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Product-complete tilting complexes
and Cohen–Macaulay hearts

Michal Hrbek and Lorenzo Martini

Abstract. We show that the cotilting heart associated to a tilting complex T is a
locally coherent and locally coperfect Grothendieck category (i.e., an Ind-completion
of a small artinian abelian category) if and only if T is product-complete. We then
apply this to the specific setting of the derived category of a commutative noetherian
ring R. If dim.R/ <1, we show that there is a derived duality Db

fg.R/ ŠDb.B/op

between mod-R and a noetherian abelian category B if and only if R is a homo-
morphic image of a Cohen–Macaulay ring. Along the way, we obtain new insights
about t-structures in Db

fg.R/. In the final part, we apply our results to obtain a new
characterization of the class of those finite-dimensional noetherian rings that admit a
Gorenstein complex.

1. Introduction

As conjectured by Sharp [49] and proved almost twenty-five years later by Kawasaki [20],
a commutative noetherian ring R of finite Krull dimension admits a dualizing complex if
and only if it is a homomorphic image of a Gorenstein ring. The existence of a dualizing
complex amounts to the existence of a duality on the bounded derived category Db

fg.R/ of
finitely generatedR-modules, that is, to a triangle equivalence Db

fg.R/ŠDb
fg.R/

op. In this
paper, we characterize the existence of a more general and less symmetric form of duality.
Namely, we show in Theorem 6.2 that there is a triangle equivalence Db

fg.R/ Š Db.B/op

for some noetherian abelian category B if and only if R is a homomorphic image of
a Cohen–Macaulay ring. Due to another deep result of Kawasaki [21], such rings are
precisely the CM-excellent rings whose Zariski spectrum Spec.R/ admits a codimension
function (see Česnavičius [7] and Takahashi [52] for recent development of CM-excellent
rings and schemes).

The main tool we use to obtain the result is the large tilting theory. The way tilting the-
ory enters the picture can be explained already in the dualizing complex setting. Indeed,
the duality Db

fg.R/ Š Db
fg.R/

op is actually a derived equivalence in hiding – the natu-
ral isomorphism Db

fg.R/
op ' Db..mod-R/op/ yields a derived equivalence between the
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noetherian category mod-R and the artinian category .mod-R/op. Following Yekutieli and
Zhang [55], (cf. Theorem 6.2 in [56] for an extension to the non-affine case), the duality
realizes .mod-R/op, up to equivalence, as the heart of the perverse t-structure in Db

fg.R/,
which is obtained by dualizing the canonical t-structure. Alonso, Jeremías and Saorín,
see Section 6 of [1], showed that the perverse t-structure extends to a compactly generated
t-structure in D.R/, which they call the Cohen–Macaulay t-structure. By a recent result of
Pavon and Vitória [36], this t-structure is cotilting and thus induces an unbounded derived
equivalence D.HCM/ Š D.R/ between the heart HCM and Mod-R.

Recently, silting and cosilting complexes induced by codimension functions, and the
corresponding t-structures, have been studied and explicitly constructed by Nakamura,
Št’ovíček, and the first author in [18]. In particular, the Cohen–Macaulay heart HCM can
be defined even in the absence of a dualizing complex; the caveat is that the question
of when HCM is derived equivalent to Mod-R remains open in this generality, see Ques-
tion 7.8 in [18]. Now the derived equivalence behind the generalized duality Db

fg.R/ Š

Db.B/op is between mod-R and the artinian category ADBop. It follows from the theory
of Roos [43] (see Theorem 3.5) that the induced derived equivalence of unbounded derived
categories is between the module category Mod-R and a locally coherent and locally cop-
erfect Grothendieck category (see Section 3.2), which turns out to be precisely HCM.

We start in Section 2 by recalling the basic notions of large tilting and cotilting theory,
including a neat characterization, see Theorem 2.3, of the derived equivalences induced
by (bounded) tilting and cotilting complexes. Using the theory of topological endomor-
phism rings of tilting modules developed by Positselski and Št’ovíček [39], and recently
extended to tilting and cotilting complexes in [14], relying heavily on Positselski’s theory
of contramodules over topological rings [37], we show in Section 3 that the heart of a
cotilting t-structure induced by a large tilting complex T (over any associative ring R) is
locally coherent and locally coperfect if and only if T is product-complete. Starting with
Section 4, we specialize to the setting of a commutative noetherian ring R and recall
the relevant aspects of the theory of compactly generated and restrictable t-structures
in D.R/. In Proposition 4.9, we show that any codimension function induces a product-
complete tilting complex if R is a homomorphic image of a finite-dimensional Cohen–
Macaulay ring. In Section 5, we characterize the restrictability of a codimension filtration
t-structure via the CM-excellent condition and show a sort of a converse to the recent
result on t-structures in Db

fg.R/ of Takahashi [52]. In Section 6, we prove the promised
characterization of homomorphic images of Cohen–Macaulay rings in terms of derived
equivalences (see Theorem 6.2). In Section 7, we apply our results to the theory of Goren-
stein complexes. In particular, in Proposition 7.8 and Theorem 7.10, we characterize
finite-dimensional rings admitting a Gorenstein complex as those homomorphic images
of Cohen–Macaulay rings for which fp.HCM/, the abelian category of finitely presentable
objects in the Cohen–Macaulay heart, admits an injective cogenerator (see Remark 7.7).

2. Tilting and cotilting complexes

Let T be a triangulated category. A t-structure in T is a pair .U;V/ of full subcategories
such that HomT .U;V/ D 0, UŒ1� �U, and such that for each X 2 T , there is a triangle
U

uX
��! X

vX
��! V

C
�! with U 2 U and V 2 V . In fact, the latter triangle is functorially
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unique in the sense that uX is a U-coreflection map and vX is a V -reflection map of X
in T . The heart H D UŒ�1� \ V of the t-structure is an abelian category whose exact
sequences are precisely the triangles of T with all components belonging to H . See [4]
for details. For any Y 2 T , we define the following (always full, additive, isomorphism-
closed) subcategories of T by orthogonality relations:

Y ?>0 D ¹X 2 T j HomT .Y;XŒi �/ D 0 for all i > 0º;

Y ?�0 D ¹X 2 T j HomT .Y;XŒi �/ D 0 for all i � 0º;
?>0Y D ¹X 2 T j HomT .X; Y Œi �/ D 0 for all i > 0º;
?�0Y D ¹X 2 T j HomT .X; Y Œi �/ D 0 for all i � 0º:

Following Psaroudakis and Vitória [41] and Nicolás, Saorín, and Zvonareva [34], an
object T 2 T is silting if .T ?>0 ; T ?�0/ is a t-structure in T . We call the latter t-structure a
silting t-structure induced by T , and we call two silting objects T and T 0 equivalent if they
induce the same silting t-structure. Given an objectX , let Add.X/ be the subcategory of all
direct summands of all coproducts of copies ofX which exist in T . If T has all set-indexed
coproducts, then two silting objects T and T 0 are equivalent if and only if Add.T / D
Add.T 0/, by Lemma 4.5 (ii) in [41]. Let HT be the heart of the silting t-structure induced
by T . We say that a silting object T is tilting if Add.T / � HT . Cosilting and cotilting
objects and t-structures are defined dually: an object C is cosilting if .?�0C; ?>0C/ is a
t-structure in T , and it is cotilting if, in addition, Prod.C /�HC , where HC is the heart of
the t-structure and Prod.X/ is the subcategory of all direct summands of arbitrary existing
products of copies of X . Again we say that two cosilting objects C and C 0 are equivalent
if they induce the same t-structure, and this happens precisely when Prod.C /D Prod.C 0/,
provided that T has all set-indexed products.

