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On the spaces of .d C dc/-harmonic forms
and .d C dƒ/-harmonic forms on almost

Hermitian manifolds and complex surfaces

Lorenzo Sillari and Adriano Tomassini

Abstract. In this paper, we study the spaces of .d C d c/-harmonic forms and of
.d C dƒ/-harmonic forms, a natural generalization of the spaces of Bott–Chern har-
monic forms (respectively, symplectic harmonic forms) from complex (respectively,
symplectic) manifolds to almost Hermitian manifolds. We apply the same techniques
to compact complex surfaces, computing their Bott–Chern and Aeppli numbers and
their spaces of .d C dƒ/-harmonic forms. We give several applications to compact
quotients of Lie groups by a lattice.

1. Introduction

Let .M; J / be a compact complex manifold and set d c WD J�1dJ . Fix a J -compatible
Hermitian metric and consider the Dolbeault Laplacian

�N@ WD
N@N@� C N@� N@;

the Bott–Chern Laplacian

�dCdc WD dd c.dd c/�C.dd c/�dd c
Cd�d c.d�d c/�C.d�d c/�d�d c

Cd�dC.d c/�d c ;

and the Aeppli Laplacian

�ddc WD dd c.dd c/� C .dd c/�dd c
C d.d c/�.d.d c/�/� C .d.d c/�/�d.d c/�

C dd� C d c.d c/�

or, equivalently, the Laplacians �@CN@ and �@N@, obtained replacing d and d c by @ and N@
(the use of our notation instead of the usual �N@, �BC and �A is to have a notation uni-
form with the one adopted for almost Hermitian manifolds). Denote by H

p;q
N@

, H
p;q

dCdc
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and H
p;q

ddc their respective kernels computed on .p; q/-forms. By Hodge theory [25] and
the compactness assumption, they are finite-dimensional vector spaces over C, whose
respective dimensions hp;q

N@
, hp;q

dCdc and hp;q

ddc , which in principle depend on the choice
of metric, are actually invariants of the complex structure thanks to isomorphisms with
Dolbeault, Bott–Chern and Aeppli cohomologies

H
p;q
N@
Š H

p;q
N@
; H

p;q
BC Š H

p;q

dCdc and H
p;q
A Š H

p;q

ddc :

A similar theory has been developed by Tseng and Yau [31,32] for symplectic manifolds.
If .M;!/ is a compact symplectic manifold, let dƒ be the symplectic adjoint of d . Then,
fixed a compatible metric, consider the symplectic Laplacians �dCdƒ and �ddƒ . Their
kernels H k

dCdƒ and H k
ddƒ , computed on complex k-forms, are finite-dimensional vec-

tor spaces over C of dimensions hk
dCdƒ and hk

ddƒ (cf. Remark 3.4). The importance of
the numbers hk

dCdc , respectively hk
dCdƒ , in the complex, respectively symplectic, case is

paramount and well-established. For instance, they satisfy Frölicher-type inequalities and
characterize the dd c-lemma, respectively the ddƒ-lemma [2, 3].

Let now .M; J; !; g/ be a compact almost Hermitian manifold, that is, a manifold
endowed with an almost complex structure J , a J -compatible metric g, and a non-degene-
rate 2-form ! (not necessarily d -closed) such that !.J �; �/ D g.�; �/. We refer to ! as an
almost symplectic structure.

Let P 2 ¹N@; @C N@; @N@; d C d c ; dd c ; d C dƒ; ddƒº. As observed by Hirzebruch [17]
for P D N@, by Piovani and the second author [23] for P D @ C N@ and P D @N@, by the
authors of this paper in [27] for P D d C d c and P D dd c , and in Proposition 3.7 for
P D d C dƒ and P D ddƒ, the Laplacian �P is still elliptic and self-adjoint, even
without assuming that J is a complex structure or d! D 0. Hence, its kernels computed
on .p;q/ or k-forms, H

p;q
P and H k

P , the so-called spaces of P -harmonic forms, are finite-
dimensional vector spaces over C of dimensions hp;q

P and hk
P . In view of the isomorphism

valid in the complex case, Kodaira and Spencer posed the following problem for hp;q
N@

.

Kodaira–Spencer’s Problem (Kodaira–Spencer, see [17], Problem 20). Is hp;q
N@

indepen-
dent of the choice of (almost) Hermitian structure? If not, give some other definition
of the hp;q

N@
which depends only on the almost complex structure and which generalizes

the hp;q
N@

of a complex manifold.

A negative answer was given by Holt and Zhang almost 70 years later [20]. Since hp;q
N@

depends on the choice of metric, we ask the following question, which appears as a natural
extension of Kodaira–Spencer’s problem:

Is hp;q
P =hk

P independent of the choice of almost Hermitian metric?

Much of the present paper is devoted to investigating the metric-independence of hk
P

when P D d C d c , P D dd c , P D d C dƒ and P D ddƒ.
This paper consists of two main parts. In the first part (Sections 3, 4, 5, and 6), we

study the spaces of .d C d c/-harmonic and .d C dƒ/-harmonic forms on compact almost
Hermitian manifolds. We are mainly interested in understanding the properties of H k

dCdc

and H k
dCdƒ , in determining to which extent the numbers hk

dCdc and hk
dCdƒ are inde-

pendent of the choice of metric and thus define an almost complex, respectively almost
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symplectic, invariant, and in establishing relations among hk
dCdc and hk

dCdƒ , and topo-
logical invariants, like the Betti numbers.

For the basic properties of H k
dCdc , we refer the reader to [27] (see also Section 4).

Here we show that similar properties hold also for H k
dCdƒ . For what concerns the metric

independence of hk
dCdc and hk

dCdƒ , the most significant results are obtained in dimen-
sion 4 for k D 2, where we prove two direct sum decompositions (Theorems 4.4 and 5.3).

Theorem A. Let .M; J; !; g/ be an almost Hermitian 4-manifold and let . Q!; Qg/ be a
Gauduchon metric in the same conformal class of .!; g/. Then

• for a suitable 2-form 0, there is a decomposition

H 2
dCdc D Ch Q! C 0i ˚H�g ˚H

.2;0/.0;2/
J :

In particular, h2
dCdc D b

� C 1C h�J , and it is metric independent.

• There is a decomposition

H 2
dCdƒ D

´
Ch!i ˚PH 2

dCdƒ if d! D 0;
PH 2

dCdƒ if d! ¤ 0;

where PH 2
dCdƒ denotes the space of .d C dƒ/-harmonic primitive 2-forms.

Assuming that either J is complex or d! D 0, we can establish strong relations
between hk

dCdc and hk
dCdƒ (Theorems 4.6, 5.4, and 6.1).

Theorem B. Let .M;J;!;g/ be a Hermitian 2m-manifold. Suppose that we have H k
dƒ �

H k
dCdƒ for some k. Then H k

dCdƒ D H k
d

and hk
dCdƒ D bk .

Let .M; J; !; g/ be an almost Kähler 2m-manifold. Then there is an injection

H k
dCdc ,−! H k

dCdƒ :

In particular, hk
dCdc � h

k
dCdƒ . Furthermore, if we have H k

dc � H k
dCdc for some k, then

H k
dCdc D H k

d
and hk

dCdc D bk .

In the second part of the paper (Sections 7 and 8), we focus on compact complex
surfaces. Recall that for a compact complex manifold of complex dimensionm, the Hodge
numbers hp;q

N@
are an invariant of the complex structure. They are usually arranged in

the so-called Hodge diamond:

h
0;0
N@

: :
: :::

: : :

h
m;0
N@

: : : : : : : : : h
0;m
N@

: : :
::: : :

:

h
m;m
N@

:

The Bott–Chern numbers hp;q

dCdc can be arranged in a similar diamond: the Bott–Chern
diamond. For compact complex surfaces, it turns out that Hodge numbers do not depend
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on the choice of complex structure, but only on the first Betti number b1 and on the positive
and negative self-intersection numbers bC and b� of the underlying manifold. Since these
are topological invariants, we have that Hodge numbers of compact complex surfaces are
a consequence of the (oriented) topology of the underlying manifold (cf. [5]). The same
is true for Bott–Chern numbers of compact complex surfaces. This fact follows implic-
itly from the work of Teleman [30]. Alternatively, Stelzig and Wilson (see Section 4.1
in [29]) proved the same result using double complexes. Here we explicitly write down
the Bott–Chern diamond of compact complex surfaces in terms of topological constants
(Theorem 7.3).

