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Set-decomposition of normal rectifiable G -chains
via an abstract decomposition principle

Michael Goldman and Benoit Merlet

Abstract. We introduce the notion of set-decomposition of a normal G-flat chain A
in Rn as a sequence Aj D A Sj associated to a Borel partition Sj of Rn such
that N.A/ D

P
N.Aj /. We show that any normal rectifiable G-flat chain admits

a decomposition in set-indecomposable sub-chains. This generalizes the decompo-
sition of sets of finite perimeter in their “measure theoretic" connected components
due to Ambrosio, Caselles, Masnou and Morel. It can also be seen as a variant of the
decomposition of integral currents in indecomposable components by Federer.

As opposed to previous results, we do not assume that G is boundedly compact.
Therefore, we cannot rely on the compactness of sequences of chains with uniformly
bounded N-norms. We deduce instead the result from a new abstract decomposition
principle.

As in earlier proofs, a central ingredient is the validity of an isoperimetric inequal-
ity. We obtain it here using the finiteness of some h-mass to replace integrality.

1. Introduction

The aim of this note is to extend the notion of decomposition of normal currents from the
integral setting [5, 8, 9, 17] to the general setting of normal rectifiable G-flat chains. This
work is motivated by [20], where we use the decomposition result to study the rectifiability
properties of tensor flat chains.

In order to state our main result, let us start with some notation and definitions. Let G
be a complete Abelian normed group, and let 0� k � n. We denote by F G

k
.Rn/ the group

of k-chains in Rn with coefficients in G, as introduced by Fleming in [19]. However, as
in [22,23], we do not assume that chains are compactly supported. The mass of a chain A
is denoted M.A/, and MG

k
.Rn/ is the subgroup of finite mass k-chains. The restriction

of A 2MG
k
.Rn/ to a Borel set S � Rn is denoted A S . By definition, A 2MG

k
.Rn/ is

rectifiable ifADA † for some countably k-rectifiable set†�Rn. By Section 6 of [22],
we can identify every rectifiable k-chain with a measure w�Hk †, where wWRn ! G

is Borel measurable and � is a Borel measurable field of unit simple k-vectors orienting†.
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We set N.A/ WDM.A/CM.@A/, and denote the subgroup of normal k-chains by

N G
k .R

n/ D ¹A 2 F G
k .R

n/ W N.A/ <1º:

Flat chains with real or integer coefficients were introduced as a particular class of
currents in [18]. Later, in [19], Fleming proposed a theory for flat chains with coefficients
in a (commutative normed) group, still in an Euclidean ambient space. This theory has
been further developed by White in [22, 23]. Shortly after, [7] introduced a theory of
currents in an ambient metric space. Both this theory and the theory of Fleming and White
have been generalized to form a theory of G-flat chains in metric spaces in [15].

Even in the case of Euclidean ambient spaces, the topological and geometrical struc-
ture of rectifiable (or, merely, finite mass) flat chains is still under investigation, see,
e.g., [1, 2, 24]). Here we introduce the notion of set-decomposition of normal flat chains,
and prove that every normal and rectifiable chain can be decomposed in indecomposable
components.

Definition 1.1. Let A 2 N G
k
.Rn/.

(1) A set-decomposition of A is a sequence (finite or countable) of normal chains Aj
such that there exists a Borel partition Sj of Rn with Aj D A Sj for every j and
N.A/ D

P
N.Aj /.

We say that each Aj is a set-subchain of A.
(2) We say that A is set-indecomposable if the only set-decompositions of A are trivial,

that is, for any set-decomposition Aj of A, there holds Aj D A for some index j and
Aj D 0 for the others.

Remark 1.2. Notice that by definition, ifA is rectifiable then for every Borel set S ,A S

is also rectifiable. In particular, every set-decomposition of a rectifiable chain is made of
rectifiable subchains.

Theorem 1.3. Let A 2 N G
k
.Rn/. If A is rectifiable, then it admits a set-decomposition in

set-indecomposable subchains.

Such decomposition is also called a maximal set-decomposition of A.
We obtain Theorem 1.3 as a corollary of the abstract decomposition Lemma 2.1, stated

and established in Section 2. Let us give some comments.
(a) When A is an integral current, a set-decomposition is in general coarser than a

decomposition into indecomposable integral currents introduced by Federer, see 4.2.25
in [17]. For instance, if A0 is the integral 1-current with multiplicity 1 associated with
a smooth oriented Jordan curve, then A WD 2A0 is set-indecomposable in N Z

1 .R
n/, but

admits the decomposition .A0; A0; 0; : : : / in the sense of Federer.
(b) In the case k D n and G D Z, if A D JEK, where E is a set of finite perimeter,

our definition corresponds to the decomposition of E into its measure theoretic connected
components introduced in [5], and Theorem 1.3 generalizes Theorem 1 in [5].

(c) For kD 0, the set-decomposition in set-indecomposable subchains of a normal rec-
tifiable 0-chain is essentially unique. Indeed, any normal rectifiable 0-chain is of the form
A D

P
gj Jxj K, where gj 2 G is such that

P
jgj jG <1, and xj 2 Rn is a sequence of

pairwise distinct points. The set-indecomposable 0-chains are the chains gJxK for g2G
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and x2 Rn. It follows that the sequence .g1Jx1K; g2Jx2K; : : : / is a set-decomposition in
set-indecomposable subchains of the above 0-chain A. Moreover, all the maximal set-
decompositions are obtained by rearranging this latter and possibly inserting and remov-
ing zeros.

At the other end, any n-chain A is rectifiable, and the group of normal rectifiable
n-chains is the group of normal n-chains. We believe that the set-decomposition of normal
n-chains in set-indecomposable subchains is also essentially unique. We establish this fact
in the particular case G D R (and thus also G D Z), see the statement of Proposition 4.1.

On the contrary, for 1 � k � n � 1, the decomposition in set-indecomposable sub-
chains is in general not unique even up to rearrangements. For instance, set n D 2 and
G D Z, and consider the polyhedral 1-chains with multiplicity 1, Ah and Av , where

• Ah is supported by the horizontal segment Œ�1; 1� � ¹0º and is oriented by e1,
• Av is supported by the vertical segment ¹0º � Œ�1; 1� and is oriented by e2.

Setting,

A WD Ah C Av; AC WD A ¹x2 > x1º and A� WD A ¹x2 < x1º;

we see that .Ah; Av; 0; : : : / and .AC; A�; 0; : : : / are two distinct set-decompositions of A
in set-indecomposable subchains.

