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Convex ancient solutions
to anisotropic curve shortening flow

Theodora Bourni and Benjamin Richards

Abstract. We construct a translating solution to anisotropic curve shortening flow
and show that for a given anisotropic factor gWS1 ! RC, and a given direction and
speed, this translator is unique. We then construct an ancient compact solution to
anisotropic curve shortening flow, and show that this solution, along with the appro-
priate translating solution, are the unique solutions to anisotropic curve shortening
flow that lie in a slab of a given width, and in no smaller slab.

1. Introduction

In what follows, M 1 will denote a 1-dimensional manifold, generally either R or S1,
and I will be some interval of the real line, possibly infinite. We say that a family of
curves X.u; t/WM 1 � I ! R2 is a solution to anisotropic curve shortening flow (ACSF),
with respect to the factor g, if

@X

@t
.u; t/ D �g.N/�.u; t/N.u; t/; for all .u; t/ 2M 1

� I;

where g is some smooth, positive function defined on S1, N.u; t/ is a choice of normal
vector, and �.u; t/ is the curvature with respect to this normal. We will require that our
curves be embedded and strictly convex, i.e., that � > 0. We will choose N to be pointing
towards the non-convex region of the plane. Our sign convention is such that a circle has
positive curvature with respect to the outward pointing unit normal.

ACSF is a generalization of curve shortening flow (CSF), introduced by Taylor [9]
and Angenent–Gurtin [3] as a physical model for certain crystal interfaces. Gage [7] stud-
ied the case where g is �-periodic as a way to study regular curve shortening flow on
the Euclidean plane equipped with a Minkowski norm, and proved that there is a unique
self-similar solution to ACSF when g exhibits this particular symmetry. While it has been
proved that self-similar solutions exist without this symmetry [8], we do not have unique-
ness in this situation, as demonstrated in [10].
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We say that X.u; t/ is an ancient solution if I D .�1; a/ for some a 2 R, and we
say that it is an eternal solution if I D R. The study of ancient solutions for CSF arose
from the investigation of singularity formation, as after normalization, the limiting shape
of a curve approaching a singularity is that of an ancient solution. Thus, the classifcation
of all ancient solutions is a useful tool in the study of the behavior of a flow. In the case
of CSF, compact, convex ancient solutions were classified by Daskalopoulos–Hamilton–
Sesum [6], and this classification was extended to all convex cuves by Bourni–Langford–
Tinaglia [5]. Classification of convex ancient solutions for curves solving a flow based on
the curvature raised to certain powers was done by Bourni et. al. [4].

In this paper, we will adapt and extend some of the methods used in these previous
works in order to construct convex ancient solutions to ACSF that lie within a slab of a
given width. We then show that the solutions constructed here are the only such ancient
solutions to ACSF. This makes up the content of our main result.

Theorem 1.1. Let gWS1!RC be a smooth and strictly positive function, let v 2 S1, and
let w 2 RC. There exists a unique, up to translation, compact ancient solution to ACSF
with respect to g that lies within a slab parallel to v of width w, and in no smaller slab.
There exist two, up to translation, translating solutions to ACSF with respect to g that lie
within a slab parallel to v of width w (and in no smaller slab), one that travels in the v
direction, and one that travels in the �v direction.

2. Preliminaries

In this section, we fix some notation and calculate some useful evolution equations. These
results can be found for the anisotropic case, with which we are concerned, in [8], or in
more general cases in [1]. Nonetheless, we include them here for the convenience of the
reader.

We will let � D �.u; t/ be the tangent-angle, that is, the angle that the tangent to
X.M � I / at X.u; t/ makes with the x-axis. We will denote this tangent by T.u; t/, and
we parameterize our curves counterclockwise. Thus we have that

T D .cos �; sin �/ and N D .sin �;� cos �/:

We will usually use � as the argument for g, and we will often abuse notation and fail to
write the arguments at all. We will use u for an arbitrary parameterization, and reserve the
use of s for arc-length parameterization.