Theorem C. Let .M;J / be a compact complex surface. If b1 is even, then the Bott–Chern
diamond of .M; J / is

1
b1

2
b1

2
bC�1

2
b� C 1 bC�1

2
b1

2
b1

2

1:

If b1 is odd, then the Bott–Chern diamond of .M; J / is

1
b1�1

2
b1�1

2
bC

2
b� C 1 bC

2
b1C1

2
b1C1

2

1:

The proof of the theorem is based on results obtained by Teleman [30] on the pseudo-
effective cone of non-Kähler complex surfaces (see also [1,4]). Note that Aeppli numbers
are completely determined by Bott–Chern numbers. From the explicit diamond, it is evi-
dent that both are topological and independent of the choice of complex structure (see
Section 4.1 in [29] or Corollary 7.5).

As a consequence of the theory developed for general almost Hermitian manifolds and
for complex surfaces, we are able to determine the numbers hk

dCdc and hk
dCdƒ of 4-dimen-

sional solvmanifolds endowed with an invariant compatible triple .J; !; g/, where J is a
complex structure (Theorem 8.1 and Tables 1 and 2).

Theorem D. LetM be a 4-dimensional solvmanifold endowed with an invariant compat-
ible triple .J; !; g/. Then the numbers hk

dCdc and hk
dCdƒ are independent of the choice

of invariant compatible triple.

Some of the results valid for solvmanifolds hold more in general for compact quotients
of Lie groups by a lattice. We conclude with an application of the theory to the Hopf
manifold (Example 8.5).

Finally, we recall that recently Cirici and Wilson [10], Coelho, Placini and Stelzig [11]
and the authors [26, 27], developed cohomological aspects of the theory which have a
strong connection with the theory of harmonic forms presented in this paper.
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2. Preliminaries

We use the word manifold to indicate a compact, connected, smooth manifold with no
boundary. We abbreviate dxj ^ dxk to dxjk , and �j to � Nj .

An almost Hermitian 2m-manifold .M;J;!;g/ is a smooth 2m-manifoldM endowed
with the following structures:

• an almost complex structure J , i.e., J 2 End.TM/, J 2 D � Id;
• an almost symplectic structure !, i.e., a non-degenerate, real 2-form;
• a Riemannian metric g.

These structures must satisfy the compatibility condition

(2.1) !.�; J �/ D g.�; �/:

We say that .J; !; g/ is a compatible triple.
Denote by Ak the space of smooth complex k-forms on M . The existence of a com-

patible triple induces three operators on Ak :
• J acts on k-forms by duality, inducing a map J WAk ! Ak and a bigrading decompo-

sition
Ak
D

M
pCqDk

Ap;q
I

• g induces the C-linear Hodge � operator

� W Ap;q ! Am�q;m�p
I

• ! induces the symplectic �s operator �s WA
k ! A2m�k , defined by the relation

˛ ^ �sˇ D !.˛; ˇ/
!m

mŠ
; for any ˛; ˇ 2 Ak .

The compatibility condition (2.1) allows us to express � as

(2.2) � D J�s D �sJ:

An almost Hermitian manifold can be thought as an almost complex manifold .M; J /
together with a fixed J -compatible metric g. The associated fundamental form ! is an
almost symplectic structure on M . On the other side, we can also think of it as an almost
symplectic manifold .M;!/ together with a metric g such that (2.1) holds for some almost
complex structure J . An almost Hermitian manifold .M; J; !; g/ is said to be

• almost Kähler if d! D 0;
• Hermitian if the Nijenhuis tensor NJ vanishes, i.e., if J is a complex structure;
• Kähler if both d! D 0 and NJ D 0.

On almost symplectic manifolds (thus on almost Hermitian manifolds) it is defined the
Lefschetz operator LWAk ! AkC2, ˛ 7! ! ^ ˛, and its dual Lefschetz operator ƒWAk !
Ak�2, ˛ 7! �!˛, where �! denotes contraction by !. Since ! is non-degenerate, for each
k D 1; : : : ; m, powers of the Lefschetz operator give an isomorphism

Lk
WAm�k ! AmCk :
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A k-form ˛, with k �m, is called primitive ifƒ˛ D 0, or, equivalently, if Lm�kC1˛ D 0.
Every k-form admits a Lefschetz decomposition (see Théorème 3 on p. 26 of [34]):

˛ D
X

j�max¹k�m;0º

LjP k�2j ;

where P k�2j are primitive .k � 2j /-forms. Given a compatible triple .J; !; g/, one can
compute � on each summand of the Lefschetz decomposition thanks to the formula (see
Théorème 2 on p. 23 of [34])

(2.3) �LrP k
D .�1/k.kC1/=2 rŠ

.m � k � r/Š
Lm�k�rJP k :

3. Almost complex and almost symplectic Laplacians on almost
Hermitian manifolds

In this section, we introduce generalizations of the Bott–Chern and Aeppli Laplacians for
almost Hermitian manifolds built using almost symplectic differential operators. We also
give the definitions of the spaces of .d C dƒ/-harmonic forms studied in Sections 5 and 6,
together with their basic properties.

We begin by reviewing the almost complex point of view, where the main object of
study is the space H k

dCdc of .d C d c/-harmonic forms. For more details, we refer the
reader to [27], where .d C d c/-harmonic forms have been introduced for the first time on
almost Hermitian manifolds.

Let .M; J; !; g/ be an almost Hermitian 2m-manifold. Consider the operator

d c
WD J�1dJ:

Then d2 D 0 and .d c/2 D 0. Observe that dd c C d cd D 0 if and only if J is integrable.
The Bott–Chern and Aeppli Laplacians for complex manifolds can be generalized to four
Laplacians, see Definition 4.1 in [27]:

�dCdc WD dd c.dd c/� C .dd c/�dd c
C d�d c.d�d c/� C .d�d c/�d�d c

C d�d C .d c/�d c

�dcCd WD d
cd.d cd/� C .d cd/�d cd C .d c/�d..d c/�d/� C ..d c/�d/�.d c/�d

C d�d C .d c/�d c

�ddc WD dd c.dd c/� C .dd c/�dd c
C d.d c/�.d.d c/�/� C .d.d c/�/�d.d c/�

C dd� C d c.d c/�

�dcd WD d
cd.d cd/� C .d cd/�d cd C d cd�.d cd�/� C .d cd�/�d cd�

C dd� C d c.d c/�:

If P 2 ¹d C d c ; d c C d; dd c ; d cdº, the space of P -harmonic forms is

H k
P WD A

k
\ ker�P :
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Explicitly, one has that

H k
dCdc D ¹˛ 2 A

k
W d˛ D 0; d c˛ D 0; .dd c/�˛ D 0º;

H k
dcCd D ¹˛ 2 A

k
W d˛ D 0; d c˛ D 0; .d cd/�˛ D 0º;

H k
ddc D ¹˛ 2 A

k
W d�˛ D 0; .d c/�˛ D 0; dd c˛ D 0º;

H k
dcd D ¹˛ 2 A

k
W d�˛ D 0; .d c/�˛ D 0; d cd˛ D 0º:

By Hodge theory, the spaces of P -harmonic forms are finite-dimensional vector spaces
over C (Proposition 4.3 in [27]), and they are isomorphic to each other according to the
following diagram (Proposition 4.5 in [27]):

H k
dCdc H k

dcCd

H 2m�k
ddc H 2m�k

dcd
:

�

J

o� o�

�

J

Denoting by hk
P the complex dimension of H k

P , one has that

hk
dCdc D h

k
dcCd D h

2m�k
ddc D h2m�k

dcd ;

and the numbers hk
dCdc are almost Hermitian invariants, see Corollary 4.6 in [27].

