordism M simple if it admits a Morse function with at most one
critical point. A Cerf decomposition of M is a presentation of M as a composition of
simple cobordisms. We will need here a refined notion.

Definition 10. A parametrized Cerf decomposition of .M; LM / consists of the fol-
lowing data:

• a Cerf decomposition

.M;LM / D .Mm; LMm/ ı .Mm�1; LMm�1/ ı � � � ı .M1; LM1/;
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where
.Mi ; LMi / W .†i�1; Li�1/! .†i ; Li /

are simple cobordisms, L0 D L� and the other Li are defined inductively by
Li WD LMi :Li�1 with a LMi D Ker.H1.†i�1/˚H1.†i /! H1.Mi //;

• a framed attaching sphere Si 2 †i and a diffeomorphismDi WM.Si /!Mi such
thatDi j†i .Si / W†i .Si /!†iC1 is an orientation preserving diffeomorphism, well
defined up to isotopy, and Di j†i�1 D id.

Proposition 11. Each simple cobordism M is either diffeomorphic to a mapping
cylinder or to a 3-cobordism M.S/ obtained by index 1 or 2 surgery.

Proof. A simple cobordism M admits a Morse datum .f; v/ with at most one critical
point of index k D 1; 2. In the case with no critical point, the flow defines a trivi-
alization M Š I � †� which is a mapping cylinder. In the case of a critical point
p, the stable and unstable manifolds M s.p/; M u.p/ of the critical point p do not
intersect @0.M/, then the intersection of M s.p/ with †� defines a .k � 1/-sphere (k
is the index) which can be framed, giving a framed sphere S and a diffeomorphism
†�.S/ ŠM well defined up to isotopy [26, Section 2.2].

More generally, for any cobordismM in 3CobLC, a Morse datum .f;b; v/ induces
a parametrized Cerf decomposition. Indeed, simple cobordisms between level sets
†i D f �1.bi / D Mi \MiC1 are Mi D f �1.Œbi�1; bi �/. Furthermore, the flow of
v defines the induced attaching sphere on each level set as the intersection with the
stable manifold M s.p/ of the corresponding critical point if it exists. If not, this flow
defines a diffeomorphism between †i and †iC1 which is identity on the boundary.

For the reader convenience, let us show that Cerf decompositions preserve Lagran-
gian correspondences.

Lemma 12. Assume .†i ;Li / are objects of 3CobLC for 0� i �m. For a Cerf decom-
position

.M;LM / D .Mm; LMm/ ı .Mm�1; LMm�1/ ı � � � ı .M1; LM1/;

we have Lm D LM � L0.

Proof. It suffices to show that for two morphisms M1 W .†�; L�/ ! .†; L/ and
M2 W .†; L/! .†C; LC/ from 3CobLC, their composition is also a morphism from
3CobLC, i.e.,

LM2 � .LM1 � L�/ D LM2ıM1 � L�: (14)

Since both sides of (14) are Lagrangians, it is enough to show that any x 2 LM2 �
.LM1 �L�/ also belongs to LM2ıM1 �L�. By the definition of Lagrangian correspon-
dence 9y 2 H1.†/ and 9z 2 L†� , such that .x; y/ 2 LM2 and .y; z/ 2 LM1 . Hence,
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.x; z/ 2 LM2ıM1 , since the image of .x; z/ in H1.M2 ıM1/ can be rewritten as
x C z D y � y D 0.

Definition 13. A diffeomorphism equivalence of parametrized Cerf decompositions

.Mm; LMm/ ı � � � ı .M1; LM1/ and .M 0m; LM 0m/ ı � � � ı .M
0
1; LM 01

/

of the same length is a collection of diffeomorphisms �i WMi !M 0i such that

• they are identities on the ends: �1j†� D id†� and �mj†C D id†C ;

• they are compatible: �i j†i D �iC1j†i ;

• they preserve Lagrangians: .�i j†i /�.Li / D L
0
i .

As explained in [26] (before Theorem 2.24) diffeomorphism equivalences are
induced by left-right equivalence of Morse data. Let us recall here the definition of
the latter for completeness. Two Morse data .f; b; v/ and .f 0; b0; v0/ are related by a
left-right equivalence if there are diffeomorphismsˆ WM !M and � WR!R, such
that f 0 D � ı f ıˆ�1, b0 D �.b/, v0 D ˆ�.v/, ˆj†˙ are isotopic to id. Then, for a
given Cerf decomposition, we can obtain a diffeomorphism equivalent one by setting
M 0i WD ˆ.Mi /.