We have the Frenet–Serret formulas
@T

@s
D ��N;

@N

@s
D �T:

In general, the arc-length parametrization s will depend on time t . Thus, given a func-
tion f defined on our family of curves, we have the following commutator formula:

@2f

@s@t
D
@2f

@t@s
C g�2

@f

@s
�

Moving forward, we will denote partial derivatives using subscripts, unless doing so would
be made particularly annoying by the existence of other indices.
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Proposition 2.1. We have the following evolution equations for a family of curves that
satisfy ACSF :

Tt D �.g�/sN; Nt D .g�/s T; �t D .g�/s; �t D .g�/ss C g�
3:

When our curves are strictly convex, we may parametrize our curves with respect to � .
When we do so, we will let t D � , and take our partial derivatives with � fixed instead
of u or s. With this parametrization, we have

�� D �
2..g�/�� C g�/:

If our curve is compact, and the area contained within the curve is denoted by A.t/,
we have

(2.1) A.t/ D �

Z
S1
g.�/ d�:

Proof. The first four evolution equations follow directly from the commutator formula
and the Frenet–Serret formulas. The fifth follows by the chain rule, for we have

�t D �� C ���t D �� C ��� .g�/s D �� C ��� .g�/� ;

while
.g�/ss D �.�.g�/� /� D ��� .g�/� C �

2.g�/�� :

Substitution of these two into the expression for �t above gives us our claim.
The final evolution equation is given by direct computation and Green’s formula for

the area inside of a closed curve.

We also have a Harnack type inequality for curves undergoing ACSF.

Proposition 2.2. For a solution to ACSF defined on Œ˛; T /, for all � 2 .˛; T /, we have

(i) �..g�/�� C g�/C
1

2.��˛/
� 0,

(ii) �
p
� � ˛ is increasing with respect to � .

Proof. The proof of (i) follows that in the textbook by Andrews et. al. [2]. Defining a
function

Q D
.g�/�

g�
D
��

�
D �..g�/�� C g�/;

we have that its evolution is given by

Q� D g�
2Q�� C 2�.g�/�Q� C 2Q

2:

The result then follows by an ODE comparison principle with the solution q.�/ of Q� D
2Q2:

q.t/ D �
1

2.� � ˛/
�

For the proof of (ii), note that (i) and the evolution of � given in Proposition 2.1 imply
that

.log �/� C .log
p
� � ˛/� � 0:

Since the logarithm is an increasing function, it then follows that �
p
� � ˛ must also be

increasing with respect to � .
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As a useful corollary, we have that with a strictly convex ancient solution to ACSF, the
curvature as a function of the tangent angle is nondecreasing with respect to time.

Corollary 2.3. If X WM � I ! R2 is a strictly convex ancient solution to ACSF, then
k� � 0 at all points of the solution.

Proof. We have that (i) from Proposition 2.2 is true for all ˛ for which the solution is
defined on Œ˛;T /. Since the solution is ancient, the solution is defined for all ˛ 2 .�1;T /,
and by taking ˛ ! �1, we have that

Q D
��

�
� 0:

3. Translators

We now look at the existence of translators under this flow. Suppose we have a unit vector
v 2 S1, and we take  to be the angle v makes with the x-axis, i.e., v D .cos ; sin /. If
we had a family of curves that moved by translation along the direction v under the flow,
then we could write

Xt D .cos ; sin / D �g�NCˆT;

where the tangential term is a result of reparameterizing. Then we have

�g�DhXt ;NiD h.cos ;sin /;.sin�;�cos�/iD cos sin� � sin cos� D sin.�� /:

Solving for � gives us

�.�/ D
sin. � �/
g.�/

�

To find an initial curve for this translating solution, we write

(3.1) x.�/D x
�
 �

�

2

�
C

Z �

 ��=2

cos.u/
�

duD x
�
 �

�

2

�
C

Z �

 ��=2

cos.u/g.u/
sin. � u/

du;

and

(3.2) y.�/D y
�
 �

�

2

�
C

Z �

 ��=2

sin.u/
�

duD y
�
 �

�

2

�
C

Z �

 ��=2

sin.u/g.u/
sin. � u/

du:

For convenience, we will write x0 D x. � �=2/ and y0 D y. � �=2/. Using (3.1)
and (3.2), we can show that the translator lives in a slab of a given width, which we will
denote wvg . Taking v? D .sin ;� cos;  /, we have that

h.x.�/; y.�//; v?i D h.x.�/; y.�//; .sin ;� cos /i

D x0 sin � y0 cos C
Z �

 ��=2

.cos.u/ sin. / � sin.u/ cos. //g.u/
sin. � u/

du

D x0 cos C y0 sin C
Z �

 ��=2

g.u/ du:
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Performing similar calculations on �v? and combining, we find that

(3.3) wvg D

Z  

 ��

g.u/ du:

Since g is smooth, this integral is finite, and thus our widths are bounded.
We also note that the translator is asymptotic to straight lines in the v direction as

� !  or � !  � � . To see this, we take inner products and have

h.x.�/; y.�//; vi D h.x.�/; y.�//; .cos ; sin /i

D x0 cos C y0 sin C
Z �

 ��=2

.cos.u/ cos. /C sin.u/ sin. //g.u/
sin. � u/

du

D x0 cos C y0 sin C
Z �

 ��=2

cot. � u/g.u/ du

� x0 cos C y0 sin � .ming/ log.sin. � �//;

and note that the right-hand tends toC1 as � !  or � !  � � .
Note that if v D e2, we have  D �=2, and so (3.1) and (3.2) then simplify to

x.�/ D x.0/C

Z �

0

g.u/ du and y.�/ D y.0/C

Z �

0

tan.u/g.u/ du:

In the case where v D e2, we will denote we2g by wg . Note that for g � 1, and x.0/D
y.0/ D 0, our construction recovers the famous grim reaper solution for CSF (see, for
example, Section 2.3.1 in [2]).

Proposition 3.1. Given a smooth, strictly positive function gWS1!R and a vector v2S1,
there exists a translating solution to ACSF that travels in the direction of v with speed 1.
Furthermore, up to translations in R2 and time, this translator is unique.

Proof. If we let �g;v be the initial curve defined by (3.1) and (3.2) with vD .cos ; sin /,
the family of curves given by

X.�; t / D �g;v C tv

is a translating solution to ACSF. Note by the construction in the beginning of this section,
any translating solution must be of this form, up to choice of initial values for x. � �=2/
and y. � �=2/ in (3.1) and (3.2), respectively.

In what follows, we will mainly concern ourselves with translators in the e2 and �e2
directions, though by an orthogonal change of coordinates, the results will follow for
translators in the v and �v directions as well.

Given a translator moving in the e2 direction at speed 1, we have by (3.3) that

(3.4) wg D

Z �=2

��=2

g.u/ du:

Given a vertical slab of arbitrary width w, we can find a translator moving in the e2
direction of width w by having it move in the e2 direction at speed wg=w. This gives us
the following.
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Corollary 3.2. Given the hypotheses of the previous proposition, and a slab of width w
parallel to a vector v 2 S1, there exists a unique translating solution to ACSF that lies in
that slab, and in no smaller slab. Furthermore, this translator travels with speed wvg=w

4. Compact solutions

This section is dedicated to proving the following theorem.

Theorem 4.1. Given a smooth, strictly positive function gWS1!R, and a slab of widthw
parallel to a vector v 2 S1, there exists a compact ancient solution to ACSF with respect
to g that lies in the slab, and in no smaller slab.

By the reasoning in previous sections, it suffices to prove this theorem for v D e2 and
w D wg , with wg as in 3.4.

Given a smooth function gW S1 ! RC, and using the construction developed in Sec-
tion 3, we will denote by GC the t D 0 timeslice of the translator that moves at speed 1
in the e2 direction as in Proposition 3.1, with y.0/ D 0 and with x.0/ chosen so that the
curve is ‘centered’ about the y-axis, i.e., x.0/ will be such that

(4.1) �

�
x.0/ �

Z ��=2
0

g.u/ du
�
D x.0/C

Z �=2

0

g.u/ du:

We will denote by ¹GCt ºt2.�1;1/ the translating solution to ACSF that moves at
speed 1 in the e2 direction such that GC0 D GC, and as above, we denote by wg the
width of this translator.

