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The parabolic quaternionic Calabi–Yau equation
on hyperkähler manifolds

Lucio Bedulli, Giovanni Gentili and Luigi Vezzoni

Abstract. We show that the parabolic quaternionic Monge–Ampère equation on a
compact hyperkähler manifold has always a long-time solution which, once normal-
ized, converges smoothly to a solution of the quaternionic Monge–Ampère equation.
This is the same setting in which Dinew and Sroka (2023) prove the conjecture of
Alesker and Verbitsky (2010). We also introduce an analogue of the Chern–Ricci
flow in hyperhermitian manifolds.

1. Introduction

A hypercomplex manifold is a real 4n-dimensional smooth manifold equipped with three
complex structures I , J andK satisfying the quaternionic-type relations IJ D�JI DK.
A hyperhermitian metric g is determined either by a form � of type .2; 0/ with respect
to I , or by a positive real form ! of type .1; 1/ with respect to I such that J! D �!.
A hyperhermitian metric is called HKT (hyperkähler with torsion) if @� D 0 (the oper-
ators @ and N@ will be always taken with respect to the complex structure I throughout
the paper). HKT metrics were first introduced in [22] with motivations coming from the-
oretical physics and further studied from the purely geometric point of view (see, e.g.,
[1–3, 5, 6, 10–12, 14, 17, 18, 29, 30, 34, 35, 37] and the references therein).

In hyperhermitian geometry, the role of plurisubharmonic functions is usually replaced
by smooth real functions ' satisfying �C @@J' > 0 (quaternionic �-plurisubharmonic
functions), where the positivity is in the sense of (2,0)-forms (see the preliminaries) and
@J D J

�1 N@J is the twisted N@ operator. Equivalently, a function ' is quaternionic�-pluri-
subharmonic if ! C i

2
.@ N@' � J@ N@'/ is positive as a .1; 1/-form.

In [3], Alesker and Verbitsky introduced an analogue of the complex Monge–Ampère
equation on hyperhermitian manifolds by considering, for a given smooth function f , the
quaternionic Monge–Ampère equation

(1.1) .�C @@J'/
n
D efCb �n; �C @@J' > 0; sup

M

' D 0;

for a real-valued function ' and a constant b.
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The equation can be reformulated in terms of real 2-forms as

(1.2)
.! C i

2
.@ N@' � J@ N@'//2n D e2.fCb/ !2n;

!C i
2
.@ N@' � J@ N@'/ > 0; sup

M

' D 0:

In [3], it is conjectured that the equation is always solvable on compact HKT manifolds at
least under the extra assumption that the canonical bundle of .M; I / is holomorphically
trivial.

Following the strategy of Yau for proving the Calabi conjecture [36], the natural
approach for studying the quaternionic Monge–Ampère equation is via the continuity
method, and the hard part is, as usual, the proof of a priori estimates. Fortunately, some
important results have been established in this direction. The C 0 estimate is now proved
in the most general case. A first proof of the C 0 estimate was given in [3] under the
assumptions on g to be HKT and on the canonical bundle of .M; I / to be holomorphic-
ally trivial. Furthermore, the C 0 estimate was improved in [2] by removing the condition
on the canonical bundle and recently also the HKT assumption was removed by Sroka
in [30] applying a recent method of Guo, Phong and Tong [19–21]. The higher order
estimates have been established so far only under extra assumptions. In [1], Alesker con-
firmed the conjecture on compact flat hyperkähler manifolds. More recently Dinew and
Sroka drastically improved Alesker’s result by proving the conjecture also for non-flat
hyperkähler manifolds [10]. Other partial confirmations to the conjecture can be found
in [14, 15].

In the present paper, we first observe that in the most general case, an upper bound of
the Laplacian of the solution to (1.1) combined with the C 0 estimate implies all the other
a priori estimates (Theorem 3.1). In particular, this allows us to simplify part of the proof
of the Dinew–Sroka theorem in [10] (see Remark 3.2). We further prove an analogous
result for the quaternionic parabolic Monge–Ampère equation

(1.3) P' D 2 log
.�C @@J'/

n

�n
� 2f; �C @@J' > 0; '.�; 0/ D 0;

introduced in [6, 37] (see Theorem 3.3). This leads to the following theorem, which we
prove in Section 4.

Theorem 1.1. Let .M; I; J; K; g/ be a compact hyperhermitian manifold. Assume that
.I; J;K/ admits a compatible hyperkähler metric Og. Then for every f 2 C1.M/, equa-
tion (1.3) has a unique long-time solution '.t/, t 2 Œ0;1/. The normalization

Q' WD ' �
1R

M
�n^ N�n

Z
M

' �n^ N�n

converges to a solution of (1.1) with a suitable choice of b.

Theorem 1.1 is the natural generalization of the main theorem in [6,37], and the para-
bolic version of the main result in [10].

Given a solution '.t/ to (1.3), the associated .1; 1/-form

!.t/ WD ! C i
2
.@ N@'.t/ � J@ N@'.t//
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satisfies the evolution equation

(1.4) P!.t/ D �
1

2
.Ric.!.t// � J Ric.!.t// � ˇ C Jˇ/;

where ˇD Ric.!/� 2i@N@f and Ric is the Chern–Ricci form with respect to I . Long-time
existence and convergence of (1.3) would imply the fact that for every representative ˇ
of cBC

1 .M; I /, there is a unique hyperhermitian metric of the form !' D ! C
i
2
.@ N@' �

J@ N@'/ with Ric.!'/ D ˇ. From this point of view, Theorem 1.1 is in the spirit of Cao’s
theorem [7].