(d) For a decomposition process to result in an at most countable number of indecom-
posable parts, we need some principle which prevents big pieces from crumbling into dust.
In the abstract decomposition Lemma 2.1, this principle is provided by assumption (H2),
which is a superlinear estimate of a “weak norm” by a “strong norm”. In [5, 17], this role
is played by some isoperimetric inequalities which give a superlinear estimate of the mass
of an object by the mass of its boundary. Here we use Lemma 3.2, which is of the same
nature. Indeed, with Step 1 of the proof of Theorem 1.3, we have that if A is normal and
rectifiable, there exists an increasing and strictly subadditive cost function h 2C.RC;RC/
with h0.0C/D1 such that Mh.A/ <1 (see Definition 3.1 for the definition of Mh). The
isoperimetric inequality of Lemma 3.2 (which extends Almgren’s isoperimetric inequal-
ity [3], see Remark 3.3) then provides a nondecreasing function �WRC ! RC such that
�.m/! 0 as m # 0, and for every k-chain A0,

(1.1) F.A0/ � �.M.A0//.Mh.A
0/CN.A0//:

(e) Unlike the references mentioned above, our proof of Theorem 1.3 does not use any
compactness theorem of the form:
(1.2)
“for ƒ � 0, the set ¹A 2 N G

k .R
n/ W suppA �Bƒ; N.A/ � ƒº is compact in F -norm.”

This statement is true if and only ifG is boundedly compact, in which case it is a classical
consequence of the deformation theorem. We use here instead the convergence in strong
norm of monotone sequences. More precisely, we use the following simple fact: if A
has finite mass (respectively, finite h-mass) and Aj D A Sj , with Sj a nonincreasing
sequence of Borel subsets of Rn, we have, by the monotone convergence theorem, that
Aj ! A \ Sj in mass (respectively, in h-mass).

(f) Some generalizations of the results of [5, 17] exist in the context of real currents
in metric spaces of [7]. Namely, Theorem 2.14 in [9] generalizes the decomposition of
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sets with finite perimeter in a (doubling) metric measure space, and Theorem 3.2 in [8]
generalizes the decomposition of integral currents in metric spaces. This suggests that a
version of Theorem 1.3 should hold true within the theory of G-currents in metric spaces
developed in [15].

(g) In connection with (d), let us point out that if we fix a cost function h as above
(satisfying in particular h0.0C/ D 1), we can define the h-mass of any flat chain as the
lower-semicontinuous envelope of Mh restricted to polyhedral chains. By Theorem 8.1
in [23], every normal chain with finite h-mass is rectifiable (with h-mass coinciding
with Mh by [14, 22]). Therefore, Theorem 1.3 provides a decomposition in indecom-
posable components for normal chains of finite h-mass. Partly due to their connection
with branched transport models, this type of functionals has received a lot of attention in
the past few years, see, e.g., [10, 11, 13]. It is however worth noticing that our notion of
set-decomposition (and indecomposability) is independent of the choice of h.

(h) Let us mention similar decomposition results for rectifiablem-varifolds in U�Rd

whose first variation is a measure. First, the existence of such set-decomposition in set-
indecomposable components is established in Section 6.12 of [21]. Second, in [12], the
decomposition of an integral varifold into countably many indecomposable integral vari-
folds is proved.

In the first case, a varifold V is said to be set-decomposable if there exists a Borel
subset B � U such that W WD V B � ŒGr.m;Rn/� satisfies W 62 ¹0; V º and ıW D
.ıV / B . This is stronger (and in general strictly stronger) than the condition kıV k D
kıW k C kı.V �W /k. In the second case, V is decomposable if there exists an integral
varifold W � V such that W 62 ¹0; V º and kıV k D kıW k C kı.V �W /k.

We believe that these results could be obtained as applications of Lemma 2.1. In this
setting, the superlinear estimate akin to the isoperimetric inequality should stem from the
monotonicity identity of Sections 4.5 and 4.6 in [21]. However, using Lemma 2.1 is not
likely to improve the results of [12, 21] or even simplify their proofs. Consequently, we
opt not to investigate further these issues here.

The main contribution of this note is the fact that we obtain the decomposition result
Theorem 1.3 without the closure/compactness property (1.2), that is: without assuming
that G is boundedly compact.

To highlight the interest of our method and how it differs from previous approaches,
we give in Appendix B an alternative proof of the theorem under the additional assumption
that (1.2) holds true. This alternative proof is very close in spirit to the one of Theorem 1
in [5].

In the next section, we establish Lemma 2.1, that provides an abstract decompo-
sition principle in Abelian normed groups, assuming a general version of (1.1) and a
closure property for nonincreasing sequences in the subset chosen for the decomposi-
tions. In Section 3, we prove the isoperimetric inequality for normal rectifiable chains
(Lemma 3.2), and then Theorem 1.3. In Section 4, we state and prove Proposition 4.1
about the uniqueness of the maximal set-decomposition of a normal n-chain when G is a
subgroup of .R;C/.

In Appendix A, we establish a simple “higher integrability" lemma used in the proof
of Theorem 1.3. In Appendix B, we give a more classical proof of Theorem 1.3 valid
when G is boundedly compact.
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2. An abstract decomposition lemma

Lemma 2.1. Let .G ;C; �/ be a complete Abelian normed group, and let � � G be such
that 0 2 � .

(i) We say that a sequence aj 2 � is a decomposition of b 2 G if b D
P
aj and �.b/DP

�.aj /. In such case, we write aj � b, for every j � 1.

(ii) We say that b is an atom if b 2 � and any decomposition of b is trivial, that is, a � b
implies a D 0 or a D b.

We make the following assumptions.

(H1) The limit of any nonincreasing sequence bj 2 G (that is, b1 � b2 � � � � / belongs
to � .

(H2) There exist another norm � on G and a nondecreasing function �WRC!RC, with
lims!0 �.s/ D 0, such that �.a/ � �.�.a// �.a/ for every a2G .

Then, if b 2 G admits at least one decomposition, it admits a decomposition in atoms.

Remark 2.2. (1) Since 0 2 � , we have that any element a 2 � admits the trivial decom-
position .a; 0; 0; : : : /, and the lemma implies that under Assumptions (H1) and (H2), any
element of � admits a decomposition in atoms.1 Also notice that 0 is always an atom.

(2) Let us stress again that (H1) is the only closure property that we consider in the
lemma, and that it only concerns monotone sequences. In the proof of Theorem 1.3, (H1)
follows from the monotone convergence theorem of measure theory.

(3) As already mentioned, the lemma provides an alternative proof to the existence of
decompositions in indecomposable components of a normal integral current supported in
some compact K (see 4.2.25 in [17] and Theorem 3.2 in [8]). For this, we take � D G

as the group of normal integral currents supported in K, � D N and � D F . In this
setting, (H1) follows from the completeness of .G ; �/, and (H2) from the isoperimetric
inequality.

Before proving the lemma, let us discuss some consequences of the assumptions. It
is convenient to consider a broader notion of decomposition. For this, we complete the
definitions (i) and (ii) in the lemma by the following:
(iii) We say that a sequence aj 2G is a pseudo-decomposition of b 2G if b D

P
aj and

�.b/ D
P
�.aj /. In such case, we write aj � b, for every j � 1.

