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A characterization of homogeneous
three-dimensional CR manifolds

Jih-Hsin Cheng, Andrea Malchiodi and Paul Yang

Abstract. We characterize homogeneous three-dimensional CR manifolds, in par-
ticular Rossi spheres, as critical points of a certain energy functional that depends on
the Webster curvature and torsion of the pseudohermitian structure.

1. Introduction and statement of the results

Let .M; �/ be a contact 3-manifold with contact structure �. A CR structure on .M; �/
is an endomorphism J W � ! � satisfying J 2 D Id. With a choice of contact form � (i.e.,
� j� D 0, � ^ d� ¤ 0/ such that d�.�; J �/ > 0, .J; �/ is called a (strictly pseudocon-
vex) pseudohermitian structure. To such a structure one associates the (Tanaka–Webster)
scalar curvature R and the torsion tensor A11 with norm jAj2

J;�
WD h1

N1h1
N1A11A N1 N1 (see

for instance [13] for basic pseudohermitian geometry). A pseudohermitian automorphism
is a diffeomorphism preserving the pseudohermitian structure. We call a pseudohermitian
manifold homogeneous if the group of its pseudohermitian automorphisms acts transit-
ively. On .M; �/ D .S3; O�/, the standard contact 3-sphere, there exists a family of distin-
guished homogeneous pseudohermitian structures .J.s/, O�/, called Rossi spheres, where O�
is the standard contact form on .S3; O�/: See Subsection 2.1 for a detailed description.

We recall that Rossi spheres (s ¤ 0/ are the simplest examples of non-embeddable
CR 3-manifolds which (two to one) cover embeddable ones in C3, see [5], pp. 324-325.
Apart from the non-embeddability property, Rossi spheres provide counterexamples in
conformal pseudohermitian geometry. In relation to the problem of existence of min-
imizers for the CR Yamabe problem, each Rossi sphere .J.s/; O�/, s ¤ 0, has negative
pseudohermitian mass, as defined in [7], for s close to 0, while the infimum of the CR
Sobolev quotient coincides with the one for the standard 3-sphere (s D 0), but is not
attained [8]. The notion of pseudo-Einstein contact form plays an important role in CR
geometry. Geometrically, it is characterized by a volume-normalization condition (The-
orem 3.3 in [4]), while analytically in dimension 3 it relatesR toA11 in their first covariant
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derivatives as follows:

(1.1) R;1 D iA11; N1

which is taken to be the definition of a pseudo-Einstein contact form in dimension 3 (see
Definition 3.1 in [4]; cf. (3.1)). Equation (1.1) is useful in simplifying the expressions
involving R and A11: Among others, one can equate the Burns–Epstein invariant to the
total Q0-curvature (up to a negative constant), see Theorem 1.2 on pp. 290–291 of [4].

In this paper, we exhibit a functional whose critical points (in both J and � ) charac-
terize homogeneous pseudohermitian manifolds among pseudo-Einstein ones. Precisely,
define the following energy functional:

(1.2) E.J; �/ WD

Z
M

.R2 � jAj2J;� /� ^ d�:

Our main result is as follows.

Theorem 1.1. On a real analytic, closed (i.e., compact with no boundary) contact 3-man-
ifold .M; �/; suppose that .J; �/ is a real analytic, pseudo-Einstein critical point of (1.2).
Then the universal cover QM of M with the structure naturally inherited from .�; J; �/,
still denoted by the same notation, is homogeneous as a pseudohermitian 3-manifold.

In the Riemannian case, a variational characterization of space forms was given in [10].
It is well known that homogeneous CR 3-manifolds have been classified by Cartan ([3];
see also [2]). In particular, when .M; �/D .S3; O�/, we have the following characterization
for Rossi spheres.

Corollary 1.2. On the standard contact 3-sphere .S3; O�/; it holds that .J; �/ is a real
analytic, pseudo-Einstein critical point of (1.2) if and only if J is isomorphic to a Rossi
sphere J.s/ for some unique s � 0, and � is a constant multiple of O� .

In Section 2, after a short review of Rossi spheres in Subsection 2.1 and basic variation
formulas in Subsection 2.2, we derive the Euler–Lagrange equation (2.15) for the critical
points of the energy functional E.J; �/: In Section 3, we show that from (2.15) and .J; �/
being pseudo-Einstein, it follows that .M; �; J; �/ (or .M; J; �/ with � omitted) is locally
sub-symmetric through Proposition 3.1 and Lemma 3.2. In Section 3, we first prove The-
orem 1.1. Then for .M; �/ D .S3; O�/; we conclude Corollary 1.2 by a result in [2]. We
remark that � W .z1; z2/! .iz1; z2/ is a pseudohermitian isomorphism between .J.s/; O�/
and .J.�s/, O�/, see [8]. In Section 4, for its independent interest, we compute the second
variation of the energy functional E.J; �/ at a critical point . OJ ; O�/.