Equation (1.4) suggests to consider the geometric flow

(1.5) P!.t/ D �
1

2
.Ric.!.t// � J Ric.!.t///; !.0/ D !;

since it preserves the compatibility with the hypercomplex structure and plays the role
of the Ricci-flow in Kähler geometry and of the Chern–Ricci flow in Hermitian geo-
metry [33]. We think that a study of the flow (1.5) in the same spirit of [33] could give new
insights in hyperhermitian geometry. In Section 5, we collect some preliminary observa-
tions on the flow.

2. Preliminaries

A hypercomplex manifold .M; I; J;K/ is an even-dimensional complex manifold .M; I /
equipped with two additional complex structures .J; K/ satisfying the quaternionic-type
relations IJ D �JI D K. A Hermitian metric g on .M; I; J; K/ is hyperhermitian if it
is compatible with each I; J; K. Any hyperhermitian metric g induces a corresponding
form

� WD
1

2
.g.J �; �/C ig.K�; �// D

1

2
.!J C i!K/ 2 ƒ

2;0
I ;

which satisfies the following properties:
• �.J �; J �/ D N� (� is q-real);

• �.Z; J NZ/ > 0 for every non-zero Z 2 T 1;0M (� is positive).
Conversely, any q-real and positive � 2 ƒ2;0I induces a hyperhermitian metric g via the
relation

(2.1) g D 2Re.�.�; J �//:

Hence we have a one-to-one correspondence between q-real positive .2; 0/-forms and
hyperhermitian metrics. If� is @-closed, we say that g is hyperkähler with torsion (HKT).
We further denote by ! the fundamental form of .g; I /. We have the following relation:

(2.2)
�n ^ N�n

.nŠ/2
D

!2n

.2n/Š
,

(see, e.g., Section 4.3 in [28]).



L. Bedulli, G. Gentili and L. Vezzoni 2294

Let @ be the @-operator with respect to I , and let @J WD J�1 N@J Wƒ
r;0
I !ƒ

rC1;0
I : Then

@@J D �@J @;

see [10]. Every �' WD � C @@J' > 0 induces a hyperhermitian metric g' . We further
denote by !' the .1; 1/-form of .g' ; I /.

The following useful lemma follows from Remark 4.1 in [30] and Proposition 2.15
in [10], but we prove it for the reader’s convenience.

Lemma 2.1. For every ' 2 C1.M/, we have

@@J'.X; Y / D �
1

2
.@ N@'.�; J �/C @ N@'.J �; �//2;0.X; Y /:

Moreover,

!' D ! C
i@ N@' � iJ @ N@'

2
and trg'g D 2n ��'';

where �' is the Chern-Laplacian operator with respect to g' .

Proof. The first part of the statement can be easily proved locally by using I -holomorphic
coordinates such that @iJ Nrs D @sJ

Nr
i , see Remark 2.13 in [10]. Indeed,

@@J' D �@J N@' D �@J' Nr d Nz
r
D �@.' NrJ

Nr
s dz

s/

D �'i Nr J
Nr
s dz

i
^ dzs � ' Nr @iJ

Nr
s dz

i
^ dzs D �'i Nr J

Nr
s dz

i
^ dzsI

hence

@@J'.X; Y / D �
1

2
.@ N@'.�; J �/C @ N@'.J �; �//2;0.X; Y /

D �
1

8
.@ N@'.X � iIX; J.Y � iIY //C @ N@'.J.X � iIX/; Y � iIY //

D �
1

4
.@ N@'.X; J Y /C i@ N@'.X;KY /C @ N@'.JX; Y /C i@ N@'.KX; Y //;(2.3)

as required. Moreover, from (2.1) and (2.3) we have

g'.X; Y / D 2Re.�'.X; J Y // D g.X; Y / �
1

2
.i@ N@'.KX; J Y /C i@ N@'.X;KJ Y //

D g.X; Y / �
1

2
.i@ N@'.KX; J Y / � i@ N@'.X; IY //;

and thus

!'.X; Y / D g'.IX; Y / D !.X; Y / �
1

2
.i@ N@'.JX; J Y / � i@ N@'.X; Y //:

Finally, since g' is J -Hermitian we have

trg'g D tr!'! D 2n � tr!'
i@ N@' � iJ @ N@'

2
D 2n ��'';

as claimed.
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The following lemma essentially follows from [35].

Lemma 2.2. If g is HKT, then
d�n D # ^�n;

where # D �Id�! is the Lee form of .!; I /. In particular, Ric.!/ D dd�!, and in the
compact case,

d�n D 0 ” ! is balanced ” Ric.!/ D 0:

Proof. It is quite easy to observe that

�� D
1

.n � 1/Š nŠ
�n^ N�n�1 and � ˛ D �

1

.n � 1/Š nŠ
J˛ ^�n^ N�n�1

for every 1-form ˛ of type .1; 0/ with respect to I . The HKT condition implies

# D �Jd�!J D �Kd
�!K ;

see [23], hence

J# D d�!J D d
�.�C N�/ D � � d � .�C N�/

D �
1

.n � 1/Š nŠ
� d.�n^ N�n�1 C�n�1^ N�n/

D �
1

.n � 1/Š nŠ
� .d�n^ N�n�1 C�n�1^ d N�n/:

Clearly there exists a .0;1/-form ˇ such that d�n D ˇ ^�n, but from these computations
it follows that

J# D �
1

.n � 1/Š nŠ
� .ˇ ^�n^ N�n�1 C Ň ^�n�1^ N�n/ D J.ˇ C Ň/;

and thus ˇ ^�n D # ^�n as claimed. Moreover, since ! is HKT it is Bismut–Ricci flat
and formula (2.7) in [4] implies Ric.!/ D dd�!. The last statement is trivial.