The idea of constructing an ancient solution is as follows. We construct an appropri-
ate sequence of “old-but-not-ancient" solutions (these are flows that live in longer and
longer time intervals) and show that one can extract a limit. In [4], the initial curves of the
sequence were constructed by considering timeslices of the translating solutions further
and further in the past and reflecting these across the x-axis to create a compact, convex
curve. As our flow depends heavily on the direction of the normal vector, this method
will not work for us, and we must adapt our procedure to construct the sequence of flows.
After constructing these so-called ‘old-but-not-ancient’ solutions, we wish to take a limit
of the corresponding flows. We will show that this limit does, in fact, exist, and that it is
an ancient solution to ACSF.

To construct the initial curves of the “old-but-not-ancient" solutions, instead of reflect-
ing our translator, we will join together translators moving in the e2 direction with those
moving in the �e2 direction. One issue that immediately arises is that those translators
may lie in slabs of different width. In order to resolve this issue, we require that our trans-
lator in the �e2 direction moves at a speed � , with � chosen so that it lives in a slab of
widthwg , and thus the curves match up appropriately. Note that in the construction in Sec-
tion 3, this corresponds to v D �.cos 3�

2
; sin 3�

2
/, and so by (3.1) and (3.2), we have the

following expression for the initial curve of the translator that moves in the �e2 direction:

x.�/ D x.�/ �
1

�

Z �

�

g.u/ du and y.�/ D y.�/ �
1

�

Z �

�

g.u/ tan.u/ du:
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We then have that the width of this translator is 1
�

R 3�=2
�=2

g.u/ du, and we can solve for �
to determine the appropriate speed. In particular, we pick � so that

1

�

Z 3�=2

�=2

g.u/ du D

Z �=2

��=2

g.u/ du:

Similar to the above, we will denote by G� the initial curve for the translator that
moves at speed � in the �e2 direction, with y.0/D 0 and x.0/ chosen so that the curve is
centered as in (4.1), and we have ¹G�t ºt2.�1;1/ as the corresponding translating solution
to ACSF in the �e2 direction with speed � and with G�0 D G

�.
Now, for R > 0 we wish to construct a compact curve by taking some combination

of GC
�R and G�

�R. Note, however, that even though we have constructed the translators to
have the same width, we have no guarantee that they will intersect the x-axis at the same
points for any given R (and, indeed, they almost certainly will not). So we cannot just
take the intersections of our timeslice curves with the respective half-planes. Instead, we
will take the union of both curves, and discard the noncompact pieces of the curves after
their two intersections. We will denote the resulting compact curve by GR. So GR is the
boundary of the compact convex region bounded by G˙

�R.
We further note that while the resulting curve is not smooth, as a consequence of

a theorem by Andrews (Theorem II2.8 in [1]), there exists a smooth solution to ACSF
whose initial curve is GR. We will translate by time so that for every R the flow becomes
extinct at t D 0, and will denote these flows by

(4.2) ¹GRt ºt2.tR;0/; with lim
t#tR

GRt D G
R;

with the limit being in the C 0-topology.

Proposition 4.2. LetAR.0/ be the area bounded by the curveGR. Then there exists a con-
stantC , depending only on g and � , such thatwg.RC�R/�C � AR.0/ � wg.RC�R/.

Proof. Let P be the rectangle ¹jxj �wgº � ¹�R � y � �Rº. Note that we haveGR � P ,
and thus AR.0/ � wg.RC �R/.

To obtain the lower bound, we will estimate the areas between the two translators and
the vertical edges ofP . For the area between the curveGC

�R and the rectangle, we note that
this area is smaller than the area between GC and the two lines defined by x D ˙wg=2
in the halfplane ¹y � 0º. This is given byZ �=2

��=2

g.u/

Z �

0

g.u/ tan.u/ du d�;

and we haveZ �=2

��=2

g.u/

Z �

0

g.u/ tan.u/ dud� � kgk2
L1.S1/

Z �=2

��=2

Z �

0

tan.u/ du d�

D kgk2
L1.S1/

� log 2:

A similar calculation for the area between G�
�R and the rectangle gives us an upper

bound of ��2kgk2
L1.S1/

� log2, and this gives us our desired lower bound for AR.0/ with
C D kgk2

L1.S1/
.1C ��2/� log 2:
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We define the horizontal reach hR of the curve GR to be the distance between the two
vertical supporting lines of the curve. That is, hR is such that GR is contained in a vertical
slab of width hR but in no thinner vertical slab.

