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Approximation by polynomials
with only real critical points

David L. Bishop

Abstract. We strengthen the Weierstrass approximation theorem by proving that any
real-valued continuous function on an interval I �R can be uniformly approximated
by a real-valued polynomial whose only (possibly complex) critical points are con-
tained in I . The proof uses a perturbed version of the Chebyshev polynomials and an
application of the Brouwer fixed point theorem.

1. Introduction

The Weierstrass approximation theorem [21] states that for any real-valued, continuous
function f on a compact interval I � R, and for any " > 0, there is a real polynomial p
so that kf � pkI D supx2I jf .x/ � p.x/j < ". The statement does not say much about
the behavior of p off the interval I , but for some applications of Weierstrass’ theorem, it
would be advantageous to know the location of all the critical points of p; for example, in
polynomial dynamics, the behavior of the iterates of p depends crucially on the orbits of
all the complex critical points of p. In [2] it is shown that one can restrict all the critical
points (real and complex) to a thin rectangle I � Œ�"; "�. In this paper, we prove that we
can actually take " D 0. The following is our main result.

Theorem 1.1 (Critically constrained Weierstrass theorem). Suppose f W I ! R is a con-
tinuous function on a compact interval I � R. Then for any " > 0, there is a real poly-
nomial p so that kf � pkI < " and CP.p/ WD ¹z 2 C W p0.z/ D 0º � I , i.e., every real
or complex critical point of p is inside I . If f is A-Lipschitz, then p may be taken to be
CA-Lipschitz for some C <1 independent of f .

Using dilation and translation, it is enough to prove Theorem 1.1 for the particular
interval I D Œ�1; 1�, and this is the only case we will consider from this point on. Recall
that f is A-Lipschitz on I if jf .x/ � f .y/j � Ajx � yj for all x; y 2 I . For a Lipschitz
function f , the derivative f 0 exists and satisfies jf 0j � A almost everywhere, and f .x/D
f .a/ C

R x
a
f 0.t/dt (e.g., see Section 3.5 of [10]). By the usual Weierstrass theorem,

polynomials are dense in CR.I / (the space of continuous, real-valued functions on I ), and
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every polynomial is Lipschitz when restricted to a compact interval, so it suffices to prove
Theorem 1.1 when f is Lipschitz.

The assumption that f is real valued is necessary; a similar result does not hold for
complex valued functions. Eremenko and Gabrielov [9] proved that any complex valued
polynomial with only real critical points is essentially real-valued itself. More precisely,
they proved that any such polynomial p is of the form p.z/ D aq.z/C b, where q.z/ is
a real polynomial and a; b 2 C. (Their result characterizes rational functions with only
real critical points, but specializes to polynomials as above.) Polynomials with only real
critical values have played a role in various problems, e.g., density of hyperbolicity in
dynamics [14], rigidity of conjugate polynomials [7], Smale’s conjecture on solving poly-
nomial systems [12], and Sendov’s conjecture on the locations of the critical points of a
polynomial in terms of its roots [4].

We also note that Theorem 1.1 is non-linear in nature. For example, x3 and .x � 1/3

each have a single critical point, and these are both real. However, it is easy to check that
the sum x3C .x � 1/3 has two complex critical points. So the set of real polynomials with
all critical points in I D Œ0;1� is not a linear subspace ofCR.I /. Thus many usual methods,
such as duality or reducing to approximating a spanning set, do not apply. Moreover,
Theorem 1.1 need not be true for general compact subsets of R. See Section 13 for some
disconnected sets where it fails.

If pn ! f uniformly, we might hope that p0n ! f 0, at least when f is analytic, but
this is false, except in very special cases. To see why, we first recall that the Laguerre–
Pólya class is the collection of entire functions (holomorphic functions on C) that are
limits, uniformly on compact sets, of real polynomials with only real zeros. These have
been characterized as follows [17]: it is the collection of entire functions f so that (1) all
roots are real, (2) the nonzero roots satisfy

P
n jznj

�2 <1, and (3) we have a Hadamard
factorization

f .z/ D zm eaCbzCcz
2
Y
n

�
1 �

z

zn

�
ez=zn ;(1.1)

with m 2 ¹0; 1; 2; : : : º, a; b 2 R and c � 0. In particular, functions like exp.�z2/ and
sin.z/ are in the Laguerre–Pólya class, but exp.z2/ and sinh.z/ are not. This class arises
in many contexts, e.g., the Riemann hypothesis is equivalent to the claim that a certain
explicit formula defines a function in the Laguerre–Pólya class [6, 19].

A theorem of Korevaar and Loewner [13], extending earlier work of Laguerre and
Pólya, says that if ¹pnº are polynomials with only real zeros that converge uniformly
to f on an interval I � R, then f must be the restriction to I of a Laguerre–Pólya
entire function, and that pn converges to f on the whole complex plane (uniformly on
compact sets). Clunie and Kuijlaars later proved that this also holds if we only assume pn
converges in measure to f on a subset E � R of positive measure (see Corollary 1.3
in [5]). Recall that pn ! f in measure if, for every " > 0, j¹x W jf .x/ � pn.x/j > "ºj

tends to zero (in this paper, jEj will denote the Lebesgue measure of a measurable subset
of R.) For bounded intervals I � R, pointwise convergence almost everywhere implies
convergence in measure, so the same conclusion holds if pn! f pointwise on a set E of
positive measure. Thus there exist analytic functions f on I so that f 0 cannot be a limit
of polynomials with only real zeros, either uniformly, in measure, or pointwise on a set of
positive measure. However, our proof of Theorem 1.1 will also give the following result.
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Theorem 1.2. There is a C <1 so that every bounded, measurable function f on I is
the weak-� limit in L1 of a sequence of polynomials ¹pnº with only real zeros, and such
that supnkpnkI � Ckf k1. This fails for C D 1.

Here kgk1 denotes the L1 norm on I , and pn ! f weak-� in L1.I; dx/ ifZ
png dx !

Z
fg dx

for every Lebesgue integrable function g on I .
The polynomials constructed in our proof of Theorem 1.2 will diverge pointwise

almost everywhere, but this is not an artifact of the proof; it is forced in many cases. We
claim that if f in Theorem 1.2 is not in the Laguerre–Pólya class, then ¹pn.x/º diverges
almost everywhere on the set where f is non-zero. To prove this, suppose f is not in
the Laguerre–Pólya class and that ¹pnº is uniformly bounded, has only real zeros, and
converges weak-� to f . The Clunie–Kuijlaars theorem stated above implies that if ¹pnº
has pointwise limits on a set of positive measure, these limits must be zero almost every-
where. However, if a uniformly bounded sequence ¹pnº converges pointwise to 0 on a
set E, then the dominated convergence theorem (see, e.g., Theorem 2.24 of [10]) implies
that

R
E
pn ! 0. By weak-� convergence of pn to f , we then have

0 D lim
n

Z
E

pn D lim
n

Z
pn�E D

Z
f�E D

Z
E

f;

where we have taken g D �E in the definition of weak-� convergence. As usual, � is the
characteristic (or indicator) function of E (� D 1 on E and � D 0 off E). Since this also
holds for every measurable subset of E, we deduce f is zero almost everywhere on E
(otherwise either

R
E\¹f >0º

f or
R
E\¹f <0º

f would be non-zero). This proves the claim.
In order to prove Theorem 1.1, we want to write f as the uniform limit of polynomi-

als pn whose derivatives have the form

p0n.x/ D Cn

nY
kD1

.x � znk /;(1.2)

whereCn 2R and ¹zn
k
ºn
kD1
� Œ�1;1�. These points will be perturbations of the roots of Tn,

the degree n Chebyshev polynomial (of the first kind). We briefly recall the definition.
Let J.z/D 1

2
.zC 1=z/ be the Joukowsky map. Note that a point zD xC iy on the unit

circle is mapped to x 2 Œ�1; 1�, and J is a 1-1 holomorphic map of D� D ¹z W jzj > 1º to
U DC n Œ�1;1�. Thus it has a holomorphic inverse J�1 WU !D�. Then TnD J..J�1/n/
is a n-to-1 holomorphic map of U to U that is continuous across @U D Œ�1; 1�. By Mor-
era’s theorem (see, e.g., Theorem 4.19 of [15]), such a function is entire (holomorphic on
the whole plane). Since Tn is finite-to-1, Picard’s great theorem (see, e.g., Theorem 10.14
of [15]) implies it is a polynomial, and since Tn is n-to-1, the fundamental theorem of
algebra implies it must have degree n. Unwinding the definitions, Tn maps Œ�1; 1� into
itself, takes the extreme values ˙1 at the points ¹xn

k
º D ¹cos.� k

n
/ºn
kD0

(the vertical pro-
jections of the nth roots of unity), and it has its roots at ¹rkn º D ¹cos.� 2k�1

2n
/ºn
kD1

(the
vertical projections of the midpoints between the roots of unity). More background and
facts about the Chebyshev polynomials will be given in Section 2.
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The basic idea of the proof of Theorem 1.1 is to consider polynomials as in (1.2) where
zn
k
D rn

k
C yn

k
are small perturbations of the Chebyshev roots. Fix a large positive inte-

ger n and consider the Chebyshev polynomial Tn. For kD 1; : : : ;n� 1, let I n
k
D Œrn

k
; rn
kC1

�

denote the interval between the kth and .k C 1/st roots of Tn. We call these “nodal inter-
vals” and call the part of the graph of Tn above I n

k
a “node” of Tn. Every node of Tn is

either positive or negative. Suppose it is positive. If we move the roots at the endpoints
of I n

k
farther apart (but leave all the other roots of the Chebyshev polynomial unchanged),

then the node between them becomes higher, and the two adjacent negative nodes each
becomes smaller (less negative). Thus the integral of the new polynomial over the union
of these three intervals becomes more positive. See Figure 1. This figure, and many others
in this paper, was drawn using the MATLAB program Chebfun by L. N. Trefethen and his
collaborators. See [11].
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Figure 1. A 2-point perturbation of T33. The left picture shows all of Œ�1; 1� and the right shows an
enlargement of the interval where the perturbation occurs. The Chebyshev polynomial is solid and
the perturbation is dashed. The white dots are the two new root locations.

When we move each endpoint of I n
k

by t jI n
k
j, the integral of the polynomial over I n

k

changes by at least some fixed multiple of t jI n
k
j. A quantitative estimate like this is one

of the key results of this paper, although we shall give it for perturbations involving three
roots instead of only two. We prefer the (more complicated) 3-point perturbations, because
we can choose them so that the effect on Tn far from the perturbed roots decreases more
quickly (like d�3 instead of d�2, where d is the distance to the perturbed roots). A precise
estimate is formulated and proven in Section 6. See Figure 2 for an example of a 3-point
perturbation.

See Figure 3 for a degree 33 approximation to f .x/ D jxj. A degree 201 approxima-
tion is shown in Figure 4, which also shows a log-log plot showing the rate of approxima-
tion versus the degree of the polynomial. Our approximations were chosen by enlarging
negative nodes to the left of the origin and enlarging positive nodes to the right, but no
attempt was made to do this in an optimal way. Nevertheless, the rate of approximation
is approximately the reciprocal of the degree. This is a little surprising, since the best
sup-norm approximation of f .x/ D jxj by a degree n polynomial (with no restrictions on
the critical points) satisfies kf � pnk � .:280169/=n, e.g., see Chapter 25 of [20]. Thus
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Figure 2. A 3-point perturbation. The top figure shows T33 (solid) and the perturbation zTn (dashed)
on Œ�1; 1�. The bottom figure is an enlargement around the perturbed roots.

our approximations (which are just a first guess) are fairly close to the best approxima-
tion. Figure 5 gives another example of approximating a Lipschitz function by weakly
approximating its derivative.
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Figure 3. On top we have perturbed T33 (dashed) to obtain p0 (solid): four pairs in Œ0; 1� chosen
to make the function more positive, and four pairs in Œ�1; 0� chosen to make it more negative. The
bottom picture shows p D

R
p0 (solid), which approximates f .x/ D jxj (dashed). See Figure 4 for

a higher degree approximation.
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Figure 4. On the left is a degree 201 polynomial approximating jxj. The right picture is a log-log plot
of the sup-norm difference between f .x/D jxj and our approximation for degrees between 200 and
1000. The best linear fit is� .�:9912/ t C 1:8972, where t D log.deg.p//. The optimal polynomial
approximations (no restrictions) behave like� �t � 1:2724.
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Figure 5. On the left is a perturbed Chebyshev polynomial of degree 100, and on the right is its
integral. From the picture it seems clear that any Lipschitz function can be approximated; the goal
of the paper is to prove this is correct.