Remark 2.3. In [5], it is proved that on a compact nilmanifold .N=�; I; J; K/ a left-
invariant HKT metric is always balanced. This fact can be also deduced from Lemma 2.2
taking into account that the Chern–Ricci form of a left-invariant Hermitian metric on a
complex nilmanifold is always zero (see, e.g., Proposition 2.1 in [25]).

3. From a bound of the Laplacian to C 2;˛-estimates

In [32], it is proved a general theorem for deducing C 2;˛ estimates of a solution of an
elliptic equation from a bound on the Laplacian of the solution. The theorem is applied
in [32] to a large class of equations in Hermitian geometry. In this section, we observe that
it can be also applied to the quaternionic Monge–Ampère equation.
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Theorem 3.1. Let .M; I; J;K; g/ ba a compact hyperhermitian manifold, and let ' be a
solution to (1.1) such that

(3.1) k'kC 0 � C and trgg' � C;

for some constant C > 0. Then, for 0 < ˛ < 1, there exists a constant C˛ > 0 depending
only on .M; I; J;K; g/, f , ˛ and C , such that

kr
2'kC˛ � C˛:

Proof. Choose I -holomorphic local coordinates .z1; : : : ; z2n/ in a chart, which for simpli-
city we identify with the unit ballB1 �C2n. Consider also the underlying real coordinates
.x1; : : : ; x4n/ given by zk D xk C ix2nCk for k D 1; : : : ; 2n and the usual real repres-
entation of complex matrices defined as

�.H/ WD

�
Re.H/ Im.H/
�Im.H/ Re.H/

�
:

Let Herm.2n/ and Sym.4n/ be the spaces of 2n� 2nHermitian matrices and 4n� 4n real
symmetric matrices, respectively. Notice that � sends Herm.2n/ to Sym.4n/. We define the
following functions:

• F WSym.4n/! R given by F .N / WD 1
2

log det.N /;
• � WB1 ! Sym.4n/ given by �.x/ WD �.g.x//;
• T WSym.4n/�B1!Sym.4n/ given by T .N;x/ WD 1

4
.p.N /C �. tJ.x//p.N /�.J.x///,

where p is the projection p.N/ WD 1
2
.N C tINI/.

Here, we are writing g.x/ and J.x/ for the complex matrices of g and J at the point x
in the coordinates .z1; : : : ; z2n/. For simplicity, we set QJ D �.J /. Since p.D2

Ru.x// D

2�.D2
Cu.x// (here D2

R and D2
C are the real and complex Hessian, respectively) for any

function uWB1 ! R and det.�.H// D det.H/2 for any Hermitian matrix H , we have

F .�.x/C T .D2
R'.x/// D

1

2
log det

�
�.gi Nj /C

1

2
�.'i Nj /C

1

2
QJ Nsi �.D

2
C'/r Ns

QJ rNj

�
.x/

D
1

2
log det �

�
gi Nj C

1

2
'i Nj C

1

2
J Nsi .D

2
C'/r Ns J

r
Nj

�
.x/

D log det
�
gi Nj C

1

2
'i Nj C

1

2
J Nsi .D

2
C'/r Ns J

r
Nj

�
.x/

D 2f .x/C 2b C log detg.x/:

The arithmetic-geometric means inequality gives

trgg' � 2n
�detg'

detg

�1=2n
D 2ne.fCb/=n � C 0;

because jbj is bounded by sup jf j using a standard maximum principle argument directly
on equation (1.1). Since also trgg' � C by assumption (3.1), we then have

C�10 .ıi Nj / � gi Nj .x/C
1

2
'i Nj .x/C

1

2
J Nsi .x/'r Ns.x/J

r
Nj
.x/ � C0.ıi Nj /;
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for x 2 B1 and a constant C0 > 0. Since � preserves (semi)positivity, i.e.,H1 �H2 if and
only if �.H1/ � �.H2/, we deduce

C�10 .ıij / � �.x/C T .D2
R'.x// � C0.ıij /:

Let E denote the compact convex subset

E WD ¹N 2 Sym.4n/ j C�10 .ıij / � N � C0.ıij /º:

We check that all the assumptions H1–H3 of Theorem 1.2 in [32] are satisfied.
• It is well known that F is uniformly elliptic and concave on E (conditions H1.1/

and H1.2/ of Theorem 1.2 in [32]). Moreover, H1.3/ is trivial for F since it does not
depend on x.

• Next we verify conditions H2 in Theorem 1.2 of [32]. Condition H2.1/ is easily
checked and H2.2/ is straightforward. We just need to show that also H2.3/ holds.
For any positive semidefinite N 2 Sym.4n/ and v 2 R4n we have

hT .N; x/v; vi D
1

8

�
hNv; vi C h tINIv; vi C h t QJN QJv; vi C h t QJ tINI QJv; vi

�
.x/

D
1

8

�
hNv; vi C hNIv; Ivi C hN QJv; QJvi C hNI QJv; I QJvi

�
.x/ � 0:

We may assume without loss of generality that J.0/ is orthogonal and we get

1

8
kN k � kT .N; 0/k �

1

2
kN k;

where kAk D supkvkD1hAv; vi. Possibly shrinking the ball, we may assume that J.x/
is close to J.0/ and H2.3/ is satisfied.