A decomposition is then a pseudo-decomposition whose components lie in � .

Observations 2.3. (1) Let a; b 2 G with a � b (or a � b). By definition, there exists a
(pseudo-)decomposition aj of b with a D aj0 for some j0 � 1. Rearranging the first j0
terms, we may always assume a1 D a.

(2) The relation � defines a partial order on G . More precisely, for a; b; c 2 G ,

(2.1) a � b and b � a ” a D b; a � b and b � c H) a � c:

As a consequence, .G ; � / is a partially ordered set. Similarly, .� ; �/ is a partially
ordered set.

1Conversely, if any element of � admits a decomposition in atoms, then if b 2 G admits a decomposition
.b1; b2; : : : /, we obtain a decomposition of b by collecting the decompositions in atoms of the bj ’s.
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Let us prove (2.1). First, any a2G admits the pseudo-decomposition .a; 0; 0; : : : /, so
a � a. Conversely, let a; b 2 G be such that a � b and b � a. Let aj be a pseudo-
decomposition of b such that a1 D a, and let bi be a pseudo-decomposition of a such that
b1 D b. We compute as follows:

�.b/ D �.a/C
X
j�2

�.aj / D �.b/C
X
i�2

�.bi /C
X
j�2

�.aj /:

Hence bi D aj D 0 for i; j � 2 and a D b. This proves the equivalence in the left of (2.1).
Let us now establish the implication in the right. Let a; b; c 2 G , and assume that

a � b � c. Denoting ai and bj some pseudo-decompositions of b and c with a1 D a
and b1 D b, we have

c D b C
X
j�2

bj D aC
X
i�2

ai C
X
j�2

bj ;

with
�.c/ D �.b/C

X
j�2

�.bj / D �.a/C
X
i�2

�.ai /C
X
j�2

�.bj /:

Setting d1 D a and then d2j D ajC1, d2jC1 D bjC1 for j � 1, we get that dj is a pseudo-
decomposition of c with d1 D a, hence a � c, as claimed.

(3.a) If a � b, then .a; b � a; 0; 0; : : : / is a pseudo-decomposition of b. Indeed, if aj
is a pseudo-decomposition of b with a1 D a, then b � a D

P
j�2 aj , and by the triangle

inequality,

�.a/C �.b � a/ � �.b/ D
X

�.aj / D �.a/C
X
j�2

�.aj / � �.a/C �.b � a/:

Hence �.b/ D �.a/C �.b � a/ and .a; b � a; 0; 0; : : : / is a pseudo-decomposition of b.
If moreover a admits a pseudo-decomposition ci , then the sequence .b � a; c1; c2; : : : /

is a pseudo-decomposition of b. Indeed, we have similarly b D .b � a/C
P
ci and

�.b � a/C
X

�.ci / � �.b/ D �.b � a/C �.a/ D �.b � a/C
X

�.ci /;

and �.b/ D �.b � a/C
P
�.ci /.

(3.b) Applying this principle recursively, if b1 � b2 � � � �, then for j � 2, we have
that .bj ; .bj�1 � bj /; .bj�1 � bj�2/; : : : ; .b1 � b2// is a pseudo-decomposition of b1. In
particular,

b1 D bj C
X
1�i<j

.biC1 � bi /;(2.2)

�.b1/ D �.bj /C
X
1�i<j

�.biC1 � bi /:(2.3)

(3.c) By (2.3), we see that the series
P
.bj � bjC1/ is absolutely convergent, and

since G is complete, the sum admits a limit c1. In light of (2.2), we see that the sequence bj
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also converges and its limit is b1 WD b1 � c1. Notice that this justifies the existence of
this limit, which is implicitly assumed in hypothesis (H1).

(3.d) Passing to the limit in (2.2) and (2.3), we obtain that

.b1; b1 � b2; b2 � b3; : : : /

is a pseudo-decomposition of b1.
Also remark that we can start the nonincreasing sequence from any j > 1, rather than

from 1. We deduce that, for j � 1,

.b1; bj � bjC1; bjC1 � bjC2; : : : /

is a pseudo-decomposition of bj .
(4) With the same triangle inequality based arguments as above, if the sequence bj is

a pseudo-decomposition of b, and for each j , .bj;i /i is a pseudo-decomposition of b, then
for any bijection

r 2 ¹1; 2; 3; : : : º 7! . Nj .r/; Ni.r// 2 ¹1; 2; 3; : : : º � ¹1; 2; 3; : : : º;

the sequence defined by
ar WD b Nj .r/;Ni.r/; for r � 1;

is a pseudo-decomposition of bj . Besides, if for every j , .bj;i /i is a decomposition of bj
(that is, bj;i 2 � for every i; j ), then ar is a decomposition of b.

Proof of Lemma 2.1. In the proof, we use the preceding observations without explicit
mention.

Step 1 (Definition and properties of q.�//. We define for b 2 G , the quantity

q.b/ WD inf¹sup �.bj / W bj decomposition of bº;

with the convention q.b/ D 1 if b does not admit a decomposition. In the other cases,
when bj is a decomposition of b, since

P
�.bj / D �.b/ <1, the supremum sup �.bj / is

a maximum.
Let us establish some properties of q. First, since any b 2 � admits the decomposition

.b; 0; 0; : : : /, we deduce

(2.4) q.b/ � �.b/ for every b 2 � :

Next, we claim that if bj is a pseudo-decomposition of b, then

(2.5) q.b/ � sup q.bj /:

To establish (2.5), we assume without loss of generality that sup q.bj / is finite. Let " > 0.
For j � 1, let .bj;1; bj;2; : : : / be a decomposition of bj such that maxi �.bj;i / � q.bj /C ".
Rearranging the countable family bj;i , i; j � 1, to form a sequence, we obtain a decom-
position ar of b with supr �.ar / � maxj q.bj /C ". This yields q.b/ � supj q.bj /C ",
and then q.b/ � sup q.bj /, since " > 0 is arbitrary.
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Observe that if bj is decomposition of b, we have, by (2.4), that q.bj / � �.bj / for
j � 1, and since �.bj /! 0, the supremum in (2.5) is a maximum.

In the rest of the proof, we assume that b 2 G admits at least one decomposition.
Equivalently,

q.b/ <1:

We now establish the following:

(2.6) 8 " > 0; 9 b1 � b such that
²

q.b/ � q.b1/ � �.b1/ � q.b/C ";

q.b � b1/ � q.b1/:

Let bj be a decomposition of b with max �.bj / � q.b/ C ". Since q.bj / � �.bj / andP
�.bj / < 1, the sequence q.bj / reaches its maximum. Reordering if necessary, we

assume q.b1/ D max q.bj /. There holds

q.b/
(2.5)
� max q.bj / D q.b1/

(2.4)
� �.b1/ � q.b/C ":

Moreover, by (2.5) again applied to the decomposition .bj /j�2 of b � b1, we have that
q.b � b1/ � maxj�2 q.bj / � q.b1/. This proves (2.6).