Theorem 1.3. With the notation above, the formulas for the second variations ı2JE. OJ ; O�/,
ı�ıJE. OJ ; O�/ .D ıJ ı�E. OJ ; O�// and ı2

�
E. OJ ; O�/ are given in (4.5), (4.7) and (4.8), respect-

ively.

We remark that there is no characterization in general on sign of the second variation.
In fact, using for example individual Fourier components/modes for the variations of J
and � as in [1], it is possible to find deformations along which the second differential
is either positive or negative at the standard S3: See (A.8) and (A.12) for examples in
Appendix A.
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2. Rossi spheres, variations and energy functional

2.1. Rossi spheres

In this subsection, we give a short introduction to Rossi spheres. See Section 2.2 in [8] for
more details. The standard contact form O� on S3 WD ¹.z1; z2/ 2 C 2; jz1j2 C jz2j2 D 1º
reads as

(2.1) O� D i.N@ � @/.jz1j2 C jz2j2/ D i

2X
kD1

.zkdz
Nk
� z

Nkdzk/:

Note that O� is SU.2/-invariant, where SU.2/ acts on C2 in the canonical way. Dual to
�1 D z2dz1 � z1dz2, we have

Z1 D z
N2 @

@z1
� z
N1 @

@z2
�

Note that Z1 (respectively, Z N1/ is also SU.2/-invariant.
Consider the deformation of CR structures described by giving type .0; 1/ vectors as

follows:
Z N1.s/ D Z N1 C

iE N1 N1sp
1C jE11sj2

Z1;

where E N1 N1 is a deformation tensor associated to the CR structure J (cf. Subsection 2.2).
Note that we use the notation E N1 N1 instead of E1

N1
for convenience/simplicity; for a unitary

frame/coframe, they are equal. The derivative of Z N1.s/ in s reads as

(2.2) PZ1.s/ D
�iE11Z N1

.1C jE11j2 s2/3=2
�

We express Z1 and Z N1 in terms of Z1.s/ and Z N1.s/ as follows:

(2.3)
Z1 D iE11 s

p
1C jE11sj2Z N1.s/ C .1C jE11sj

2/Z1.s/;

Z N1 D .�i/E N1 N1 s
p
1C jE11sj2Z1.s/ C .1C jE11sj

2/ZN1.s/:

Substituting the second equality of (2.3) into (2.2) gives

(2.4) PZ1.s/ D
�jE11j

2 s
p
1C jE11sj2Z1.s/ � iE11.1C jE11sj

2/ZN1.s/

.1C jE11j2 s2/3=2
�

Differentiating J.s/Z1.s/ D iZ1.s/ with respect to s, we get

(2.5) PJ.s/Z1.s/ C J.s/ PZ1.s/ D i PZ1.s/:

Substituting (2.4) into (2.5) and writing PJ.s/ D 2E
.s/
11 �

1
.s/
˝Z N1.s/C conjugate, we obtain

E
.s/
11 D

E11p
1C jE11sj2

�
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Therefore we have
PE
.s/
11 D �E11 jE11j

2 s.1C jE11j
2 s2/�3=2:

For Rossi spheres, we take
E11 D i:

Observe that

(2.6)
Z1.s/ D Z1 C

s
p
1C s2

Z N1;

Z N1.s/ D Z N1 C
s

p
1C s2

Z1

are SU.2/-invariant since both Z1 and Z N1 are SU.2/-invariant. Dual to (2.6), we have

(2.7)
�1.s/ D .1C s

2/�1 � s
p
1C s2 �

N1;

�
N1
.s/ D .1C s

2/�
N1
� s

p
1C s2 �1:

Compute

(2.8) i�1.s/ ^ �
N1
.s/ D .1C s

2/i�1 ^ �
N1
D .1C s2/ d�;

where d� D i�1 ^ � N1, i.e., h1 N1 D 1: So from (2.8), it follows that

(2.9) h
.s/

1 N1
D

1

1C s2
and h1

N1
.s/ WD .h

.s/

1 N1
/�1 D 1C s2:

Suppose that the Webster curvatureR of .J; �/ is a positive constantR0 (see [13] and [14]
for basic pseudohermitian geometry). Then we should take !11 D �iR0� in the struc-
ture equation, so that d!11 D R0�

1 ^ �
N1. For � D O� (the standard contact form on S3,

see (2.1)), R0 D 1, while R D R0 for � D O�=R0: Hence

(2.10) !11 D �iR0� D �i
O� D �2.z

N1dz1 C z
N2dz2/;

where we have used that z N1dz1C z N2dz2C conjugateD 0 on S3:We can then determine,
from the structure equation for .J.s/; �/, that

(2.11)

!11.s/ D .�i/.1C 2s
2/R0�;

h1
N1
.s/A N1 N1.s/ D 2i s

p
1C s2R0;

R.s/ D .1C 2s
2/R0:

It follows that .J.s/; �/ is pseudo-Einstein (see (3.1)), since R.s/;1.s/ D 0 D A11.s/; N1.s/.
For a pseudohermitian structure .J; �/, we recall that the sublaplacian �b acting on a
function u reads as

�bu D h
1 N1.u;1 N1 C u; N11/ D u;1 N1 C u; N11 for a unitary frame (so h1 N1 D 1/:
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2.2. Basic formulas for variations in J and �

In this subsection, we provide basic formulas for variations of a pseudohermitian manifold
.M;J;�/. Write the variation of J as ıJ D 2E,E DE11�1˝Z N1C conjugate (for a unit-
ary coframe/frame �1=Z1), ı� D 2h� meaning that there are a family of CR structures J.t/
with J.0/ D J and a family of contact forms �.t/ with �.0/ D �; such that @tJ.t/jtD0 D 2E
and @t�.t/jtD0 D 2h�: Denote by ıJR (respectively, ı�R/ @tRJ.t/;� jtD0 (respectively,
@tRJ;�.t/ jtD0/: Similarly, we use the notation ıJA11 and ı�A11: Recall (see [6], [7] or [1])
that

(2.12)

ıJR D .iE11; N1 N1 � A N1 N1E11/C conjugate,

ıJA11 D iE11;0;

ı�R D �2hR � 44bh;

ı�A11 D �2hA11 C 2i h;11:

Define the energy functional E.J; �/ for a pseudohermitian manifold .M; J; �/ by

E.J; �/ WD

Z
M

.R2 � jAj2J;� /� ^ d�

(cf. (1.2)). We have the following first variation formulas for E.J; �/:

Proposition 2.1. Suppose .M; J; �/ is a closed (compact with no boundary) pseudoher-
mitian 3-manifold. Then we have, for a unitary frame Z1 (and coframe �1/,

ıJE.J; �/ D

Z
M

.2iR; N1 N1 � 2RA N1 N1 C iA N1 N1;0/E11 C conjugate;(2.13)

ı�E.J; �/ D

Z
M

¹�8�bR � 2i .A N1 N1;11 � A11; N1 N1/ºh� ^ d�;(2.14)

where ıJ D 2E, E D E11�1 ˝Z N1 C conjugate, and ı� D 2h�: So, the Euler–Lagrange
equation for .J; �/ reads as

(2.15) R;11 �
i

2
.A11;1 N1 � A11; N11/ D 0; �4�bR � i.A N1 N1;11 � A11; N1 N1/ D 0:

Proof. Making use of the first two formulas in (2.12) and the integration by parts, we
get (2.13), while using the last two formulas in (2.12) and integrating by parts gives (2.14).
Observe that �iRA11C 1

2
A11;0 equals � i

2
.A11;1 N1 �A11; N11/ by the commutation relation

iA11;0 + 2RA11 D A11;1 N1 � A11; N11 ([14]): Together with (2.13) and (2.14), we conclude
the proof of (2.15).

A direct computation shows that each Rossi sphere .S3; J.s/; �/ is a solution to (2.15)
by (2.11) and noting that A11;0 D TA11 � 2!11.T /A11: We notice that the coefficient of
jAj2

J;�
in the integrand of E.J; �/ is different from that in the integrand of the following

energy functional: Z
.R2 � 4 jAj2J;� /� ^ d�;

which is known to be the total Q0-curvature (for pseudo-Einstein (J; �//; whose critical
points are spherical, see [4].
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In order to compute the second variation, we need the formulas for ıJR; N1 N1 D ıJR;11,
ıJA N1 N1;0 D ıJA11;0, ı�R;11, ı�A11;0, ı� .�bR/ and ı�A N1 N1;11: We compute these quantit-
ies at a pseudo-Einstein critical point . OJ ; O�/ of E.J; �/; where OR D constant and OA11;1 D
OA11; N1 D 0 (see Proposition 3.1): First we obtain