If C is an abelian category, we let D.C/ be the unbounded derived category and
we let Db.C/ be the bounded derived category of cochain complexes. In all situations
we consider, C is either essentially small or it is Grothendieck, so the respective derived
categories suffer no set-theoretic existential crises. LetR be a (unital, associative) ring. We
will be mostly interested in the case when the role of T is played by one of D.Mod-R/,
Db.Mod-R/, or Db.mod-R/, the unbounded derived category of all right R-modules,
the bounded derived category of all right R-modules, or the bounded derived category of
finitely presented right R-modules, respectively; the last category is well defined if and
only if R is a right coherent ring, which amounts to mod-R being an abelian category.

Recall that in case T D D.C/ or T D Db.C/, then it admits the standard t-structure
.D<0;D�0/ defined by vanishing of the cochain complex cohomology: D<0 D ¹X 2 T j

H i .X/D 0 for all i � 0º and D�0 D ¹X 2 T jH i .X/D 0 for all i < 0º. We define the
subcategories D<n, D�n, D�n and D>n of T for n 2 Z analogously. Note that in either
of the cases T DD.Mod-R/, T DDb.Mod-R/, or Db.mod-R/ (the last one assumes R
is right coherent), the standard t-structure .D�0;D>0/ is equal to .R?>0 ;R?�0/, and thus
induced by the tilting object R. Similarly, for a choice of an injective cogenerator W of
Mod-R, the standard t-structure .D<0;D�0/ is equal to .?�0W;?>0W / and thus induced
by the cotilting object W . The heart of either of these t-structure is equivalent to Mod-R
(respectively, to mod-R in the case T D Db.mod-R/).
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Lemma 2.1 (Theorem 3.11 in [6]). Let R be a ring and T an object of D.Mod-R/. The
following are equivalent:

(a) T belongs to Kb.Proj-R/ and it is a silting object in D.Mod-R/,
(b) T belongs to Kb.Proj-R/, Add.T / � T ?>0 , and T generates D.Mod-R/.

Dually, the following are equivalent for C 2 D.R-Mod/:
(aco) C belongs to Kb.R-Inj/ and it is a cosilting object in D.R-Mod/,
(bco) C belongs to Kb.R-Inj/, Prod.C / � ?>0C , and C cogenerates D.R-Mod/.

Remark 2.2. If T 2 Kb.Proj-R/ is a silting object in D.Mod-R/, then it is also a silt-
ing object in Db.Mod-R/, as the induced silting t-structure in D.Mod-R/ restricts to
Db.Mod-R/. Lemma 2.1 shows in particular that the converse is also true: An object
T 2 Kb.Proj-R/ is silting in D.Mod-R/ if and only if it is silting in Db.Mod-R/. An
analogous statement holds for cosilting objects in Kb.R-Inj/, as well as for the tilting and
cotilting variants.

An object T 2 D.Mod-R/ satisfying the condition (a) or (b) above is called a silt-
ing complex, dually we have cosilting complexes over R-Mod. Silting complexes which
are tilting objects are called tilting complexes, similarly we have cotilting complexes.
Tilting (respectively, cotilting) complexes parametrize bounded derived equivalences to
cocomplete abelian categories with a projective generator (respectively, to Grothendieck
categories) as we now recall. This characterization is for the most part known to experts,
see Theorem A in [41] and Theorem 7.12 in [53], which both also apply to larger gen-
erality than module categories. However, the first reference does not directly apply to
obtain (iico) below, while we diverge from the latter one by not assuming the derived
equivalences of (ii) and (iico) to extend to unbounded derived categories, a priori. There-
fore, we include the following statement and its proof for completeness.

Theorem 2.3. Let R be a ring. Then the following hold:
(i) Let T 2 D.Mod-R/ be a tilting complex. The heart HT is a cocomplete abelian

category with a projective generator, and there is also a triangle equivalence
Db.Mod-R/ Š Db.HT /.

(ii) Let H be a cocomplete abelian category with a projective generator, and consider
a triangle equivalence Db.Mod-R/ Š Db.H /. Then there is a tilting complex
T 2 D.Mod-R/ with HT Š H .

(ico) Let C 2 D.R-Mod/ be a cotilting complex. The heart HC is a complete abelian
category with an injective cogenerator, and there is also a triangle equivalence
Db.R-Mod/ Š Db.HC /.

(iico) Let H be a complete abelian category with an injective cogenerator, and and
consider a triangle equivalence Db.R-Mod/ Š Db.H /. Then there is a cotilting
complex C 2 D.R-Mod/ with HC Š H .

In addition, the cotilting heart HC from (ico) or (iico) is automatically a Grothendieck
category.

Proof. The statements (i) and (ico) are proved in Corollary 5.2 of [41]. The proofs of (ii)
and (iico) are analogous; we prove (iico) here. Let ˛WDb.R-Mod/ Š�! Db.H / denote the
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triangle equivalence and let W be an injective cogenerator of H . Set C D ˛�1.W / 2

Db.R-Mod/. By definition, W is a cotilting object of Db.H / inducing the standard t-
structure .?�0W;?>0W / D .D<0;D�0/, thus C is a cotilting object in Db.R-Mod/. To
check that C is a cotilting complex in D.R-Mod/, it suffices, in view of Lemma 2.1
and Remark 2.2, to verify that C 2 Kb.R-Inj/. To see this, we claim that the objects
of bounded injective dimension in both Db.R-Mod/ and Db.H / are characterized in
terms of the triangulated category structure, and so are preserved and reflected by the
equivalence. Indeed, let A be any complete abelian category with enough injectives. Then
an object X 2 Db.A/ is of finite injective dimension if and only if for each Y 2 Db.A/,
there is k > 0 such that HomDb.A/.Y;XŒi �/D 0 for all i � k; this is proved the same way
as Proposition 6.2 in [42]. We showed that C is a cotilting complex in D.R-Mod/ and,
by construction, HC Š H .

The final claim follows by Proposition 3.10 in [26] and Theorem 3.6 in [3].

3. Product-complete tilting objects

In this section, let T be a compactly generated triangulated category with T c the full
subcategory of compact objects. We start by recalling some notions of the purity theory
in T of Krause [23] and Beligiannis [5]. By definition, T c is a ringoid (i.e., an essentially
small preadditive category). Thus, we can consider the module category Mod-T c over
the ringoid T c, that is, the category of all contravariant additive functors T c ! Mod-Z.
We denote by yW T ! Mod-T c the restricted Yoneda functor, which is defined by the
assignmentX 7!HomT .�;X/�T c . A morphism f WX! Y in T is a pure monomorphism
if yf is a monomorphism in Mod-T c. An object X 2 T is pure-injective if every pure
monomorphism f WX ! Y in T is a split monomorphism or, equivalently, if yX is an
injective object in Mod-T c, and it is ˙ -pure-injective if every object in Add.X/ is pure-
injective. Since every object of the form yX for X 2 T is fp-injective (see Remark 7.7) in
Mod-T c, by Lemma 1.6 in [23],1 we also have that X is pure-injective in T if and only
if yX is pure-injective in Mod-T c.