Step 2 (Extraction of a “big atom”). Let b 2 G with q.b/ <1. Let us establish that

(2.7) there exists an atom a � b such that q.b � a/ � �.a/:

Let "j > 0, with "j ! 0. We build recursively b0 � b1 � b2 � � � � by setting b0 D b and
then by applying (2.6) to bj with " D "j . We have, for j � 0,

q.bj / � q.bjC1/ � �.bjC1/ � q.bj /C "j ;(2.8)
q.bj � bjC1/ � q.bjC1/:(2.9)

Applying (H1) to the nonincreasing sequence bj , there exists a 2 � such that bj ! a,
and by Observations 2.3 (3.d) and (4), we have a � bj for every j � 0, and in particular,
a � b D b0. Moreover, from (2.8), q.bj / is nondecreasing and

(2.10) sup
j�0

q.bj / D lim
j"1

q.bj / D lim
j"1

�.bj / D inf
j�0

�.bj / D �.a/:

Next, for j � 1, the sequence .bi � biC1/i�j is a pseudo-decomposition of bj � a, and
we deduce from (2.5) that

(2.11) q.bj � a/ � max
i�j

q.bi � biC1/:

Applying this inequality with j D 0, we get (recall b0 D b)

q.b � a/ � max
i�0

q.bi � biC1/
(2.9)
� sup

i�0

q.biC1/
(2.10)
D �.a/:

This proves the inequality in (2.7).
We still have to check that a is an atom. For this, we first prove that

(2.12) lim
j"1

q.bj � a/ D 0:

Combining (2.11) and (2.5), we obtain that q.bj � a/ � maxi�j �.bi � biC1/, and sinceP
i�0 �.bi � biC1/ <1, the right-hand side goes to 0 as j " 1. This proves (2.12).
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Let now .ci / be a decomposition of a, and assume without loss of generality that
max�.ci /D �.c1/. For j � 0, the sequence .bj � a;c1; c2; : : : / is a pseudo-decomposition
of bj . We compute

q.bj /
(2.5) ; (2.4)
� max

�
q.bj � a/; max

i
�.ci /

�
D max.q.bj � a/; �.c1//:

Sending j to 1, by (2.10), the left-hand side converges towards �.a/ D
P
�.ci / and,

by (2.12), the right-hand side towards �.c1/. We obtainX
�.ci / � �.c1/;

hence ci D 0 for i � 2 and a is an atom. The claim (2.7) is established.
Step 3 (Conclusion). Let b 2 G be such that q.b/ < 1. We build recursively two

sequences, aj � b and bj � b, indexed by j � 0, such that the aj ’s are atoms and for
j � 1, .a1; : : : ; aj ; bj ; 0; : : : / is a pseudo-decomposition of b. For this, we start with
a0 WD 0 and b0 WD b, and then for j � 0, we apply (2.7) to bj to get an atom ajC1 � bj .
We then set bjC1 WD bj � ajC1, so that .ajC1; bjC1/ is a pseudo-decomposition of bj
and proceed to the next step. By construction, .a1; : : : ; aj ; ajC1; bjC1; 0; : : : / is a pseudo-
decomposition of b. Moreover, by (2.7), for j � 0,

(2.13) q.bjC1/ � �.ajC1/:

In particular, q.bjC1/ <1, and we can apply (2.7) to bjC1 and continue the construction.
The pseudo-nonincreasing sequence bj converges to some b1 2 G (because G is com-
plete) and .a1; a2; : : : / is a decomposition of b � b1 D b0 � b1 in atoms.

To conclude, we establish that b1 D 0. Let us fix j � 1 and let .bj;1; bj;2; : : : / be a
decomposition of bj such that �.bj;i / � 2q.bj / for i � 1. Using the triangle inequality
and (H2), we have for k � 1,

(2.14) �.bj / �

kX
iD1

�.bj;i /C �
�X
i>k

bj;i

�
�

X
i�1

�.bj;i /C �
�X
i>k

bj;i

�
:

Now, by (H2), for any sequence cj 2 G , there holds

(2.15) �.cj /! 0 H) �.cj /! 0:

Since
P
bj;i converges in �-norm, we deduce that the last term of (2.14) goes to 0 as

k !C1, and we get
�.bj / �

X
i�1

�.bj;i /:

Then, applying (H2) to the bj;i ’s, we infer that

�.bj / �
X
i�1

�.�.bj;i // �.bj;i / � �.2q.bj //
X
i�1

�.bij /

D �.2q.bj // �.bj / � �.2q.bj // �.b/:

Using (2.13), we obtain
�.bj / � �.2�.aj // �.b/:
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Since
P
�.aj /� �.b/ <1, we have �.aj /! 0, hence �.2�.aj //! 0, and we obtain

�.bj /! 0. Eventually, by the triangle inequality, we have

�.b1/ � �.bj /C �.bj � b1/
j"1
�! 0;

where we apply (2.15) with cj D bj � b1 to see that the last term goes to 0. Since � is a
norm, we conclude that b1 D 0, which proves the lemma.

Remark 2.4. It transpires from the proof that we do not need the whole “normed group”
structure of G . Indeed, the inequality �.c � a/� �.c/C �.a/ is never used. By inspecting
the demonstration, we see that the lemma is still correct if .G ;C; �/ is a complete normed
commutative monoid. In this setting, the identities of the form b D c � a in the proof
should be read as aC b D c. For instance, the term b � a of Observations 2.3 (3.a) should
be defined as

P
j�2 aj , where .a; a2; a3; : : : / is a pseudo-decomposition of b.

3. Proof of Theorem 1.3

As in the introduction, .G;C; j � jG/ is a complete Abelian normed group and 0 � k � n.
Let us first establish an isoperimetric inequality for normal rectifiable G-flat chains. In
light of Almgren’s isoperimetric inequality [3, 22], the result is not that surprising and
might not be new. Its proof is based on the deformation theorem of White [22], and follows
the steps of the proof of Federer’s isoperimetric inequality for integral currents.

Let us recall the definition of the h-mass of a rectifiable chain, see Section 6 of [22].

Definition 3.1. Let hWRC ! RC be a lower semicontinuous and subadditive function
satisfying h.0/ D 0. The h-mass of a rectifiable k-chain A D w�Hk † is defined as

Mh.A/ WD

Z
†

h.�/ dHk ;

where � WD jwjG .