Let us briefly compare the spaces H k
P with the spaces of Bott–Chern and Aeppli har-

monic forms on complex manifolds. When J is integrable, we have that�dCdc D�dcCd

is the Bott–Chern Laplacian, while�ddc D�dcd is the Aeppli Laplacian [25]. The spaces
of Bott–Chern and Aeppli harmonic forms are defined as

H
p;q
BC D A

p;q
\ ker�dCdc and H

p;q
A D Ap;q

\ ker�ddc :

Their dimensions hp;q
BC and hp;q

A are an invariant of the complex structure, due to an
isomorphism with Bott–Chern and Aeppli cohomologies. These numbers are called Bott–
Chern and Aeppli numbers. In the almost complex case, the operators dd c and d cd do
not preserve the bigrading of forms, thus one has to consider harmonic k-forms instead of
.p; q/-forms (cf. Remark 3.10 in [27]).

In the next lemma, we show what is the relation between the spaces H k
dCdc , H k

ddc

and H
p;q
BC , H

p;q
A in the integrable case.

Lemma 3.1. Let .M; J / be a complex manifold. Then

H k
dCdc D

M
pCqDk

H
p;q
BC and H k

ddc D

M
pCqDk

H
p;q
A :

In particular,
hk

dCdc D

X
pCqDk

h
p;q
BC and hk

ddc D

X
pCqDk

h
p;q
A :
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Proof. We prove the claim for Bott–Chern harmonic forms. The claim for Aeppli har-
monic forms follows by duality. The inclusion

L
pCqDk H

p;q
BC � H k

dCdc is immediate
since

Ap;q
\ ker�dCdc � ApCq

\ ker�dCdc :

For the opposite inclusion, let ˛ 2 H k
dCdc and let

˛ D
X

pCqDk

˛p;q

be its bidegree decomposition. Since ˛ is both d -closed and d c-closed, we have that the
forms

˛even
D

X
p even

˛p;q and ˛odd
D

X
p odd

˛p;q

are both d -closed (cf. Section 3.3 in [27]). Consider the equation

0 D d˛even
D N@˛0; k

C @˛0; k
C N@˛2; k�2

C � � � ;

and separate the bidegree of the terms. Since the operators @ and N@ have bidegree .1; 0/
and .0; 1/ respectively, and since two summands of ˛even differ in the first bidegree p by
at least 2, all the terms @˛p;q , N@˛p;q , for p even, have different bidegree and for all .p; q/
with p even. Then it must be @˛p;q D N@˛p;q D 0. With a similar reasoning, we have that
d˛p;q D 0 for all .p; q/, showing that ˛p;q 2 Ap;q \ ker d \ ker d c .

The last condition to consider is .dd c/�˛ D 0. In the complex case, dd c has bidegree
.1; 1/, thus each summand ˛p;q is .dd c/�-closed and ˛p;q 2 H

p;q
BC , proving the opposite

inclusion.

Next, we consider the almost symplectic point of view, studying the space H k
dCdƒ

of .d C dƒ/-harmonic forms. This space is introduced here for the first time on almost
symplectic manifolds. For the symplectic case, see [31–33].

Let dƒ be the symplectic co-differential (cf. [6, 12, 31]), defined on k-forms by

(3.1) dƒ
WD .�1/kC1

�s d �s :

Since d2 D 0 and �2
s D Id, we immediately have that .dƒ/2 D 0.

If d! D 0, then ddƒ C dƒd D 0, but in general ddƒ C dƒd ¤ 0. To the best of
our knowledge, it is not known if the converse implication is also true, that is, if .ddƒ C

dƒd/ D 0 implies d! D 0. We are able to prove such implication when 2m D 4. Indeed,
we have the following.

Lemma 3.2. Let .M;!/ be an almost symplectic 2m-manifold such that ddƒCdƒdD0.
Then d!m�1 D 0. In particular, if 2m D 4, then d! D 0.

Proof. Computing ddƒ C dƒd on an arbitrary function f 2 C1.M/, we have that

0 D .ddƒ
C dƒd/f D dƒdf D �sd �s df D �

1

.m � 1/Š
�s d.!

m�1
^ df /

D �
1

.m � 2/Š
�s d!

m�1
^ df;
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where we used (2.3). Since �s is an isomorphism, we have that

(3.2) d!m�1
^ df D 0

for every f 2 C1.M/. Fix x 2 M and let ¹xj º
2m
jD1 be coordinate functions in a neigh-

borhood U of x. In local coordinates, we can write

d!m�1
D

2mX
jD1

!j dx
1::: Oj :::2m;

where Oj denotes missing indices. Choosing f as a smooth extension of xj to all M ,
equation (3.2) implies that !j D 0 for all j D 1; : : : ; 2m. Therefore,

d!m�1
D 0

on U . Since x is arbitrary, d!m�1 D 0 on M . If 2m D 4, then d! D 0.

Remark 3.3. Metrics whose fundamental form satisfies d!m�1 D 0 are known in the
literature as (almost) balanced metrics [22], or semi-Kähler [15]. Note that in Lemma 3.2
we proved that the balanced condition is equivalent to asking that d! is primitive or that d
and dƒ anti-commute on functions.

Given a compatible triple .J;!;g/, by (2.2), dƒ has the following expression in terms
of d c [12, 31]:

(3.3) dƒ
D .d c/�:

On symplectic manifolds, Tseng and Yau [31, 32] introduced the Laplacians

�dCdƒ WD ddƒ.ddƒ/� C .ddƒ/�ddƒ
C d�dƒ.d�dƒ/� C .d�dƒ/�d�dƒ

C d�d C .dƒ/�dƒ

and

�ddƒ WD ddƒ.ddƒ/� C .ddƒ/�ddƒ
C d.dƒ/�.d.dƒ/�/� C .d.dƒ/�/�d.dƒ/�

C dd� C dƒ.dƒ/�;

and studied the corresponding spaces of harmonic forms H k
dCdƒ and H k

ddƒ . It turns out
that the dimension of such spaces is independent of the choice of metric since they are
isomorphic to the symplectic cohomologies H k

dCdƒ and H k
ddƒ .

Remark 3.4. Tseng and Yau originally studied real harmonic forms. However, since
�dCdƒ and �ddƒ are real operators, there is no difference in studying them on com-
plex forms. The resulting spaces of complex harmonic forms will be the complexification
of their real counterpart.

When d! ¤ 0, the operators d and dƒ do not anti-commute, and we must consider
four different Laplacians.
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Definition 3.5. The .d C dƒ/-Laplacian is

(3.4)
�dCdƒ WD ddƒ.ddƒ/� C .ddƒ/�ddƒ

C d�dƒ.d�dƒ/� C .d�dƒ/�d�dƒ

C d�d C .dƒ/�dƒ:

The .dƒ C d/-Laplacian is

(3.5)
�dƒCd WD d

ƒd.dƒd/� C .dƒd/�dƒd C .dƒ/�d..dƒ/�d/�

C ..dƒ/�d/�.dƒ/�d C d�d C .dƒ/�dƒ:

The ddƒ-Laplacian is

(3.6)
�ddƒ WD ddƒ.ddƒ/� C .ddƒ/�ddƒ

C d.dƒ/�.d.dƒ/�/�

C .d.dƒ/�/�d.dƒ/� C dd� C dƒ.dƒ/�:

The dƒd -Laplacian is

(3.7)
�dƒd WD d

ƒd.dƒd/� C .dƒd/�dƒd C dƒd�.dƒd�/� C .dƒd�/�dƒd�

C dd� C dƒ.dƒ/�:

In the symplectic case, d and dƒ anti-commute, therefore �dCdƒ D �dƒCd and
�ddƒ D �dƒd , recovering the symplectic Laplacians of Tseng and Yau. The symplec-
tic �s operator and the almost complex structure J provide the following relations among
the Laplacians:

�s�dCdƒ D �dƒCd�s; �s�ddƒ D �dƒd�s

and
J�dCdƒ D �ddƒJ; J�dƒCd D �dƒdJ:

Definition 3.6. Let P 2 ¹d C dƒ; dƒ C d; ddƒ; dƒdº. A k-form ˛ 2 Ak is said to be
P -harmonic if �P .˛/ D 0.