Recall that T , being compactly generated, has all coproducts by definition and also
all products by Corollary 1.18 in [31]. Extending the classical definition from modules to
triangulated setting, we call an object X 2 T product-complete if Add.X/ is closed under
taking arbitrary products in T .

Lemma 3.1. If X is a product-complete object of T , then X is ˙ -pure-injective and
Add.X/ D Prod.X/.

Proof. Since y commutes with both products and coproducts, we easily check that yX is
a product-complete module whenever X is product-complete in T . By a straightforward
generalization of Lemma 2.32 in [9] to modules over ringoids, yX is a ˙ -pure-injective
module, and therefore X is ˙ -pure-injective in T .

By the definition of product-completeness, we have that Prod.X/ � Add.X/. The
converse inclusion follows by considering the canonical pure monomorphismX .~/!X~

1Conversely, every fp-injective object of Mod-T c is a direct limit of objects in the essential image of yWT !
Mod-T c, see Lemma 2.7 and Theorem 2.8 in [23].
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for a cardinal ~ and the fact that X .~/ is pure-injective, which follows by the previous
paragraph. This implies that X .~/ ! X~ is a split monomorphism.

A subcategory C of T is called definable if there is a set ˚ of maps in T c such
that C D ¹X 2 T j HomT .f;X/ D 0 for all f 2 ˚º. The smallest definable subcategory
of T containing an object X will be denoted by Def.X/. Explicitly, Def.X/ D ¹X 2 T j

HomT .f; X/ D 0 for all f 2 ˚Xº, where ˚X consists of all maps f in T c such that
HomT .f;X/ D 0.

Assume that T underlies a compactly generated derivator, see [24] for details. This
is a weak assumption allowing computation of homotopy limits and colimits. In the case
T D D.Mod-R/ (and, more generally, whenever T is the homotopy category of a sta-
ble model category), homotopy limits and colimits are just the derived functors of limits
and colimits. As a consequence, directed colimits being exact in Mod-R (as they are
in any Grothendieck category), their derived functor is just the usual directed colimit
of complexes (i.e., the directed colimit of modules, applied component-wise), see, e.g.,
the appendix of [17] for details. Laking [24] shows that definable subcategories of T are
precisely the subcategories closed under products, pure subobjects and directed homo-
topy colimits. Equivalently, one can replace directed homotopy colimits by pure quotients
in this characterization – this was proved, assuming that T is algebraic, by Laking and
Vitória (Theorem 4.7 in [25]); the algebraic assumption was later removed by Saorín and
Št’ovíček in Remark 8.8 of [45].

Lemma 3.2. Assume that T underlies a compactly generated derivator. Let T 2 T be a
product-complete tilting object. Then Add.T / is a definable subcategory of T .

Proof. By the definition of product-completeness, Add.T / is closed under products. Con-
sider a pure monomorphism K ! T .~/. Since T .~/ is ˙ -pure-injective by Lemma 3.1,
this map actually splits; this follows from Corollary 4.4.13 in [40] and an application
of y. It follows that Add.T / is closed under pure subobjects and pure quotients, thus it is
definable by the discussion above.

3.1. Topological endomorphism ring of a decent tilting complex

We need to briefly recall the recent theory of topological endomorphism rings of tilting
complexes from [14], which builds upon the work of Positselski and Št’ovíček on tilting
modules [38]. A silting object T 2 T is called decent provided that Def.T / � HT ; note
that since Add.T / � Def.T /, this implies that T is tilting.

Lemma 3.3. Assume that T underlies a compactly generated derivator. If T is a product-
complete tilting object of T , then T is decent.

Proof. By Lemma 3.2, Add.T / is a definable subcategory. Since T is tilting, we have
Add.T / D Def.T / � HT and so T is decent.

Let R be a ring and let T be a decent tilting complex in D.Mod-R/. By [14], being
decent is in this setting equivalent to the character dual complex

C WD TC D RHomZ.T;Q=Z/
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being a cotilting complex in D.R-Mod/. Further, following [14], the endomorphism ring
S D EndD.Mod-R/.T / can be endowed with a natural linear topology of open left ideals
called the compact topology making it into a complete and separated topological ring.
Such a topological ring comes attached with two abelian categories: Positselski’s cate-
gory Ctra-S of right contramodules [37] – a cocomplete abelian category with a projective
generator – and the Grothendieck category S-Disc of left discrete modules. The latter cat-
egory is nothing else then the full subcategory of S-Mod consisting of modules which are
torsion with respect to open left ideals; this is a hereditary pretorsion class inside S-Mod.
Let us denote by � WS-Mod!S-Mod, the right adjoint to the inclusion S-Disc�S-Mod
postcomposed with the same inclusion, that is, the pretorsion preradical associated to this
pretorsion class.

Let us assume in addition that T is good, i.e., that R 2 thick.T /. Any silting complex
is equivalent to a good one, and decency is preserved by this, see Lemma 4.2 in [14].
Let also A D dgEndR.T / be the endomorphism dg ring of T , so that T is an A-R-dg
bimodule. Since T is tilting,A is quasi-isomorphic to S, and there is a triangle equivalence
"WD.A-dgMod/ Š�! D.S-Mod/ given by the zig-zag of soft truncation morphisms A!
��0A H 0.A/DS. Here, S-Mod is identified with the heart of the standard t-structure
in D.A-dgMod/. By Theorem 5.4 in [14], there is a triangle equivalence  WDb.R-Mod/
Š Db.S-Disc/ W �1, where  is induced by corestriction of the functor " ı .T ˝L

R �/

and  �1 is the restriction of RHomA.T;�/ ı "�1. This equivalence further restricts to an
equivalence of abelian categories

H 0.T ˝L
R �/ W HC

Š
��! S-Disc W RHomA.T;�/:

Similarly, by Theorem 4.7 in [14], we have an equivalence HT Š Ctra-S which restricts
to an equivalence Add.T / Š CtraProj-S, the latter being the full subcategory of Ctra-S
consisting of all projective right S-contramodules.

We start by adding to the general results of [14] that the linear topology on S is in
this situation actually a Gabriel topology of finite type or, equivalently, S-Disc is closed
under extensions in S-Mod (so it is a hereditary torsion class) whose torsion radical �
commutes with direct limits.

Proposition 3.4. In the setting above, the pretorsion preradical � WS-Mod! S-Mod is
a torsion radical and it commutes with direct limits. In particular, the left open ideals of S
form a Gabriel topology with a base of finitely generated left ideals of S.

Proof. By Theorem 5.4 in [14], T good implies that the forgetful functor Db.S-Disc/!
Db.S-Mod/ is fully faithful. As a consequence, for anyM;N 2 S-Disc, we have a natu-
ral isomorphism Ext1S-Disc.M;N / Š Ext1S.M;N /. It follows that S-Disc is an extension
closed subcategory of S-Mod, thus it forms a torsion class, and so � is a torsion radical.