(2.16) ıJR;11 D .ıJR/;11 at . OJ ; O�/
(2.12)
D ŒiE11; N1 N1 �

OA N1 N1E11 � iE N1 N1;11 �
OA11E N1 N1�;11:

Recall that A N1 N1;0 D TA11 � 2!
1
1.T /A11: So, using

ıJ!
1
1 D i.A11E N1 N1 C A N1 N1E11/� � i.E11; N1 �

1
CE N1 N1;1 �

N1/;

we have

(2.17) ıJA11;0 D .ıJA11/;0 � 2.ı!11/.T /A11 D iE11;00 � 2i.A11E N1 N1CA N1 N1E11/A11:

For variations in � , we have the following basic formulas:

(2.18)

ı� D 2h�;

ı�Z1 D �hZ1;

ı�T D �2hT C 2ih;1Z N1 � 2ih; N1Z1:

Besides ı�R and ı�A11 in (2.12), we also have

(2.19) ı� !
1
1 D 3h;1 �

1
� 3h; N1 �

N1
C i.4bh/�:

Writing R;11 D Z1.Z1R/ � !11.Z1/Z1R, we compute ı� .R;11/ as follows:

ı� .R;11/ D ı�Z1.Z1R/CZ1.ı�Z1/RCZ1Z1.ı�R/ � .ı� !
1
1/.Z1/Z1R

(2.20)

� !11.ı�Z1/Z1R � !
1
1.Z1/.ı�Z1/R � !

1
1.Z1/Z1.ı�R/

D �4hR;11 � 8h;1R;1 � 2h;11R � 4.4bh/;11

by (2.18), (2.19) and (2.12). Similarly writing A11;0 D TA11 � 2!11.T /A11; we compute

ı� .A11;0/ D .ı�T /A11CT .ı�A11/�2.ı�!
1
1/.T /A11�2!

1
1.ı�T /A11 � 2!

1
1.T /ı�A11

D �4hA11;0C2ih;1A11; N1�2ih; N1A11;1�2h;0A11�2i.4bh/A11�2ih;110(2.21)

by (2.18), (2.19) and (2.12) again. For the second variation in � , we also need to compute

ı� .�bR/ D �b.ı�R/ at the critical points where R D OR D constant(2.22)

D �2.�bh/ OR � 4�
2
bh:

and using (2.18), (2.12) and (2.19), we compute

ı�A N1 N1;1 D .ı�Z1/A N1 N1 C .ı�A N1 N1/;1 C 2.ı�!
1
1/.Z1/A N1 N1 C 2!

1
1.ı�Z1/A N1 N1(2.23)

D �hA N1 N1;1 � 2h;1A N1 N1 � 2hA N1 N1;1 � 2ih; N1 N11 C 6h;1A N1 N1

D �3hA N1 N1;1 C 4h;1A N1 N1 � 2i h; N1 N11:

We then compute, at . OJ ; O�/ where OA N1 N1;1 D 0;

(2.24) ı�A N1 N1;11 D .ı�A N1 N1;1/;1 D 4h;11
OA N1 N1 � 2ih; N1 N111:
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3. Proofs of Theorem 1.1 and Corollary 1.2

Proposition 3.1. Suppose .M; �/ is a closed (compact with no boundary) contact 3-man-
ifold. Suppose .J; �/ on .M; �/ is pseudo-Einstein and a solution to (2.15). Then R D
constant, and A11;1 D 0, A11; N1 D 0:

Proof. By the condition of .J; �/ being pseudo-Einstein, we have

(3.1) R;1 D iA11; N1:

Substituting (3.1) into the second equation of (2.15) gives 3�bR D 0 by noting that
�bR D R;1 N1 C R; N11 (h1 N1 D h1 N1 D 1). It follows that R D constant, since M is closed.
We now multiply the second equation of (2.15) by R and integrate overM with respect to
the volume form � ^ d�: After integrating by parts, we obtain

(3.2)
Z
M

.�4 jrbRj
2
C iR;11A N1 N1 � iR; N1 N1A11/� ^ d� D 0;

where jrbRj2 WD 2h1
N1R;1R; N1 D 2R;1R; N1. From the first equation of (2.15) and the com-

mutation relation
iA11:0 D A11;1 N1 � A11; N11 � 2RA11;

it follows that

(3.3) R;11 D iRA11 �
1

2
A11;0 D

1

2
i.A11;1 N1 � A11; N11/:

Substituting (3.3) into (3.2) gives

(3.4)
Z
M

.�4 jrbRj
2
C jA11;1j

2
� jA11; N1j

2/� ^ d� D 0

by integrating by parts. Now making use ofRD constant and (3.1) (soA11; N1 D 0) in (3.4),
we get

R
M
jA11;1j

2 � ^ d� D 0, and hence A11; N1 D 0: We have completed the proof.