Briefly, the proof of Theorem 1.1 will proceed as follows. We convert the n � 1 nodal
intervals intoN D .n� 1/=4 larger intervals, ¹Gn

k
ºN
kD1

, by taking unions of groups of four
adjacent nodal intervals. We would like the origin to be the common endpoint of two such
intervals, and the whole arrangement to be symmetric with respect to the origin, and this
leads us to assume n� 1 is a multiple of eight. We then estimate how the Chebyshev poly-
nomial changes when we slightly perturb the three interior roots in a single interval Gn

k
.

We make precise the idea that the change is large inside Gn
k

, and small outside this inter-
val (and decays as we move away from Gn

k
). Most of the computations are done when Gn

k

is linearly rescaled to be approximately Œ�2; 2�, but these estimates are easily converted
to estimates on the original intervals. These estimates will show that there is a t > 0 so
that, for any vector y D .y1; : : : ; yN / with coordinates jykj � t , there is a perturbation
of the roots of Tn that lie in the interior of Gn

k
so that the integral of the perturbed poly-

nomial over Gn
k

equals yk � jGnk j. Of course, perturbations of roots in other intervals may
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destroy this equality, but using the Brouwer fixed point theorem, we will show that there is
a perturbation of all the roots that gives the desired equality over everyGn

k
simultaneously

(except for a bounded number of exceptions near˙1).
In order to prove Theorem 1.1, it suffices to consider functions f with a small Lip-

schitz constant, e.g., less than the value t chosen above. For each interval Gn
k

, we take
yk D�.f;G

n
k
/=jGn

k
j, where�.f; Œa; b�/D f .b/� f .a/. Then jykj � t for all k, since f

is t -Lipschitz. Using Brouwer’s theorem, we can therefore perturb the roots of Tn to obtain
a perturbed polynomial Tn.x; y/ so that

R
Gn
k
Tn.x; y/dx D ykjG

n
k
j for every k. Then any

anti-derivative F of the perturbed polynomial satisfies�.F;Gn
k
/D�.f;Gn

k
/ for every k,

so choosing an anti-derivative such that F.0/ D f .0/, implies that F equals f at every
endpoint of every Gn

k
(again, with a small number of exceptions near ˙1). Since both F

and f are Lipschitz with bounds independent of n, and since jGn
k
j ! 0 as n%1, this

implies F uniformly approximates f when n is large enough, proving Theorem 1.1.
Roughly speaking, the remainder of the paper divides into four parts. Part I: Sec-

tions 2–3 describe basic properties of Chebyshev polynomials and their nodal intervals.
Part II: Sections 4-7 define the perturbations Tn.x; y/ of the Chebyshev polynomials Tn
and give estimates for how the perturbed polynomials compare to Tn.x/. Part III: Sec-
tions 8-9 verify the conditions needed to apply Brouwer’s theorem and we prove The-
orem 1.1 in Section 10. Part IV gives some auxiliary results: Section 11 proves Theo-
rem 1.2, Section 12 shows that our polynomial approximants have derivatives that diverge
almost everywhere, and an example of how Theorem 1.1 can fail for some disconnected
sets is given in Section 13.

When A and B are both quantities that depend on a common parameter, then we use
the usual notation A D O.B/ to mean that the ratio B=A is bounded independently of the
parameter. The more precise notation A D OC .B/ will mean jAj � C jBj. For example,
x D 1CO2.1=n/ is simply a more concise way of writing 1� 2=n � x � 1C 2=n. The
notation AD �C .B/ means A � C jBj or, equivalently, B D OC .A/. We write A' B if
both A D O.B/ and B D O.A/.

2. Estimating the length of the nodal intervals

The Chebyshev polynomials defined in the introduction have a number of alternate defi-
nitions, see e.g. [20]. For jxj � 1, we can write

Tn.x/ D cos.n arccos.x// D
1

2

h�
x �
p

x2 � 1
�n
C
�
x C
p

x2 � 1
�ni

D

bn=2cX
kD0

�
n

2k

�
.x2 � 1/kxn�2k ;

or ¹Tnº can be defined by the three term recurrence

T0.x/ D 1; T1.x/ D x; TnC1.x/ D 2xTn.x/ � Tn�1.x/ for n � 1:

The latter makes it clear that

Tn.x/ D 2
n�1

Y
k

.x � rnk /;
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where ¹rn
k
º are the Chebyshev roots defined in the introduction. In particular, the coeffi-

cient of xn in Tn is 2n�1. Among polynomials of degree n with leading coefficient 2n�1,
Tn minimizes the supremum norm over Œ�1; 1�; this is the min-max property (a special
case is proven in Lemma 7.1). Also note that the sup of jTnj over Œ�1; 1� is 1. As men-
tioned in the introduction, Tn has n� 1 critical points, all with singular values�1 or 1, and
the endpoints are also extreme points with Tn.1/D 1, Tn.�1/D .�1/n. When we perturb
the roots of Tn, some of these extremal values must increase in absolute value, and the
construction in this paper is based on controlling where and how much this happens.

The Chebyshev polynomials are orthogonal with respect to d� D dx=
p
1 � x2, and

expansions in terms of Chebyshev polynomials are extremely useful in numerical analysis;
indeed, Chebyshev polynomials are the direct analog on Œ�1; 1� of Fourier expansions on
the circle, and many theorems about Fourier expansions transfer to Chebyshev expansions.
Chebyshev polynomials are also well behaved under multiplication and composition, i.e.,

Tn.x/Tm.x/ D
1

2
ŒTmCn.x/C Tjm�nj.x/� and Tn.Tm.x// D Tmn.x/:

With the additional condition deg.Tn/ D n, the latter characterizes (up to a linear change
of variable) Chebyshev polynomials and the power functions ¹xnº, see [18].

In this paper, we will not need most of the properties above, but we will need precise
estimates of the lengths of the nodal intervals ¹I n

k
º, and of the integral of Tn over these

nodal intervals. The length estimates are addressed in this section, and the area estimates
in the following section.

Let

J nk D
h
�
2k � 1

2n
; �

2k C 1

2n

i
; for k D 1; : : : ; n � 1:

Each of these intervals has length �=n. Let I n
k
D�cos.J n

k
/, kD 1; : : : ;n� 1, be the nodal

interval between the kth and .kC 1/st roots of Tn, i.e., I n
k
D Œrn

k
; rn
kC1

�. (We introduce the
minus sign so the I n

k
are labeled left to right in Œ�1; 1�.) Note that when n is even, there

are an odd number of nodal intervals and I n
n=2

contains the origin as its midpoint. When n
is odd, the intervals I n

.n�1/=2
and I n

.nC1/=2
share the origin as an endpoint. In both cases,

the intervals with k � n=2 cover Œ�1; 0�. In our application, we always take n odd, but the
estimates in the section apply to both cases.

Let jI j denote the length of an interval I . Our first goal is to establish some basic
facts about lengths of the nodal intervals and the distances between them. Note that, by
symmetry, jI n

k
j D jI n

n�k
j, so most of our estimates are only given for 1 � k � .n � 1/=2,

i.e., subintervals of Œ�1; 0�.

Lemma 2.1. jI n
k
j � jJ n

k
j D �=n.

Proof. Clearly I n
k

is the vertical projection of exp.iJ n
n�k

/, which has arclength �=n.

The following says the biggest intervals are adjacent to the origin, and that the lengths
monotonically decrease as we move out towards the endpoints.

Lemma 2.2. For x 2 Œrn1 ; r
n
n�1�, let Ix be the nodal interval containing x (if x is the

common endpoint of two nodal intervals, then take Ix to be the nodal interval containing x
and closer to 0/. Then jxj < jyj implies jIxj � jIy j.
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Proof. This is also obvious since the intervals in question are vertical projections of equal
length arcs on the unit circle, and the slope of the circle increases as we move toward
either˙1 from 0.

Lemma 2.3. For 1 � k � .n � 1/=2, 4k=n2 � jI n
k
j � k�2=n2 � .9:8696/ k=n2.

Proof. Note that I n
k

has left endpoint cos.� 2kC1
2n

/ and right endpoint cos.� 2k�1
2n

/. From
the difference rule for cosine,

cos˛ � cosˇ D �2 sin
�˛ C ˇ

2

�
sin
�˛ � ˇ

2

�
;(2.1)

we can deduce

cos
�
�
2k � 1

2n

�
� cos

�
�
2k C 1

2n

�
D 2 sin

�
�
2k

2n

�
� sin

� �
2n

�
:

Now use 2x=� � sin x � x on Œ0; �=2� to derive the estimate in the lemma.

Lemma 2.4. With notation as above, if 1 � k � k C j � n=2, then

1 �
jI n
kCj
j

jI n
k
j
� 1C

�

2

j

k
�

Proof. The left-hand inequality is just Lemma 2.2. Recall J n
k
D Œa; b�D Œ� 2k�1

2n
; � 2kC1

2n
�

and J n
kCj
D Œc; d � D Œ� 2kC2j�1

2n
; � 2kC2jC1

2n
�. Using (2.1), we get

jIkCj j

jIkj
D

cos c � cos d
cos a � cos b

D
sin
�
cCd
2

�
sin
�
c�d
2

�
sin
�
aCb
2

�
sin
�
a�b
2

� D sin
�
cCd
2

�
sin
�
aCb
2

� ;
since .d � c/=2 D .b � a/=2. Thus since k=n � 1=2, .sin x/0 D cos x � 1 and sin x �
2x=� on Œ0; �=2�, we have

jIkCj j

jIkj
�

sin.�.k C j /=n/
sin.�k=n/

D
sin.�k=n/C �j=n

sin.�k=n/

D 1C
�j=n

sin.�k=n/
� 1C

�j=n

.2=�/�k=n
D 1C

�

2

j

k
�

From this we can easily deduce that chains of M adjacent nodal intervals all have
approximately the same size, at least if n is large, and if we stay away from the endpoints.
More precisely, we have the following result.

Corollary 2.5. For any � > 0 and M 2 N, there is a K 2 N so that if K � k < k C j
< n=2, then 1 � jI n

kCj
j=jI n

k
j < 1C � whenever 0 � j < M .

If nodal intervals were all the same size, then the distance between I n
k

and I n
kCj

would
be exactly .j � 1/jI n

k
j D .j � 1/jI n

jCk
j. Because the nodal intervals vary in size, this is

not true, but we do have the following similar estimate.
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Lemma 2.6. Suppose 1 � k < k C j < n=2. Then

dist.I nk ; I
n
kCj / �

2.j � 1/.2k C j /

n2
�

4

�2
.j � 1/

�
1C

j

2k

�
� jI nk j:

Proof. Let c D � 2kC1
2n

be the right endpoint of J n
k

and d D � 2kC2j�1
2n

the left endpoint
of J n

kCj
. Then � cos.c/ and � cos.d/ are the right and left endpoints of I n

k
and I n

kCj

respectively, so
dist.I nk ; I

n
kCj / D cos c � cos d:

We can estimate this using the trigonometric identity

cos c � cos d D� 2 sin
�c C d

2

�
sin
�c � d

2

�
D 2 sin

�c C d
2

�
sin
�d � c

2

�
:

Recall that on Œ0;�=2� we have sinx � 2x=� . If 0 < c < d � �=2, then .cC d/=2� �=2
as well, so for j � 1 we get

cos c � cos d � 2 �
2

�

c C d

2
�
2

�

d � c

2
D

2

�2
.d2 � c2/

D
1

2

�2k C 2j � 1
n

�2
�

�2k C 1
n

�2
D
1

2

.2k C 2j � 1/2 � .2k C 1/2

n2

D
1

2

.2j � 2/.4k C 2j /

n2
D 2

.j � 1/.2k C j /

n2
�

By Lemma 2.3, jI n
k
j � �2k=n2, so

(2.2) dist.I nk ; I
n
kCj / � 2

.j � 1/.2k C j /

n2

jI n
k
j

�2k=n2
�
4.j � 1/.2k C j /

2�2k
jI nk j:

Corollary 2.7. Suppose 1 � k, k C j � n and j ¤ 0. Then

jI n
k
j

dist.I n
k
; I n
kCj

/
�

16

jj j � 1
�

Proof. Note that if I n
k

is farther from the origin than I n
jCk

is (or is equidistant), then all
jj j � 1 nodal intervals between them have length at least jI n

k
j, and therefore

dist.I nk ; I
n
jCk/ � .jj j � 1/jI

n
k j;

which is stronger than the inequality in the lemma.
Otherwise, I n

k
is strictly closer to the origin than I n

jCk
. First suppose they are on the

same side of the origin. By symmetry, we may assume they are both to the left of the
origin, so I n

kCj
is to the left of I n

k
, i.e., j < 0. In this case, (2.2) says

jI n
k
j

dist.I n
k
; I n
kCj

/
�

2�2k jI n
k
j

2.jj j � 1/.2k C jj j/ jI n
jCk
j
�
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Lemma 2.3 then gives

jI n
k
j

dist.I n
k
; I n
kCj

/
�
2�2k .1C �jj j=2k/

2.jj j � 1/.2k C jj j/
D

�2 .k C .�=2/jj j/

.jj j � 1/.2k C jj j/

�
�2 ..�=2/k C .�=2/jj j/

.jj j � 1/.k C jj j/
D

�3

2.jj j � 1/
<

16

jj j � 1
;

as claimed in the lemma.
Finally, we must consider the case when I n

k
is strictly closer to the origin than I n

jCk
,

but it is on the opposite side of the origin. Then I n
n�k

is between I n
k

and I n
kCj

, has the
same size as I n

k
, and every interval between I n

k
and I n

n�k
is at least this long. There

are n � 2k such intervals, including I n
n�k

but not I n
k

(the picture for n even and n odd is
slightly different, but gives the same number in both cases). By symmetry, we may assume
k � n=2 and j � 2n � k. Thus

dist.I nk ; I
n
kCj / � .n � 2k/jI

n
k j C dist.I nn�k ; I

n
j /:

Now the previous case applies to the distance between I n
n�k

and I n
kCj

, and since jI n
k
j D

jI n
n�k
j, we get

dist.I nk ; I
n
kCj / � .n � 2k/ jI

n
k j C

1

16
.j � .n � 2k/ � 1/ jI nn�kj

�
1

16
Œ.n � 2k/ jI nk j C .j � .n � 2k/ � 1/ jI

n
k j� D

1

16
.j � 1/ jI nk j:

Numerical experiments suggest the corollary holds with the estimate 2=.jj j � 1/,
although the particular value is not important for the proof of Theorem 1.1; any estimate
of the form O.1=.jj j � 1// would work.