• Condition H3 obviously holds.
Since assumptions H1–H3 of Theorem 1.2 in [32] are satisfied, the theorem follows.

Remark 3.2. Theorem 3.1 was already proved by Alesker in the case of compact locally
flat HKT manifolds [1]. Our version allows to simplify the proof of the main theorem
of [10]. Indeed, the proof of the Alesker–Verbitsky conjecture on hyperkähler manifolds
is obtained in [10] proving independently the C 1 estimate and a bound for the Laplacian
and then combining them in order to obtain the second order estimate. Hence the proof
of the Dinew and Sroka theorem can be alternatively obtained bypassing the gradient
estimate and using our Theorem 3.1. We also note that Theorem 3.1 does not need g to
be HKT.

Next we focus on the “parabolic counterpart” of Theorem 3.1.

Theorem 3.3. Let 0 < ˛ < 1, and let '.t/, t 2 Œ0; T /, be a solution to (1.3) such that

(3.2) osc
M
' � C; k P'kC 0 � C; trgg' � C;

for some positive constant C . Let " 2 .0; T /. Then '.t/ satisfies the following a priori
estimate:

kr
2'kC˛ � C˛

in Œ"; T /, where C˛ > 0 depends only on .M; I; J;K; g/, f , ˛, C and ".
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Proof. Here we apply the general result of Chu, see Theorem 5.1 in [8], in the same
fashion as in Lemma 6.1 of [9]. In the same notations of the previous theorem, with F ; �

and T chosen in the same way, we have

P'.x; t/ � F .�.x/C T .D2
R'.x; t/// D �2f .x/ � log detg.x/:

From (3.2), the arithmetic-geometric means inequality and the assumptions on ', we get

C � trgg' � 2n
�detg'

detg

�1=2n
D 2ne. P'C2f /=2n � C�1:

We then have

C�10 .ıi Nj / � gi Nj .x/C
1

2
'i Nj .x; t/C

1

2
J Nsi .x/ 'r Ns.x; t/J

r
Nj
.x/ � C0.ıi Nj /;

for .x; t/ 2 B1 � .0; 1� and a uniform constant C0 > 0. We then infer that

C�10 .ıij / � �.x/C T .D2
R'.x; t// � C0.ıij /:

Let E denote the compact convex subset

E WD ¹N 2 Sym.4n/ j C�10 .ıij / � N � C0.ıij /º:

All the assumptions H1–H3 of Theorem 5.1 in [8] are easily checked as in the previous
theorem. Nonetheless, at this point, we cannot directly apply Theorem 5.1 in [8] since '
does not necessarily satisfy a C 0 a priori bound. However, we can overcome this issue
working as in Lemma 6.1 of [9]. Here is where the constant " plays a role. We consider
the two cases T < 1 and T � 1, separately.

If T < 1, we have a uniform C 0 bound for ', since

j'j D
ˇ̌̌ Z t

0

P' dt
ˇ̌̌
� T sup

M�Œ0;T /

j P'j � C:

In this case, we can directly apply Theorem 5.1 in [8] to conclude.
If T � 1, we consider, for any fixed a 2 .0; T � 1/, the following auxiliary function:

'a.x; t/ WD '.x; t C a/ � inf
B1�Œa;aC1/

'; t 2 Œ0; 1/:

Clearly, we have k'akC 0 � oscM ' � C . Moreover, from (1.3) we see that 'a satisfies
the parabolic Monge–Ampère equation

P'a D 2 log
.�C @@J'a/

n

�n
� 2f:

Since from (3.2) we know that trgg'a is uniformly bounded from above, we may apply
Theorem 5.1 in [8] to 'a and deduce that for any fixed " 2 .0; 1=2/, we have

kr
2'kC˛.B�ŒaC";aC1// � kr

2'akC˛.B1�Œ";1// � C;

where C is a uniform constant that depends on " and ˛. Since a 2 .0; T � 1/ is arbitrary,
we obtain the estimate

kr
2'kC˛.B1�Œ";T // � C;

allowing us to conclude.
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Remark 3.4. As usual in the elliptic case, one can deduce higher order estimates from
Theorem 3.1 by using a standard bootstrapping argument via Schauder estimates, obtain-
ing that, under the assumptions of Theorem 3.1,

kr
k'kC˛ � CkC˛;

for constants CkC˛ depending only on .M; I; J;K; g/, f , ˛, k and C .
Analogously, in the parabolic case, and under the assumptions of Theorem 3.3, '.t/

satisfies
kr

k'kC˛ � CkC˛

in Œ"; T /, where CkC˛ depends only on .M; I; J;K; g/, f , ˛, k, " and C .

4. Proof of Theorem 1.1

Let .M;I;J;K;g/ be a compact hyperhermitian manifold and, for f 2 C1.M/, consider
the parabolic quaternionic Monge–Ampère equation (1.3).

For ' 2 C1.M/, let

P.'/ D 2 log
�n'

�n
� 2f:

The first variation of P at ' is

P�j'. / D 2n
@@J ^�

n�1
'

�n'
D �' ;

where the last equality can be easily checked by using, for instance, I -holomorphic coor-
dinates, see Remark 2.13 in [10]. It follows that equation (1.3) is strictly parabolic. In
particular, it always admits a solution '.t/, t 2 Œ0; "/, for some " small enough.