We denote the space of P -harmonic k-forms by H k
P .

If ˛ is P -harmonic, using the equation h�P .˛/; ˛i D 0, one can explicitly write the
spaces of P -harmonic forms. More precisely, we have that

H k
dCdƒ D ¹˛ 2 A

k
W d˛ D 0; dƒ˛ D 0; .ddƒ/�˛ D 0º;

H k
dƒCd

D ¹˛ 2 Ak
W d˛ D 0; dƒ˛ D 0; .dƒd/�˛ D 0º;

H k
ddƒ D ¹˛ 2 A

k
W d�˛ D 0; .dƒ/�˛ D 0; ddƒ˛ D 0º;

H k
dƒd
D ¹˛ 2 Ak

W d�˛ D 0; .dƒ/�˛ D 0; dƒd˛ D 0º:

We proceed to establish the basic properties of P -harmonic forms. First of all, the spaces
of harmonic forms are finite-dimensional vector spaces over C.

Proposition 3.7. Let P 2 ¹d C dƒ; dƒ C d; ddƒ; dƒdº. Then �P is a 4th-order, self-
adjoint, elliptic operator. There is a decomposition

Ak
D H k

P

?

˚ Im�P :

Furthermore, H k
P is a finite-dimensional vector space over C.
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Proof. The proof closely follows that of Proposition 4.3 in [27], replacing d c by .dƒ/�

and .d c/� by dƒ, thanks to (3.3). For the sake of completeness, we write down the core
of the proof for P D d C dƒ. Denote byŠ the equality up to lower order terms. We have
that

• d.dƒ/� C .dƒ/�d D dd c C d cd has order one, so that d.dƒ/� Š �.dƒ/�d ;
• ddƒ C dƒd has order one by the Kähler identities for almost Hermitian manifolds,

see [8, 13], so that ddƒ Š �dƒd ;
• �d and �dc are elliptic.

Thus, we can conclude that

�dCdƒ Š ddƒ.ddƒ/� C .ddƒ/�ddƒ
C d�dƒ.d�dƒ/� C .d�dƒ/�d�dƒ

Š dd�dƒ.dƒ/� C d�d.dƒ/�dƒ
C d�ddƒ.dƒ/� C dd�.dƒ/�dƒ

D �d�dƒ Š .�d /
2;

that is elliptic. The orthogonal direct sum decomposition between the image and the kernel
of �P and the finite-dimensionality of the kernel follow from the theory of self-adjoint,
elliptic operators on compact manifolds.

Definition 3.8. Since H k
P is finite-dimensional, we set

hk
P WD dimC H k

P :

The numbers hk
P are invariants of the almost Hermitian structure. If there is no ambi-

guity, we will omit dependence of hk
P on .J; !; g/.

Proposition 3.9. On an almost Hermitian 2m-manifold .M; J; !; g/, there is a commu-
tative diagram

H k
dCdƒ H 2m�k

dƒCd

H k
ddƒ H 2m�k

dƒd
:

�

�s

oJ oJ

�

�s

Proof. The isomorphism between H k
dCdƒ and H 2m�k

dƒCd
follows since ˛ is d -closed,

dƒ-closed and .ddƒ/�-closed if and only if �s˛ is dƒ-closed, d -closed and .dƒd/�-
closed. The other isomorphisms follow similarly.

Corollary 3.10. Let .M; J; !; g/ be an almost Hermitian 2m-manifold. Then

hk
dCdƒ D h

2m�k
dƒCd

D hk
ddƒ D h

2m�k
dƒd

:

Note that when d! D 0, the spaces H k
dCdƒ and H k

ddƒ are isomorphic to the symplec-
tic cohomology groups H k

dCdƒ and H k
ddƒ . Therefore, their dimensions do not depend on

the choice of metric, and the numbers hk
dCdƒ and hk

ddƒ are symplectic invariants.
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We conclude this section with a result comparing the numbers hk
P of almost Hermitian

manifolds, for P 2 ¹d C d c ; d c C d; dd c ; d cd; d C dƒ; dƒ C d; ddƒ; dƒdº. Its proof
follows closely that of Theorem 4.4 in [27], therefore it is omitted.

Theorem 3.11. Let .M; J; !; g/ and .M 0; J 0; !0; g0/ be two almost Hermitian manifolds
of the same dimension, and let f WM ! M 0 be a surjective smooth map preserving the
compatible triple, i.e., satisfying

(3.8) df ı J D J 0 ı df; f �!0 D ! and f �g0 D g:

Then we have that
hk

P .J
0; !0; g0/ � hk

P .J; !; g/:

Moreover, if f is also a diffeomorphism, then

hk
P .J

0; !0; g0/ D hk
P .J; !; g/:

Remark 3.12. If any two conditions among those in (3.8) hold, then also the remaining
one is satisfied.

4. The spaces of .d C d c/-harmonic forms

In this section, we study the spaces H k
dCdc and the numbers hk

dCdc .
Let .M;J;!;g/ be an almost Hermitian 2m-manifold. We briefly recall the properties

of H k
dCdc proved in [27].

Proposition 4.1 (Properties of H k
dCdc ).

(i) H 0
dCdc Š H 2m

dCdc Š C.

(ii) The number h1
dCdc is metric independent.

(iii) If d! D 0 and 2m D 4, then

H 2
dCdc D Ch!i ˚H�g ˚H

.2;0/.0;2/
J :

In particular, h2
dCdc D b

� C 1C h�J and it does not depend on the choice of the
almost Kähler metric.

We begin by proving a topological upper bound on h1
dCdc .

Lemma 4.2. Let .M; J / be an almost complex 2m-manifold. Then

h1
dCdc � b1:

Proof. We prove that H 1
dCdc injects into de Rham cohomology. From the definition, it

follows that
H 1

dCdc D .A
1;0
\ ker d/ [ .A0;1

\ ker d/:

Let ˛ 2 H 1
dCdc . Then ˛ D ˛1;0 C ˛0;1, with ˛1;0 and ˛0;1 both d -closed, and ˛ defines

a de Rham class. To prove injectivity, suppose that

˛1;0
C ˛0;1

D df
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for some f 2 C1.M/. By bidegree, we have that ˛1;0 D @f and ˛0;1 D N@f . Since
d˛1;0 D 0, we have that @2f C N@@f C N�@f D 0. In particular, by bidegree reasons,
N@@f D 0, which implies that f is constant, thus ˛1;0 D @f D 0 and ˛0;1 D N@f D 0.

Corollary 4.3. Let .M;J / be an almost complex 2m-manifold such that b1 2 ¹0; 1º. Then
h1

dCdc D 0.

Proof. By Lemma 4.2, we have h1
dCdc � b1 � 1. Moreover, h1

dCdc is even because it is
invariant under conjugation.

We invite the reader to compare the results of Lemma 4.2 and Corollary 4.3 with
Corollary 4.6 in [9] and Lemma 4.2 in [19].

We now establish a decomposition of H 2
dCdc valid on almost Hermitian 4-manifolds.

Let .M; J; !; g/ be an almost Hermitian 4-manifold. Consider the harmonic decomposi-
tion of ! with respect to the Hodge Laplacian �d , i.e.,

(4.1) ! D h.!/C d�C d��;

where h.!/ is d -harmonic, � 2 A1, and � 2 A3. Define the 2-form 0 as

(4.2) 0 WD �d � � � d
��:

Note that

(4.3) �0 D � � d � �C �
2d � � D d��C d � � D �0;

hence 0 is anti-self-dual. Since anti-self-dual forms have necessarily bidegree .1; 1/, we
also have that

(4.4) J0 D 0:

Denote by H�g the space of anti-self-dual, d -harmonic forms and by H
.2;0/.0;2/
J the space

of J -anti-invariant, d -harmonic forms.
We prove the following.