3. The area of a Chebyshev node

In this section, we estimate the integral of a Chebyshev polynomial Tn over a nodal inter-
val I n

k
, and show that the result is approximately .2=�/jI n

k
j.

Lemma 3.1. Suppose J D Œa; d � � Œ0; �� has length t D d � a and J 0 D Œb; c� � J is
concentric with length s D c � b. Then

j cos.J 0/j
j cos.J /j

�
s

t
D
jJ 0j

jJ j
�

Proof. The intervals being concentric means that .aC d/=2D .bC c/=2. The difference
formula for cosine implies

j cos.J 0/j
j cos.J /j

D
cos b � cos c
cos a � cos d

D
sin
�
cCb
2

�
sin
�
b�c
2

�
sin
�
aCd
2

�
sin
�
a�d
2

� D sin
�
c�b
2

�
sin
�
d�a
2

� D sin.s=2/
sin.t=2/

;(3.1)
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so the claim is equivalent to whether for 0 � s � t � � we have

sin.s=2/
sin.t=2/

�
s

t
�

However, this is true because sin.x/=x is a decreasing function on Œ0;��, as can be checked
by differentiation.

Lemma 3.2. We have Z
In
k

jTnj �
2

�
jI nk j:

Proof. We will use the standard formula (see, e.g., Proposition 6.24 of [10])Z
I

f .x/ dx D

Z 1
0

j¹x 2 I W f .x/ > tºj dt;(3.2)

that is valid for continuous, non-negative functions.
Recall that for k D 1; : : : ; n � 1, we set J n

k
D Œ� 2k�1

2n
; � 2kC1

2n
�, and we defined the

nodal intervals I n
k
D cos.J n

k
/. By the definition of the Chebyshev polynomials, if x D

cos.y/, then Tn.x/ D cos.ny/. Thus the interval ¹x 2 I n
k
W Tn.x/ > tº is the image under

cosine of the interval J 0 D ¹y 2 J n
k
W cos.ny/ > tº. Please also note that it is without loss

of generality to assume that Tn is positive on I n
k

.
We now apply Lemma 3.1 with J D J n

k
, cos.J /D I n

k
, J 0 D ¹y 2 J n

k
W j cos.ny/j > tº

and cos.J 0/D ¹x 2 I n
k
W jTn.x/j> tº. The function jcos.ny/j takes its maximum on J n

k
at

the midpoint of J n
k

, and is symmetric with respect to this midpoint. Thus J 0 is concentric
with J . Since jJ n

k
j D �=n, by Lemma 3.1 we have

j¹x 2 I n
k
W Tn.x/ > tºj

jI n
k
j

�
j¹y 2 J n

k
W cos.ny/ > tºj
jJ n
k
j

D
n

�
j¹y 2 J W cos.ny/ > tºj:

Using (3.2) twice gives

1

jI n
k
j

Z
In
k

Tn.x/ dx D
1

jI n
k
j

Z 1

0

j¹Tn.x/ > tºj dt �
n

�

Z 1

0

j¹cos.ny/ > tºj dt

D
n

�

Z
J n
k

cos.ny/ dy D
n

�

2

�
� jJ nk j D

n

�

2

�
�
�

n
D
2

�
�

A result of Erdős and Grünwald [8]1 gives a nearby upper bound.

Proposition 3.3. If p is a polynomial with only real zeros and a < b are roots of p with
p > 0 on .a; b/, then

R
I
p dx � 2

3
jI jmaxI p.

Combining this with the previous lemma gives

:6366 �
2

�
�

R
Ikn
jTn.x/jdx

jI n
k
j

�
2

3
� :6666:

1This 1939 paper was one of the first listed in Mathematical Reviews: it has MR-number 7.
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In our situation, we can improve this further. A direct calculation shows the integral
actually converges to the lower bound as n increases (i.e., Chebyshev nodes “look like”
nodes of sine).

Lemma 3.4. With notation as above,

2

�
�

R
In
k
jTnj

jI n
k
j
�
2

�
C

�

6n2
�

Proof. Fix 0< r < 1, and as above set J D J n
k

and J 0D¹y 2 J n
k
W cos.ny/> rº, 0< r < 1.

Then cos.J / D I n
k

and cos.J 0/ D ¹x 2 I n
k
W jTn.x/j > rº. Set s D jJ 0j and t D jJ j and

note that 0 < s < t < �=n. Using (3.1) we have

j¹x 2 I n
k
W jTn.x/j > rºj

jI n
k
j

D
j cos.J 0/j
j cos.J /j

D
jJ 0j

jJ j
�
jJ j

jJ 0j
�
j cos.J 0/j
j cos.J /j

D
j¹y 2 J n

k
W j cos.ny/j > rºj
jJ n
k
j

�
t

s
�

sin.s=2/
sin.t=2/

�
j¹y 2 J n

k
W j cos.ny/j > rºj
jJ n
k
j

� sup
0<s<t<�=n

t sin.s=2/
s sin.t=2/

�

We have already seen that

1

jJ n
k
j

Z 1

0

j¹y 2 J nk W j cos.ny/j > rºj dr D
1

jJ n
k
j

Z
J n
k

cos.ny/dy D
2

�
�

Using this, (3.2), and x � x3=6 � sin x � x on Œ0; �=2�, we can deduce thatR
In
k
jTnj

jI n
k
j
�
2

�
� sup
0<s<t<�=2n

t sin s
s sin t

�
2

�
� sup
0<s<t<�=2n

ts

s.t � t3=6/

�
2

�
� sup
0<s<t<�=2n

1

1 � t2=6
�

This is maximized at t D �=2n. Thus the last line above is less than

2

�
�

1

1 � .�=2n/2=6
D
2

�
�

1

1 � �2=24n2
�
2

�
�

�
1C

�2

12n2

�
D
2

�
C

�

6n2
;

where the inequality holds because 1=.1 � x/ � 1 C 2x for 0 � x � 1=2, and since
�2=.24n2/ < 1=2 for n � 1.

Because Tn has opposite signs on adjacent nodal intervals, the integrals over adja-
cent intervals mostly cancel, especially when the intervals are close in length. Lemma 3.4
immediately implies the following estimate capturing this.

Corollary 3.5. If I and J are adjacent nodal intervals with jJ j � jI j � .1C �/jJ j, thenˇ̌̌ 1

jI j C jJ j

Z
I[J

Tn.x/ dx
ˇ̌̌
�
2

�
�
jI j � jJ j

jI j C jJ j
C

�

6n2
�
�

�
C

�

6n2
<
�

3
;

the last inequality holding for all n � 6=
p
�.
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The argument proving Lemma 3.4 applies if jTnj is replaced by h.jTnj/ for some
increasing, continuous function h on Œ0; 1�. For example, if h.x/ D x2, we deduce that

1

2
�
1

�

Z �

0

sin2.t/ dt �
Z
In
k

jTnj
2.t/ dt �

1

2

�
1C

�2

12n2

�
D
1

2
C

�2

24n2
�(3.3)

This estimate is utilized in [1].

4. Perturbing the roots

In this section, we introduce notation used in the rest of the paper, by defining the subin-
tervals ¹Gn

k
º � Œ�1; 1� formed by unions of adjacent nodal intervals, and the polynomials

Tn.x; y/ created by moving the roots of Tn.x/ within these intervals.
For convenience, we will assume that n is of the form n D 8mC 1 for some positive

integer m. We do this because we are going to group the nodal intervals into groups of
four to form intervals Gn

k
, and we want the origin to be the common endpoint of two of

these intervals. Thus the number of nodal intervals (which is n� 1), must be a multiple of
eight, leading to the condition n D 8mC 1.

Fix such an n and let Tn.x/ be the nth Chebyshev polynomial. Let N D .n � 1/=4.
Define Gnm as the union of the four nodal intervals

Gnk D I
n
4k�3 [ I

n
4k�2 [ I

n
4k�1 [ I

n
4k D Œr

n
4k�3; r

n
4kC1�; k D 1; : : : ; N:

Each Gn
k

has roots of Tn as endpoints, and it contains three other roots, rn
4k�2

, rn
4k�1

,
and rn

4k
, in its interior. We will refer to these as the “interior roots” of Gn

k
, and label

them as “left”, “center” and “right” respectively. Since n is odd, Tn is positive on the
intervals I n

k
with k odd and is negative when k is even. Thus on each Gn

k
the nodes are

positive, negative, positive and negative moving left to right.
For each Gn

k
, we will perturb the three interior roots and leave the endpoint roots of

every Gn
k

fixed. We describe the idea roughly here and more precisely in Section 6. Given
a value y 2 Œ0; 1=2�, moving the roots by a factor of y will mean that the rightmost of the
three interior roots is moved by distance y � jI n

4k�1
j to the right; if y < 0, then this root

is moved distance jyj � jI n
4k�1
j to the left. We can describe both cases at once by saying

the root is moved by the signed distance yjI n
4k�1
j. The middle and left interior roots are

moved by signed distances .�y � ı/jI n
4k�1
j and ıjI n

4k�1
j respectively, where ı will be

defined precisely in Section 6. Note that this causes the center of mass of the three roots to
remained unchanged. In all the cases of interest, ı has the same sign as y, ı is comparable
to jyj, and ı depends only on y and the ratio aD jI n

4k�2
j=jI n

4k�1
j, which will be close to 1.

More concisely, ı D ı.y;a/' y. The exact value of ı is chosen so that the perturbation of
the three roots simultaneously has the effect of multiplying the polynomial by a rational
function R so that R.x/ D 1CO.jxj�3/ as we move away from the perturbations. This
decay will be verified in Section 6 and used in Sections 8 and 9 to show that the effect of
distant perturbations is quite small compared to local ones.

In order to specify small perturbations of the Chebyshev roots in many different inter-
vals at once, we introduce some notation. Let QN

t D Œ�t; t �n and let k.x1; : : : ; xn/k D
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max1�k�n jxkj denote the supremum norm on RN . For a vector y D .y1; : : : ; yN / 2QN
t ,

let zym D .0; : : : ; ym; : : : ; 0/ 2QN
t be the vector that equals ym in themth coordinate and

is zero in the other coordinates (i.e., the projection of y onto the mth coordinate axis).
For y 2 QN

t and x 2 Œ�1; 1�, define Tn.x; y/ to be the polynomial obtained from Tn.x/

by perturbing the zeros of Tn in Gn
k

by a factor of yk . When y is the all zeros vector,
we make no perturbations, so Tn.x; 0/ D Tn.x/. We can give a formula for the perturbed
polynomial, although it is a bit awkward:

Tn.x; y/ D 2
n�1

nY
kD1

.x � znk /;

where

znk D

8̂̂̂<̂
ˆ̂:
rn
k
; if k D 1 mod 4 .endpoints/;

rn
k
C ykjI

n
k
j; if k D 0 mod 4 .right interior/;

rn
k
C ı.yk ; jI

n
k
j=jI n

kC1
j/jI n

k
j; if k D 2 mod 4 .left interior/;

rn
k
� .yk C ı.yk ; jI

n
k
j=jI n

kC1
j//jI n

k
j; if k D 3 mod 4 .center interior/:

The perturbation is easier to describe in words than in this formula: each endpoint of
every Gn

k
is left fixed (k D 1 mod 4); the rightmost interior root (k D 0 mod 4) is moved

by yk times the length of the third component sub-interval I D I n
4k�1

; the leftmost root
(k D 2 mod 4) is moved in the same direction by an amount ıjI j, where ı depends on yk
and the length ratio of the center two intervals; the center root (k D 3mod 4) moves in the
opposite direction, and so that the center of mass of the three roots remains unchanged.