The condition h.0/ D 0 ensures that the definition does not depend on the choice of
.†; w/. The lower-semicontinuity and subadditivity properties are necessary to get good
properties of Mh with respect to convergence and projections/deformations. Let us recall
in particular that under these assumptions, Mh is countably subadditive (see Section 6
of [22]), that is,

(3.1) Mh

�X
Bj

�
�

X
Mh.Bj / for Bj 2MG

k .R
n/, rectifiable.

Of course, the case h.s/ D s corresponds to the usual mass.

Lemma 3.2 (Isoperimetric inequality for normal rectifiable chains). Let hWRC ! RC
be lower semicontinuous, subadditive and such that h.0/ D 0, h > 0 on .0;C1/ and
h0.0C/ WD lims#0 h.s/=s D1. There exists a nondecreasing function �WRC ! RC, only
depending on n and h, such that limm#0 �.m/ D 0 and

F.A/ � �.M.A// .Mh.A/CN.A//

for every normal rectifiable chain A 2 N G
k
.Rn/.
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Proof. Let h and A be as in the statement of the lemma, and let " > 0 to be fixed later.
Applying the deformation theorem, Theorem 1.1 in [22], there exist a constant c � 1
(only depending on n) and chains P 2 PG

k
.Rn/, R 2 F G

k
.Rn/ and S 2 F G

kC1
.Rn/ with

the following properties:
(a) A D P CRC @S .
(b) P D

P
gF F , with gF 2 G, and where we sum over a countable set of essentially

disjoint oriented k-cubes F with side length ".
(c) M.P / � cM.A/.
(d) Mh.P / � cMh.A/.
(e) M.R/CM.S/ � c"N.A/.

Let us denote
�.A/ WDMh.A/CN.A/:

By (a) and (e), there holds

(3.2) F.A/ �M.P /C c"�.A/:

To estimate the first term, we write, using the formula (b) and the inequality (c),

(3.3) M.P / D "k
X
F

jgF jG � cM.A/:

We deduce

(3.4) max
F
jgF jG � cM.A/"�k :

We now set Q�.0/ WD 0, and for m > 0,

Q�.m/ WD sup
° s

h.s/
W 0 < s � m

±
:

From the assumption on h, the function Q� is nondecreasing and limm#0 Q�.m/ D 0. We
compute, using (b),

M.P / D "k
X
F

jgF jG � "
k
X
F

Q�.jgF jG/ h.jgF jG/
(3.4)
� Q�.cM.A/"�k/"k

X
F

h.jgF jG/

D Q�.cM.A/"�k/Mh.P /
(d)
� c Q�

�
cM.A/"�k

�
�.A/:

Putting this estimate in (3.2), we get

F.A/ � c
�
Q�.cM.A/"�k/C "

�
�.A/:

Then, taking the infimum over " > 0 and setting for m > 0,

(3.5) �.m/ WD c inf
">0

�
Q�.cm"�k/C "

�
;

we obtain
F.A/ � �.M.A// �.A/ D �.M.A//.Mh.A/CN.A//:
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Eventually, since Q� is nondecreasing, � is nondecreasing. Moreover, given ı > 0, we first
fix " WD ı=.2c/, then using Q�.s/! 0 as s # 0, we have Q�.cm"�k/ < ı=.2c/ for m � 0
small enough. We deduce that for such m’s, �.m/ < ı. This establishes that �.m/! 0 as
m # 0, and ends the proof of the lemma.

Remark 3.3. Assuming that h is increasing and using Mh instead of M in (3.3), we can
replace (3.4) by

max
F
jgF jG � h

�1.cMh.A/"
�k/:

Therefore, setting Q��.m/ WD h�1.m/=m and then defining �� by (3.5), with Q�� instead
of Q�, we have also the inequality

F.A/ � ��.Mh.A// .Mh.A/CN.A//:

In the particular case h.m/ D m˛ for ˛ 2 .0; 1/, this yields

F.A/ � cMh.A/
1�˛

˛Ck.1�˛/ .Mh.A/CN.A//:

Sending ˛ to 0, so that in the limit Mh.A/D Size.A/, we recover Almgren’s isoperimetric
inequality [3] (see also Theorem 6.2 in [22]).

We can now prove the main result.

Proof of Theorem 1.3. Let A 2 N G
k
.Rn/ be a normal rectifiable k-chain.

Step 1. We first claim that

there exists h 2 C.RC;RC/ increasing, concave and such that

8<: h.0/ D 0;h0.0C/ D1;

Mh.A/ <1:

With the notation of Definition 3.1, M.A/D
R
�dHk †<1, and for h 2 C.RC;RC/,

Mh.A/ D

Z
h.�/ dHk †:

The claim is then a direct application of Lemma A.1 established in appendix, with the
nonnegative function f D � and the measure � D Hk †.

Remark that h is strictly subadditive, so that it satisfies the assumptions of Lemma 3.2.
Step 2. For B 2 Fk.R

n; G/, we set

(3.6) �.B/ WDMh.B/CN.B/;

and define

(3.7) G WD ¹B 2 Fk.R
n; G/, rectifiable and such that �.B/ <1º :

The mapping � is obviously a norm on G (recall (3.1)). Let us show that .G ; �/ is com-
plete. Let Bj be a Cauchy sequence in .G ; �/. In particular, Bj is a Cauchy sequence
in .N G

k
.Rn/;N/, which is complete, and there exists B1 2 N G

k
.Rn/ such that N.Bj �

B1/! 0.
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Now, there exists a k-rectifiable set † � Rn such that Bj D Bj † for every j � 1.
Using transparent notation, we write Bj D wjHk †, and we observe that the property
M.Bj � B1/! 0 rewrites as

(3.8) wj ! w1 in L1
�
.†;Hk/; .G; j � jG/

�
:

Similarly, denoting jgj�G WD h.jgG j/ for g 2G, the fact that Bj is a Cauchy sequence with
respect to Mh rewrites as

wj is a Cauchy sequence in L1
�
.†;Hk/; .G; j � j�G/

�
:

The latter group being complete, there exists w�1 such that

wj ! w�1 in L1
�
.†;Hk/; .G; j � j�G/

�
:

Besides, with (3.8), we have w�1 D w1 Hk-almost everywhere on †, and we see that
Mh.Bj � B1/! 0. This proves that .G ; �/ is complete.

Now we set

(3.9) � WD ¹A S W S � Rn Borel set such that N.A S/ <1º :

Notice that by Remark 1.2, every element of � is rectifiable.
We claim that forB 2 G andA1;A2; � � � 2 � , we have (using the notation of Lemma 2.1

with (3.6), (3.7) and (3.9))

(3.10) Aj decomposition of B as in Lemma 2.1 ” Aj set-decomposition of B:

Assuming that .A1; A2; : : : / is a set-decomposition of B , we write Aj D B Sj ,
where Sj is a Borel partition of Rn. We have obviously Mh.B/ D

P
Mh.Aj /, and by

definition, N.B/ D
P

N.Aj /, hence .A1; A2; : : : / is a decomposition of B in the sense
of Lemma 2.1.