Theorem 4.4. Let .M; J; Q!; Qg/ be an almost Hermitian 4-manifold, and let .!; g/ be a
Gauduchon metric in the same conformal class of . Q!; Qg/. Then

H 2
dCdc D Ch! C 0i ˚H�g ˚H

.2;0/.0;2/
J :

In particular, h2
dCdc D b

� C 1C h�J , and it is metric independent.

Proof. Let g be a metric in the same conformal class of Qg. If ˛ 2 A2, then �g˛ D � Qg˛.
As a consequence, the space H 2

dCdc is invariant under conformal changes of metric. In
each conformal class of metric there is always a Gauduchon metric [14], i.e., a metric for
which dd c! D d cd! D 0. Therefore, we assume that g is a Gauduchon metric in the
same conformal class of Qg.

We first prove the inclusion

Ch! C 0i ˚H�g ˚H
.2;0/.0;2/
J � H 2

dCdc :
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We have that ! C 0 is d -closed since

d.! C 0/ D d.h.!/C d� � d � �/ D 0;

it is d c-closed by (4.4), and it is .dd c/�-closed by (4.3) and because the metric is Gaudu-
chon. Forms in H�g ˚ H

.2;0/.0;2/
J are necessarily .d C d c/-harmonic, since they are

d -harmonic and have bidegree either .1; 1/ or .2; 0/C .0; 2/.
We now prove the opposite inclusion. Let ˛ 2 H 2

dCdc . Write ˛ using the Lefschetz
decomposition and the bidegree as

˛ D f! C 1;1
C  .2;0/.0;2/;

with 1;1 and  .2;0/.0;2/ primitive forms, and f 2 C1.M/. Since d˛ D 0 and d c˛ D 0,
we have that

(4.5) d.f! C 1;1/ D 0

and

(4.6) d .2;0/.0;2/
D 0:

The form  .2;0/.0;2/ is d -closed and primitive, thus d -harmonic, which implies that
 .2;0/.0;2/ 2 H

.2;0/.0;2/
J . On the other side, we have that

0 D .dd c/�˛ D � � d cd � .f! C 1;1
C  .2;0/.0;2//

D � � d cd.f! � 1;1
C  .2;0/.0;2// D �2 � d cd.f!/;

where in the last equality we used (4.5) and (4.6). Since the metric is Gauduchon, we have
that

0 D d cd.f!/ D d cdf ^ ! � df ^ d c! C d cf ^ d!:

Consider the real operator P WC1.M/! C1.M/ given by

P.f / D �.d cdf ^ ! � df ^ d c! C d cf ^ d!/:

By the same argument of the proof of Theorem 4.3 in [23], P is strongly elliptic, thus f
must be constant. Consider the form

ˇ1;1
WD 1;1

� f 0:

The form ˇ1;1 is anti-self-dual by (4.3), and it is also d -closed by (4.1), (4.2) and (4.5).
Therefore it is also d -harmonic and ˇ1;1 2 H�g . The claim follows writing ˛ as

˛ D f .! C 0/C ˇ
1;1
C  .2;0/.0;2/;

with f constant, ˇ1;1 2 H�g and  .2;0/.0;2/ 2 H
.2;0/.0;2/
J .

Remark 4.5. Applying Theorem 4.4 to almost Kähler 4-manifolds, we recover Theo-
rem 5.1 in [27], since when d! D 0, we have 0 D 0. Our result should be compared with
Theorem 4.2 in [18].
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We conclude the section with a result that in certain cases allows us to explicitly com-
pute hk

dCdc on almost Kähler manifolds of any dimension.

Theorem 4.6. Let .M; J; !; g/ be an almost Kähler 2m-manifold. Suppose that we have
H k

dc � H k
dCdc for some k. Then H k

dCdc D H k
d

and hk
dCdc D bk .

Proof. Let ˛ 2 H k
dCdc , and let

˛ D hdc .˛/C d c�C .d c/�

be its Hodge decomposition with respect to �dc . Since ˛ is d c-closed, we have that
.d c/� D 0. The form

d c� D ˛ � hdc .˛/

is .d C d c/-harmonic because it is the difference of two harmonic forms, by the assump-
tion on H k

dc . From the equation .dd c/�˛ D 0, we deduce that

.d c/�d�d c� D .d c/�d�.˛ � hdc .˛// D 0:

By (3.3) and d! D 0, we have that

0 D .d c/�d�d c� D dƒd�.dƒ/�� D �dƒ.dƒ/�d��;

which implies that hdƒ.dƒ/�d��; d��i D 0. Therefore .dƒ/�d�� D �d�.dƒ/�� D 0.
Finally, d˛ D 0 since ˛ 2H k

dCdƒ and d�˛ D d�.dƒ/��D 0, so that ˛ 2H k
d

. We proved
that H k

dCdc � H k
d

. To conclude, observe that

H k
dCdc � H k

d Š H k
dc � H k

dCdc ;

giving the equality of the spaces.

5. The spaces of .d C dƒ/-harmonic forms

In this section, we study the spaces H k
dCdƒ and the numbers hk

dCdƒ .
We begin by proving some basic results valid in any dimension. Let .M; J; g; !/ be

an almost Hermitian 2m-manifold.

Proposition 5.1 (Properties of H k
dCdƒ ).

(i) H 0
dCdƒ Š H 2m

dCdƒ Š C.

(ii) There is an inclusion H 1
dCdƒ � H 1

d
. In particular, h1

dCdƒ � b1.

(iii) If d! D 0, then H 1
dCdƒ D H 1

d
and h1

dCdƒ D b1.

Proof. We prove (i). Note that any function f 2 H 0
dCdƒ must be d -closed, and therefore

constant. Let f Vol 2 H 2m
dCdƒ . Since dƒ.f Vol/ D .d c/�.f Vol/ D 0, we have that

0 D dJ � .f Vol/ D df;
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so that H 2m
dCdƒ D ChVoli Š C. To prove (ii), let ˛ 2 H 1

dCdƒ . Then ˛ is d -closed and
.ddƒ/�-closed. From the equation .ddƒ/�˛ D 0, we have that

0 D dJ � d � ˛ D �dJd�˛ D �dd�˛;

since J acts trivially on functions. Therefore d�˛D 0 and ˛ is d -harmonic. If d! D 0, the
opposite inclusion also holds. Indeed, let ˛ 2H 1

d
. Then we immediately have d˛ D 0 and

.ddƒ/�˛D d cd�˛D 0. Moreover, since d! D 0, we also have dƒ˛D .dƒ�ƒd/˛D 0

since ˛ is d -closed and has degree 1, proving (iii).

Remark 5.2. Point (iii) of Proposition 5.1 is a well-known fact (cf. Lemma 2.7 in [12]).

On 4-manifolds, the study of .d C dƒ/-harmonic 2-forms is reduced to primitive
forms.

Theorem 5.3. Let .M; J; !; g/ be an almost Hermitian 4-manifold. Let PH 2
dCdƒ be the

space of .d C dƒ/-harmonic primitive 2-forms. Then

H 2
dCdƒ D

´
Ch!i ˚PH 2

dCdƒ if d! D 0;
PH 2

dCdƒ if d! ¤ 0:

Proof. The inclusions Ch!i ˚PH 2
dCdƒ �H 2

dCdƒ and PH 2
dCdƒ �H 2

dCdƒ are imme-
diate. For the opposite inclusions, let ˛ 2 H 2

dCdƒ and let

˛ D f! C 1;1
C  .2;0/.0;2/

be its Lefschetz and bidegree decomposition. Since ˛ is d -closed and dƒ-closed, we have
that

(5.1) 0 D dJ � ˛ D d.f! � 1;1
�  .2;0/.0;2// D d.2f! � ˛/ D 2d.f!/:

Thus dd c.f!/ D d cd.f!/ D 0, and with the same argument of the proof of Theo-
rem 4.4, we deduce that f is constant. Since f! is d -closed, dƒ closed and self-dual, it is
.d C dƒ/-harmonic. In particular, the form 1;1 C  .2;0/.0;2/ is primitive and .d C dƒ/-
harmonic. If d! D 0, we obtain that

H 2
dCdƒ D Ch!i ˚PH 2

dCdƒ ;

proving the first part of the theorem. For the second part, by (5.1) we have that

0 D d.f!/ D fd!;

with f constant. In particular, if d! ¤ 0, then f D 0.