Following the proof of Theorem 5.4 in [14], there is a commutative square of triangle
functors

Db.HC /

realC Š

��

Š

Db.F /
// Db.S-Disc/

�

��

Db.R-Mod/
 
// Db.S-Mod/;
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where F D H 0.T ˝L
R �/ is the exact equivalence HC

Š
�! S-Disc and Db.F / its exten-

sion to bounded derived categories,  D " ı .T ˝L
R �/, realC is the realization functor

with respect to the t-structure .?�0C; ?>0C/ and a suitable f-enhancement, and finally,
�WDb.S-Disc/! Db.S-Mod/ is the forgetful functor, which we know to be fully faith-
ful. By taking right adjoints, we see that � has a right adjoint naturally equivalent to the
functor %DDb.F / ı real�1C ı �, where � D RHomA.T;�/ ı "�1 is the right adjoint to  .

We claim that � Š � ıH 0.%/. LetX 2Db.S-Disc/ andM 2S-Mod. By the adjunc-
tion, we have an isomorphism HomDb.S/.X; M/ Š HomDb.S-Disc/.X; %M/. It follows
that HomDb.S-Disc/.N Œi �; %M/ D 0 for any N 2 S-Disc and i > 0, which implies that
H i .%M/ D 0 for all i < 0. Then for any N 2 S-Disc, we have

HomS.N;M/ Š HomDb.S-Disc/.N; %M/

Š HomS-Disc.N; �
�0.%M// D HomS-Disc.N;H

0.%M//:

In other words, H 0.%/WS-Mod! S-Disc is the right adjoint to the inclusion S-Disc �
S-Mod, and so � ıH 0.%/ is equivalent to � .

Finally, for any M 2 S-Mod, we have that

H 0.%.M/ D H 0.Db.F /.real�1C �.M/// Š F.H 0
C .�.M/// D F.H 0

C .RHomA.T;M///

(here we use Theorem 3.11 (i) in [41]). The functor

F.H 0
C .RHomA.T;�/// W S-Mod! S-Disc

clearly commutes with direct limits in S-Mod, as T is a compact object in D.A-dgMod/
and direct limits in S-Mod coincide with directed homotopy colimits computed inside
D.A-dgMod/, while both the exact equivalence F and the cohomological functor H 0

C

are known to preserve directed (homotopy) colimits. Then also � commutes with direct
limits, as the inclusion S-Disc � S-Mod clearly preserves direct limits.

By Section VI.5 of [51], the left open ideals form a Gabriel topology, and then by
Proposition 3.4, and by Proposition 1.2 in Section XIII of [51], the topology has a base of
finitely generated left ideals of S.

3.2. Locally coherent and locally coperfect abelian categories

Recall that an essentially small abelian category A is noetherian (respectively, artinian) if
every object in A is noetherian (respectively, artinian), which means that it satisfies a.c.c.
(respectively, d.c.c.) on its subobjects. Let C be a locally finitely presentable abelian cat-
egory and let fp.C/ denote the (essentially small) full subcategory of finitely presentable
objects of C . We recall that this automatically renders C a Grothendieck category. We
call C locally noetherian if C admits a generating set of noetherian objects. It can be eas-
ily seen that C is locally noetherian if and only if fp.C/ is a noetherian abelian category. In
particular, C is locally coherent, which by definition means that fp.C/ is itself an abelian
category. A natural question is what properties of C characterize the case in which fp.C/
is an artinian abelian category. It turns out that this occurs precisely when C is locally
coherent and locally coperfect. The latter property means that there is a set of generators



Product-complete tilting complexes and Cohen–Macaulay hearts 2347

in C which are coperfect, which means that they satisfy d.c.c. on finitely generated subob-
jects. This is in fact equivalent to every object of C being coperfect. For details, we refer
the reader to [43] and [39].

We have the following result of Roos [43], which can be seen as a large category
version of the obvious explicit duality A 7! Aop between noetherian and artinian abelian
categories. Given an essentially small abelian category A, we let Lex.A/ be the abelian
category of all left exact additive functors A! Mod-Z; this is a locally coherent abelian
category which satisfies fp.Lex.A// Š A, see [43] and also Proposition 13.2 in [39].

Theorem 3.5 ([39, 43]). There is a bijective correspondence

¹Locally noetherian abelian categories up to equivalenceº

" 1-1
#

¹Locally coherent and locally coperfect abelian categories up to equivalenceº;

which is defined in both directions by the assignment C 7! Lex.fp.C/op/.
Furthermore, any locally coherent, locally coperfect abelian category C is equivalent

to S-Disc for a suitable complete and separated left topological ring S.

It turns out that the product-completeness of T characterizes the situation in which
the induced cotilting heart HC is locally coherent and locally coperfect. We recall that the
categories Ctra-S of right S-contramodules and S-Disc of left discrete S-modules are
paired by a bifunctor �ˇS �WCtra-S �S-Disc!Mod-Z called the contratensor prod-
uct, which shares many properties with the usual tensor functor in case of ordinary module
categories, see Section 1 of [39] for the basic reference. In the case when the forget-
ful functor Ctra-S! Mod-S is fully faithful, the contratensor product �ˇS � actually
coincides with the restriction of the ordinary tensor product �˝S �, this happens in our
setting whenever the tilting complex T is good, see Lemma 7.11 in [38] and Lemma 5.1
in [14]. A right S-contramodule M is flat if the functor MˇS �WS-Disc! Mod-Z is
exact; any projective right S-contramodule is flat, see Section 14 of [39].

Theorem 3.6. Let R be a ring, T a tilting complex in D.Mod-R/, and C D TC its dual
cosilting complex in D.R-Mod/. Then the following hold:
(i) If T is product-complete, then T is decent and HC is a locally coherent and locally

coperfect abelian category.

(ii) If T is decent and HC is locally coherent and locally coperfect, then T is product-
complete.

Proof. Since product-completeness and decency of T , as well as the equivalence class of
HC Š S-Disc, are invariant under change of the tilting complex T up to equivalence,
we can without loss of generality assume that T is good, see Lemma 4.2 in Section 6.2
of [14].

(i) Recall first from Lemma 3.2 that T is decent so that C is cotilting.
Let us first show that HC ŠS-Disc is locally coherent. By Proposition 3.4, it is locally

finitely presentable. Also, by Proposition 3.4, � commutes with direct limits (as observed
above), and so the finitely presentable objects in S-Disc are precisely the objects which
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are finitely presented as left S-modules. Let

0! K !M ! N

be an exact sequence withM;N finitely presentable objects in S-Disc. For any cardinal ~,
consider the commutative diagram

0 // S~ ˝S K //

��

S~ ˝S M //

��

S~ ˝S N

��

0 // K~ // M ~ // N ~ :

Here, the vertical arrows are the natural ones; the rows of the diagram are exact, because
the tensor product � ˝S � here coincides with the contratensor product � ˇS � and
because S~ is a flat right S-contramodule. The latter fact follows from Prod.S/�Add.S/
in Ctra-S which reflects the assumption Prod.T / � Add.T / in D.Mod-R/ (note that
both the Add- and the Prod-closure of the projective object T is computed the same in
D.Mod-R/ and in the abelian category HT Š Ctra-S). SinceM;N are finitely presented
left S-modules, the two rightmost vertical maps are isomorphisms, and therefore so is
the leftmost vertical map. It follows by a standard argument (Proposition 10.89.3 in [50])
thatK is a finitely presented left S-module, and therefore it is a finitely presentable object
of S-Disc. We proved that S-Disc is locally coherent.