Conversely, if .A1; A2; : : : / is a decomposition of B in the sense of Lemma 2.1, then
B D

P
Aj and �.B/ D

P
�.Aj /. Since, by the triangle inequality,

�.B/ �
X

�.Aj / for � DM; Mh and M.@ �/;

the identity �.B/ D
P
�.Aj / yields

�.B/ D
X

�.Aj / for � DM; Mh and M.@ �/:

Hence N.B/ D
P

N.Aj /.
It remains to check that the Aj ’s belong to � . With the notation of Definition 3.1,

we set
�A WD �Hk †;

so that M.A S/ D �A.S/ for every Borel set S � Rn.
Writing B D A S and similarly Aj D A Sj for j � 1 for some Borel subsets

S; Sj � Rn, the convergence of
P
Aj towards B in mass is equivalent to

P
1Sj ! 1S

in L1.Rn; �A/. We deduce that, up to �A-negligible sets, Sj is a partition of S . This
proves (3.10).

The proof that B is an atom in the sense of Lemma 2.1 if and only if B is set-
indecomposable is similar.
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Step 3. By the previous step, the theorem follows from Lemma 2.1 (and item (1) of
Remark 2.2) applied to .G ;C; �/ and � , provided that (H1) and (H2) hold true.

First, choosing the norm � D F , we observe that Assumption (H2) is a direct conse-
quence of Lemma 3.2.

Let us establish (H1). Let B1 � B2 � � � � be a nonincreasing sequence. Referring to
Observations 2.3 (3.c), there exists B1 2 G such that �.Bj � B1/! 0. Next, reasoning
as above, there exists a nonincreasing sequence Sj of Borel subsets of Rn such that Bj D
A Sj . Defining S1 WD

T
Sj andB�1 WDA S1, we have by the monotone convergence

theorem,
lim M.Bj � B

�
1/ D 0:

Consequently, B1 D B�1 D A S1 and B1 2 � . This proves (H1).
As a conclusion, the theorem follows from Lemma 2.1.

4. Uniqueness of the set-decomposition of normal n-chains with real
coefficients

As announced in the introduction, we are able to establish the uniqueness of the maxi-
mal set-decomposition of normal codimension 0 chains when .G;C; j � jG/ is a closed
subgroup of .R;C; j � j/.

Proposition 4.1. If G is the additive group R endowed with the standard norm, then the
decomposition of a normal G-flat n-chain in Rn in set-indecomposable subchains is
unique up to rearranging the sequence and adding or deleting zeros.

The result also applies to G D Z by the embedding N Z
n .R

n/ ,! N R
n .R

n/. The proof
of the proposition is based on the coarea formula for functions of bounded variations, and
on the uniqueness of the decomposition of a set of finite perimeter in its measure theoretic
connected components provided by Theorem 1 in [5]. We first reformulate the proposition
as a result about functions of bounded variation (Theorem 4.2 below).

It is well known that the space of R-flat n-chains in Rn in the sense of [19] identifies
with a subspace of k-currents in Rn, namely, the closure of the space of normal n-currents
with respect to the norm

W.T / WD suphT; !iI

the supremum is taken over the smooth and compactly supported differential n-forms !
over Rn such that k!k1 � 1. This space obviously identifies isometrically with L1.Rn/,
and denoting fA the function corresponding to a R-flat n-chain A, we have F.A/ D
M.A/D kfAkL1 and @A is the .n� 1/-current

Pn
iD1 @xifAHn eNi , where e1; : : : ; en is the

standard basis of Rn and

eNi WD e1 ^ � � � ^ ei�1 ^ eiC1 ^ � � � ^ en:

Using the Hodge star operator eNi 7! ei , @A identifies with the distribution rfA. Moreover,
the n-current A is normal if and only if fA is a function with bounded variation, and we
have the identity M.@A/ D jrfAjTV, where here and below, the total variation of a vector
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valued Borel measure � 2M.Rn;Rd / is computed with respect to the Euclidean norm
in Rd , that is,

j�jTV WD sup
°X
Sj

k�.Sj /k`2.Rd / W Sj Borel partition of Rn
±
:

Next, given a Borel set S � Rn, we have f
A S

D 1SfA, and a set-decomposition of A
corresponds to a finite or countable Borel partition B of Rn such that

(4.1) jrfAjTV D
X
S2B

jrŒ1SfA�jTV :

Denoting� WD ¹x 2Rn W fA.x/¤ 0º, we have fAD 1�fA, so we may only consider Borel
partitions of�. A set-decomposition corresponds to a Borel partition of� satisfying (4.1),
and A is indecomposable if for every Borel set S � �, there holds

jrfAjTV D jrŒ1SfA�jTV C
ˇ̌
rŒ1RnnSfA�

ˇ̌
TV H) Hn.S/ D 0 or Hn.�nS/ D 0:

Let us state in terms of BV-functions both the existence result of Theorem 1.3 in the case
k D n and G D R, and the uniqueness result (still to be proved) of Proposition 4.1.

Theorem 4.2. Let f 2BV.Rn/. There exists a Borel partition B of the set� WD ¹x2Rn W
f .x/¤0º such that

(4.2) jrf jTV D
X
S2B

jrŒ1Sf �jTV ;

and such that for any Borel partition B 0 with the same properties and any S 2B, we have
Hn.S nS 0/ D 0 for some S 0 in B 0. In other words, B is the finest Borel partition of �
satisfying (4.2).

Proof. Step 0 (conventions). In this proof, we identify Borel subsets of � which only
differ by a Lebesgue null set, and we make an abuse of notation by writing S � S 0 if
S nS 0 is a null set. With this convention, given two families B and B 0 of Borel subsets
of �, we write B b B 0 whenever

for every element S 2 B; there exists S 0 2 B 0 such that S � S 0:

This defines a partial order on the families of Borel subsets of Rn. The theorem states that
the collection of Borel partitions of � satisfying (4.2) admits a least element for the rela-
tion b. Similarly, with this vocabulary, Theorem 1 in [5] states that a set of finite perimeter
E � Rn admits a Borel partition BE , whose elements are called the M-connected com-
ponents of E, such that

P.E/ D
X
F�BE

P.F /

and such that if B 0E is any other Borel partition of E,

(4.3) P.E/ D
X
F�B0E

P.F / ” BE b B 0E :
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Step 1. Let f 2 BV.Rn/. For t 2 Rn¹0º, we set

Et WD

²
¹x 2 Rn W f .x/ > tº if t > 0;
¹x 2 Rn W f .x/ < tº if t < 0:

For almost every t , Et is a set of finite perimeter. Denoting by P.E/ the perimeter of
E � Rn (that is, the Hn�1-measure of the reduced boundary of E), the mapping t 7!
P.Et / is measurable, and by the coarea formula, Theorem 3.40 in [6],