We conclude the section with the Hermitian counterpart of Theorem 4.6, which allows
us to explicitly compute the numbers hk

dCdƒ when J is integrable.

Theorem 5.4. Let .M;J;!;g/ be a Hermitian 2m-manifold. Suppose that H k
dƒ�H k

dCdƒ

for some k. Then H k
dCdƒ D H k

d
and hk

dCdƒ D bk .
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Proof. The proof follows closely that of Theorem 4.6, replacing d c by .d c/�. Let ˛ 2
H k

dCdƒ , and let
˛ D hdƒ.˛/C dƒ�C .dƒ/�

be its Hodge decomposition with respect to �dƒ . Since ˛ is dƒ-closed, we have that
.dƒ/� D 0. From the equation .ddƒ/�˛ D 0, we deduce that

d cd�dƒ� D d cd�.˛ � hdƒ.˛// D 0:

By (3.3) and integrability of J , we have

0 D d cd�dƒ� D d cd�.d c/�� D �d c.d c/�d��;

which implies .d c/�d�� D �d�.d c/�� D 0. Since d˛ D 0, d�˛ D d�.d c/�� D 0, and

H k
dCdƒ � H k

d Š H k
dƒ � H k

dCdƒ ;

the theorem is proved.

6. Relations between .d C d c/-harmonic forms and
.d C dƒ/-harmonic forms

In this section, we compare the spaces H k
dCdc and H k

dCdƒ , and the numbers hk
dCdc

and hk
dCdƒ on almost Hermitian manifolds.

The first result is an injection of .d C d c/-harmonic forms into .d C dƒ/-harmonic
forms valid for almost Kähler manifolds.

Theorem 6.1. Let .M; J; !; g/ be an almost Kähler 2m-manifold. There is an injection

H k
dCdc ,−! H k

dCdƒ :

In particular, hk
dCdc � h

k
dCdƒ .

Proof. Let ˛ 2 H k
dCdc . Since ˛ is d -closed, d c-closed and .dd c/�-closed, we have that

0 D .d cd/�.J˛/ D d�dƒ.J˛/ D d�.dƒ �ƒd/.J˛/ D d�d.ƒJ˛/;

which implies
dƒ.J˛/ D dƒ.J˛/ D 0:

Furthermore, we also have d.J˛/ D 0. In particular, J˛ is both d -closed and dƒ-closed,
thus it defines a symplectic cohomology class ŒJ˛�dCdƒ 2 H k

dCdƒ . Taking the harmonic
representative hdCdƒ.J˛/, we have a well-defined map H k

dCdc ! H k
dCdƒ . The map is

injective because if J˛ D dƒdˇ for some ˇ 2 Ak , then

0 D �Jd˛ D d c.J˛/ D .dƒ/�dƒdˇ;

giving J˛ D dƒdˇ D 0.
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The opposite inclusion in general does not hold. For instance, one can endow the
Kodaira–Thurston manifold with an almost Kähler structure such that h1

dCdc D 2 and
h1

dCdƒ D b1 D 3, see Proposition 6.2 in [27]. Nevertheless, we can prove the opposite
inclusion on .2m � 1/-forms.

Theorem 6.2. Let .M; J; g; !/ be an almost Hermitian 2m-manifold. Then

H 2m�1
dƒCd

� H 2m�1
dcCd :

If d! D 0, then H 2m�1
dCdƒ D H 2m�1

dƒCd
D H 2m�1

dCdc .

Proof. Let ˛ 2 H 2m�1
dƒCd

. Since ˛ is .dƒd/�-closed, we have that

0 D d�J�1dJ˛ D d�dJ˛;

where we used the fact that J D Id on top-forms. Hence, we conclude that d c˛ D 0. By
the equation dƒ˛ D 0, we have that dJ � ˛ D 0. Thus J˛ is .d C d c/-harmonic, since

.dd c/�J˛ D dƒd�J˛ D 0;

and ˛ is .d c C d/-harmonic. This proves the inclusion H 2m�1
dƒCd

�H 2m�1
dcCd

. If d! D 0, by
Theorem 6.1 we have that

H 2m�1
dƒCd

� H 2m�1
dcCd Š H 2m�1

dCdc ,! H 2m�1
dCdƒ D H 2m�1

dƒCd
;

giving the equality of the spaces and concluding the proof.

Remark 6.3. Applying Theorem 6.2 to almost Kähler 4-manifolds, we recover Theo-
rem 5.4 in [27].

Corollary 6.4. Let .M; J; !; g/ be an almost Hermitian 2m-manifold. Then h1
dCdƒ �

h2m�1
dCdc . If d! D 0, then h2m�1

dCdc D b1.

7. Bott–Chern and Aeppli numbers of compact complex surfaces

The goal of this section is to compute Bott–Chern and Aeppli numbers of compact com-
plex surfaces. As a consequence of the computations, we see that they depend only on the
topology of the underlying manifold. More precisely, they do not depend on the choice
of complex structure, but only on the numbers b1, bC and b�. This is a result which was
already implicitly contained in the work of Teleman [30] (see also [29]).

Let .M; J / be a compact complex surface (with no boundary). We are interested in
the following invariants:

• the Betti numbers of M ,

bk D dimC H
k
d .M IC/; k D 0; : : : ; 4:

Since M is an oriented closed manifold, the Betti numbers reduce to

k 0 1 2 3 4

bk 1 b1 b2 b1 1
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• The Hodge numbers of .M; J /,

h
p;q
N@
D dimC H

p;q
N@
.M IC/; p; q D 0; 1; 2;

that can be arranged in the so-called Hodge diamond:

h
0;0
N@

h
1;0
N@

h
0;1
N@

h
2;0
N@

h
1;1
N@

h
0;2
N@

h
2;1
N@

h
1;2
N@

h
2;2
N@

• The Bott–Chern and Aeppli numbers of .M; J /,

h
p;q
BC D dimC H

p;q
BC .M IC/; p; q D 0; 1; 2;

h
p;q
A D dimC H

p;q
A .M IC/; p; q D 0; 1; 2:

By duality between Bott–Chern and Aeppli cohomology, we have hp;q
BC D h

m�p;m�q
A

for all p and q, thus knowing Bott–Chern numbers completely determines Aeppli
numbers. We arrange Bott–Chern numbers in a Bott–Chern diamond:

h
0;0
BC

h
1;0
BC h

0;1
BC

h
2;0
BC h

1;1
BC h

0;2
BC

h
2;1
BC h

1;2
BC

h
2;2
BC

It is a well-known fact that while a priori Hodge numbers depend on the choice of J ,
for compact complex surfaces they actually depend only on the first Betti number b1 and
on the positive and negative self-intersection numbers bC and b�, with bC C b� D b2.
For the sake of completeness, we give here a precise statement, whose proof follows from
Theorems 2.7 and 2.14 in Chapter 4 of [5].

Theorem 7.1 ([5]). Let .M; J / be a compact complex surface. If b1 is even, then the
Hodge diamond of .M; J / is

1
b1

2
b1

2
bC�1

2
b� C 1 bC�1

2
b1

2
b1

2

1:

If b1 is odd, then the Hodge diamond of .M; J / is

1
b1�1

2
b1C1

2
bC

2
b� bC

2
b1C1

2
b1�1

2

1:
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Corollary 7.2. Hodge numbers of compact complex surfaces depend only on the topology
of the manifold.

We proceed now to state and prove a similar result, valid for Bott–Chern numbers.