Lemma 4.1. The quaternionic parabolic Monge–Ampère equation (1.3) can be alternat-
ively rewritten as

P' D log
!2n'

!2n
� 2f; '.0/ D 0:

Proof. Since the ratio �n'=�
n is real, we have

��n'
�n

�2
D
�n' ^

N�n'

�n^ N�n
D
!2n'

!2n
,

where in the last equality we used (2.2). The claim follows.

For a solution '.t/ to (1.3), we shall also consider its normalization

Q'.t/ WD '.t/ �
1R

M
�n^ N�n

Z
M

'.t/�n^ N�n:
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Lemma 4.2. A solution '.t/ to (1.3) satisfies the following a priori estimates:

k P'kC 0 � C; osc
M
' � C; k PQ'kC 0 � C and k Q'kC 0 � C;

for a uniform constant C > 0 depending only on .M; I; J;K; g/ and kf kC 0 .

Proof. The technique of the proof is standard and for example analogous to that of The-
orems 2.1 and 2.2 in [16]; it relies on the elliptic C 0-estimate obtained by Sroka [30] on
compact hyperhermitian manifolds. We give some details for completeness. Differentiat-
ing (1.3), we get that P' satisfies

@t P' D �' P';

and from the parabolic maximum principle, we infer that k P'kC 0 � C for some uni-
form positive constant C . On the other hand, viewing ' as a solution of the quaternionic
Monge–Ampère equation

.�C @@J'/
n
D e P'=2Cf�n;

with datum P'=2C f , we may use the main theorem in [30] to get oscM ' � C . The C 0

bound on the time derivative of Q' is then straightforward. Moreover, by definition of Q',
for every t 2 RC such that M � ¹tº is in the domain of ', there exists x0 2 M such that
Q'.x0; t / D 0. Therefore,

j Q'.x; t/j D j Q'.x; t/ � Q'.x0; t /j D j'.x; t/ � '.x0; t /j � C;

and the C 0 bound on Q' follows.

Lemma 4.3. Let '.t/ be a solution to (1.3). If Og is a hyperkähler metric compatible with
.I; J;K/, then

tr Ogg' � C;

for a uniform constant C > 0 depending only on .M; I; J;K; g/, Og and f .

Proof. Consider the quantity
Q WD tr Ogg' � A';

where A is a constant to be chosen later. Assume M � Œ0; T � is contained in the domain
of ' and let .x0; t0/ be a maximum point of Q on M � Œ0; T �. We may assume t0 > 0,
otherwise the estimate is obvious. Fix normal coordinates at x0 with respect to the hyper-
kähler metric Og. Observe that the first derivatives of J vanish at x0. Now we compute
at x0:

�' tr Ogg' D g
i Nj
'

�
. Ogr Ns/;i Nj g

'
r Ns C Og

r Nsg
'

r Ns;i Nj

�
D �gi

Nj
' Og

a Ns
Ogr
Nb
Oga Nb;i Nj g

'
r Ns

C
1

2
gi
Nj
' Og

r Ns
�
2gr Ns;i Nj C 'r Nsi Nj C J

Na
r J

b
Ns 'b Nai Nj C J

Na

r;i Nj
J bNs 'b Na C J

Na
r J

b

Ns;i Nj
'b Na

�
D �gi

Nj
' Og

a Ns
Ogr
Nb
Oga Nb;i Nj g

'
r Ns(4.1)

C gi
Nj
' Og

r Ns
�
gr Ns;i Nj C 'r Nsi Nj C

1

2
J Na
r;i Nj

J bNs 'b Na C
1

2
J Nar J

b

Ns;i Nj
'b Na

�
;
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where we used that Ogr NsJ Nar J
b
Ns D Og

b Na because the metric is J -Hermitian. On the other hand,

@t tr Ogg' D Og
r Ns @tg

'
r Ns D Og

r Ns
P'r Ns D Og

r Ns
�
gi
Nj
' g

'

i Nj ;r

�
;Ns
� 2� Ogf

D � Ogr Ns gi
Nl
' g

k Nj
' g

'

k Nl;Ns
g
'

i Nj ;r
C Ogr Ns gi

Nj
' g

'

i Nj ;r Ns
� 2� Ogf

D � Ogr Ns gi
Nl
' g

k Nj
' g

'

k Nl;Ns
g
'

i Nj ;r
� 2� Ogf

C
1

2
Ogr Ns gi

Nj
'

�
2gi Nj ;r Ns C 'i Nj r Ns C J

Na
i J

b
Nj
'b Nar Ns C J

Na
i;r Ns J

b
Nj
'b Na C J

Na
i J

b
Nj ;r Ns

'b Na
�

D � Ogr Ns gi
Nl
' g

k Nj
' g

'

k Nl;Ns
g
'

i Nj ;r
� 2� Ogf(4.2)

C Ogr Ns gi
Nj
'

�
gi Nj ;r Ns C 'i Nj r Ns C

1

2
J Nai;r Ns J

b
Nj
'b Na C

1

2
J Nai J

b
Nj ;r Ns

'b Na

�
:

The metric Og is hyperkähler, hence the corresponding .2; 0/-form is closed, which in
I -holomorphic coordinates implies

0 D �. Oga Nc J
Nc
b / Nk D � Oga Nc; Nk J

Nc
b � Oga Nc J

Nc

b; Nk
;

and differentiating again, we get

Oga Nc; Nkl J
Nc
b C Oga Nc; Nk J

Nc
b;l C Oga Nc;l J

Nc

b; Nk
C Oga Nc J

Nc

b; Nkl
D 0;

which, at x0, rewrites as
Oga Nq Oga Np;l Nk D J

b
Np J
Nq

b;l Nk
:

This identity is simply expressing the fact that the curvature of the Obata connection
coincides with the one of the Levi-Civita connection; indeed, in general the Christoffel
symbols of the Obata connection are

�kij D �J
Ns
i;j J

k
Ns

(see (2.27) in [10]), and its curvature is

R
Ni
Njk Nl
D �@k�

i
jl
D @k

�
J s
Nj ; Nl
J
Ni
s

�
D J s

Nj ;k Nl
J
Ni
s C J

s
Nj ; Nl
J
Ni
s;k D J

s
Nj ;k Nl

J
Ni
s

D
�
J sNj J

Ni
s

�
;k Nl
� J sNj J

Ni

s;k Nl
D �J sNj J

Ni

s;k Nl

at a point where the first derivatives of J vanish.
Moreover, taking into account that a hyperkähler metric is Ricci-flat, we have

(4.3)

Ogr Ns gi
Nj
'

�
J Nai;r Ns J

b
Nj
C J Nai J

b
Nj ;r Ns

�
D Ogr Ns gp Nq' J iNq J

Nj
p

�
J Nai;r Ns J

b
Nj
C J Nai J

b
Nj ;r Ns

�
D � Ogr Ns gb Nq' J iNq J

Na
i;r Ns � Og

r Ns gp Na' J
Nj
p J

b
Nj ;r Ns

D Ogr Ns gb Nq' R Na Nqr Ns C Og
r Ns gp Na' R

Nb
Nps Nr
D 0:

Furthermore, we have

(4.4) gi
Nj
' Ri Nj r Ns D 0;
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because
gi
Nj
' Ri Nj r Ns D �g

i Nj
' Ogi Nk J

b
Nj
J
Nk
b;r Ns D �g

i Nj
' Ogl NaJ

l
Nk
J Nai J

b
Nj
J
Nk
b;r Ns

D �gb Na' Ogl NaJ
l
Nk
J
Nk
b;r Ns D �g

b Na
' Ra Nbs Nr D �g

b Na
' Rb Nar Ns;

and we obtain

(4.5)

gi
Nj
' Og

r Ns
�
J Na
r;i Nj

J bNs C J
Na
r J

b

Ns;i Nj

�
D gi

Nj
' Og

p Nq J rNq J
Ns
p

�
J Na
r;i Nj
J bNs C J

Na
r J

b

Ns;i Nj

�
D �gi

Nj
' Og

b Nq J rNq J
Na

r;i Nj
� gi

Nj
' Og

p NaJ Nsp J
b

Ns;i Nj
D gi

Nj
' Og

b NqR Na
Nqi Nj
C gi

Nj
' Og

p NaR
Nb

Npj Ni

D 2gi
Nj
' Og

b Nq
Ogp NaRp Nqi Nj D 0:

Therefore, (4.1) and (4.2), with the simplifications (4.3), (4.4) and (4.5), yield

.@t ��'/ tr Ogg' D � Og
r Ns gi

Nl
' g

k Nj
' g

'

k Nl;Ns
g
'

i Nj ;r
C Ogr Ns gi

Nj
' gi Nj ;r Ns � Og

r Ns gi
Nj
' gr Ns;i Nj � 2�f

� C C C trg' Og;

where C > 0 does not depend on '. At the point .x0; t0/, we then have

0 � .@t ��'/Q D .@t ��'/ tr Ogg' � A P' C A�'' � C � P' C 2nAC .C � A/ trg' Og;

and choosing A > C we get
trg' Og.x0; t0/ � C

because P' is uniformly bounded by Lemma 4.2. This allows us to give a bound on
tr Ogg'.x0; t0/ by using

tr Ogg'.x0; t0/ �
1

.2n � 1/Š
.trg'g.x0; t0//

2n�1
!2n' .x0; t0/

O!2n.x0; t0/
� C e P'C2f .x0; t0/ � C;

see Corollary 3.3.5 in [27], where we also used Lemma 4.2 again. Since Q.x; t/ �
Q.x0; t0/, the claim follows.

Proof of Theorem 1.1. Let '.t/, for t 2 Œ0; T /, be the maximal solution to (1.3). Assume
by contradiction that T is finite. In view of Lemmas 4.2 and 4.3, Theorem 3.3, and
Remark 3.4, Q' is uniformly bounded in C k norm for every k. Hence Q' is smooth at the
time T , but then short-time existence would imply that the solution exists on Œ0; T C ı/
for some ı > 0, contradicting the maximality of T , hence T D1.

The smooth convergence of Q'.t/ to some '1 2 C1.M/ can be obtained repeat-
ing almost verbatim the argument of Gill, see Sections 6 and 7 of [16]. The technique
developed by Gill is inspired by Li and Yau [26], and is focused on studying the heat-type
equation

(4.6) Pu D �'u:

In [16], a Harnack inequality is obtained and applied to u D P' in order to show that PQ'
decays exponentially. This allows to deduce the convergence of Q' to a smooth function.
We emphasise that for us the dependence of g' from the potential ' is not the same as
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in [16], but the argument never requires to express g' in terms of the potential, and the
only thing that matters is that g' is uniformly bounded in C1.