Theorem 14. Any two parametrized Cerf decompositions of .M;LM / are connected
by sequence of the following moves (and their inverse):

(1) critical point cancellation: compositions of two simple morphisms .Mi ;LMi /

and .MiC1; LMiC1/ of indices 1 and 2, whose belt and attaching spheres
intersect transversally in one point, are replaced by the cylindrical morphism
.†i�1 � Œ0; 1�; L†i�1�Œ0;1�/;

(2) critical point crossing: two simple morphisms .Mi ;LMi / and .MiC1;LMiC1/

of indices l and k, whose belt and attaching spheres do not intersect (for
some choice of metric), are replaced by the pair of morphisms .M 0i ; LM 0i /
and .M 0iC1; LM 0iC1/ of indices k and l , such that .MiC1 ıMi ; LMiC1ıMi / '

.M 0iC1 ıM
0
i ; LM 0iC1ıM

0
i
/;

(3) cylinder gluing: two simple cobordisms .Mi ; LMi / and .MiC1; LMiC1/, one
of which is a mapping cylinder, are replaced by the composition .MiC1 ı

Mi ; LMiC1ıMi /;

(4) diffeomorphism equivalences.

Proof. For each cobordism M in 3CobLC , we construct an associated cobordism zM

between closed surfaces by gluing a cylinder D2 � I along the parameterised bound-
ary @0.M/. Then, we extend both Cerf decompositions to it and apply [26, Theorem
1.7] within its usual setting. In order to restrict back to surfaces with boundaries, we
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have to make sure that all the moves can be performed in such way that it does not
affect the glued cylinder.

(1,2) The critical point cancellation and critical point crossing moves can be
obtained by an isotopy supported in a tubular neighborhood of stable and
unstable manifolds [17]. Since all belt and attaching spheres belong to the
interior of M , we can always choose this neighborhood to be inside Int.M/.
Thus, this isotopy can be restricted to M .

(3) Let zMi be a mapping cylinder associated with a diffeomorphism d W z†i�1 !
z†i , then the composition of this cobordism with zM.S/ is diffeomorphic to
zM.S0/ W z†i ! z†i .S0/, where S0D d ıS. Since diffeomorphism d is identical

outside †i in z†i , the induced diffeomorphism of cobordisms is identical on
D2 � I and can be restricted.

(4,5) Moves 4 and 5 are induced by isotopies which are identical on D2 � I ,
hence, can be restricted to M .

Since each pair of Cerf decompositions is connected by a move relating diffeomorphic
cobordisms, it preserves Lagrangian correspondences.

Theorem 15. The functorP WF .G LC/!3CobLC descends to a functor F .G LC/=R
'
�!

3CobLC which is an isomorphism of categories.

Proof. First, we should check that relations R hold in 3CobLC. Relation .1/ in R can
be realized by moves .3/ and .4/ in Theorem 14. Relation .2/ follows from move .4/.
Relation .3/ follows from the critical point crossing move. Relation .4/ also follows
from the critical point cancellation move. The last relation follows from the fact that
M.S/ DM.xS/.

Now, we prove that P is a bijection on the hom-sets. If we have a morphism
.M;L/ 2 3CobLC, then it admits a Morse datum, and hence, as discussed above, the
induced parametrized Cerf decomposition

.M;L/ D .Mm; LMm/ ı .Mm�1; LMm�1/ ı � � � ı .M1; LM1/

withMi in 3CobLC for 1 � i �m by Lemma 12. Then, assigning to each simple mor-
phism .Mi ; LMi / an edge in G LC (e†;S to surgeries and ed to mapping cylinders), we
obtain a preimage of .M;L/ in G LC. This proves that P is surjective onto morphisms
of 3CobLC.

Assume we have two morphisms f; f 0 in F .G /=R which give the same mor-
phism in 3CobLC. Each of them can be represented by some composition of edges in
G , inducing natural Cerf decompositions on P.f / and P.f 0/. Then, these decom-
positions are connected by a sequence of moves listed in Theorem 14. Since each
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move corresponds to a relation in R the morphisms f and f 0 belong to the same
equivalence class in F .G LC/=R. This proves that P is injective.

As a corollary, we have the following construction of TQFTs on 3CobLC.

Corollary 16. Assume a map F W G LC ! VectC (sending vertices to vector spaces
and arrows to linear maps) satisfies the following properties:

(1) F.e†;¿/ D id and if d is isotopic to the identity, then F.d/ D id,

(2) for an orientation preserving diffeomorphism d W†!†0 sending the Lagran-
gianL toL0 and a framed sphere S�†, let S0D d ıS and dS be the induced
diffeomorphism, then F.e†;S0/ ı F.ed / D F.edS/ ı F.e†;S/,

(3) if S and S0 are two disjoint framed spheres in †, .†; L/ 2 3CobLC, then
F.e†;S/ and F.e†;S0/ commute,

(4) if S0 � †.S/ is a framed sphere of index 1, S is a framed sphere of index
0 and the attaching sphere a.S0/ intersects the belt sphere b.S/ transversely
in one point. Then, there is a diffeomorphism ' W †! †.S/.S0/ for which
F.e†.S/;S0/ ı F.e†;S/ D F.e'/,

(5) F.e†;S/DF.e†;xS/, where xS is the same sphere with the opposite orientation.

Then, F descends to the unique functor F W 3CobLC ! VectC .
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