Proposition 4.3. There exists a constant C , dependent on g and � , such that for all R 2
.�1; 0/, we have

hR � wg � 2C arcsin.C=R/:

Proof. What we will find are inner bounds for the intersection points of GC
�R and G�

�R

with the x-axis. Note that even though there is no reason to believe that the intersec-
tion points are symmetric about the y-axis, our inner bounds will be. Thus, the bounds
for GC

�R and G�
�R will necessarily be nested (one set of bounds will lie within the other

set), and the innermost set will therefore serve as a bound for all four intersection points.
The supporting hyperplanes are certainly further from the y-axis than the corresponding
intersection point of at least one of GC

�R and G�
�R (and exactly one unless the two curves

meet at the x-axis), so our result will follow.
Let ��R < �

C

R be the tangent angles for the points at which GC
�R intersects the x-axis.

Then note that we have

R D

Z �CR

0

g.u/ tan.u/ du � kgkL1.S1/ ln.sec.�CR // � kgkL1.S1/ sec.�CR /:

Hence sec.�CR /�R=kgkL1.S
1/. A similar calculation gives the same bound for sec.��1R /.

Then note thatZ �CR

��R

g.u/ du D wg �

Z ��R

��=2

g.u/ du �

Z �=2

�CR

g.u/ du

� wg � kgkL1.S1/

�
��R C

�

2

�
� kgkL1.S1/

��
2
� �CR

�
D wg � kgkL1.S1/ arccsc.sec.��R // � kgkL1.S1/ arccsc.sec.�CR //

� wg � kgkL1.S1 arccsc
� R

kgkL1.S1/

�
� kgkL1.S1/ arccsc

� R

kgkL1S1

�
D wg � 2kgkL1.S1/ arcsin

�kgkL1.S1/
R

�
:

If we define  �R and  CR to be the tangent angles for the intersection points for G�
�R,

a similar process gives usZ  CR

 �R

g.u/ � wg � 2
kgkL1.S1/

�
arcsin

�kgkL1.S1/
�R

�
:

The claim then follows, with C D kgkL1.S1/ or C D kgkL1.S1/=� , depending on the
value of � .

Similar to our definition of hR, we call `R the vertical reach of the curve GR, and
define it to be the distance between the horizontal supporting lines of the curve. We note
that, by construction, we have `R.0/ D .1C �/R. We call AR.t/, hR.t/ and `R.t/ the
enclosed area, horizontal reach and vertical reach with respect to time of the flow defined
in (4.2), respectively.
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We now want to find bounds on AR, hR and `R as the curve evolves under ACSF.

Proposition 4.4. Let C be the constant from Proposition 4.2. We have

(i) AR.t/ D �twg.1C �/.

(ii) �R � tR � �RC C
wg .�C1/

�

(iii) �t .1C �/ � `R.t/ � �t .1C �/C 2C
wg .1C�/

�

(iv) wg � C
�t.1C�/CC=wg

� hR.t/ � wg ,

(v) �.�; t/ � 2.min�2S1 g.�//Œ.1C �/ � C�=t�; for all t > 3
4
tR,

where C� D wg C 2C
wt .1C�/

�

Proof. We find (i) by integrating the evolution of AR.t/ from t to 0, and we obtain

AR.t/ D �t

Z
S1
g.u/ du D �t

� Z �=2

��=2

g.u/ duC

Z 3�=2

�=2

g.u/ du
�
D �t .wg C �wg/:

The inequalities in (ii) follow from (i) and the estimates in Proposition 4.2.
To prove the second inequality for (iii), let ¹�t .�/ºt2.�1;1/ be the family of curves,

parametrized by tangent angle, that solves ACSF by translating at speed 1 in the e2 direc-
tion, and such that �t \ ¹x � 0º ¤ ; for all t � 0 and �t \ ¹x � 0º D ; for all t > 0. We
have for all " > 0 that ��R�".0/ < GR.0/ and ��R�" \GR D ;. Thus, by the avoidance
principle, for all t 2 .tR; 0/ we have ��R�"C.t�tr / \ G

R
t D ;. Using a similar argument

with a translator traveling in the �e2 direction at speed � , taking "! 0, and using the
estimate for tR in (ii) gives the inequality.