Therefore, since u D P' satisfies (4.6) and we have C1 bounds by Remark 3.4, Q'
converges smoothly to some function '1 2 C1.M/. Since Q' solves the equation

PQ'.t/ D 2 log
.�C @@J Q'.t//

n

�n
� 2f

�
2R

M
�n^ N�n

Z
M

�
log

.�C @@J Q'.t//
n

�n
� f

�
�n^ N�n;

taking the limit as t !1 yields

.�C @@J'1/
n
D efCb�n;

where

b D
1R

M
�n^ N�n

Z
M

�
log

.�C @@J'1/
n

�n
� f

�
�n^ N�n:

In order to conclude the proof of Theorem 1.1, we have still to observe that the equa-
tion has at most one solution. Here we can work as follows: let .'; b/ and . ; c/ be two
solutions to (1.1) with b � c. We have that

@@J .' �  / ^
Pn�1
kD0�

k
' ^�

n�1�k
 

�n
D
�n' ��

n
 

�n
D .eb � ec/ef � 0:

On the left-hand side, we have a second order linear elliptic operator without free term
applied to ' � and from the maximum principle and the fact that supM 'D supM  D0,
it follows ' D  . Hence we have also b D c and uniqueness follows.

5. The adapted Chern–Ricci flow

In this section, we consider flow (1.5) on hypercomplex manifolds.
Given a compact hyperhermitian manifold .M; I; J;K; g/ and a covariant 2-tensor S ,

we denote by

S� WD
1

2
.S � JS/

its J -anti-invariant part in order to rewrite (1.5) as

P!.t/ D �Ric�.!.t//; !.0/ D !:

Analogously to the Kähler and the Hermitian case, the flow is equivalent to a scalar one:

(5.1) P'.t/ D log
.! � tRic�.!/C .i@N@'.t//�/2n

!2n
, '.0/ D 0:

Indeed, if ' solves (5.1), then

!.t/ WD ! � tRic�.!/C .i@N@'.t//�
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solves (1.5), since

P!.t/ D �Ric�.!/C .i@N@ P'.t//� D �Ric�.!/C
�
i@N@ log

!.t/2n

!2n

��
D �Ric�.!.t//:

Conversely, if !.t/ solves (1.5), then we define

'.t/ WD

Z t

0

log
!.s/2n

!2n
ds

and we have

@t .!.t/ � !CtRic�.!/ � .i@N@'.t//�/ D �Ric�.!.t//C Ric�.!/ � .i@N@ P'.t//�

D �Ric�.!.t//C Ric�.!/ �
�
i@N@ log

!.t/2n

!2n

��
D 0;

which implies
!.t/ D ! � tRic�.!/C .i@N@'.t//� for all t .

According to the Kähler [31] and the Hermitian case [33], it is quite natural to conjec-
ture the following.

Conjecture 5.1. There exists a unique maximal solution to the flow (1.5) on Œ0; T /, where

T D sup ¹t � 0 W there exists  2 C1.M/ such that ! � tRic.!/� C i.@N@ /� > 0º:

Notice that, if cBC
1 .M; I / D 0, then the flow (1.5) is equivalent to the parabolic qua-

ternionic Monge–Ampère equation (1.3). And in particular, Theorem 1.1 implies that if
.M; I; J; K/ has an underlying hyperkähler metric, then (1.5) has a long-time solution
and the conjecture in this special case is satisfied. In order to prove the conjecture in the
general case, we need a priori estimates on the solution ' to (5.1). We can observe that
these estimates can be obtained working as in the complex case, see Lemma 4.1 in [33],
except for the estimate for the second order derivatives, which we leave open.

Proposition 5.2. Let .M; I; J;K; g/ be a compact hyperhermitian manifold and let !.t/
be a solution of (1.5). Assume that there exists a uniform positive constant C such that

C�1! � !.t/ � C!:

Then Conjecture 5.1 holds.

Flow (5.1) fits in the following quite general class of parabolic problems. Let .M; g/
be a compact Riemannian manifold and let

Ft W C
2
C.M/! C 0.M/; t 2 Œ0; T /;

be a smooth family of second-order partial differential operators defined on an open subset
C 2C.M/ of C 2.M/. Assume that �Ft WC 2C.M/! C 0.M/ is strongly elliptic for every
t 2 Œ0; T /. Assume further that

Ft . C C/ D Ft . /

for every  2 C 2C.M/, t 2 Œ0; T / and constant C . Then we consider the parabolic flow

(5.2) P'.t/ D Ft .'.t//; '.0/ D 0:
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Lemma 5.3. Assume that there exists a continuous mapƒWM � Œ0; T /!R such that for
any 0 < T 0 < T and  2 C 2.M � Œ0; T 0�/,

Ft0. .t0//.x0/ � ƒ.x0; t0/; if .x0; t0/ is a maximum point of  :

Then solutions to (5.2) satisfy a uniform upper bound. Analogously, if there exists a con-
tinuous map �WM � Œ0; T /! R such that for any 0 < T 0 < T and  2 C 2.M � Œ0; T 0�/,

Ft0. .t0//.x0/ � �.x0; t0/ if .x0; t0/ is a minumum point of  ;

then solutions to (5.2) satisfy a uniform lower bound.

Proof. Let ' 2 C 2.M � Œ0; T 0// be a solution of (5.2) with T 0 < T . Fix 0 < T 00 < T 0 and
consider  .t/ WD '.t/�At , where A > maxM�Œ0;T 0�ƒ is a positive constant. Let .x0; t0/
be a maximum point of  in M � Œ0; T 00�. Since

@t .x0; t0/ D Ft0.'.t0//.x0/ � A D Ft0. .t0//.x0/ � A � ƒ.x0; t0/ � A < 0;

then t0 D 0 and, since  0 � 0,

'.x; t/ � tA � T 0A

for every .x; t/ 2M � Œ0; T 00�. Since T 00 is arbitrary, the upper bound on ' follows.
In a similar way, considering �.t/ D '.t/ C Bt , where B > �minM�Œ0;T 0� �, at a

minimum point of � in M � Œ0; T 00� we achieve a lower bound.