Define An
k
.y/ as the average of Tn.x; y/ over Gn

k
, i.e.,

Ank.y/ D
1

jGn
k
j

Z
Gn
k

Tn.x; y/ dx;(4.1)

for k D 1; : : : ;N D .n� 1/=4. The proofs of the desired estimates for An
k

will require that
the four nodal intervals making up Gn

k
to have nearly the same length, to within a fixed

factor 1C �. By Corollary 2.5, we know this holds if we omit a finite number,K, of nodal
intervals near each of �1 and 1. Thus we will study An

k
only in the rangeK < k �N �K

(depending on �, but not on n) of nodal intervals near each of �1 and 1. The number K
depends on �, but not on n.

Recall y D .y1; : : : ; yN / and zyk D yk in the kth coordinate and is zero elsewhere. We
define maps f and g fromQN

t into RN whose coordinate functions forK < k � N �K

are given by

fk.y/ D A
n
k.zyk/(4.2)

and

gk.y/ D A
n
k.y/:(4.3)

Note that each fk considers the integral of different polynomials on different intervalsGn
k

(the polynomial using perturbations only in Gn
k

), whereas gk is defined using the same
polynomial on every interval Gn

k
.
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In the remaining dimensions (k �K and k > N �K), we simply let fk and gk be the
identity maps. These 2K dimensions play no role in the proof, and we might just define f
and g as maps from QN�2K

t into RN�2K . However, this complicates the notation, and
the indices of the coordinates of f and g would no longer match the indices of the inter-
vals Gn

k
, causing further confusion and inconvenience. Little is lost if the reader simply

thinks of (4.2) and (4.3) as holding for all 1 � k � N , but only verifies the arguments in
the following sections when k is not too small or too large.

Each coordinate function fk of f is real valued and only depends on yk , the kth
coordinate of y. Thus we can think of these maps as sending intervals to intervals. We will
prove that each coordinate function fk is monotone in yk and that it maps It D Œ�t; t � to
a strictly larger interval; see Corollary 8.2. It follows that f is a homeomorphism of QN

t

to some cube Q0 � QN
t . In particular, Qn

t=2
� f .Qn

t /. We want to show the same is true
for g, i.e., QN

t=2
� g.QN

t /. This will imply that given a Lipschitz function F , we can
find a perturbed Chebyshev polynomial with an anti-derivative Pn that agrees with F at
the endpoints of every ¹Gn

k
º. Since both F and Pn are Lipschitz, and the lengths of Gn

k

tend to zero uniformly with n, this will imply that Pn converges uniformly to F . See
Theorem 10.2.

The following result is a precise formulation of the idea that the integral of the per-
turbed polynomial Tn.x; y/ over the interval Gn

k
is dominated by the perturbation of the

roots inside Gn
k

, and that the perturbations exterior to Gn
k

have a strictly smaller effect.

Theorem 4.1. There exists t > 0 such that the following holds. If n and K are large
enough, and the maps f and g are defined as above for y 2 QN

t , then QN
t � fk.Q

N
t /

and kfk � gkkQNt � t=2 for 1 � k � N .

This will be proven in Sections 6 to 9. If N were equal to 1, then Theorem 4.1 and
the intermediate value theorem would immediately imply that g.Q1

t / covers Q1
t=2

. In
Section 10, we will use Brouwer’s theorem to draw the same conclusion in the higher
dimensional case.

5. The distortion of 2-point perturbations

Before discussing 3-point perturbations, we briefly discuss moving just two roots. It seems
worthwhile to do this, since the 3-point perturbation can be thought of as the composition
of two 2-point perturbations, and the discussion of the 2-point perturbation explains the
main idea in a simpler setting.

If a polynomial has zeros at ˙1 and we move these by " to the left and right respec-
tively, this is the same as multiplying the polynomial by (see Figure 6)

R.x/ D
.x � 1 � "/.x C 1C "/

.x � 1/.x C 1/
D
x2 � .1C "/2

x2 � 1
D 1 �

2"C "2

x2 � 1
�(5.1)

Then R.x/ � 1C 2"C "2 on Œ�1; 1�, and 0 < R.x/ < 1 on ¹x W jxj > 1C "º.
If we have a polynomial p that has roots at˙1, and we move these roots to˙.1C "/,

then the calculation above says that the new polynomial zp is larger than p (in absolute
value) in Œ�1; 1� and is smaller (in absolute value) outside Œ�1 � "; 1 C "�. We call the
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Figure 6. A plot of r.t/ D .a C 1C "/.x � 1 � "/=.x2 � 1/. If P has roots at ˙1, and we move
them by˙", the new polynomial is zp D R � p.

ratio R.x/ the 2-point distortion function, since it describes how a polynomial is altered
by moving two of its roots.

We want to generalize this to a polynomial p with roots at ¹a;bº, that we move slightly
to ¹a � .b � a/"=2; b C .b � a/"=2º (each root gets moved by ", relative to the length of
the interval). We say the roots have been “perturbed by a factor of "”. Moving the roots
apart in this way multiplies p by at least 1C 2"C "2 in the interval I , and decreases it
outside I in absolute value by a factor

1 �
2"C "2

4.dist.x; c/=jI j/2 � 1
;(5.2)

where c D .b C a/=2 is the center of the interval. An example of perturbing two roots of
a Chebyshev polynomial was illustrated in Figure 1.

6. The distortion of 3-point perturbations

In this section, we describe the distortion caused by moving three adjacent roots of a
Chebyshev polynomial. The two nodal intervals with these endpoints need not have equal
lengths, but we may assume they have length ratio close to 1, and we will model the
situation using three points ¹�a; 0; 1º, where a D 1C ˛, with ˛ small, say j˛j < 1=10.
After rescaling, this will cover all the cases that are needed later.

Suppose we have a polynomial p with roots at ¹�a; 0; 1º, among possibly many other
roots. We create a new polynomial zp by moving these three roots to �a C ı, �" � ı
and 1C ", respectively. Note that this keeps the center of mass of the roots unchanged at
.1 � a/=3. See Figure 7.

We can think of this 3-point perturbation as the composition of two 2-point perturba-
tions: first moving the pair ¹0; 1º to ¹�"; 1C "º, and then moving the pair ¹�a;�"º to
¹�a C ı;�" � ıº. Since each move changes p by a factor of 1C O.x�2/ far from the
origin, the combined motion also has at least this decay rate. However, by carefully choos-
ing ı (depending on a and "), we can arrange for cancelation that improves the decay rate
to O.jxj�3/. The remainder of this section explains how to do this.
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Figure 7. The original Chebyshev polynomial is solid, the 2-point perturbation is dotted and the
3-point perturbation is dashed. Each perturbation is strictly larger than the unperturbed polynomial
over the nodal intervals adjacent to the perturbed roots, but this need not hold further away: the
2-point perturbation is slightly smaller than Tn in the leftmost nodal interval.

-3 -2 -a  0 1 2 3
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Figure 8. The rational function R corresponding to the 3-point perturbation ¹�a; 0; 1º ! ¹�a C
ı;�ı � "; 1 C "º. Here we have taken a D 1:1 and ı D " D :09 > 0. Over Œ0; 1�, R is bounded
strictly above 1 by an amount comparable to the size of the perturbation, and on the other three
nodal intervals, the perturbed polynomial is larger than the original.

Note that zp D p �R where

R.x/ D
P.x/

Q.x/
WD

.x C a � ı/.x C ı C "/.x � 1 � "/

.x C a/x .x � 1/
�

We call R the 3-point distortion function associated with the perturbation. See Figure 8.
We can write

P.x/ D x3 C Ax2 C Bx C C;

where

A D .a � ı/C .ı C "/C .�1 � "/ D a � 1;

B D .a � ı/.ı C "/C .a � ı/.�1 � "/C .ı C "/.�1 � "/

D .aı C a" � ı2 � ı"/C .�a � a"C ı C ı"/C .�ı � ı" � " � "2/

D �a � "C aı � ı" � ı2 � "2;

C D .a � ı/.ı C "/.�1 � "/ D .aı C a" � ı2 � ı"/.�1 � "/

D �aı � a"C ı2 C .1 � a/ı" � a"2 C ı2"C ı"2:
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Then

R.x/ D
P.x/

Q.x/
D 1C

P.x/ �Q.x/

Q.x/

D 1C
.x3 C Ax2 C Bx C C/ � .x3 C .a � 1/x2 � ax/

.x C a/x .x � 1/

D 1C
.A � aC 1/x2 C .B C a/x C C/

.x C a/x .x � 1/
D 1C

bx C C

.x C a/x .x � 1/
;

where
b D B C a D aı � " � ı" � ı2 � "2:

We want to choose ı so that b D 0. If ı D �", then the equation b D 0 becomes

0 D a�" � " � �"2 � �2"2 � "2 H) 0 D a� � 1 � ".�2 C �C 1/

H) " D
a� � 1

�2 C �C 1
D ra.�/:

The rational function ra on the right has a zero at 1=a where it has slope � 1=3. More
precisely, if a D 1C ˛, then using long division of polynomials we get

r 0a

�1
a

�
D

a3

1C aC a2
D
1

3
�
1C 3˛ C 3˛2 C ˛3

1C ˛ C ˛2=3
D
1

3

h
1C 2˛ C

2

3
˛2 CO.˛3/

i
:

So if " is small and a � 1 (both will hold in our application), then the equation ra.�/ D "
will have a solution of the form

� D .1=a/C 3"=aCO."2 C "˛2/:

Hence ı D "=aCO."2/. See Figure 9. The calculations up to this point prove the follow-
ing result, giving the desired cubic decay of the distortion function R.

Lemma 6.1. If ja� 1j< 1=5 and 0� "� 1=10, then we can make a 3-point perturbation
of the form ¹�a; 0; 1º ! ¹�a C ı; �ı � "; 1 C "º so that ı D "=a C O."2/, and the
distortion equals

R.x/ D 1C
C

Q.x/
D 1C

C

.x C a/x .x � 1/
;(6.1)

where

C D �aı � a"C ı2 C .1 � a/ı" � a"2 C ı2"C ı"2 D �.1C a/"CO."2/:(6.2)

The following lemma implies the perturbed polynomial moves monotonically as a
function of the perturbation parameter ". See Figures 10 and 12. This will later imply
that the function f defined in (4.2) is a homeomorphism, which will be needed in our
application of Brouwer’s theorem (see Lemma 10.1).

Lemma 6.2. Suppose that zp1 and zp2 are perturbations of p.x/ D .x C a/x .x � 1/ as
described above, by factors of "1 < "2 respectively. Then zp1 > zp2 for all x.
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Figure 9. A plot of r.t/ D .at � 1/=.1C t C t2/ for a D ¹:8; :85; : : : 1:2º. The curve for a D 1 is
thickened. The plots show that r.t/ D " has a solution for all " 2 Œ0; :1� and all a 2 Œ:8; 1:2�.

Proof. Note that

zp1 � zp2 D R1p �R2p D
�
1C

C1

Q.x/

�
Q.X/ �

�
1C

C2

Q.x/

�
Q.X/ D C1 � C2:

Thus zp1 > zp2 if and only if C1 > C2. Thus we either have zp1 > zp2 everywhere, or
zp1 � zp2 everywhere. Since "1 < "2, the rightmost perturbed root of zp1 is to the left of the
corresponding root y of zp2, and hence zp1.y/ > zp2.y/D 0. Thus zp1 > zp2 everywhere.

Note that in (6.2), if " is small and a is close to 1 (which is the case in our applica-
tions), then we have C � �2". In particular, for " sufficiently small, R.x/ � 1 has the
opposite sign as Q.x/ D .x C a/x .x � 1/. Therefore we get the following inequalities.
See Figure 8.

Corollary 6.3. For j"j small enough,

R.x/ � 1; if " > 0 and x 2 .�1;�a� [ Œ0; 1�;

R.x/ � 1; if " < 0 and x 2 .�a; 0� [ Œ1;1/;

R.x/ � 1; if " < 0 and x 2 .�1;�a� [ Œ0; 1�;

R.x/ � 1; if " > 0 and x 2 .�a; 0� [ Œ1;1/:

We shall give separate estimates for R.x/ on different sets of intervals based on their
distance to the origin: we call these cases “near” (Œ�a; 1�), “intermediate” (Œ�2;�a� and
Œ1; 2�) and “far” (¹x W jxj � 2º). Since 1C a � 2 if a � 1 and j.x C a/x .x � 1/j � 6 at
x D ˙2, we can immediately deduce the following for the intermediate intervals.
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Figure 10. A 3-point perturbation for both positive and negative values of ". The solid graph is the
unperturbed Chebyshev polynomial over one group of four nodal intervals. The dashed line is the
" > 0 perturbation and the dotted is the " < 0 perturbation. This illustrates the monotonic movement
proven in Lemma 6.2. A wider range of perturbations is shown in Figure 12.