Let � denote the torsion tensor of the pseudohermitian connection r; i.e.,

�.U; V / WD rUV � rVU � ŒU; V �

for any tangent vector fields U and V . Recall that the Reeb vector field T is the unique
vector field such that �.T / D 1 and d�.T; �/ D 0: It is not hard to see from the formulas
for Lie brackets in [13], p. 418, that for Y;W 2 �,

�.Y;W / D d�.Y;W /T;(3.5)
U.gJ;� .Y;W // D gJ;� .rUY;W /C gJ;� .Y;rUW /;(3.6)

where gJ;� is the Levi metric defined by gJ;� .Y;W / WD d�.Y; JW / and U is any tangent
vector.

Lemma 3.2. On a pseudohermitian 3-manifold .M; �; J; �/, suppose R D constant and
A11;1 D 0, A11; N1 D 0: Then rXR D 0 and rX� D 0 for any X 2 �:
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Proof. It is clear that R D constant implies rXR D X.R/ D 0: To prove that rX� D 0
for any X 2 �; it is enough to show

.rX�/.Y;W /D 0 for Y;W 2 �; .rX�/.Y;T /D .rX�/.T;Y /D 0 and .rX�/.T;T /D 0:

We compute

rX .�.Y;W /
(3.5)
D X.d�.Y;W //T C d�.Y;W /rXT

D X.d�.Y;W //T (rT D 0 by equation (4.5) on p. 418 of [13]).(3.7)

It follows from (3.7) and (3.5) that

.rX�/.Y;W / D rX .�.Y;W // � �.rXY;W / � �.Y;rXW /

D ¹X.d�.Y;W // � d�.rXY;W / � d�.Y;rXW /ºT D 0:

Here we have used thatr preserves � (see equation (4.5) in [13]), and applied (3.6) withW
replaced by �JW and the property that r ı J D J ı r (see Proposition 3.1(2) in [16],
for instance). We next compute

.rX�/.Y; T / D rX .�.Y; T // � �.rXY; T / � �.Y;rXT /(3.8)
D rX .�.Y; T // � �.rXY; T / (since rT D 0/:

Define the tensor
A WD A

N1
1 �

1
˝Z N1 C A

1
N1
�
N1
˝Z1;

where A N11 D h
1 N1A11 and A1

N1
is the complex conjugate of A N11: Observe that (extending the

defining domain of � to complex tangent vectors by complex linearity)

�.Z1; T / D rZ1T � rTZ1 � ŒZ1; T �(3.9)

D 0 � !11.T /Z1 � .A
N1
1Z N1 � !

1
1.T /Z1/ D �A

N1
1Z N1 D �A.Z1/

by [13], p. 418. In fact, we also have �.f Z1;T /D�A.f Z1/ for any complex function f .
So it holds that

(3.10) �.rXZ1; T / D �A.rXZ1/:

It follows from (3.9) and (3.10) that

(3.11) rX .�.Z1; T //� �.rXZ1; T /D �rX .A.Z1/CA.rXZ1/D �.rXA/.Z1/D 0

by the condition A11;1 D 0, A11; N1 D 0 due to Proposition 3.1: By taking complex conjug-
ation, (3.11) also holds for Z N1 replacing Z1: So the right-hand side of (3.8) vanishes. We
have shown .rX�/.Y; T / D 0: Noting that .rX�/.T; Y / D �.rX�/.Y; T / D 0: Clearly
.rX�/.T; T / D 0 since � is skew-symmetric. We have completed the proof.

We call a pseudohermitian automorphism � of .M;�;J;�/ a sub-symmetry at a point x
if �.x/ D x and ��j�x D �1 (��Tx D Tx hence the Reeb orbit through x is fixed by �/:
A local sub-symmetry at a point x means that � is only defined in a neighborhood of x:
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Proof of Theorem 1.1. Suppose that .J; �/ is a pseudo-Einstein critical point of (1.2). By
Proposition 2.1, .J; �/ satisfies the system (2.15), and hence from Proposition 3.1 it fol-
lows that

R D constant; A11;1 D 0 and A11; N1 D 0:

By Lemma 3.2, we obtain that the curvatureR and the torsion (tensor) � are parallel along
the (horizontal) direction of any contact vector. From the proof of Theorem 2.1 in [9]
(noting that the Levi metric gJ;� plays the role of the metric in the setting of [9]), for
each point x we can find a local sub-symmetry �x (which is a local pseudohermitian auto-
morphism) such that �x.x/ D x and �2x D Id. Now lift �x to a local sub-symmetry Q� Qx
on QM; the universal cover ofM; where Qx 2 QM is a lift of x, i.e., �. Qx/D x, � W QM !M is
the natural projection. Since QM is simply connected, we can extend �x uniquely to a global
pseudohermitian automorphism using the parabolic exponential map in p. 309 of [11] by
a similar argument to that in pp. 252–255 of [12] (where the real analyticity is used) for
extending an affine map. Observe that the fixed point set of Q� Qx is a Reeb orbit F Qx in QM ,
¹F Qxº Qx2 QM foliate QM , and ¹ Q� Qxº Qx2 QM permutes the Reeb orbits ¹F Qxº Qx2 QM ; since all the Q� Qx
are pseudohermitian automorphisms. The sub-symmetry Q� Qx has the following properties:

Q� Qx. Qx/ D Qx; . Q� Qx/�j� Qx D �Id; Q� QxjF Qx D Id; and Q�2
Qx D Id; so Q��1

Qx D
Q� Qx :

Let Aut :h:. QM;�;J;�/ denote the group of all pseudohermitian automorphisms. We claim
that

(3.12) Aut :h:. QM; �; J; �/ acts on . QM; �; J; �/ transitively.

Observe that QM is complete (meaning that it is complete as a metric space) by, for
instance, Theorem 7.1 (b) in [15]. Next, given p; q 2 QM; we can find a Legendrian (hori-
zontal) geodesic (with respect to the Levi-metric gJ;� /  connecting p and q; parametrized
by the arc length of gJ;� by Theorem 7.1 (a) in [15]. Let m 2  be the middle point of
the curve : It follows that Q�m maps p (respectively, q) to q (respectively, p). We have
shown (3.12). That is, . QM; �; J; �/ is homogeneous as a pseudohermitian manifold.

Remark 3.3. We notice that in [9], the authors make the assumption on homogeneity to
classify all possible sub-symmetric spaces through a Lie-theoretic argument.

Proof of Corollary 1.2. By (2.11) (together with (2.9)), we verify that a Rossi sphere
.J.s/; O�/ is pseudo-Einstein and satisfies (2.15) by noting that (� D O�/

A N1 N1.s/;0 D
OTA N1 N1.s/ � 2!

1
1.s/.
OT /A11.s/ D 0 � 2.�i/.1C 2s

2/R0A11.s/ D 2iR.s/A11.s/:

So, .J.s/; O�/ is a pseudo-Einstein critical point of (1.2) in view of Proposition 2.1. Con-
versely, by Theorem 1.1, .S3; O�; J; �/ is homogeneous. In particular, it is a homogeneous
CR 3-manifold. According to Cartan ([3], p. 69), the CR structure J must be left-invariant
on SU.2/ .D S3/. By Proposition 5.1 (c) in [2], we conclude that J is isomorphic to a
Rossi sphere J.s/ for a unique s � 0 (by comparing (2.7) with the coframe taken in the
proof of Proposition 5.1 in [2], we get the parameter relation

p
t D

p
1C s2 � s;
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so t � 1 corresponds to s � 0, where t is strictly decreasing as a function of s). Moreover,
that � is SU.2/-invariant implies that � is a constant multiple of O�:We have thus completed
the proof.

Remark 3.4. In [2], besides Rossi spheres, some other examples of homogeneous CR
3-manifolds are discussed. Let us write down R and A11 for two less known examples:
SL2.R/ and the Euclidean group E2 D SO2 Ì R2: For SL2.R/, there are a family of
homogeneous CR structures with parameter t (see Proposition 4.2 in [2]). With respect to
a suitable unitary coframe in the proof of Proposition 4.2 in [2], we obtain (t ¤ 0;�1)

R.t/ D �
1C 6t C t2

4 jt j.1C t /
and A11.t/ D i

.1 � t /2

4 jt j.1C t /
�

ForE2, there is a unique homogeneous CR structure up to Aut.E2/ (see Proposition 7.1 (a)
in [2]). With respect to a suitable unitary coframe in the proof of Proposition 7.1 (a) in [2],
we easily obtain that R D 1=2 and A11 D i=2.