(4.4) jrf jTV D

Z
R
P.Et / dt:

Le us denote by Bt the collection of the M-connected components of Et as provided by
Theorem 1 in [5]. For almost every t 2 R, Bt is a finite or countable Borel partition of Et
and

P.Et / D
X
F2Bt

P.F /:

Let B be a Borel partition of� such that (4.2) holds true. Since for t 2Rn¹0º and S 2B,

Et \ S D

²
¹x 2 Rn W 1S .x/f .x/ > tº if t > 0;
¹x 2 Rn W 1S .x/f .x/ < tº if t < 0;

we have, again by the coarea formula,

jrŒ1Sf �jTV D

Z
P.Et \ S/ dt:

With (4.2) and (4.4), this leads toZ
R
P.Et / dt D

Z
R

X
S2B

P.Et \ S/ dt:

Since for every t ,Et D
S
S .Et \ S/, we have P.Et /�

P
S P.Et \ S/, and this enforces

P.Et / D
X
S2B

P.Et \ S/; for almost every t 2 Rn¹0º:

By (4.3), this implies that Bt b ¹Et \ S W S 2 Bº b B, and we conclude that

(4.5) for almost every t 2 Rn¹0º; Bt b B:

Step 2. Now we claim that the collection Bt for t ¤ 0 admits a b-maximal element B0.
Indeed, for x; y 2 �, let us write x � y whenever there exists t D tx;y ¤ 0 such that Et
is a set of finite perimeter and x and y are both points of density of the same F 2 Bt .
Remark that if t1 < 0 < t2, then for S1 2Bt1 and S2 2Bt2 , there holds S1 \ S2 D¿, and
if 0 < t1 < t2 or t2 < t1 < 0, then Bt2 b Bt1 . We deduce that � defines an equivalence
relation on the set

�0 WD
[
t¤0

[
F2Bt

¹x point of density of F º ;

which is of full measure in �. Moreover, we can impose that the tx;y’s above lie in a
countable set T such that sup T \ .�1; 0/ D inf T \ .0;C1/ D 0. It follows that each
equivalence class of �0=� writes as countable union of sets with finite perimeter and in
particular, up to negligible sets, B0 WD �0=� is a Borel partition of �0.
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By construction and (4.5), we have that B0 b B for any Borel partition B of �
satisfying (4.2). To end the proof of the theorem, we still have to check that B D B0

satisfies (4.2).
For t ¤ 0 and S 2 B0, we define

St WD S \Et D

²
¹x 2 Rn W 1S .x/f .x/ > tº if t > 0;
¹x 2 Rn W 1S .x/f .x/ < tº if t < 0;

On the one hand, we have for almost every t and any S 2 B0,

(4.6) jrŒ1Sf �jTV D

Z
R
P.St / dt:

On the other hand, defining B 0t WD ¹St W S 2 B0º, we have by definition of B0 that for
almost every t 2 Rn¹0º, B 0t is a partition of Et with Bt b B 0t . We deduce from (4.3) that

P.Et / D
X
S 02B0t

P.S 0/ D
X
S2B0

P.St /:

Integrating over t 2 R and using (4.6), we get

jrf jTV D
X
S2B0

Z
P.St / dt D

X
S2B0

jrŒ1Sf �jTV :

So B D B0 satisfies (4.2), and the theorem is established.

We believe that Proposition 4.1 generalizes to any Abelian normed groups G, but
treating the general case would take us too far afield. An idea would be to identify the
normal n-chain A with a G-valued function fAWRn ! G such that fA is of bounded
variation in the sense of [4]. Such identification is established in Theorem 4.1 of [16], but
to complete the program, we need the identity

(4.7) M.@A/ D jrfAjTV WD sup
X
j

jrŒ�j ı fA�j.Sj /;

where the supremum is taken over the countable Borel partitions Sj of Rn and over the
sequences of 1-Lipschitz continuous functions �j WG ! R. However, the result of [16]
only provides a bilipschitz group isomorphism A 2 N G

n .R
n/! BV.Rn; G/ and we only

have at hand a two-sided estimate in place of the identity (4.7).

A. Higher integrability lemma

Lemma A.1. Let .�;�/ be a measure space. Given a �-integrable function f W�!RC,
there exists a function hWRC ! RC continuous, increasing, concave such that h.0/ D 0,
h0.0C/ WD lims#0 h.s/=s D1, andZ

h.f / d� <1:

Proof. This is the consequence of the following simple higher summability property for
absolutely converging series. Namely, if aj � 0 is such that

P
aj <1, then there exists a
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sequence 1 D b0 < b1 < � � � < bj < bjC1 < � � � ! 1 such that2
P
aj bj <1. Applying

this to the series X
j�0

Z
¹2�j�1<f �2�j º

f d� D

Z
f d� <1;

we get 1 D b0 < b1 < � � � < bj < bjC1 < � � � ! 1 such thatX
j�0

bj

Z
¹2�j�1<f�2�j º

f d� <1:

Defining c0 WD 1 and then, recursively,

cj WD min.
p
2 ; bj =bj�1/cj�1; for j � 1;

we have 1D c0 < � � �< cj�1 < cj < � � �, and by induction, cj � bj for j � 0. Consequently,

(A.1)
X
j�0

cj

Z
¹2�j�1<f�2�j º

f d� <1:

Notice also that, by induction, there holds

(A.2) cjCi � 2
i=2 cj for i; j � 0:

Moreover,

(A.3) cj D

jY
iD1

min
�p

2 ;
bi

bi�1

�
j"1
�! 1:

Indeed, denoting ƒ WD ¹i � 1 W bi �
p
2bi�1º, if, on the one hand, ƒ is finite, then for

j � j0 WD maxƒ, cj D .cj0=bj0/bj , and hence cj !1 as j !1. If, on the other hand,
ƒ is infinite, there holds

cj �
�p
2
�jƒ\Œ1;j �j j"1

�! 1:

Summing up, we have 1 D c0 < � � � < cj < cjC1 < � � � ! 1, and properties (A.1), (A.2)
and (A.3) hold. Let us define gW .0;1/! Œ1;1/ by

g.s/ WD

²
cj for s 2 .2�j�1; 2�j �; j � 1;

c0 D 1 for s > 1=2:

We notice that g is nonincreasing, and that by (A.3), g.s/!1 as s # 0. Let us set, for
s � 0,

h.s/ WD

Z s

0

g.t/ dt

(observe that by (A.2), g.s/ � s�1=2 for 0 < s � 1=2, so that h is well defined).