Corollary 6.4. For j"j small enough and a D 1C ˛ close to 1, we have

R.x/ � 1C
h1
3
CO.˛/CO."/

i
" > 1; if " > 0 and x 2 Œ�2;�a�;

R.x/ � 1 �
h1
3
CO.˛/CO."/

i
" < 1; if " > 0 and x 2 Œ1; 2�;

R.x/ � 1C
h1
3
CO.˛/CO."/

i
" < 1; if " < 0 and x 2 Œ�2;�a�;

R.x/ � 1 �
h1
3
CO.˛/CO."/

i
" > 1; if " < 0 and x 2 Œ1; 2�:

Next we estimate the distortion R.x/ on the “far” intervals.

Corollary 6.5. Suppose a D 1C ˛ with j˛j < 1=5. Then for jxj � 2,

R.x/ D 1 �
Œ2CO.˛/CO."/�"

.x C 1/x .x � 1/
�

Proof. By Lemma 6.1,

R.x/ D 1C
�.1C a/"CO."2/

.x C a/x .x � 1/
D 1 �

.1C a/"CO."2/

.x C 1/x .x � 1/
�

�x C aC 1 � a
x C a

�
D 1 �

.1C a/"CO."2/

.x C 1/x .x � 1/
�

�
1C

1 � a

x C a

�
:

The maximum absolute value of 1C .1� a/=.x C a/ on ¹x W jxj � 2º is attained at either
x D 2 (if a > 1) or x D �2 (if a < 1), where the values are, respectively,

1C
1 � a

2C a
D

3

2C a
D 1 �

˛

3
CO.˛2/;

1C
1 � a

�2C a
D
�1

2 � a
D �1 � ˛ CO.˛2/:
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In either case, we deduce that the maximum absolute value is 1CO.˛/. Thus

R.x/ D 1 �
.2C ˛/"Œ1CO.˛/CO."2/�

.x C 1/x .x � 1/
D 1 �

.2CO.˛//"CO."2/

.x C 1/x .x � 1/
�

Next we consider the distortion near the perturbed points. There are separate estimates
for each sub-interval Œ0; 1� and Œ�a; 0�.

Lemma 6.6. If " > 0, a D 1C ˛ and x 2 Œ0; 1�, then

R.x/ � 1C
�
4 �

1

a2

�
"CO."2/ � 1C Œ3CO.˛/CO."/�" > 1:

Proof. For x 2 Œ0; 1�, R.x/ � 1, and we can write

R.x/ D
�
1 �

ı

x C a

��
1C

"C ı

x

��
1 �

"

x � 1

�
D

�
1 �

ı

x C a

��
1C

"C ı

x

��
1C

"

1 � x

�
;

and all three terms in the last line are positive for 0 � x � 1. Thus we make the second
term smaller by subtracting the positive term ı=x, and so

R.x/ �
�
1 �

ı

a

��
1C

"

x

��
1C

"

1 � x

�
:

By symmetry, the function on the right takes a minimum at the midpoint of the two poles,
i.e., at x D 1=2 (one can also verify this by differentiating). Thus on Œ0; 1�, R is bounded
below by�

1 �
ı

a

��
1C

"

1=2

��
1C

"

1 � .1=2/

�
D

�
1 �

ı

a

�
.1C 2"/.1C 2"/

D .1 � "a�2 CO."2//.1C 4"C 4"2/ D 1C
�
4 �

1

a2

�
"CO."2/:

Lemma 6.7. If " > 0, a D 1C ˛ and x 2 Œ�a; 0�, then

R.x/ � 1 �
� 4
a2
� 1

�
"CO."2/ � 1 � .3CO.˛/CO."//" < 1:

Proof. For x 2 Œ�a; 0�, R.x/ < 1 and we have

R.x/D
�
1�

ı

xCa

��
1C

"C ı

x

��
1�

"

x � 1

�
D

�
1�

ı

x C a

��
1C

"C ı

x

��
1C

"

1 � x

�
:

Since " > 0, the last term in the product is � 0 for x 2 Œ�a; 0�, but the other two terms
may be positive or negative.

For example, if the second term is negative, then x 2 .�"� ı; 0/. In this case, the first
term is approximately equal to 1C ı=a, and since ı is positive if " is positive, this term
of the product must be negative. Therefore the whole product is negative in this case, so
R.x/ < 0 < 1 and the estimate in the lemma is certainly true.
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If the first term in the product is negative, then x 2 .�a;�aC ı/, and the second term
is approximately 1 � ."C ı/=a. This is positive since " and ı are both small and a � 1.
Again, the whole product must therefore be positive in this case, and the lemma holds.
Thus we can restrict attention to the case when all three terms of the product are positive,
i.e., �1C ı < x < �" � ı.

In this case, the middle term of the product is made larger by removing the negative
term ı=x, and the third term increases by setting x D 0. Thus on Œ�a; 0� we have

R.x/ �
�
1 �

ı

x C a

��
1C

ı

x

�
.1C "/:

By symmetry, this function of x takes its maximum at the midpoint of the two poles, i.e.,
x D �a=2 (we can also check by direct calculation that the derivative of R is increasing
on this interval and it is only zero at x D �a=2, so this point is the global minimum of R
over this interval). Thus for x 2 .�aC ı;�" � ı/ we deduce that

R.x/ �
�
1 �

ı

a=2

��
1C

ı

�a=2

�
.1C"/ �

�
1 �

2"CO."2/

a2

��
1 �

2"CO."2/

a2

�
.1 � "/

�

�
1 �

2"CO."2/

a2

�2
.1 � "/ � 1 �

� 4
a2
� 1

�
"CO."2/:

For " < 0, the calculations are almost identical, just the logic of which terms are pos-
itive or negative changes. We state the corresponding estimates, but leave the verification
to the reader.

Lemma 6.8. If " < 0, a D 1C ˛ and x 2 Œ0; 1�, then

R.x/ � 1C
�
4 �

1

a2

�
"CO."2/ D 1 � .3CO.˛/CO."// j"j < 1:

Lemma 6.9. If " < 0, a D 1C ˛ and x 2 Œ�a; 0�, then

R.x/ � 1 �
� 4
a2
� 1

�
"CO."2/ D 1C .3CO.˛/CO."// j"j > 1:

These lemmas show that we can take jR.x/ � 1j � �j"j on Œ�a; 1� for any � < 3, by
taking j"j sufficiently small, and a sufficiently close to 1.

We will not use the estimates derived above in precisely the form they were given.
Instead, we will use rescaled versions, which we now state explicitly. Recall that we
chose n of the form n D 8m C 1, so that there were n � 1 D 8m D 2N nodal inter-
vals ¹I nj º

n�1
1 , and that we defined intervals ¹Gn

k
ºN1 by taking groups of four adjacent

nodal intervals. More precisely, Gn
k
D I n

4k�3
[ I n

4k�2
[ I n

4k�1
[ I n

4k
. Moreover, since

I n
k
D Œrn

k
; rn
kC1

�, where ¹rnj º
n
1 are the roots of Tn, we have Gn

k
D Œrn

4k�3
; rn
kC1

�, and the
three interior roots of Gn

k
are rn

4k�2
, rn
4k�1

and rn
4k

. See Figure 11.
Define a linear map �n

k
WR! R by the conditions �n

k
.rn
4k�1

/ D 0 and �n
k
.rn
4k
/ D 1.

In other words, we map the center and right interior roots of Gn
k

to 0 and 1 respectively.
By Corollary 2.5, if Gn

k
is not too close to either �1 or 1, then the four nodal intervals it

contains are all approximately the same size, and so we get

s D �nk .r
n
4k�3/ � �2; �a D �

n
k .r

n
4k�2/ � �1; t D �nk .r

n
4kC1/ � 2:
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G
n

k

Figure 11. The definition of Gn
k

and the linear map �n
k

. The white dots are the three roots interior
to Gn

k
; these map to �a; 0; 1 under �n

k
.

Using the map �n
k

, a polynomial p with three roots inside Gn
k

corresponds to polyno-
mial q with three roots in Œs; t � by p.x/ D q.�n

k
.x//=j.�n

k
/0j3. If we take the ratio of two

such polynomials p1 and p2, then the derivative factor cancels and we see that

p1.x/

p2.x/
D
q1.�

n
k
.x//

q2.�
n
k
.x//
�

Thus the distortion function Rn
k

for perturbations on Gn
k

is just a linear rescaling of the
3-point distortion function R defined earlier in this section, i.e., Rn

k
.x/D R.�n

k
.x//. With

this, we can restate the results above for perturbations of roots in Gn
k

. For example, the
following are the rescaled versions of Corollaries 6.3 and 6.5.

Corollary 6.10. If we perturb the interior roots of Gn
k

by a factor of ", and j"j is small
enough, then

R.x/ � 1; if " > 0 and x 2 .�1; rn4k�2� [ Œr
n
4k�1; r

n
4k �;

R.x/ � 1; if " < 0 and x 2 .rn4k�2; r
n
4k�1� [ Œr

n
4k ;1/;

R.x/ � 1; if " < 0 and x 2 .�1; rn4k�2� [ Œr
n
4k�1; r

n
4k �;

R.x/ � 1; if " > 0 and x 2 .rn4k�2; r
n
4k�1� [ Œr

n
4k ;1/:

Corollary 6.11. Suppose a D 1C ˛ with j˛j < 1=5. For x 2 Œ�1; 1� nGn
k

, let

d D
jx � rn

4k�2
j

jrn
4k�1

� rn
4k
j
D jx � rn4k�2j � j.�

n
k /
0
j

be the distance between x and the center root of Gn
k

, normalized by jI n
4k�1
j. Then

R.x/ D 1 �
Œ2CO.˛/CO."/�"

.d C 1/d .d � 1/
�

Similarly, Lemmas 6.6 to 6.9 can be restated for perturbations of the interior roots
of Gn

k
by leaving the estimate for R exactly the same as before, and simply replacing

the intervals for x by new intervals obtained by replacing the positions ¹�2;�a; 0; 1; 2º
by the points ¹rn

4k�3
; rn
4k�2

, rn
4k�1

; rn
4k
; rn
4kC1
º. The leftmost and rightmost points do not

correspond exactly to�2 and 2 under �n
k

, but only Corollary 6.4 makes use of these points,
and in this case the corresponding image points are so close that the estimate still holds in
the rescaled case.
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7. Bounding the extreme values

In this section, we show that small perturbations of the roots do not increase the extreme
values very much. This is needed in order to show that our polynomial approximants can
be taken to be Lipschitz if the function f being approximated is Lipschitz (as claimed
in Theorem 1.1). In a later section, we will also use these estimates to bound the size of
the set where this perturbed Chebyshev polynomial is close to zero, in order to prove our
approximants have derivatives that diverge pointwise almost everywhere. See Lemma 12.1
and Corollary 12.2.

We first prove a special case (n D 3) of the min-max property of the Chebyshev poly-
nomials, that was mentioned in Section 2.

Lemma 7.1. Suppose r1; r2; r3 2 I D Œ�1; 1� and let p.x/ D .x � r1/.x � r2/.x � r3/.
Then maxI jpj � 1=4 and the maximum is minimized by taking r1D 0 and r2; r3D˙

p
3=2

(in other words, p is a multiple of the Chebyshev polynomial T3/.

Proof. A direct calculation shows that the given roots satisfy maxI jpj D 1=4, so we only
need to show that this is the best possible. If q minimizes the supremum of jpj over I
among cubic monic polynomials with roots in Œ�1;1� (a minimum exists by compactness),
then let zq.x/ D 1

2
.q.x/ � q.�x//. This is also cubic, monic, and satisfies

sup
I

ˇ̌̌q.x/ � q.�x/
2

ˇ̌̌
� sup

I

jq.x/j:

This polynomial is clearly odd, so it has a root at 0. If the other two roots were complex,
they would have to be both complex conjugates of each other and also negatives of each
other, and hence both would be zero. In this case zq.x/ D x3 and zq.1/ D 1 > 1=4, so this
is not the minimum.

Thus the minimizing polynomial q is odd with only real roots: q.x/ D x.x2 � r2/ for
some 0 < r � 1. If r <

p
3=2, then q.1/ D .1 � r/.1C r/ D 1 � r2 > 1 � 3=4 D 1=4,

so q is not minimizing. If r >
p
3=2, then

q
�1
2

�
<
1

2

�1
2
�

p
3

2

��1
2
C

p
3

2

�
D
1

2

�1
4
�
3

4

�
D �

1

4
�

This is not minimizing either, so the optimal r equals
p
3=2, as claimed.