The second part of (iv) is clear, since the initial curve lies in a slab of width wg . The
first part of (iv) follows from noting that we must have AR.t/ � hR.t/`R.t/ by simple
geometry, then using the second inequality in (iii) and the inequality in (ii). The first
inequality in (iii) follows similarly using the first part of (iv).

To prove (v), let �.�; t/D hGR.�; t/;N.�; t/i be the support function. By the convexity
of the curve, we have `2.t/C h2.t//1=2 � �.�; t/ for all � 2 S1. By the evolution of the
curve, we have � @

@t
�.�; t/ D g.�/�.�; t/. Then, by (ii) of Proposition 2.2, we have

�.�; t/ D

Z 0

t

g.�/�.�; �/ d� D

Z 0

t

g.�/�.�; �/
.� � tR/

1=2

.� � tR/1=2
d�

� g.�/�.�; t/.t � tR/
1=2

Z 0

t

1

.� � tR/1=2
d�

D g.�/�.�; t/.t � tR/
�
2..�tR/

1=2
� .t � tR/

1=2/
�

D g.�/�.�; t/.t � tR/
1=2 �2t

.�tR/1=2 C .t � tR/1=2

� �g.�/�.�; t/ t
.�tR/

1=2

2.�tR/1=2
D �

1

2
g.�/�.�; t/ t:

This, and our bounds for `.t/ and h.t/, give us our bound for �.
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With these bounds, particularly the one on �.�; t/, and by the parabolic evolution �t ,
we have bounds on higher derivatives of � as well. Thus, in the flavor of Theorem 11.11
in [2], taking R !1, and passing to a subsequence if necessary, we obtain a limiting
ancient solution to ACSF lying in a slab of width wg , and in no smaller slab.

5. Uniqueness

In this section, we prove that the only convex ancient solutions that live in a given slab
are the translators constructed in Section 3, and the ancient solution constructed in Sec-
tion 4. A key result that we will need involves the asymptotic behavior of such solutions as
t ! �1. In particular, we show that the asymptotic behavior of convex ancient solutions
living in a slab of width wg , and in no smaller slab, is that of translators of width wg in
the appropriate direction. This was proved for CSF in the paper by Bourni, Langford, and
Tinaglia [5]. For the proofs of the statements used in [5], one can also follow the book by
Andrews et. al. [2].

We define … to be the slab … D ¹.x; y/ W jxj < wg=2º, and we let ¹�tºt2.�1;0/ be
a convex ancient solution, parametrized by tangent angle, that lies in the slab …, and in
no smaller slab. Note that in the compact case, we have that the turning angle � takes on
values in all of S1, while in the noncompact case we either have � 2 .��=2; �=2/ or we
have � 2 .�=2; 3�=2/:

Define p�.t/ D �t .0/ when 0 is in the domain of the turning angle, and similarly
define pC.t/D �t .�/. By translating in space and time, we can arrange it so that we have
y.p˙.0// D 0 in the corresponding noncompact cases, and limt!0� y.p˙.t// D 0 in the
compact case, where y.p˙.t// WD hp˙.0/; e2i.

As in Section 4 above, we let ¹GCt ºt2.�1;1/ be the translator moving at speed 1 in
the positive e2 direction, and we let ¹G�t ºt2.�1;1/ be the translator moving at speed � in
the negative e2 direction, so that they both lie in the slab …, and in no smaller slab.

As a preliminary result, we first have a slight adaptation of a result from [5] (see
also [2]), the proof of which follows exactly as in the g D 1 case (CSF) considered in [5],
so we omit it here.