2This is easy to establish. Build an increasing sequence of integers m1; m2; m3; : : : such that
P
i>ml

ai �

2�l for l � 1. Then set b0 WD 1, bml WD l for l � 1, and complete the definition of the bi ’s by affine interpolation.
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We have that hWRC ! RC is continuous, concave, increasing and such that h.0/ D 0
and h0.0C/ D1. Eventually, we compute for j � 1 and s 2 .2�j�1; 2�j �,

h.s/ � h.2�j / D
X
i�j

2�i�1 ci D 2
�j�1

X
i�0

2�i cjCi

(A.2)
� 2�j�1 cj

X
i�0

2�i=2 D .2C
p
2 / 2�j�1 cj � .2C

p
2 /s cj :

Consequently, h ı f � .2C
p
2/cjf in the domain ¹2�j�1 < f � 2�j º. We conclude

by (A.1) that h ı f is �-integrable, which proves the lemma.

B. A proof of Theorem 1.3 assuming that G D .R;C; j � j/

We give here an alternative proof of Theorem 1.3, in the spirit to that of Theorem 1 in [5],
assuming that G is boundedly compact. In fact, for concreteness, we assume that G D R,
and to avoid technicalities, that A is compactly supported. The important point is that the
additional assumption ensures that the closure/compactness property (1.2) holds true. As
it is essential to Step 1 below, this shows that a new approach is needed to deal with the
general case.

Proof. Let A 2 N R
k
.Rn/ be rectifiable and compactly supported. We introduce the set

D WD ¹Aj set-decomposition of A such that N.Aj / is nonincreasingº:

This set is not empty, as it contains .A;0; : : : /. Let us endow the space of sequences vj 2R
indexed by j � 1 with the lexicographic ordering, i.e., .v0j / <lex.

.vj / if there exists j0 � 1

such that v0j D vj for 1 � j < j0 and v0j0 < vj0 . We consider the optimization problem

(B.1) .vj / WD inf
lex.

®
.N.Aj // W Aj 2 D

¯
:

Since the N.Aj /’s are nonnegative, the infimum is well defined and vj � 0 for every j .
We claim that if Aj is a minimizer of (B.1), then each Aj is set-indecomposable.

To see this, we assume by contradiction that for some j0 � 1, Aj0 admits a nontriv-
ial set-decomposition .A0j0 ; A

00
j0
/, that is, max.N.A0j0/;N.A

00
j0
// < N.Aj0/. Substituting

.A0j0 ; A
00
j0
/ for Aj0 in the sequence Aj and then rearranging the terms in decreasing order

of N-norms, we obtain a set-decomposition QAj of A with QAj D Aj for j < j0 and
N. QAj0/ < N.Aj0/. This contradicts the minimality of Aj .

To complete the proof, we establish that (B.1) does admit a minimizer.
Step 1. .F -compactness of minimizing sequences).
Let .Amj /m�1 be a minimizing sequence for (B.1). Let us first fix j � 1. The sequence

.Amj /m satisfies N.Amj /�N.A/ and suppAmj � suppA, so by (1.2), there exists a normal
chain Aj such that, up to extraction, Amj ! Aj in F -norm. Using a diagonal argument,
we may assume that Amj ! Aj asm " 1 in F -norm for every j � 1. Moreover, by lower
semicontinuity of the masses under F -convergence,

(B.2) N.Aj / � lim inf
m"1

N.Amj /:
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By Lemma A.1, there exists a cost function h 2 C.RC;RC/, increasing, concave, and
such that h.0/D 0, h0.0C/D1 and Mh.A/ <1 (in particular, h is strictly subadditive).
We deduce from Propositions 2.6 and 2.7 in [14] that the Aj ’s are rectifiable and that

(B.3) Mh.Aj / � lim inf
m"1

Mh.A
m
j /:

Moreover, by Lemma 3.2, there exists a nondecreasing function �WRC ! RC, with
�.m/ # 0 as m # 0, such that (1.1) holds with A0 D Amj for any j;m � 1.

Step 2. (Uniform F -summability and mass identities).
Let j0; m � 1. Since .N.Amj //j is nonincreasing, and N.A/ D

P
j N.Amj /, we have

for j � j0,

M.Amj / � N.Amj / � N.Amj0/ �
1

j0

j0X
iD1

N.Ami / �
N.A/

j0
�

Using (1.1), we computeX
j�j0

F.Amj / �
X
j�j0

�
�
M.Amj /

� �
N.Amj /CMh.A

m
j /
�

� �
�N.A/

j0

� X
j�j0

�
N.Amj /CMh.A

m
j /
�
� �

�N.A/

j0

�
.N.A/CMh.A//

j0"1
�! 0:

Hence, the series
P
j A

m
j converges in F -norm uniformly with respect to m. As a conse-

quence, we can pass to the limit in A D
P
j A

m
j and deduce the identity

(B.4) A D
X
j�1

Aj :

Then, by the triangle inequality for N and Mh (see (3.1)), there holds

(B.5) N.A/ �
X
j�1

N.Aj / and Mh.A/ �
X
j�1

Mh.Aj /:

By definition, we have for m � 1 that N.A/ D
P
j N.Amj / and Mh.A/ D

P
j Mh.A

m
j /.

Together with (B.2), (B.3), Fatou’s lemma and (B.5), this leads to

(B.6) N.A/ D
X
j�1

N.Aj / and Mh.A/ D
X
j�1

Mh.Aj /:

Thus (B.2) improves to N.Aj / D limm"1N.Amj /, and we get, eventually,

(B.7) N.Aj / D vj for every j � 1; where the vj ’s are given by (B.1):

Step 3. (Conclusion by strict subadditivity of h/.
At this point, we know that the Aj ’s are normal rectifiable chains satisfying the prop-

erties (B.4), (B.6) and (B.7). To conclude that the sequence Aj is a minimizer of (B.1), we
still have to show that it is a set-decomposition of A.

Let † be a countably k-rectifiable set of Rn such that for every j � 1, Aj D Aj †.
Let us write

A D w�Hk † and Aj D wj �H
k † for j � 1;
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where w and wj are Borel measurable functions on Rn, and � is a Borel measurable
field of unit k-vectors orienting †. From (B.4) and (B.6), we have w.x/ D

P
wj .x/ for

Hk-almost every x 2 †. Using the fact that h is increasing and subadditive, we compute

Mh.A/ D

Z
†

h .jwj/ dHk
D

Z
†

h
�ˇ̌̌X
j�1

wj

ˇ̌̌�
dHk

�

Z
†

h
�X
j�1

jwj j
�
dHk

�

X
j

Z
†

h.jwj j/ dHk
D

X
Mh.Aj /:

By (B.6), the inequalities are identities, and since h is strictly subadditive, we conclude
that for Hk-almost every x 2 †, there exists j0 � 1 such that jwj0.x/j D jw.x/j and
wj .x/ D 0 for j ¤ j0. Since

P
wj D w Hk-almost everywhere on †, we have in fact

wj0.x/ D w.x/. Hence Aj is a set-decomposition of A, which proves the result.
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