Lemma 7.2. For any � > 1, there is a " > 0 so that, if kyk � " and Tn.x; y/ is the
corresponding perturbation of the Chebyshev polynomial Tn, then

1

�
sup
Gnm

jTn.x/j � sup
Gnm

jTn.x; y/j � � sup
Gnm

jTn.x/j:

Proof. By Corollary 6.11, the perturbations performed outside Gnm only multiply Tn by a
factor of 1CO."/ inside Gnm, so it suffices to show that the perturbations inside Gnm only
change the supremum by a similar factor.

For brevity, let I D Gnm. Suppose we have three points r1; r2; r3 2 I and consider
h.x/ D .x � r1/.x � r2/.x � r3/. By rescaling Œ�1; 1� to I in Lemma 7.1, the supremum
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of jhj over I is minimized (over choices of the roots in I ) by taking the degree 3 Cheby-
shev polynomial on I , and in this case the minimum is .1=4/.jI j=2/3 D jI j3=32. Thus
supI h � jI j

3=32.
Fix " > 0 and let j"j j � "jI j for j D 1; 2; 3. Define the following perturbation of h:

zh.x/ D .x � r1 C "1/.x � r2 C "2/.x � r3 C "3/:

Then if " < 1=2,

jh.x/ � zh.x/j D j.x � r1/.x � r2/.x � r3/ � .x � r1 C "1/.x � r2 C "2/.x � r3 C "3/j

� jx � r1j jx � r2j j"3j C jx � r1j jx � r3j j"2j C jx � r2j jx � r3j j"1j

C jx � r1j j"2j j"3j C jx � r2j j"1j j"3j C jx � r3j j"1j j"2j C j"1"2"3j

� 3 jI j3 "C 3 jI j3 "2 C jI j3 "3 � 4 jI j3 " D 128.jI j3=32/"

� 128 " � sup
I

jhj �
1

2
sup
I

jhj;

if " < 1=256. Therefore supI jzhj � supI jhj C supI jh � zhj � .1C 128"/ supI jhj, which
is less than � supI jhj if " is small enough. Similarly, supI jzhj � supI jhj � supI jh� zhj �
1
�

supI jhj if " is small enough, proving the lemma.

8. Estimating the effect of interior perturbations

In this section, we start the proof of Theorem 4.1. We have to verify that when we per-
form a 3-point perturbation inside Gnm, the integral of the Chebyshev polynomial over Gnm
changes by a factor proportional to the perturbation, and that the effect on this integral of
the perturbations in other intervalsGn

k
, k ¤m, is small by comparison. Lemma 8.1 below

and Lemma 9.1 in the next section provide exactly these estimates. We end this section by
verifying an earlier claim that the map defined by (4.2) is a homeomorphism.

Also recall that in Section 4 we introduced the notation Tn.x; y/ with x 2 Œ�1; 1�
and y D .y1; : : : ; yN / 2 RN to denote the nth Chebyshev polynomial Tn.x/ after we
perturbed the three interior roots in each Gn

k
by a factor yk . As before, let zyk 2 RN be the

vector equal to yk in the kth coordinate and zero elsewhere. Thus Tn.x; zyk/ corresponds
to perturbing only the interior roots of Gn

k
and leaving all others fixed. Recall from (4.1)

that we defined
Anm.y/ D

1

jGnmj

Z
Gnm

Tn.x; y/ dx:

Lemma 8.1. Suppose t > 0, K 2 N, n � 2K and K � m � n � K. Suppose that we
perturb the three interior roots of Gnm by a factor ym with jyj � t , and we that leave all
other roots of Tn fixed. Let Tn.x; zym/ denote the new polynomial obtained in this way.
Then jAn

k
.zym/j �

7
6
jGnmj, andAn

k
.zym/ is strictly monotone. Moreover, for ym > 0 we have

(8.1) Anm.zym/ � A
n
m.0/C

21

20
ym D

1

jGnmj

Z
Gnm

Tn.x/ dx C
21

20
ym
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if K is sufficiently large and " is sufficiently small. For ym < 0 negative, we similarly get

(8.2) Anm.zym/ � A
n
m.0/ �

21

20
ym D

1

jGnmj

Z
Gnm

Tn.x/ dx �
21

20
ym:

The choice of 7=6 and 21=20 is only for convenience, to make some later arithmetic
work out. Our proof of Theorem 1.1 only requires that these estimates hold with some
constants strictly larger than 1.

Proof of Lemma 8.1. The claim that jAn
k
.zym/j �

7
6
jGnmj holds because jTn.x; zym/j � 7=6

if " is small enough, by Lemma 7.2.
The monotonicity is also easy to see. Indeed, we simply want to verify that the situa-

tion shown in Figures 10 and 12 is correct: as we increase the factor ym of the perturbation
in Gnm, the perturbed polynomials change strictly monotonically, and hence the same is
true for their integrals over Gnm. However, any two such perturbed polynomials can be
written as P1P0 and P2P0, where P1 and P2 are cubics corresponding to the three per-
turbed roots inGnm, and P0 is the product over all other roots. Since P0 has no zeros in the
interior of Gnm, it does not change sign there, and thus it suffices to show that P1 and P2
move monotonically as a function of the perturbation factor ym. This was Lemma 6.2.

Next we prove the quantitative bound (8.1); the proof of (8.2) is identical, except
for the obvious changes of sign. Recall that Gnm is divided into four nodal sub-intervals,
I n4m�3; : : : ; I

n
4m. Because the rescaled version of Gnm does not exactly match Œ�2; 2�, the

estimates are easier for the two middle intervals I n4m�2 and I n4m�1, so we deal with these
first. We also suppose the perturbation is by a positive factor ym > 0.

On I n4m�1, the rescaled version of Lemma 6.6 says that the positive node is multi-
plied by at least 1C .4� a�2/ym CO.y2m/ everywhere on the subinterval, so the integral
increases by an additive factor of at least

Œ3CO.˛/CO.ym/� ym

Z
In4m�1

Tn.x/ dx � Œ3CO.˛/CO.ym/�
2ym

�
jI n4m�1j;

where we have used that aD 1C ˛ and that (by Lemma 3.2) the integral of Tn over a nodal
interval I n

k
is at least .2=�/jI n

k
j. Similarly, by the rescaled version of Lemma 6.7, the

absolute value of the negative node on I n4m�2 becomes smaller, and its integral increases
by a positive additive factor of size at least

Œ.4a�2 � 1/ym CO.y
2
m/�

2

�
jI n4m�2j � Œ3CO.˛/CO.ym/�

2ym

�
jI n4m�2j:

Next we deal with the outer sub-intervals, namely I n4m�3 and I n4m. Let J � I n4m�3
denote the part of I n4m�3 that lands in Œ�2; a� when we rescaleGnm as described above (the
left root maps to a, the center root is mapped to 0, and the right root maps to 1). Possibly
I n4m�3 n J is empty if I n4m�3 maps into Œ�2;a�. The size of this “leftover” interval is small
if all four subintervals of Gnm are about the same size, which happens if Gnm is not too
near �1 orC1 by Lemma 2.4. This is where we use the assumption thatK � m � n�K
for some large K.

More precisely, for any � > 0, Lemma 2.4 says all the nodal intervals in Gnm have the
same length up to a multiplicative factor of 1 � �, if K is large enough. Hence we may
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assume that they all have length at least .1� �/jGnmj=4. Thus the part of I n4m�3 that is not
in J has length at most O.�jI n4m�3j/, and it maps to an interval of length O.�/ (possibly
empty) to the left of �2 under the rescaling. On this part of I n4m�3, Corollary 6.10 says
that the perturbed polynomial is larger than Tn, so the integral over this segment increases
under the perturbation, since Tn is positive on I n4m�3.

On J , we use the rescaled version of Corollary 6.4, which says the 3-point perturbation
makes Tn larger on J by a multiplicative factor of 1C .1

3
C O.˛/C O.ym//ym. Thus

the integral
R
J
Tn.x/ dx will increase by an additive factor ofh1

3
CO.˛/CO.ym/

i
ym

Z
J

Tn.x/ dx �
h1
3
CO.˛/CO.ym/

i 2ym
�
jJ j

�

h1
3
CO.˛/CO.ym/

i 2ym
�

.1 � �/ jI n4m�3j;

where we have used Lemma 3.2 again to give a lower bound for area of a node in terms
of the length of the base interval. Since we have already shown that the integral over
I n4m�3 n J changes in the same (positive) direction, the integral over all of I n4m�3 changes
by at least the bound given for J . By a very similar argument, the integral of the negative
node in I n4m is made smaller (in absolute value), by at least an additive factor of the same
size.

Thus the increase in the integral over all of Gnm is at leasth2
3
C 6CO.˛/CO.ym/

i 2ym
�

.1 � �/ jGnmj=4

�

� 10
3�
CO.˛/CO.ym/

�
.1 � �/ ym jG

n
mj �

21

20
ym jG

n
mj;

if � and ym are small enough (note 10=.3�/� 1:06103 > 21=20D 1:05 and j˛j � �).

Figure 12 illustrates a computation of the change in the integral in a special case, and
indicates the estimate of ynjGnmj in the previous lemma is within a factor of three of being
sharp.
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Figure 12. On the left are 3-point perturbations for y D�:2;�:175; : : : ; :2. The original Chebyshev
polynomial is highlighted. On the right is a plot of Anm.y/ � A

n
m.0/ for these perturbations. It has

slope close to 3, while our proof shows the slope is � 1. This example was taken with n D 33

and m D 5.
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Corollary 8.2. If t > 0 is small enough and n; K 2 N are both large enough, then the
map f as defined in equation (4.2) is a homeomorphism from QN

t to a cube Q0 contain-
ing QN

t .

Proof. By definition, the kth coordinate of f depends only on the kth coordinate of y, so
the image is a cube, i.e., a product of compact intervals. By Lemma 8.1, every coordinate
of f is a monotone function of the kth coordinate of y. Hence f is injective, and thus a
homeomorphism. Finally, (8.1) and (8.2) imply the image under fk of Œ0; t � has length at
least 21t=20. Moreover, by Corollary 3.5, we know Anm.0/ < �=3 if n � 6=

p
�. (Recall

that � > 0 is our upper bound for the length ratio between nodal intervals inside Gnm.
This can be taken as close to zero as we wish by taking K large enough.) If � � t=10,
and n � 6=

p
�, then jAnm.0/j < t=20. Therefore fk.Œ0; t �/ contains ŒAnm.0/; t �. The same

argument shows fk.Œ�t; 0�/ � Œ�t; Anm.0/�, and this implies f .QN
t / contains QN

t .

9. Estimating the effect of exterior perturbations

Next we see how perturbations of the roots outside Gnm affect Tn inside this interval. This
will complete the proof of Theorem 4.1.

Lemma 9.1. Suppose y 2QN
t . If t > 0 is small enough andK 2N is large enough, then

for K < m � N �K we have

jAnm.zym/ � A
n
m.y/j D

ˇ̌̌ 1

jGnmj

Z
Gnm

Tn.x; zym/ � Tn.x; y/ dx
ˇ̌̌
�
t

2
�

Proof. For a fixed m, we want to estimate the contribution of all perturbations in Gn
k

,
for k ¤ m, to the distortion function in Gnm. Suppose M 2 N (we will fix a value below).
We divide the intervals ¹Gn

k
ºk¤m into two groups according to whether jk �mj � M or

jk �mj > M . The second case (the more distant intervals) is easier, and we deal with it
first.

Suppose I and J are the two intervals formed fromGn
k

andGnm after rescaling the real
line so that the center and right interior roots of Gn

k
map to 0 and 1. Then I is approxi-

mately Œ�2;2� ifK < k �N �K, by Corollary 2.4. With this normalization, Lemma 6.11
says that the distortion R.x/ at a point x 2 J of a perturbation by a factor t in I is at most

1C
2t CO.˛t/CO.t2/

.x � 1/x.x C 1/
�(9.1)

Recall that here ˛ D a � 1, so j˛j is as small as we wish by taking K large enough.
Therefore, the distortion bound onGnm for perturbations inGn

k
is largest at the endpoint

of Gnm closest to Gn
k

, and is bounded by the formula above, except that x is replaced by
the distance from Gnm to the center root of Gn

k
, divided by the distance between the center

and right roots of Gn
k

. We can simplify this a little by replacing the distance between Gnm
and the center of Gn

k
by the distance from Gnm to Gn

k
. This is smaller, so gives a slightly

larger bound. By Corollary 2.7, and because each Gnj is made up of four nodal intervals,
we have

jGn
k
j

dist.Gn
k
; Gnm/

�
16

4jk �mj � 1
�

16

4jk �mj � 4
D

4

jk �mj � 1
�
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Recall from calculus that for x > 0, 1C x D exp.log.1C x// � exp.x/. Also, if f is
decreasing on ŒM;1/, then

P1
jDM f .j / �

R1
M�1

f .x/dx. By definition, the distortion
functions for perturbing distinct sets of roots multiply to give the total distortion function,
so we see that the total distortion on Gnm due to perturbations in all Gn

k
with jk �mj >M

is bounded by the productY
kW jk�mj>M

�
1C

Ct

.jk �mj � 1/3

�
D

Y
j�M

�
1C

Ct

j 3

�
� exp

� X
j�M

Ct

j 3

�
� exp

�
Ct

Z 1
M�1

1

x3
dx
�
� exp

� Ct

2.M � 1/2

�
:

The final term is less than 1 C t=M if M is large enough. Thus the distant intervals
contribute almost no distortion.