By Lemma 3.2, Add.T / is closed under directed homotopy colimits. It follows from
Lemma 7.3 in [46] that directed homotopy colimits in Add.T / coincide with direct limits
of objects in Add.T / computed in the heart HT . In view of the equivalence HT Š Ctra-S,
which restricts to Add.T / Š CtraProj-S, we see that the category of projective right S-
contramodules is closed under direct limits computed in Ctra-S. By Theorem 14.1 in [39],
the topological ring S is therefore topologically right perfect and S-Disc is locally cop-
erfect by Theorem 14.4 in [39].

(ii) By definition, see [39], S is topologically left coherent. Using Theorems 14.1
and 14.12 in [39], we see that S is also topologically right perfect, which, in particular,
means that CtraProj-S coincides with the class of flat right S-contramodules. It is enough
to see that this class is closed under products. Let .Fi j i 2 I / be a collection of flat right
S-contramodules. If N 2 S-Disc is a coherent left discrete S-module, then we have the
following isomorphisms:�Y

i2I

Fi

�
ˇS N Š

�Y
i2I

Fi

�
˝S N Š

Y
i2I

.Fi ˝S N/ Š
Y
i2I

.Fi ˇS N/I

the first and last one follow again by T being good and Lemma 5.1 in [14], while the
middle one follows since N is a finitely presented left S-module. A standard argument
using local coherence of S-Disc then shows that

Q
i2I Fi is a flat right S-contramodule.

Indeed, by Lemma 5.9 in [22], any short exact sequence in S-Disc can be written as a
direct limit of short exact sequences in fp.S-Disc/, and so the functor

Q
i2I Fi ˇS � W

S-Disc! Mod-Z is exact.
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4. Commutative noetherian rings and codimension filtrations

From now on,R is a commutative noetherian ring with Zariski spectrum Spec.R/. We also
abbreviate D.R/ WD D.Mod-R/, Db.R/ WD Db.Mod-R/ and Db

fg.R/ WD Db.mod-R/;
note that the last category is known to be equivalent to the full subcategory of Db.R/

consisting of complexes with finitely generated cohomology.

4.1. Compactly generated t-structures in D.R/

Alonso, Jeremías and Saorín [1] established a bijection between compactly generated t-
structures in D.R/ and sp-filtrations of the Zariski spectrum Spec.R/. An sp-filtration
is a function ˚ assigning to every integer n 2 Z a specialization-closed subset ˚.n/ of
Spec.R/, that is, an upper subset of the poset .Spec.R/;�/, such that ˚.n � 1/ � ˚.n/
for each n 2 Z. If ˚ is an sp-filtration, then the corresponding t-structure .U;V/ is deter-
mined by

U D ¹X 2 D.R/ j Supp.Hn.X// � ˚.n/ for all n 2 Zº;

where Supp.M/ D ¹p 2 Spec.R/ jMp ¤ 0º, and

V D ¹X 2 D.R/ j R�˚.n/.X/ 2 D>n for all n 2 Zº;

where R�˚.n/WD.R/!D.R/ denotes the right derived functor of the torsion subfunctor
�˚.n/WMod-R ! Mod-R with respect to the support ˚.n/. Note that the coaisle V can
also be described using depth (see, e.g., Section 2.3 of [18]):

V D ¹X 2 D.R/ j depthRq
Xq > n for all q 2 ˚.n/ and all n 2 Zº:

A t-structure .U;V/ is non-degenerate if
T
n2Z UŒn�D 0D

T
n2Z V Œn� and it is inter-

mediate if D<n �U�D<m for some integers n�m; any intermediate t-structure is non-
degenerate. Both these properties of a compactly generated t-structure in D.R/ are easily
read from the corresponding sp-filtration ˚ : we call ˚ non-degenerate if

S
n2Z ˚.n/ D

Spec.R/ and
T
n2Z ˚.n/ D ;, while we call ˚ intermediate if ˚.n/ D Spec.R/ and

˚.m/ D ; for some integers n < m, see Theorem 3.8 in [2].
The t-structures in D.R/ induced by pure-injective cosilting objects are precisely the

non-degenerate compactly generated t-structures [17]. Moreover, the t-structures in D.R/

induced by cosilting complexes coincide precisely with the intermediate compactly gen-
erated t-structures. Furthermore, the assignment T 7! TC yields a bijection between the
equivalence classes of silting and cosilting complexes. See Theorem 3.8 in [2].

4.2. Restrictable t-structures

Recall that a t-structure .U;V/ in D.R/ is restrictable if the restricted pair

.U \Db
fg.R/;V \Db

fg.R//

yields a t-structure in the triangulated category Db
fg.R/. A non-degenerate sp-filtration ˚

satisfies the weak Cousin condition if whenever p ¨ q is a minimal inclusion of primes
and q 2 ˚.n/, then p 2 ˚.n � 1/. In the following, we gather several important results
about restrictable t-structures in D.R/.
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Theorem 4.1. LetR be a commutative noetherian ring and .U;V/ a compactly generated
t-structure in D.R/ with heart H corresponding to an sp-filtration ˚ . Then:

(i) if .U;V/ is intermediate, then .U;V/ is restrictable if and only if .U;V/ is cotilting
and H is locally coherent,

(ii) if .U;V/ is restrictable, then ˚ satisfies the weak Cousin condition,

(iii) if R is CM-excellent (see Section 5), then the converse implication of (ii) holds as
well,

(iv) the restriction assignment induces a bijection

¹Restrictable compactly generated t-structures in D.R/º
1-1
 ! ¹t-structures in Db

fg.R/º:

Proof. (i) The direct implication is Corollary 6.17 in [36] and Theorem 6.3 in [44], while
the converse is proved in Theorem 3.13 of [19].

(ii) This is Corollary 4.5 in [1].
(iii) This has recently been proved by Takahashi [52], the special case when R has a

classical dualizing complex was proved in Section 6 of [1].
(iv) See Corollary 3.12 in [1], or more generally, Corollary 4.2 in [27].

4.3. Module-finite algebra extensions

Let �WR! A be a noetherian commutative R-algebra and let us denote the induced map
on spectra as Spec.�/WSpec.A/! Spec.R/. Given an sp-filtration ˚ on Spec.R/, we can
define an induced sp-filtration �˚ on Spec.A/ by setting �˚.n/ D Spec.�/�1.˚.n// for
all n 2 Z. This way, � transfers compactly generated t-structures in D.R/ to compactly
generated t-structures in D.A/, see Section 5 of [6] for details. More explicitly, let .U;V/
be the compactly generated t-structure in D.R/ corresponding to ˚ and let .��U; �ŠV/
denote the compactly generated t-structure in D.A/ corresponding to �˚ (the notation is
justified in Lemma 4.2 below).2 Then

U D ¹X 2 D.R/ j SuppHn.X/ � ˚.n/ for all n 2 Zº

and
��U D ¹X 2 D.A/ j SuppHn.X/ � �˚.n/ for all n 2 Zº:

Let
��WD.A/! D.R/

denote the forgetful functor, which admits the left adjoint

�� D .�˝L
R A/WD.R/! D.A/

and the right adjoint
�Š D RHomR.A;�/WD.R/! D.A/:

An R-algebra �WR! A is module-finite if A is finitely generated as an R-module. Note
that if � is module-finite and Y 2 D.A/, then Y 2 Db

fg.A/ if and only if ��Y 2 Db
fg.R/.