4. Second variation: proof of Theorem 1.3

Starting from (2.13), we compute the second variation in J; at a critical point . OJ ; O�/where
.2iR; N1 N1 � 2RA N1 N1 C iA N1 N1;0/ D 0:

ı2JE.
OJ ; O�/

D

Z
M

.2iıJR; N1 N1 � 2.ıJR/A N1 N1 � 2R.ıJA N1 N1/C iıJA N1 N1;0/E11 C conjugate:(4.1)

Applying (2.16), (2.12) and (2.17) to the right-hand side of (4.1), we obtain

ı2JE.
OJ ; O�/(4.2)

D

Z
M

´ .�iE N1 N1;11 C iE11; N1 N1 �
OA N1 N1E11 �

OA11E N1 N1/; N1 N1

�2i.E11; N1 N1 �
OA N1 N1E11/

OA N1 N1 C 2i.E N1 N1;11 �
OA11E N1 N1/

OA N1 N1

C2i ORE N1 N1;0 CE N1 N1;00 � 2
OA N1 N1.
OA N1 N1E11 C

OA11E N1 N1/

µ
E11

C conjugate

(volume form O� ^ d O� omitted). The “slice condition" in [6], p. 235, for ıJ D 2E reads as
B OJE D 0; i.e.,

(4.3) iE11; N1 N1 �
OA11E N1 N1 D �iE N1 N1;11 �

OA N1 N1E11:

From the commutation relation E N1 N1;1 N1 �E N1 N1; N11 D iE N1 N1;0 � 2 ORE N1 N1 and an integration by
parts; it follows thatZ

M

2i ORE N1 N1;0E11
O� ^ d O� D

Z
M

¹4 OR2jE11j
2
� 2 ORjE N1 N1;1j

2
C 2 ORjE11;1j

2
º O� ^ d O�:(4.4)
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Making use of (4.3), (4.4) and integrating by parts again, we finally reduce (4.2) to

ı2JE.
OJ ; O�/ D

Z
M

´
�2 jE11;0j

2 � 4 ORjE N1 N1;1j
2 C 4 OR jE11;1j

2

C.8 OR2 � 4 j OA11j
2/ jE11j

2

µ
(4.5)

C
�
.2i C 2/E2

11; N1
� 2i E11;1E N1 N1;1 C .2i � 2/E

2
11
OA N1 N1
�
OA N1 N1

C conjugate of Œ � � � � OA N1 N1:

(volume form O� ^ d O� omitted). Now we are going to compute

ı�ıJE. OJ ; O�/

D

Z
M

.2iı�R; N1 N1 � 2.ı�R/
OA N1 N1 � 2

OR.ı� A N1 N1/C iı�A N1 N1;0/E11 C conjugate;(4.6)

Substituting (2.20), (2.12) and (2.21) into (4.6) gives

(4.7) ı�ıJE. OJ ; O�/ D

Z
M

´
.64bh � 2ih;0/ OA N1 N1
�8i.4bh/; N1 N1 C 2h; N1 N10

µ
E11 C conjugate.

To compute ı2
�
E. OJ ; O�/, we apply (2.22), (2.24) to the ı� of (2.14):

ı2�E.
OJ ; O�/ D

Z
M

¹�8ı� .�bR/ � 2iı� .A N1 N1;11 � A11; N1 N1/ºh

to conclude via integrating by parts that

(4.8) ı2�E.
OJ ; O�/ D

Z
M

´
�16 ORjrbhj

2 C 8i OA N1 N1.h;1/
2 � 8i OA11.h; N1/

2

C32.4bh/
2 � 8jh;11j

2

µ
O� ^ d O�:

For Rossi spheres .S3;J.s/; �/with � D O�=R0 (see Subsection 2.1), we compute via (2.11)
that

R2.s/ � jAj
2
J.s/;�

D .1C 2s2/2R20 � 4s
2.1C s2/R20 D R

2
0:

Together with O� ^ d O� D 8dvEucl
S3

(recall (2.1) for O� , and dvEucl
S3

denotes the Euclidean
volume form of S3/; we have

E.J.s/; �/ D

Z
S3
.R2.s/ � jAj

2
J.s/;�

/� ^ d� D

Z
S3
R20

O� ^ d O�

R20
D

Z
S3
8 � dvEucl

S3
D 16�2:

So, Rossi spheres are all critical points of E.J; �/ (as shown after the proof of Proposi-
tion 2.1) with the same energy.