Lemma 5.4. Let ' 2 C 2.M � Œ0; T 0// be a solution to (5.2) uniformly bounded from
above, where 0 < T 0 < T . Assume that there exists a continuous function gW Œ0; T �! R
such that for every T 0 < T 00 < T , we have

.T 00 � t /.@tFt /.'.t//C g.t/ � .Ft /�j'.t/'.t/ > 0 for all t 2 Œ0; T 0/:

Then the first time derivative of ' satisfies a uniform lower bound. Analogously, if ' 2
C 2.M � Œ0; T 0// is a solution to (5.2) uniformly bounded from below and there exists a
continuous function hW Œ0; T �! R such that

t .@tFt /.'.t// � h.t/C .Ft /�j'.t/'.t/ � 0 for all t 2 Œ0; T 0/;

then the first time derivative of ' satisfies a uniform lower bound.

Proof. LetG be a primitive function of g such thatG.0/D 0. Fix T 0 < T 00 < T and define

Q.t/ D .T 00 � t / P'.t/C '.t/CG.t/:

Then
@tQ.t/ D .T

00
� t / R'.t/C g.t/

and
.Ft /�j'.t/Q.t/ D .T

00
� t /.Ft /�j'.t/ P'.t/C .Ft /�j'.t/ P'.t/:
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Since P'.t/ D Ft .'.t//, we have

R'.t/ D .Ft /�j'.t/ P'.t/C .@tFt /.'.t//:

Therefore, using our assumptions,

@tQ.t/ � .Ft /�j'.t/Q.t/ D .T
00
� t /.@tFt /.'.t//C g.t/ � .Ft /j�'.t/ P'.t/ > 0;

and by the maximum principle,

.T 00 � t / P'.t/C '.t/CG.t/ D Q.t/ � inf
M
Q.0/ D T 00 inf

M
P'.0/

for any t 2 Œ0; T 0/, i.e.,

.T 00 � t / P'.t/ � T 00 inf
M
P'.0/ � '.t/ �G.t/:

Since ' is uniformly bounded from above, then we have

.T 00 � t / P'.t/ � �C

for a uniform positive constant C . Hence

P'.t/ � �
C

T 00 � T 0
,

and the claim follows.
For the lower bound of P', we consider the quantity

S.t/ D t P'.t/ � '.t/ �H.t/;

where H is a primitive of h such that H.0/ D 0 and proceed analogously.

Proof of Proposition 5.2. Uniqueness of solutions to (1.5) follows from the same property
of the equivalent flow (5.1). To prove that the solution !.t/ to (1.5) exists on Œ0; T /,
it is enough to focus on the parabolic Monge–Ampère-type equation (5.1). By standard
parabolic theory, there is a unique solution '.t/ to (5.1) on a maximal time interval Œ0;T 0/.
Assume by contradiction T 0 < T . Taking

ƒ D � D log
.! � tRic�.!//2n

!2n
,

Lemma 5.3 applies to the flow (5.1). Furthermore, taking g.t/ D h.t/ D 2n, Lemma 5.4
also applies. Combining these with the assumption C�1! � !.t/ � C! and working in
the same fashion as in Theorem 3.3 and applying Theorem 5.1 in [8], we obtain uniform
estimates on '.t/ of any order on Œ0; T 0/. In particular, limt!T 0 '.x; t/ is still smooth and
short time-existence gives a contradiction, since we would then be able to extend the flow
on Œ0; T 0 C "/ for some " > 0.
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6. Remarks and further developments

From the geometric point of view, the conjecture of Alesker and Verbitsky consists in
prescribing the J -anti-invariant part of the Chern–Ricci tensor of an HKT metric in a
fixed quaternionic Bott–Chern cohomology class. The existence of Chern–Ricci flat HKT
metrics on a hypercomplex manifold implies that the canonical bundle is holomorphically
trivial. When the canonical bundle is not holomorphically trivial, it is quite natural to study
the existence of hyperhermitian metrics ! satisfying the Einsten-type condition

(6.1) Ric � JRic D �!; for some constant �;

(this research project has been suggested to the second named author by Misha Verbit-
sky) or, more generally, of hyperhermitian metrics with constant Chern-scalar curvature.
Equation (6.1) can be rewritten in terms of � as

(6.2) @J#
1;0
D ��;

where # is the Lee form. In the compact case, (6.2) forces � to be non-negative, and on
Joyce homogeneous examples [24] (which are the simplest examples of compact HKT
manifolds where the canonical bundle is not holomorphically trivial), there exists a met-
ric satisfying (6.2) (see [13]). Since � is non-negative, in analogy with the Kähler case,
we expect that it is possible to find obstructions to the existence of HKT metrics satisfy-
ing (6.2).

In order to study the existence of HKT metrics having constant Chern scalar curvature,
it is quite natural to consider the following analogue of the Calabi-flow on HKT manifolds:

(6.3) P'.t/ D s'.t/; '.0/ D 0;

where s'.t/ is the Chern-scalar curvature of �' WD �C @@J'.t/ and � is a fixed HKT
metric. When the canonical bundle is holomorphically trivial, (6.3) is the gradient flow of
the following Mabuchi-type functional:

M.'/ D

Z
M

log
�n'

�n
�n' ^

N‚ �

Z
M

h�n' ^
N‚;

where h is a @@J -potential of @J#1;0 and ‚ is a holomorphic volume form.
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