2One can in fact show that the t-structure .��U; �ŠV/ is generated by the image of (compact objects in) U

under ��; this follows essentially from Sections 4 and 5 of [6].
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Lemma 4.2. Let �WR! A be a commutative module-finiteR-algebra. In the notation set
above, the following hold for any X 2 D.R/ and Y 2 D.A/:

(i) Y 2 ��U if and only if ��Y 2 U.

(ii) If X 2 U, then ��X 2 ��U.

(iii) If X 2 V , then �ŠX 2 �ŠV .

Proof. (i) LetM DHn.Y / for some n 2 Z. Then condition (i) just says that Supp.M/�

�˚.n/ is equivalent to Supp.��M/ � ˚.n/. By writing M as a directed union of finitely
generated submodules, and using that � is module-finite, we can clearly assume thatM is
finitely generated. Then the statement follows from Lemma 10.40.6. in [50].

(ii) By (i), it suffices to show that ����X 2 U. This follows from Proposition 2.3 (i)
in [13].

(iii) For any Y 2 ��U, we have HomD.A/.Y; �
ŠX/ Š HomD.R/.��Y;X/ D 0 by (i),

which shows that �ŠX 2 ��U?0 D �ŠV .

Proposition 4.3. Let �WR! A be a commutative module-finiteR-algebra. Let .U;V/ be
an intermediate restrictable t-structure in D.R/ and .��U; �ŠV/ the induced t-structure
in D.A/. Then .��U; �ŠV/ is restrictable in D.A/.

Proof. Let X 2 Db
fg.A/ and consider the approximation triangle

xU
f
��! X �! xV

C
��!

with respect to .��U; �ŠV/ in D.A/, as well as the approximation triangle

U
h
��! ��X �! V

C
��!

with respect to .U;V/ in D.R/. Since �WR ! A is module-finite, ��X 2 Db
fg.R/. By

the assumption, we know that U 2 Db
fg.R/, and the goal is to prove that xU 2 Db

fg.A/.
Since the t-structure .U;V/ is intermediate, it is easy to see that so is .��U; �ŠV/. Then
clearly xU 2 Db.A/.

For any object M 2 D.R/, the natural map

�M DM ˝
L
R � WM ! ���

�M

in D.R/ is the unit of the adjunction. It follows that for any xM 2 D.A/ and any map
sWM ! �� xM in D.R/, there is a map QsW��M ! xM in D.A/ such that s D ��.Qs/�M .

Consider the map QhW��U ! X induced from h as above. Since we have ��U 2 ��U
by Lemma 4.2, there is a (essentially unique) map l W��U ! xU in D.A/ such that Qh D f l .
Similarly, there is a (essentially unique) map gW�� xU !U in D.R/ such that ��.f /D hg.
Consider the composition �UgW �� xU ! ���

�U . Then there is again a map 
 D ��Ug W
���� xU ! ��U in D.A/ such that �Ug D ��.
/��� xU . Consider the composition

�� xU
��� xU
����! ���

��� xU
��.
/
�����! ���

�U
��.l/
����! �� xU :



M. Hrbek and L. Martini 2352

First, because ��� xU D ��
xU ˝L

R �, the map ��� xU is in the essential image of the forgetful
functor ��, and therefore the composition ��.l/��.
/��� xU is of the form ��.e/ for some
e 2 EndD.A/. xU/. We compute:

��.f /��.l/��.
/��� xU D ��.
Qh/�Ug D hg D ��.f /:

It follows that fe D f , and therefore e is an automorphism of xU . As a consequence,
l W��U ! xU is a split epimorphism in D.A/. Since U 2 Db

fg.R/ and A is a finitely gen-
erated R-module, it follows that every cohomology of ��U is finitely generated over R,
and therefore also over A. Then the same is true for xU . Since we already know that xU is
cohomologically bounded, the proof is concluded.

The following characterization of when the cotilting property passes to factor rings
of R is to some extent implicit in Section 7 of [18].

Lemma 4.4. Let C be a cosilting complex in D.R/. The following are equivalent:
(a) C is cotilting and HomD.R/.C

~ ; C / is flat as an R-module for any cardinal ~,

(b) for each ideal I of R, RHomR.R=I; C / is a cotilting object in D.R=I /.

Proof. By a general argument, see Theorem 4.2 (II) (1) in [6], xC WD RHomR.R=I; C / is
a cosilting object in D.R=I /. Arguing similarly as in the proof of Proposition 7.4 in [18],
Proposition 2.1 (ii) in [8] yields an isomorphism

RHomR.C
~ ; C /˝L

R R=I Š RHomR=I . xC
~ ; xC/

for any cardinal ~. Since C is cotilting, we have RHomR.C
~ ; C / Š HomD.R/.C

~ ; C /

in D.R/. If HomD.R/.C
~ ; C / is flat, then the cohomology of RHomR=I . xC

~ ; xC/ is
concentrated in degree zero, and thus the cosilting complex xC is cotilting in D.R=I /.
Conversely, assume that RHomR.R=I; C / is cotilting in D.R=I / for all ideals I . Then
by the isomorphism above, TorRi .R=I;HomD.R/.C

~ ; C // D 0 for all ideals I and i > 0,
and thus HomD.R/.C

~ ; C / is a flat R-module by the flat test.

Remark 4.5. In Section 7 of [18], also the dual condition of HomD.R/.T; T
.~// being

flat for all cardinals ~ is considered for a tilting complex T . Analogously to Lemma 4.4,
one can show that this condition is equivalent to T ˝L

R R=I being a tilting complex in
D.R=I / for all ideals I . We remark that, in light of Corollary 3.7 in [14], there is now
a one-way relation between these two conditions for a pair of a tilting complex T and its
dual cotilting complex TC in D.R/. Indeed,

HomD.R/..T
C/~ ; TC/ is flat for all ~ H) HomD.R/.T; T

.~// is flat for all ~:

Whether the converse is true in this setting remains unclear.

In what follows, we show that the equivalent conditions of Lemma 4.4 are strongly
connected to the restrictability of the induced cotilting t-structure.

Lemma 4.6. A triangle X ! Y ! Z
C
�! is pure in D.R/ if and only if the induced

triangle RHomR.Z; I / ! RHomR.Y; I / ! RHomR.X; I /
C
�! is split for any pure-

injective object I 2 D.R/.
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Proof. The “if” statement follows from Lemma 2.6 (iii) in [2] by setting I D RC. Let us
prove the “only if” statement. If I D XC for some X 2 D.R/, then RHomR.�; X

C/ Š

.�˝L
R X/

C, and thus the triangle is split by an application of Lemma 2.6 (ii)–(iii) in [2].
Finally, the case of a general pure-injective object I reduces to the previous one because
there is a natural morphism I ! ICC which is a split monomorphism by Lemma 2.7
in [2].