Next we consider the distortion due to “nearby” intervals, i.e., the effect on Gnm of
perturbations in Gn

k
with jm � kj �M . This is more delicate than the “distant” intervals,

and getting the first few terms (corresponding to intervals adjacent and nearly adjacent
to Gnm) to be small enough is one reason why we have used 3-point perturbations, instead
of the simpler 2-point perturbations.

Fix � > 0. If K is large enough (depending on � and M ), then by Lemma 2.4 we
can assume all the nodal intervals contained in intervals Gn

k
with jm � kj � M have

lengths within a factor of 1 � � of each other. To simplify calculations, we normalize Gnm
as before, with the center and right-hand interior roots mapping to 0 and 1 respectively,
andGnm maps to approximately Œ�2; 2�. Thus the renormalized nodal intervals have length
approximately 1 (within a multiplicative factor of size 1C �). Since 1 � � � .1C �/�1,
we have that 1 � � � jI j=jJ j � 1C � for any two nodal intervals I; J � Gn

k
.

With these assumptions, if jk �mj �M , then the distance between the center of Gnm
and aGn

k
is at least x D 4.1� �/jk �mj. IfGn

k
DGnmCj is to the right ofGnm, thenGnmCj

is approximately the interval Œ4j � 2; 4j C 2� for j D 1; 2; : : :, M (with error at most �),
and the maximum of our bound for the distortion onGnm by a perturbation inGnmCj occurs
at the right endpoint of Gnm, since this is the endpoint of Gnm that is closest to GnmCj . Our
distortion bound is smallest at the left endpoint of Gnm, which is the furthest point of Gnm
from GnmCj . At this endpoint, our estimates say the distortion is at most

1C
Œ2CO.�/CO.t/�t

.4j � 3/.4j � 2/.4j � 1/
�

The smallest size of our estimate occurs at the endpoint of Gnm farthest from GnmCj and
equals

1C
Œ2CO.�/CO.t/� t

.4j C 1/.4j C 2/.4j C 3/
D 1C

Œ2CO.�/CO.t/� t

.4.j C 1/ � 3/.4.j C 1/ � 2/.4.j C 1/ � 1/
�

Similar estimates hold for perturbations in intervals to the left of Gnm, i.e., in Gnm�j for
j D 1; 2; : : : ;M .

Below, we will want to estimate the product of these terms over all the indices k D
m �M; : : : ; mCM , except for k D m. We can get a slightly better estimate by pairing
symmetrically placed terms of the form m˙ j , and we take advantage of this as follows.
For the moment, we consider only the denominators in the bounds above.
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It is easy to check from the explicit formula that the rational function giving the dis-
tortion bound due to perturbations in GnmCj is convex as a function of x on Gnm (e.g., its
partial fraction expansion is a sum of three convex terms on this interval). Similarly, the
distortion bound for perturbations in Gnm�j is convex on Gnm. Therefore, the sum of these
bounds is convex on this interval, and thus the sum takes its maximum value at one of the
endpoints. See Figure 13.

GG G
n n n

mm−j m+j

Figure 13. The sum of the distortion bounds corresponding to Gnm�j and GnmCj is convex on Gnm,
and hence bounded on Gnm by its values at the endpoints.

Using the elementary observation that

.1C x/.1C y/ � exp.log..1C x/.1C y/// � exp.x C y/;

we can bound the product of the distortion bounds for the distortions in both GnmCj
and Gnm�j by

exp
� 1

.4j � 3/.4j � 2/.4j � 1/
C

1

.4.j C 1/ � 3/.4.j C 1/ � 2/.4.j C 1/ � 1/

�
:

Taking the product of distortions for all j is thus bounded by the exponential of the corre-
sponding sum of these fractions over j D 1; : : : ;M . Because the second fraction above is
the same as the first, but with j replaced by j C 1, each fraction is repeated twice, except
for the first and last. Thus we get the upper bound for the sum

1

1 � 2 � 3
C 2

MX
jD2

1

.4j C 1/.4j C 2/.4j C 3/
�
1

6
C

2

210
C

2

990
C

2

2730
C � � �

The sum becomes larger by replacing M by1, and we can bound the infinite sum (that
clearly converges) by computing a finite number S of terms and bounding the remaining
tail by the estimate

1X
jDS

1

.4j C 1/.4j C 2/.4j C 3/
�

1X
jDS

1

.4j C 1/3
�

1X
jD4SC1

1

j 3
�

Z 1
4S

x�3 dx �
1

32S2
�

Taking S D 100 gives the upper bound :1799 < 1=5.
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Using this (and the fact 1C x � exp.x/), the distortion bound on Gnm due to perturba-
tions within M steps of Gnm is bounded byY
kW0<jk�mj�M

�
1C

.2CO.�/CO.t//t

j.jk �mj C 1/jk �mj.jk �mj � 1/j

�
� exp

� X
kW0<jk�mj�M

.2CO.�/CO.t//t

j.jk�mjC1/jk�mj.jk�mj�1/j

�
� exp

� .2CO.�/CO.t//t
5

�
:

By taking � and t small enough, we can make this less than 1C �t for any � > 2=5. We
previously proved the distortion contributed by the distant intervals could be taken to be
less than 1C t=M , so by taking M large enough (say M � 10), the total distortion from
perturbations outside Gnm is less than 1C 3t=7. Thus on Gnm we have�

1 �
3t

7

�
Tn.x; zym/ � Tn.x; y/ �

�
1C

3t

7

�
Tn.x; zym/;

and hence, integrating over Gnm,�
1 �

3t

7

�
Anm.zym/ � A

n
m.y/ �

�
1C

3t

7

�
Anm.zym/:

If we take t small enough so that jAnm.zym/j �
7
6
jGnmj, then this implies

jAnm.y/ � A
n
m.zym/j �

3t

7
jAnm.zym/j �

3t

7

7

6
jGnmj D

t

2
jGnmj;

as desired.

This completes the proof of Theorem 4.1. In the next section we use it to prove our
main result, Theorem 1.1: polynomials with all critical points in a compact interval I are
dense in CR.I /.

10. Applying Brouwer’s fixed point theorem

Recall that Qn
t D Œ�t; t �

n, that k.x1; : : : ; xn/k D max1�k�n jxkj denotes the supremum
norm on Rn, and that kf � gkQ D supx2Q jf .x/ � g.x/j. By Brouwer’s fixed point
theorem [3], any continuous map ofQn

t into itself has a fixed point. There are now various
short proofs of this result, see, e.g., [16].

Lemma 10.1. Suppose that It D Œ�t; t �, and for k D 1; : : : ; n, that Jk � R is a compact
interval that contains It . Let Q D Qn

t D
QN
kD1 It and Q0 D

QN
kD1 Jk . Suppose f D

.f1; : : : ; fN / is a homeomorphism from Q to Q0, and that gWQ ! RN is a continuous
map such that kf � gkQ � t=2. Then Qn

t=2
� g.Q/.

Proof. Suppose a 2Qn
t=2

. We want to show there is yx 2Q so that g.yx/D a. For x 2Qn
t ,

define F.x/ D f �1.aC f .x/ � g.x//. By assumption, for x 2 Q,

kaC f .x/ � g.x/k � kak C kf .x/ � g.x/k � t=2C t=2 D t;
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so aC f .x/� g.x/ 2Q0 D f .Q/. Thus F.x/ is well defined and F.Q/�Q. Since f is
a homeomorphism, f �1 is continuous, and hence F is continuous. Thus Brouwer’s fixed
point theorem implies F has a fixed point yx 2 Q. At this point,

f �1.aC f .yx/ � g.yx// D yx H) aC f .yx/ � g.yx/ D f .yx/ H) a D g.yx/:

We want to apply this to the functions f and g defined in equations (4.2) and (4.3).
Lemma 8.1 showed that f is a homeomorphism ofQDQN

t onto a cubeQ0 containingQ,
at least if t > 0 is small enough. Theorem 4.1 shows that kf � gkQ � t=2. Thus we are in
a position to apply Lemma 10.1 to these functions, in order to prove the following (slightly
stronger) version of Theorem 1.1.

Corollary 10.2. Any Lipschitz function F on Œ�1; 1� can be uniformly approximated to
within 1=n by a polynomial P of degreeO.n/ with all its (real or complex) critical points
in Œ�1; 1�. Moreover, P and F agree at both endpoints of every interval Gnm, except for a
uniformly bounded number at the beginning and end of Œ�1; 1�. If F is A-Lipschitz, then
we can choose P to be CA-Lipschitz, with a constant C that is independent of F and n.

Proof. We claim it suffices to prove that every t -Lipschitz function can be uniformly
approximated, for some positive value of t . To see this, note that if h is A-Lipschitz, then
zh D .t=A/ � h is t -Lipschitz, and if zp approximates zh to within "t=A, then p D .A=t/ � zp
approximates h to within ". This proves the claim. Also note that p is .2A=t/-Lipschitz
if zp is 2-Lipschitz, which will be the case below. Thus we can take C D 2=t in the state-
ment of Theorem 1.1.

Choose t so that Theorem 4.1 holds, i.e., so that kf � gkQN2t � t . SupposeGn
k
D Œs; t �

and set

ak D
�.F;Gn

k
/

jGn
k
j
D
F.t/ � F.s/

t � s
�

Then a 2 QN
t , since F is t -Lipschitz. Then by Lemma 10.1, for any n 2 8N C 1 suf-

ficiently large, there is a y 2 QN
t so that the perturbed Chebyshev polynomial Tn.x; y/

satisfies
Ank.y/ D

1

jGn
k
j

Z
Gn
k

Tn.x; y/ dx D ak ; for all k D 1; : : : ; N:

Thus the anti-derivative

P.x/ D F.0/C

Z x

0

Tn.t; y/ dt

is a polynomial of degree n that has all its critical points in Œ�1; 1� and satisfies P.x/ D
F.x/ at each endpoint of any Gn

k
(except possibly for a bounded number K at each end

of Œ�1; 1�).
By Lemma 7.2, jP 0.x/j D jTn.x; y/j is bounded by 2 if t is small enough; thus P is

2-Lipschitz. Thus jP.x/ � f .x/j � .2C t /jGn
k
j=2 on jGn

k
j, except for K intervals near

each end, where we get the bound K.2C t /maxk jGnk j. Since maxk jGnk j � 4�=n! 0

(Lemma 2.3), we see that P approximates F to within O.1=n/ on Œ�1; 1�.

This completes the proof of Theorem 1.1.
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11. Weak-� convergence: Proof of Theorem 1.2

In this section, we prove Theorem 1.2, i.e., that every bounded, measurable, real-valued
function on Œ�1; 1� is the weak-� limit of real polynomials with only real critical points.
Recall that a sequence ¹fnº � L1 converges weak-� to f 2 L1 if for every g 2 L1,R
I
fng dx !

R
I
fg dx. The definitions and results we quote below can be found in stan-

dard texts such as [10].

Proof of Theorem 1.2. It suffices to prove this for functions on Œ�1; 1�. Fix a real-valued
f 2L1.Œ�1;1�/. We want to find polynomials ¹Pnº that are uniformly bounded on Œ�1;1�
and so that

R
gPn!

R
gf for any g 2L1.Œ�1;1�/. Let ¹Gn

k
º be the partition of Œ�1;1� into

unions of four adjacent Chebyshev nodal intervals, as in the proof of Theorem 10.2. Using
that theorem, there is aK 2N and a real-valued polynomial Pn so that kPnk1 �Ckf k1
and Z

Gn
k

Pn D

Z
Gn
k

f(11.1)

for every k D K; : : : ; .n=4/ �K. The union of the 2K intervals Gn
k

where this estimate
does not hold have total length tending to zero as n increases to1. Fix g 2 L1.Œ�1; 1�/
and note that both

R
gf and

R
gPn tend to zero over these intervals, so we can restrict

attention to the union I � Œ�1; 1� of sub-intervals where (11.1) does hold.
ForM <1, define gM by gM D g on ¹x 2 I W jg.x/j <M º and gM D 0 elsewhere.

Since jg � gM j � g 2 L1 and gM ! g pointwise almost everywhere, the Lebesgue dom-
inated convergence theorem implies kg � gMk1! 0 asM %1. So given any " > 0, we
can choose M so large that kg � gMk1 � ". Since kPmk1 � Ckf k1, we haveZ
I

Png�

Z
I

fgD

Z
I

.Pn�f /gM C

Z
I

.Pn�f /.g�gM /D

Z
I

.Pn�f /gMCO."kf k1/:

Therefore, it is enough to show
R
I
.Pn � f /g! 0 as n%1.