Lemma 5.1. The translated family ¹�Cs;tºt2.�1;�s/ defined by

�Cs;t D �tCs � p�.s/

converges locally uniformly in the smooth topology as s ! �1 to the translator

¹r�Gr�2� tºt2.�1;1/;

where
r� D lim

s!�1
.g.0/�.0; s//�1:

Similarly, the translated family ¹��s;tºt2.�1;�s/ defined by

��s;t D �tCs � pC.s/
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converges locally uniformly in the smooth topology as s !1 to the translator

¹rCGr�2C tºt2.�1;1/;

where
rC D � lim

s!�1
.g.�/�.�; s//�1:

Additionally, the solution ¹�tºt2.�1;a/, where a D 0 in the compact case and a D1
in the noncompact case, sweeps out all of ….

Since our convex ancient solutions lie in the slab …, it is clear that we have r˙ � 1.
We now show that we have r˙ D 1, or in other words, that the asymptotic translators are
of maximal width. The idea, again following and adapting the proof in [5], is to estimate
the area enclosed by the ancient solution by inscribed trapezia, and then show that the rate
of growth of the enclosed area of the solution as we take t ! �1 would be too great
if r < 1.

Lemma 5.2. The asymptotic translators are of maximal width, i.e., r˙ D 1.

Proof. For notational convenience, let ��1D lims!�1 �.0; s/ and �C1D lims!�1 �.�;s/

(both of which exist due to Proposition 2.2). We have, by Propositions 2.2 and 4.4, that

�y.p�.t// � �.g.0/�
�
1/ t D �r

�1
� t

and
y.pC.t// � �.g.�/�

C
1/ t D ��r

�1
C t:

First, suppose that ¹�tºt2.�1;1/ is noncompact with turning angle � 2 .��=2;�=2/.
Let A.t/ and B.t/ be two points on �t such that y.A.t// D y.B.t// D 0 and x.A.t// >
x.B.t//. Let A�.t/ be the area enclosed by �t and the x-axis. We then have

�A0�.t/ D

Z �.A.t//

�.B.t//

g.�/ d� � wg :

Integrating from �t to 0, we have A�.t/ � �wg t . Let ı 2 .0; 1/. Since the ancient
solution sweeps out the whole slab…, we can find some tı < 0 such that wg � x.A.t//�
x.B.t// � wg � ı for all t < tı . Taking tı smaller if necessary, we can also find points
q˙.t/2�t and a constantCı such that y.qC.t//D y.q�.t//, whilewgr� � ı < x.qC.t//
�x.q�.t// < wgr� and 0 < y.q˙.t// � y.p�.t// < Cı .

The area enclosed by �t and the x-axis is bounded below by the area of the inscribed
trapezoid with vertices A.t/; B.t/ and q˙.t/. So we have

�wg t � A�.t/ �
1

2
.wgr� C wg � 2ı/.�r

�1
� t � Cı/:

Multiplying both sides by 2r� and rearranging, we get

Cı r�.wg.r� C 1/ � 2ı/ � �t .wg.1 � r�/ � 2ı/
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for all t < tı . Taking t ! �1, we have that

wg.1 � r�/ � 2ı � 0

for ı 2 .0; 1/. Taking ı ! 0 gives us that r� D 1.
Taking the other noncompact case, i.e., the case in which the turning angle runs

from �=2 to 3�=2, we have �A0C.t/ � �wg and so AC.t/ � ��wg t . Taking ı 2 .0; 1/
and defining q˙ and a new constant Cı similarly as above, we get

��wg t � A�.t/ �
1

2
.wg rC C wg � 2ı/.��r

�1
C t � Cı/:

Factoring out a � , we proceed exactly as in the first noncompact case to get rC D 1. The
compact case is proved by bounding the area by the sum of the two trapezia to get the
inequality

�.1C �/wg t ��
1

2
.wg r�Cwg � 2ı/.r

�1
� t CCı/�

1

2
.wgrCCwg�2ı/.�r

�1
C tCCı/

for all t < tı . Carrying out similar calculations as above, we have that�
� wg.r

�1
� C �r

�1
C � .1C �// � 2ı .r

�1
� C �r

�1
C /

�
t � Œwg.r� C rC C 2/ � 4ı�Cı

for all t < tı . Taking t ! �1 implies that

wg.r
�1
� C �r

�1
C � .1C �// � 2ı .r

�1
� C �r

�1
C /

for all ı > 0. Taking ı ! 0 then gives us the result for the compact case.