Lemma 4.7. Let C be a cotilting complex in D.R/. Then for any p 2 Spec.R/, the object
RHomR.Rp; C / is a cotilting complex in D.Rp/.

Proof. This follows similarly as Lemma 5.10 in [15], but we also provide a direct proof.
As above, Theorem 4.2 (II) (1) in [6] yields that RHomR.Rp; C / is a cosilting complex
in D.Rp/, so it suffices to show that RHomR.Rp; C /

~ 2 ?<0RHomR.Rp; C / for any
cardinal ~. By adjunction, this reduces to showing that RHomR.Rp; C

~/ 2 ?<0C . We
show, more generally, that RHomR.F; C

~/ 2 ?<0C , where F is a flat R-module. Let
� WR.�/ ! F be an epimorphism for some cardinal �. Since F is flat, � is a pure epi-
morphism. Also, since C ~ is pure-injective, the induced morphism RHomR.�; C

~/ W

RHomR.F;C
~/!RHomR.R

.�/;C ~/ is a split monomorphism in D.R/ by Lemma 4.6.
As C is cotilting, we have that RHomR.R

.�/; C ~/ Š .C ~/� belongs to ?<0C , and thus
RHomR.F; C

~/ 2 ?<0C , as desired.

Proposition 4.8. Let C be a cotilting complex in D.R/ whose induced t-structure .U;V/
corresponds to an sp-filtration ˚ . Then the following hold:
(i) If .U; V/ is restrictable, then HomD.R/.C

~ ; C / is flat as an R-module for any
cardinal ~.

(ii) If HomD.R/.C
~ ; C / is flat as an R-module for any cardinal ~, then ˚ satisfies the

weak Cousin condition.

As a consequence, if R is CM-excellent (see Section 5), then HomD.R/.C
~ ; C / is flat as

an R-module for any cardinal ~ if and only if .U;V/ is restrictable.

Proof. (i) By Proposition 4.3, we know that for any ring quotient �W R ! R=I , the
induced t-structure .��U; �ŠV/ is restrictable in D.R=I /. For any Y 2 D.R=I /, we
have the adjunction isomorphism

RHomR=I .Y; �
ŠC/ Š RHomR.��Y; C /;

which shows that .��U; �ŠV/D .?�0�ŠC;?>0�ŠC/ is the cosilting t-structure in D.R=I /

induced by the cosilting complex �ŠC D RHomR.R=I; C /. Combining this with Theo-
rem 4.1 (i), we see that �ŠC is cotilting in D.R=I /. Then the claim follows from Lem-
ma 4.4.

(ii) By Lemma 4.4, we have, for any ideal I of R, that the cosilting complex �ŠC
in D.R=I / is cotilting, where �WR ! R=I is the quotient morphism. Towards contra-
diction, let n 2 Z and p ¨ q be a minimal inclusion of primes such that q 2 ˚.n/ but
p 62 ˚.n� 1/. The weak Cousin condition is clearly a local property, which together with
Lemma 4.7 allows us to pass to the localizationRq. We thus assume without loss of gener-
ality that R is local with the maximal ideal q Dm. By the assumption, RHomR.R=p; C /
is a cotilting complex in the derived category D.R=p/ of the one-dimensional local
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domain R=p. The corresponding sp-filtration �˚ of Spec.R=p/ satisfies by the construc-
tion �˚.n � 1/ D �˚.n/ D ¹ xmº, where xm D m=p is the maximal ideal of R=p. Since
�˚ is non-degenerate and R=p is one-dimensional, it follows that �˚ is a slice filtration
on Spec.R=p/ (see Section 4.4). On the other hand, �˚.n � 1/ D �˚.n/ D ¹ xmº ensures
that �˚ is not a codimension filtration. Then RHomR.R=p; C / cannot be cotilting by
Proposition 6.10 (2) in [18], a contradiction.

The last claim follows from conditions (i)–(ii) and Theorem 4.1 (iii).

We come back to restrictable t-structures in Section 5.

4.4. Codimension sp-filtrations

As introduced in [18], an sp-filtration˚ on Spec.R/ is a slice filtration if it is non-degener-
ate and dim.˚.n� 1/ n˚.n//� 0 for each n2Z, that is, whenever p;q2˚.n� 1/ n˚.n/
are such that p � q, we have p D q. The datum of an sp-filtration can equivalently be
described by an order-preserving function fW Spec.R/! Z [ ¹�1;1º, such a function
corresponds to an sp-filtration ˚f defined by ˚f.n/ D ¹p 2 Spec.R/ j f.p/ > nº, see Sec-
tion 2.4 of [18] or [52]. Note that ˚ induces a non-degenerate t-structure if and only if the
corresponding order-preserving function f takes values in Z, see Theorem 3.8 in [2]. It can
be easily seen that

• ˚f is slice if and only if fWSpec.R/! Z is strictly increasing,
• ˚f satisfies the weak Cousin condition if and only if fW Spec.R/! Z satisfies f.q/ �

f.p/C ht.q=p/ for any primes p � q.
If ˚ is both a slice filtration and it satisfies the weak Cousin condition, we call it a

codimension filtration. The corresponding function is a codimension function, that is, a
function dW Spec.R/! Z such that for any p � q in Spec.R/, we have d.q/ � d.p/ D
ht q=p. Let

T D
M

p2Spec.R/

R�pRpŒd.p/�

be the silting complex corresponding to ˚ , this explicit construction of T is provided in
Section 4 of [18]. In particular, T satisfies that C D TC is a cosilting complex inducing
the cosilting t-structure .U;V/ which corresponds to ˚ .

The codimension function does not always exist – when it does the ring has to be
catenary, and the converse is true for local rings. If Spec.R/ is connected, then any two
codimension functions on it differ only by adding a constant from Z. For a local catenary
ring R, the assignment p 7! dim.R/� dim.R=p/ is a codimension function, we call it the
standard codimension function. If Spec.R/ has a unique minimal element and a codimen-
sion function exists, then the height function p 7! ht.p/ is a codimension function, and so
in this situation any codimension function is of the form htC c for some c 2 Z. See e.g.,
Sections 5.11 and 10.105 of [50].

In Theorem 7.5 of [18], it is proved that the silting complex associated to a codi-
mension function on Spec.R/ is always tilting whenever R is a homomorphic image of
a Cohen–Macaulay ring of finite Krull dimension. We show that this tilting complex is
in fact product-complete. This generalizes, and is based on, the special case of the height
function tilting module over a Cohen–Macaulay ring of Le Gros and the first author [16].
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Proposition 4.9. Let R be a homomorphic image of a Cohen–Macaulay ring S of finite
Krull dimension and let T be the tilting complex associated to a codimension function on
Spec.R/. Then T is product-complete.