Theorem 7.3. Let .M; J / be a compact complex surface. If b1 is even, then the Bott–
Chern diamond of .M; J / is

1
b1

2
b1

2
bC�1

2
b� C 1 bC�1

2
b1

2
b1

2

1:

If b1 is odd, then the Bott–Chern diamond of .M; J / is

1
b1�1

2
b1�1

2
bC

2
b� C 1 bC

2
b1C1

2
b1C1

2

1:

Proof. One easily sees that h0;0
BC D h

2;2
BC D 1 for every compact complex surface. By [30],

see also [1, 4], on compact complex surfaces we have that

(7.1) h
1;0
BC C h

0;1
BC C h

2;1
BC C h

1;2
BC D 2b1

and

(7.2) h
2;0
BC C h

1;1
BC C h

0;2
BC D

´
b2 if b1 is even,
b2 C 1 if b1 is odd.

Since Bott–Chern numbers are symmetric in p and q, we can simplify (7.1) and (7.2)
to get

(7.3) h
1;0
BC C h

2;1
BC D b1

and

(7.4) 2h
2;0
BC C h

1;1
BC D

´
b2 if b1 is even,
b2 C 1 if b1 is odd.

If b1 is even, then .M;J / admits a Kähler metric [7,21]. Since hp;q
BC are independent of the

choice of metric, it is enough to compute them for a Kähler metric. On Kähler manifolds,
there is an isomorphism H

p;q
BC Š H

p;q
N@

. Therefore the Bott–Chern diamond of compact
complex surfaces with even b1 coincides with their Hodge diamond given in Theorem 7.1.

Suppose now that b1 is odd. For any choice of metric g, we have H
1;0
BC DH

1;0
N@

. Indeed,
writing explicitly the spaces of harmonic forms, we have that

H
1;0
BC D A

1;0
\ ker @ \ ker N@ and H

1;0
N@
D A1;0

\ ker N@:
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By Lemma 2.1 in Chapter 4 of [5], every holomorphic form on a compact complex surface
is d -closed, thusA1;0 \ ker N@DA1;0 \ ker@\ ker N@, giving the equality of the two spaces,
and allowing us to deduce that

h
1;0
BC D h

0;1
BC D h

1;0
N@
D
b1 � 1

2
�

By (7.3), we also obtain

h
2;1
BC D h

1;2
BC D

b1 C 1

2
�

The number h1;1
BC can be computed either using Lemma 2.3 in [30], using Theorem 4.4

applied to an integrable J together with Proposition 3.1, or applying Theorem 4.2 in [18],
since in the complex case d , d c or @, N@ are interchangeable in the definition of Bott–Chern
cohomology. It turns out that for Bott–Chern numbers

(7.5) h
1;1
BC D b

�
C 1:

Finally, by (7.4) and (7.5), we have

h
2;0
BC D h

0;2
BC D

bC

2
;

concluding the proof.

Remark 7.4. Note that, for Bott–Chern numbers, one has h1;1
BC D b

� C 1 independently
of the parity of b1, in contrast to what happens for the number h1;1

N@
(cf. Theorem 7.1).

Corollary 7.5 ([30] or [29]). Bott–Chern and Aeppli numbers of compact complex sur-
faces depend only on the topology of the underlying manifold.

8. The numbers hk
dCdc and hk

dCdƒ
of invariant compatible triples

In this section, we determine the numbers hk
dCdc and hk

dCdƒ of compact complex sur-
faces that are diffeomorphic to solvmanifolds endowed with an invariant compatible triple.
Along the way, we establish results valid more in general for compact quotients of Lie
groups by a lattice.

Let G be a Lie group and let � � G be a lattice. Suppose that the quotient M D
�nG is a compact manifold. When G is solvable/nilpotent, M is called a solvmani-
fold/nilmanifold. A complex structure on M is invariant if it is induced by a complex
structure on g, the Lie algebra of G. Similarly, a metric and an almost symplectic struc-
ture onM are invariant if they are induced by an inner product on g and a non-degenerate
element of

V2 g�, respectively. An invariant compatible triple onM is a compatible triple
.J; !; g/ for which each of the three structures is invariant.

The main result of this section is the following.

Theorem 8.1. Let M be a 4-dimensional solvmanifold endowed with an invariant com-
patible triple .J;!;g/. Then the numbers hk

dCdc and hk
dCdƒ are independent of the choice

of invariant compatible triple.
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The proof of Theorem 8.1 follows from several lemmas that are valid in a slightly more
general setting and that will be useful later for explicit computations (see Example 8.5).
Furthermore, we will compute the numbers hk

dCdc and hk
dCdƒ of compact complex sur-

faces diffeomorphic to solvmanifolds. The resulting numbers are summarized in Tables 1
and 2.

We begin by taking care of 1-forms.

Lemma 8.2. Let M D �nG be a compact quotient of a Lie group by a lattice endowed
with an invariant almost symplectic structure !. Then h1

dCdƒ D b1, and it is metric inde-
pendent.

Proof. Fix a compatible metric g. The inequality h1
dCdƒ � b1 holds for arbitrary almost

Hermitian manifolds. For the opposite inequality, let ˛ 2 H 1
d

be a d -harmonic 1-form.
Then d˛ D 0 and .ddƒ/�˛ D d cd�˛ D 0 for any choice of compatible metric. Since !
is invariant, �s˛ is an invariant 3-form, thus it is d -closed and we have dƒ˛ D 0.

The following lemma deals with the space H 3
dCdƒ .

Lemma 8.3. Let .M; J; !; g/ be a Hermitian 2m-manifold. Suppose that for every  2
H 1

ddc we have
.d c/�d�d D 0:

Then
H 2m�1

dCdƒ D H 2m�1
dCdc \ ker�dCdƒ and h2m�1

dCdƒ � h
2m�1
dCdc :

Proof. By Proposition 3.9, H 2m�1
dCdƒ Š H 1

dƒd
, thus we compute dƒd -harmonic 1-forms.

Let ¹1; : : : ; tº be a basis of H 1
dCdc , let ˛ 2 H 1

dƒd
and let

(8.1) ˛ D

tX
jD1

Aj j C .dd
c/�ˇ C df C d cg

be the harmonic decomposition of ˛ with respect to �ddc , with Aj 2 C, ˇ 2 A3, f; g 2
C1.M/. Since d c˛ D 0 and j 2 H 1

ddc , we have

0 D dd c˛ D dd c.dd c/�ˇ;

obtaining .dd c/�ˇ D 0. On the other side, we have that

0 D dƒd˛ D

tX
jD1

Aj .d
c/�dj C .d

c/�dd cg:

Taking the inner product with dg and using the assumption .d c/�d�dj D 0, we can
write

0 D

tX
jD1

Aj h.d
c/�d�dj ; gi C hdd

cg; d cdgi D �kdd cgk2;

which implies that g is constant. Finally, from

0 D d�˛ D d�df
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we deduce that also f is constant, ˛ D
P

j Aj j 2 H 1
ddc and H 1

dƒd
is computed as

H 1
ddc \ ker�dƒd .

Denote by H
p;q

d
the space of d -harmonic .p; q/-forms.