A. Appendix

We give some examples for second variations in � and J of E at the standard pseudoher-
mitian 3-sphere (S3; J.0/; O�/: Substituting OR D 1 and OA11 D 0 into (4.8) gives

(A.1) ı2�E.J.0/;
O�/ D

Z
S3
.�16 jrbhj

2
C 32.4bh/

2
� 8 jh;11j

2/ O� ^ d O�:
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Using integration by parts and the commutation relation h; N11 N1 � h; N1 N11 D ih; N10 � h; N1 (see
formula (9) in [7]), we compute (volume form O� ^ d O� omitted)Z

S3
h;11h; N1 N1 D �

Z
S3
h;1.h; N11 N1 � ih; N10 C h; N1/(A.2)

D �

Z
S3
h;1.h; N11 N1 � ih;0 N1 C h; N1/ (since OA11 D 0/

D

Z
S3
h;1 N1h; N11 � i

Z
S3
h;1 N1h;0 �

Z
S3
jh;1j

2:

Since h;1 N1 � h; N11 D ih;0; we have

(A.3) h;1 N1 D
1

2
.4bhC ih;0/ and h; N11 D

1

2
.4bh � ih;0/ (since h is real).

Substituting (A.3) into (A.2), we can reduce (A.2) to

(A.4)
Z
S3
h;11h; N1 N1 D

1

4

Z
S3
.4bh/

2
C
3

4

Z
S3
.h;0/

2
�
i

2

Z
S3
.4bh/h;0 �

1

2

Z
S3
jrbhj

2:

Let Hp;q;1 denote the restriction to S3 of the space of the homogeneous complex har-
monic polynomials of bidegree .p; q/; where p is the holomorphic homogeneity and q
the antiholomorphic one. Then for f 2 Hp;q;1, one has

(A.5) �4bf D
1

2
.pq C

1

2
.p C q//f and Tf D i

.p � q/

2
f

(see Proposition 2.2 on p. 10 of [1]; note that O� is twice the contact form �0 in [1], p. 8,
so the sublaplacian there is twice the sublaplacian here while T there is exactly the Reeb
vector field here, i.e., T D OT ). By (A.4), one reduces (A.1) to

(A.6) ı2�E.J.0/; O�/D 30
Z
S3
.4bh/

2
� 6

Z
S3
.h;0/

2
C 4i

Z
S3
.4bh/h;0 � 12

Z
S3
jrbhj

2:

Taking hD f C Nf in (A.5) and writing �D 1
2
.pqC 1

2
.pC q//, �D .p � q/=2;we have

�4bh D �.f C Nf / and h;0 D T h D i�.f � Nf /: Substituting these formulas into (A.6)
and noting that

R
S3
jrbhj

2 D �
R
S3
.4bh/h; we reduce the right-hand side of (A.6) to

(A.7) 60
Z
S3
4bf4b Nf � 12�

2

Z
S3
f Nf C4i

Z
S3
4b.f C Nf /i�.f � Nf /� 24�

Z
S3
f Nf :

Here we have used
R
S3
f 2 D 0 and

R
S3
Nf 2 D 0: Using (A.5), we can further reduce (A.7)

and conclude from (A.6) that

(A.8) ı2�E.J.0/;
O�/ D

Z
S3

´
60
4
.pq C 1

2
.p C q//2 � 12

4
.p � q/2

�
24
2
.pq C 1

2
.p C q//

µ
jf j2 O� ^ d O�

for ı� D 2h� D 2.f C Nf / O� , f 2 Hp;q;1:
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We now turn to compute ı2JE.J.0/; O�/ for ıJ D 2E, E D E11�
1 ˝ Z N1Cconjugate

with E11 2 Hp;q;1: Starting from (4.5) with OR D 1 and OA11 D 0; we have (volume form
O� ^ d O� omitted)

(A.9) ı2JE.J.0/;
O�/ D

Z
S3
.�2 jE11;0j

2
� 4 jE N1 N1;1j

2
C 4 jE11;1j

2
C 8 jE11j

2/:

Via an integration by parts and the commutation relation E11; N11 � E11;1 N1 D �iE11;0 �
2E11 (noting that OR D 1/, we reduce the right-hand side of (A.9) to

(A.10)
Z
S3
.2E11;00 � 4iE11;0/E N1 N1 (note that 8jE11j2 is cancelled).

We compute

E11;0 D TE11 � 2!
1
1.T /E11 D TE11 � 2.�i/E11 (!11 D �i O� by (2.10))(A.11)

D i
�p � q

2

�
E11 C 2iE11 D i

�m
2
C 2

�
E11:

Here we have written m D p � q: Applying (A.11) to (A.10), we finally obtain

(A.12) ı2JE.J.0/;
O�/ D �

1

2
m.mC 4/

Z
S3
jE11j

2 O� ^ d O�

(recall that E11 2 Hp;q;1, m D p � q/:
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