Let  n be a step function approximation to gM that is constant on the segments ¹Gn
k
º

and so that kgM � nk1! 0 as n%1. Note that
R
I
.f � Pn/ n D 0, since the integral

of f � Pn is zero on each sub-interval Gn
k

where  n is constant. Therefore,ˇ̌̌ Z
I

.Pn � f /gM

ˇ̌̌
D

ˇ̌̌ Z
I

Pn.gM �  n/C

Z
I

.Pn � f / n C

Z
I

. n � gM /f
ˇ̌̌

� kPnk1 kgM �  nk1 C kf k1 k n � gMk1 � .CC1/kf k1 kgM �  nk1;

and the last term tends to zero as n increases. Thus
R
I
Png !

R
I
fg for any g 2 L1.I /,

and hence Pn ! f weak-�.
The final step is to show that we cannot take C D 1 in Theorem 1.2. Suppose we

could. Define f D 1 on Œ0; 1� and f D 0 on Œ�1; 0/, and suppose that pn are polynomials
with only reals zeros, that kpnk1 � 1, and that pn converges weak-� to f . By weak
convergence,

R 1
0
pn dx ! 1 D

R 1
0
f dx, but for any " > 0,Z 1

0

pn dx � j¹x 2 Œ0; 1� W pn.x/ > 1 � "ºj C .1 � "/j¹x 2 Œ0; 1� W pn.x/ � 1 � "ºj

D 1 � "j¹x 2 Œ0; 1� W pn.x/ � 1 � "ºj:
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For " > 0 fixed, the only way the right-hand side can tend to 1 is if

j¹x 2 Œ0; 1� W p.x/ � 1 � "ºj D j¹x 2 Œ0; 1� W jp.x/ � f .x/j � "ºj ! 0:

Thus pn converges to f in measure on Œ0; 1�. By the Clunie–Kuijlaars theorem discussed
in the introduction (Corollary 1.3, [5]), f must be an entire function. But f is discontin-
uous, a contradiction. Therefore, C D 1 is impossible.

Question 11.1. What is the optimal value of C in Theorem 1.2?

12. Divergence almost everywhere

In this section, we prove the claim from the introduction that the polynomial approximants
we construct in the proof of Theorem 1.1 have derivatives that diverge pointwise almost
everywhere.

Recall from Section 7 that the derivatives of each of our approximants are of the form
Tn.x; y/, i.e., a perturbed version of the Chebyshev polynomial Tn. We want to show that
d
dx
Tn.x; y/ is large whenever Tn.x; y/ is small, so that the set were Tn.x; y/ is close to

zero has small measure.

Lemma 12.1. Suppose Tn.x; y/ is a perturbed Chebyshev function as in Lemma 7.2.
If kyk < t and t is small enough, then j¹x 2 Œ�1; 1� W jTn.x; y/j < tºj D O.t/.

Proof. Suppose rn
k
.y/ is the kth root of the perturbed polynomial Tn.x; y/. Recall that

this is a perturbation of rn
k

, the kth root of Tn.x/ (possibly rn
k

is equal to rn
k
.y/). The

point rn
k

is the left endpoint of the kth nodal interval I n
k

of Tn.x/.
Write Tn.x; y/ D .x � rnk /S

n
k
.x/, i.e., Sn

k
is a constant A times the product of terms

.x � rnj / over all the roots other than rn
k

. Let xk 2 I nk and xkC1 2 I nkC1 be points where
jTn.x; y/j is maximized in I n

k
and I n

kC1
, respectively. Then

jSnk .xk/j D
jTn.xk ; y/j

jxk � rkj
�
1=2

jIkj
(12.1)

and

jSnk .xkC1/j D
jTn.xkC1; y/j

jxkC1 � rkj
�

1=2

jIkC1j
;(12.2)

since by Lemma 7.2 the extreme values of jT j are bigger than 1=2 if t is small enough.
In both cases, the lower bound is bigger than 1=.2jJkj/ where Jk D I n

k
[ I n

kC1
. By

Lemma 2.4, adjacent nodal intervals have comparable length, so jJkj ' jI nk j.
Since

log jSnk .x/j D log jAj C
X
j Wj¤k

log jx � rj j;

and each individual term is concave down on Œxk ; xkC1�, we see that log jSn
k
j is concave

down here as well. Hence log jSn
k
j, and therefore jSn

k
j, attains its minimum over Œxk ;xkC1�
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at one of the endpoints, i.e., at either xk or xkC1. By equations (12.1), (12.2), and the
remarks following them, we deduce that jSn

k
.x/j � C=jJkj for all x 2 Œxk ; xkC1�. Thus

¹x 2 Jk W jTn.x;y/j< "º D ¹x 2 Jk W jx � rkj � jS
n
k .x/j< "º �

°
x 2 Jk W

C jx � rkj

jJkj
< "

±
;

and hence

j¹x 2 Jk W jTn.x; y/j < "ºj � j¹x 2 Jk W jx � rkj < "jJkj=C ºj D
2"jJkj

C
�

Note that the intervals Jk cover each I n
k

twice, so
P
jJkj � 2

P
k jI

n
k
j � 4. Therefore,

j¹x 2 Œ�1; 1� W jTn.x; y/j < "ºj �
2"

C

X
k

jJkj �
8"

C
D O."/:

Corollary 12.2. If f in Theorem 1.1 is Lipschitz, the sequence ¹pnº can be chosen so
that ¹p0nº is uniformly bounded and so that any sub-sequence diverges pointwise Lebesgue
almost everywhere on Œ�1; 1�.

Proof. As in the proof of Theorem 1.1, it suffices to consider f to be t -Lipschitz for some
fixed t > 0, and we showed in Section 10 that such a function can be approximated by
polynomials whose derivatives are functions of the form Tn.x; yn/, with jynj � t . From
the proof of Lemma 12.1, we can deduce that the sets

Nn D ¹x 2 Œ�1; 1� W Tn.x; yn/ < �1=2º and Pn D ¹x 2 Œ�1; 1� W Tn.x; yn/ > 1=2º

each have density bounded uniformly away from zero in any interval Œa; b� � Œ�1; 1� if n
is large enough, i.e.,

lim inf
n!1

jPn \ Œa; b�j

b � a
� c > 0:

The same inequality holds for Nn. The Lebesgue differentiation theorem (see, e.g., The-
orem 3.21 in [10]) then implies that for every subset E � Œ�1; 1� of positive measure,
there is an interval J � Œ�1; 1� so that jE \ J j > .1 � c=2/jJ j, e.g., take a small enough
interval around a point of density of E. Therefore jE \ Pn \ J j and jE \ Nn \ J j both
have measure larger than .c=2/jJ j> 0 for all large enough n (depending onE). However,
if EC is the set of x’s where ¹Tnk .x; ynk /º converges to a non-negative limit for some
sequence ¹nkº, then EC is disjoint from Nn for all sufficiently large n, hence EC must
have Lebesgue measure zero. Similarly, if E� is the set where the sequence converges to
a non-positive limit, then E� is disjoint from Pn for all large enough n, and hence E�

also has zero measure. Thus the sequence of derivatives diverges almost everywhere.

The Clunie–Kuijlaars theorem discussed in the introduction implies that if the se-
quence ¹p0nº does not converge uniformly on Œ�1; 1� to a Laguerre–Pólya function, then
at almost every point of Œ�1; 1� it either diverges, converges to 0, or jp0nj converges to1.
Corollary 12.2 shows the first option can occur, and [1] shows that approximants can be
chosen so that p0n.x/ converges to zero almost everywhere, or so that it tends to eitherC1
or �1 almost everywhere.
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13. Theorem 1.1 fails for some subsets of R

ForX �R, let CP .X/ denote all uniform limits of real polynomials onX with all critical
points contained in X . Theorem 1.1 says that CP.X/ D CR.X/ when X is an interval,
but we will show that this fails for some disconnected subsets of R. If X has only one
or two points, the situation is trivial (non-constant linear functions have no critical points
and can approximate every function on X ), but even for three points the answer is not
immediately obvious. If X D ¹�1; 0; 1º, then any polynomial p with critical points in X
has a derivative of the form

C

Z
.x C 1/axb .x � 1/c dx;

for some triple .a; b; c/ of non-negative integers. Thus

p.1/ � p.0/

p.0/ � p.�1/
D

R 1
0
.x C 1/axb .x � 1/c dxR 0

�1
.x C 1/axb .x � 1/c dx

;

and this takes only countably many different values. Thus p restricted to X cannot equal
every possible real-valued function on these three points. However, with some work, one
can show that the set of possible ratios is dense in R, and this implies CP.X/ D CR.X/.
Very briefly, consider p.x/ D .1 � x/a.1C x/n�a with n large and 0 � a � n. Normal-
ize p so the maximum of p in Œ�1; 1� is 1. This function has a single bump with max that
slides from�1 to 1 as a goes from 0 to n (for an example, see Figure 14). The width of the
bump is about 1=

p
n, but the distance between the peaks for consecutive a’s is about 1=n.

Thus only about 1=
p
n of the mass moves across 0 as we increment a near n=2, and care-

ful estimates show that we can approximate any positive ratio that we want. However, for
four points, the situation is different.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 14. Plots ofC
R t
0 .xC 1/

a.x � 1/n�a dx, where nD 300, aD 2;4; : : : ; 298 andC DC.a;n/
is chosen so the function’s maximum is 1. The thicker graph corresponds to a D n=2. By taking n
large and “sliding” a from 1 to n, the ratio of the areas over Œ�1; 0� and Œ0; 1� can approximate any
positive value we wish.

Lemma 13.1. Suppose that 0 < " < 1=4. Suppose that X is a compact set contained in
Œ�1 � ";�1� [ Œ1; 1C "�, and that it contains at least two distinct points in each of these
intervals. Then there is a real-valued function continuous on X that cannot be uniformly
approximated by polynomials that have all their critical points inside X .
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Proof. LetX�1DX \ Œ�1� ";1� andX1DX \ Œ1;1C "�. Let sD infX�1, t D supX�1,
u D infX1, and v D supX1. We claim there is a � < 1 depending only on " so that

min.jp.s/ � p.t/j; jp.u/ � p.v/j/ � �jp.t/ � p.u/j(13.1)

holds for every real polynomial with all critical points in X . If such a � exists, then a
function f on X such that

jf .s/ � f .t/j D jf .t/ � f .u/j D jf .u/ � f .v/j > 0

cannot be uniformly approximated by polynomials in CP.X/.
Take a p as above and let p0 be its derivative. Rescaling by a constant, we may assume

that p0 is monic and that it has n zeros in X�1 and m zeros in X1. Note that p0 has a
single sign in Œt; u�; without loss of generality, we may assume p0 > 0 here. For x 2 Œ0; "�,
the distance of x to X�1 is � 1 and its distance to X1 is � 1 � ". Thus on Œ0; "� we have
jp0j � .1 � "/m. Similarly, jp0j � .1 � "/n on Œ�"; 0�. Thus

jp.u/ � p.t/j �
ˇ̌̌ Z u

t

p0
ˇ̌̌
� max

�ˇ̌̌ Z 0

�"

p0
ˇ̌̌
;
ˇ̌̌ Z "

0

p0
ˇ̌̌�
� max

�
".1 � "/n; ".1 � "/m

�
:

Every point of Œ1; 1C "� is within distance " of the m roots contained in X1 and is within
distance 2C 2" the n roots in X�1. Therefore on X1 we have jp0j � "m.2C 2"/n. Simi-
larly, on X�1 we have jp0j � "n.2C 2"/m. Thus

jp.s/ � p.t/j �
ˇ̌̌ Z t

s

p0
ˇ̌̌
� "nC1.2C 2"/m;

jp.u/ � p.v/j �
ˇ̌̌ Z v

u

p0
ˇ̌̌
� "mC1.2C 2"/n:

The inequality min.x; y/ � �max.w; z/ follows from xy � �2wz, so to prove (13.1) it
suffices to verify that�

"nC1.2C 2"/m
��
"mC1.2C 2"/n

�
� �2"2.1 � "/nCm

i.e., �".2C 2"/
1 � "

�nCm
� �2:

This holds for some � < 1 if ".2C 2"/ < 1 � ": Using the quadratic formula, we get

�3 �
p
17

4
< " <

�3C
p
17

4
� :2808:

The right side is larger than 1=4, so this proves the lemma.

Question 13.2. For which compact sets X � R is CP.X/ D CR.X/? Does this fail for
all disconnected sets X with more than three points?

Acknowledgments. I thank the anonymous referee for a meticulous reading of the manu-
script and for many very helpful suggestions that improved the clarity and correctness of
the exposition.
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