Proposition 8.4. Let M D �nG be a 4-dimensional compact quotient of a Lie group by
a lattice, and let .J; !; g/ be an invariant compatible triple, with J integrable. Then

H 3
dCdƒ D H

2;1
d
[H

1;2
d
:

Proof. Since the compatible triple is invariant, any 1-form  automatically satisfies that
.d c/�d�d D 0. By Lemma 8.3, we have that

H 3
dCdƒ Š H 1

dƒd
D H 1

ddc \ ker�dƒd D A
1
\ ker�ddc \ ker�dƒd :

Let  2 A1 \ ker�ddc \ ker�dƒd . Since �ddc D 0 and �dƒd D 0,  must satisfy
the following equations:

d c D 0; d� D 0; .d c/� D 0; d cd D 0; dƒd D 0:

We show that d D 0. Let

(8.2) d D f! C ˇ1;1
C ˇ.2;0/.0;2/

be the Lefschetz and bidegree decomposition of d , with f 2 C1.M/ and with ˇ1;1 and
ˇ.2;0/.0;2/ primitive forms. From the equations

0 D d2 D d.f! C ˇ1;1
C ˇ.2;0/.0;2//;

0 D d cd D �Jd.f! C ˇ1;1
� ˇ.2;0/.0;2//;

0 D dƒd D � �s d.f! � ˇ
1;1
� ˇ.2;0/.0;2//;

we get that
d.f!/ D 0; dˇ1;1

D 0 and dˇ.2;0/.0;2/
D 0:

Since each of the terms in (8.2) is d -closed, we have that

d�d D � � d.f! � ˇ1;1
C ˇ.2;0/.0;2// D 0;

which implies d D 0 and that  is both d -harmonic and d c-harmonic. As a consequence,
the .1; 0/-degree part and .0; 1/-degree part of  are both d -harmonic. This shows that
H 1

dƒd
D H

1;0
d
[H

0;1
d

and, after applying the isomorphism �, it concludes the proof of
the proposition.

We are ready for the proof of Theorem 8.1.

Proof of Theorem 8.1. LetM be a 4-dimensional solvmanifold admitting a complex struc-
ture. Then M is one of the following [16]:
(A) a complex torus;
(B) a hyperelliptic surface;
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(C) an Inoue surface of type �M ;
(D) a primary Kodaira surface;
(E) a secondary Kodaira surface;
(F) an Inoue surface of type �˙.

By Theorem 7.3, the numbers hk
dCdc depend only on b1, bC and b�, and not on the

choice of compatible triple (not necessarily invariant).
All invariant structures on the torus and the hyperelliptic surface (cases (A) and (B))

are Kähler structures, therefore hk
dCdƒ D bk and they are independent of the compatible

triple.
Cases (C), (E) and (F) can be treated simultaneously since they have the same Betti

numbers b1 D 1 and b2 D 0. By Theorem 7.3 we have that

h1
dCdc D b1 � 1 D 0; h2

dCdc D b2 C 1 D 1 and h3
dCdc D b1 C 1 D 2:

By Lemma 8.2, we have h1
dCdƒ D b1 D 1. By Theorem 5.4 and the fact that there are no

d -harmonic 2-forms, since b2 D 0, we have that h2
dCdƒ D b2 D 0. By Proposition 8.4,

we have that H 3
dCdƒ D H

2;1
d
[ H

1;2
d

. In particular, since H
2;1
d
Š H

1;2
d

via complex

conjugation, h3
dCdƒ must be even. Moreover, H

2;1
d
\H

1;2
d
D ¹0º and both spaces inject

into H 3
d

, thus h3
dCdƒ � b1 D 1 and it must be an even number, showing that h3

dCdƒ D 0.
Case (D) has to be treated separately, since the Betti numbers in this case are b1 D 3

and b2 D 4. By Theorem 7.3, we immediately have

h1
dCdc D 2; h2

dCdc D 5 and h1
dCdc D 4:

By Lemma 8.2, we have that h1
dCdƒ D b1 D 3. By Proposition 8.4, with the same reason-

ing as in cases (C), (E) and (F), we know that h3
dCdƒ is even and h3

dCdƒ � b1 D 3, so that
either h3

dCdƒ D 0 or h3
dCdƒ D 2.

We show that h3
dCdƒ D 2 by showing that there is at least one .d C dƒ/-harmonic

3-form. Fix an invariant compatible triple .J;!;g/. By Theorem 1.3 in [24], since primary
Kodaira surfaces are nilmanifolds �nG and the complex structure is invariant, up to a
linear transformation of the Lie algebra of G, we can find a basis of invariant .1; 0/-
form ¹�1; �2º such that d�1 D 0 and d�2 D �1 N1. Since g is an invariant metric, ��1 is
an invariant .2; 1/-form, thus d.��1/ D 0. Moreover, d�.��1/ D � � d�1 D 0. Hence,
��12 H

2;1
d

and h3
dCdƒ D 2.

To conclude the proof, we show that

H 2
d D H 2

dc � H 2
dCdƒ ;

which implies that h2
dCdƒ D b2 D 4, by Theorem 5.4. Consider the decomposition H 2

d
D

HCg ˚H�g . Forms in H�g are anti-self-dual, thus they have bidegree .1; 1/ and they are
primitive. Moreover, they are also d -closed. If ˛ 2 H�g , then d˛ D 0, dƒ˛ D � �s d �s

˛D�sd˛D 0 and .ddƒ/�˛D d cd�˛D d c � d˛D 0. As a consequence, we have H�g �

H 2
dCdƒ . For the inclusion HCg � H 2

dCdƒ , we observe that on primary Kodaira surfaces

bC D 2 and, as long as the compatible triple is invariant, we have HCg D Ch�12; �
N1 N2i,
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where ¹�1; �2º is the preferred basis of [24] we considered above in the proof, up to
normalization. Indeed, we have that d�12 D 0 and ��12 is an invariant .2; 0/-form since
the metric is invariant. Finally, also �s�

12 is an invariant .2; 0/-form since ! is invariant,
and one has that

d�12
D 0; dƒ�12

D � �s d �s �
12
D 0 and .ddƒ/��12

D d cd��12
D 0;

proving that HCg � H 2
dCdƒ and h2

dCdƒ D 4.

The results proved in this section and in Section 7 can be used to compute the num-
bers hk

dCdc and hk
dCdƒ in the case of complex surfaces not necessarily diffeomorphic to

solvmanifolds, as we illustrate in the example below.

Example 8.5 (Hopf surface). Let M D S1 � S3 be the Hopf surface. There exists a par-
allelism for T �M given by ¹e1; e2; e3; e4º, with differentials

de1
D 0; de2

D �e34; de3
D e24 and de4

D �e23:

Note that M is the quotient of a non-solvable Lie group by a lattice.

Proposition 8.6. Let .M; J; !; g/ be the Hopf surface endowed with an invariant com-
patible triple with J integrable. The numbers hk

dCdc and hk
dCdƒ are

k 0 1 2 3 4

hk
dCdc 1 0 1 2 1

hk
dCdƒ 1 1 0 0 1

Proof. By Theorem 7.3, we have that h1
dCdc D 0, h2

dCdc D 1 and h3
dCdc D 2.

To compute hk
dCdƒ , we resort to several different arguments. By Lemma 8.2, we have

that h1
dCdƒ D b1 D 1. Since there is no d -harmonic 2-form, Theorem 5.4 tells us that

h2
dCdƒ D 0. Finally, by Proposition 8.4 and the same reasoning used in the proof of The-

orem 8.1, we conclude that h3
dCdƒ D 0.

Remark 8.7. The fact that almost complex and almost symplectic invariants are deter-
mined by the topology of the underlying manifold is not surprising, especially on solv-
manifolds (see, e.g., Theorem 5.15 in [28]).

(A) Complex torus (B) Hyperelliptic surface (C) Inoue surface �M

k hk
dCdc hk

dCdƒ hk
dCdc hk

dCdƒ hk
dCdc hk

dCdƒ

0 1 1 1 1 1 1
1 4 4 2 2 0 1
2 6 6 2 2 1 0
3 4 4 2 2 2 0
4 1 1 1 1 1 1

Table 1. The numbers hk
dCdc and hk

dCdƒ of the complex torus, the hyperelliptic surface and the
Inoue surface �M .
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(D) Primary Kodaira surface (E) Secondary Kodaira surface (F) Inoue surface �˙

k hk
dCdc hk

dCdƒ hk
dCdc hk

dCdƒ hk
dCdc hk

dCdƒ

0 1 1 1 1 1 1
1 2 3 0 1 0 1
2 5 4 1 0 1 0
3 4 2 2 0 2 0
4 1 1 1 1 1 1

Table 2. The numbers hk
dCdc and hk

dCdƒ of the primary and secondary Kodaira surface and the

Inoue surface �˙.
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