We are now ready to prove our main theorem, which was stated in the introduction,
and which we restate now for convenience of the reader.

Theorem 1.1. Let gWS1!RC be a smooth and strictly positive function, let v 2 S1, and
let w 2 RC. There exists a unique, up to translation, compact ancient solution to ACSF
with respect to g that lies within a slab parallel to v of width w, and in no smaller slab.
There exist two, up to translation, translating solutions to ACSF with respect to g that lie
within a slab parallel to v of width w, and in no smaller slab, one that travels in the v
direction, and one that travels in the �v direction.

Proof. Once again, we prove that this holds for w D wg and v D e2. The proof is an
adaptation of that found in Bourni et. al. [4], and proceeds as follows.

We shall let ¹Gtºt2.�1;0/ be the solution constructed in Section 4. Let ¹�tºt2.�1;0/
be any other compact, convex ancient solution to ACSF that lies in the vertical slab of
width wg , and in no smaller slab. Parameterize both by their respective tangent angles and
define the quantities

L.t/ D �h�t .0/; e2i C h�t .�/; e2i and L0.t/ D �hGt .0/; e2i C hGt .�/; e2i:

Note that L0.t/ corresponds to `.t/ in Section 4. Since the backwards limit of our
ancient solutions are both translators, curvature is nondecreasing for ancient solutions to
ACSF, and g.0/�.0; t/ � 1 and g.�/�.�; t/ � � for each of our solutions, we have that

d

dt
.L.t/C t .1C �// � 0;
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so when we take a limit t ! �1, the limit exists (though it may be infinite). Let L D
limt!1 L.t/, and let L0 D limt!1 L0.t/, and note that by Proposition 4.4 we have
that L0 <1. Note also that �h�t .0/; e2i C t and h�t .�/; e2i C �t both have (possibly
infinite) limits as t !1, while �hGt .0/; e2i C t and hGt .�/; e2i C �t have finite limits
as t !1.

Our first task is to show that L D L0. To that end, suppose instead that L > L0. Let
z�"t D�t j�2.��;0/ � "e1, and let zGt DGt j�2.��;0/. SinceL>L0, there exists some t0 such
that L.t/ > L0.t/ for all t < t0. Thanks to the existence of the limits above, and the fact
that these limits are finite, in the case of our constructed solution ¹Gtºt2.�1;0/, we can
find some constant c such that y.�t .�//C c > y.Gt .�// and y.�t .0//C c < y.Gt .0//
for all < t0. Further, since both solutions must converge at their tips to the appropriate
translating solutions, there exists some t" < t0 such that z�"t" C ce2 \ zGt" D ;. By the
maximum principle, we then have z�"t C ce2 \ zGt D ; for all t 2 .t"; t0/. Taking "! 0

gives us thatz�t0 C ce2 lies outside zGt0 .
We then repeat this argument, restricting to � 2 .0; �/ to get that �t0 C ce2 lies out-

sideGt0 on that side as well, and so,Gt0 lies within �t0 . By the strong maximum principle,
they cannot intersect at all, but this contradicts the fact that they both expire at time t D 0.
Thus we must have L D L0.

Now, for � > 0, define ��t to be the translation of � in time by � , i.e., ��t D �t�� .
Then note that L� > L D L0, and we can repeat the above argument to show that ��t lies
outside of Gt for all t . Taking � ! 0 gives that �t lies outside of Gt for all t , but as they
both expire at t D 0, this can only happen if �t and Gt coincide.

The proof that the translator is the unique noncompact solution that lies in a slab
parallel to v of width w follows similarly, with the additional observation that

lim
�!�=2C

z�"t .�/ < �
wg

2

for all " > 0 and for all time t . This gives us that the distance between the ends of our
solutions is strictly positive, which allows us to use the avoidance principle despite both
curves involved being noncompact, as the principle holds for any compact subset of our
solutions.
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