Proof. Note first that, by Remark 4.10 in [18], the choice of a codimension function does
not matter, and by the assumption onR a codimension function on Spec.R/ always exists.
If R D S is already Cohen–Macaulay of finite Krull dimension, then, by choosing the
height function as the codimension function, the statement is proved in Corollary 3.12
of [16]. Now let R D S=I for some ideal I of S and let � WS ! R be the projection map.
Without loss of generality, we can assume that the codimension function dWSpec.R/! Z
is given as d.p/ D htS .��1.p//. Arguing as in Section 7 of [18], we can assume that
T Š T 0 ˝L

S R, where T 0 is the tilting S -module associated to the height function. By
the above, we have that Add.T 0/ is closed under products in Mod-S . Then we have a
well-defined functor �˝L

S RWAdd.T 0/! Add.T /. Because R is a finitely generated S -
module, this functor preserves products existing in Db.S/. Therefore, Add.T / is closed
under products, arguing similarly as in the proof of Theorem 3.18 in [16].

Example 4.10. IfR is not a homomorphic image of a Cohen–Macaulay ring, then Propo-
sition 4.9 can fail. Indeed, by Proposition 4.5 in [11], there is a local two-dimensional
noetherian domain R with field of quotients Q, whose generic formal fibre Q ˝R yR is
not Cohen–Macaulay. The height function is a codimension function for this ring. Con-
sider the induced silting complex T D

L
p2Spec.R/ R�pRpŒht.p/�. We claim that Add.T /

is not product-closed. For each p of height at most 1,Rp is a one-dimensional domain, and
thus is Cohen–Macaulay, so that R�pRpŒht.p/� is isomorphic to a module in degree zero.
On the other hand, R is not Cohen–Macaulay and so if m is the maximal ideal, we have
that R�mRŒ2� has cohomology non-vanishing in degree �1. By the assumption on R, it is
not a homomorphic image of a Cohen–Macaulay ring (see Section 5). In particular, R is
not a generalized Cohen–Macaulay ring (see Section 4 of [47]), which means that there is
i < dim.R/D 2 such thatH iR�mR is not annihilated by any single power of m. SinceR
is a domain, it follows that the last sentence applies toH 1R�mRDH

�1R�mRŒ2�. It fol-
lows that H�1R�mRŒ2�

~ is not supported on V.m/ whenever ~ is an infinite cardinal.
But then the product R�mRŒ2�

~ does not belong to Add.T /, as for any X 2 Add.T /, we
clearly have by the previous discussion that H�1X is supported on V.m/.

5. CM-excellent rings and restrictable t-structures

Following Kawasaki [21] and Česnavičius [7], R is called CM-excellent if the following
three conditions hold:

(1) R is universally catenary,
(2) all formal fibres of each local ring Rp are Cohen–Macaulay,
(3) CM.A/ is an open subset of Spec.A/ for any commutative finitely generated R-

algebra A.
Any Cohen–Macaulay ring and any ring admitting a classical dualizing complex is

CM-excellent. By Remark 2.8 in [52], condition (3) is equivalent to an a priori weaker
condition:
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(30) CM.A/ is an open subset of Spec.A/ for any commutative module-finite R-alge-
bra A.

For a local ring R to be CM-excellent, by [20, 21], it is enough to check (1) and a
weakening of (2):

(20) all formal fibres of R are Cohen–Macaulay.
The following is a deep theorem of Kawasaki, showing a tight connection between

CM-excellent rings and homomorphic images of Cohen–Macaulay rings. This should
be seen as analogous to another Kawasaki’s result from [20], the celebrated solution to
Sharp’s conjecture, characterizing rings with classical dualizing complexes as homomor-
phic images of finite-dimensional Gorenstein rings.

Theorem 5.1 (Theorem 1.3 in [21], Corollary 1.4 in [20]). The following are equivalent
for a commutative noetherian ring:

(a) R is a homomorphic image of a Cohen–Macaulay ring,

(b) R is CM-excellent and admits a codimension function on Spec.R/.
In particular, if R is local, then (a) holds if and only if R is CM-excellent. Furthermore,
if R is of finite Krull dimension and (b) holds, then R is a homomorphic image of a
Cohen–Macaulay ring of finite Krull dimension.

Proof. The “furthermore” part follows by Kawasaki’s construction, see p. 123 of [20],
p. 2738 of [21], and Theorem 15.7 in [28].

Let R be a commutative noetherian ring of finite Krull dimension and let d be a
codimension function on Spec.R/. As in the previous section, let .U;V/ be the induced
compactly generated t-structure, let T D

L
p2Spec.R/ R�pRpŒd.p/� and C D TC be the

induced silting and the character dual cosilting complex. We let H d
CM denote the heart of

the t-structure .U; V/. We call this heart the Cohen–Macaulay heart; note that it does
not depend on the choice of the codimension function up to categorical equivalence,
Remark 4.10 in [18]. Therefore, when not concerned with the particular way the Cohen–
Macaulay heart is embedded into D.R/, we can denote it simply as HCM.

Proposition 5.2. If R is CM-excellent, then C is cotilting and HCM is locally coherent
and locally coperfect.

Proof. We know that T is product-complete by Proposition 4.9. Then we infer from The-
orem 3.6 that T is decent, so that C is cotilting, and that HCM is locally coherent and
locally coperfect.

Lemma 5.3. Let d be a codimension function on Spec.R/. Assume that the compactly
generated t-structure .U;V/ corresponding to d is restrictable. Then the Cohen–Macaulay
locus of any commutative module-finite R-algebra A is open.

Proof. By Proposition 4.3, it is enough to prove that CM.R/ is open. Indeed, let ˚ be a
codimension filtration on Spec.R/ and .U;V/ the corresponding t-structure. Consider the
induced sp-filtration �˚ , where �WR!A is the algebra map, and .��U;�ŠV/ the induced
t-structure in D.A/. By Lemma 7.1 in [18], �˚ is a slice filtration on Spec.A/. Since
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.��U; �ŠV/ is a restrictable t-structure by Proposition 4.3, it follows that �˚ satisfies the
weak Cousin condition by Theorem 4.1, and thus �˚ is a codimension filtration.

Let us first assume that d D ht. Then V D ¹X 2 D.R/ j depthXp � ht p for all p 2
Spec.R/º, see Sections 2.3 and 2.4 of [18]. It follows that RŒ0� 2 V if and only if R
is a Cohen–Macaulay ring. Consider the approximation triangle U ! RŒ0�! V

C
�! of

RŒ0� with respect to the t-structure .U;V/. For each p 2 Spec.R/, the localized trian-
gle Up ! RpŒ0� ! Vp

C
�! is the approximation triangle of RpŒ0� with respect to the

t-structure .Up;Vp/ in D.Rp/, see Lemma 3.4 in [15], and note that this latter t-structure
is compactly generated and corresponds to the height function on Spec.Rp/. It follows
that Up D 0 if and only if Rp is a Cohen–Macaulay ring. Therefore, CM.R/D Spec.R/ n
Supp.U /. Since .U;V/ is assumed to be restrictable, U 2Db

fg.R/, and therefore Supp.U /
is a closed subset of Spec.R/.

Now let d be a general codimension function. By the Nagata criterion, CM.R/ is open
provided that CM.R=p/ is open for every p2 Spec.R/, see Theorem 24.5 in [28]. For each
p 2 Spec.R/, the restriction of d to V.p/ is a codimension function dp for Spec.R=p/.
Since Spec.R=p/ has a unique minimal element, the codimension function dp is equal to
a height function up to some additive constant. By Proposition 4.3, the t-structure .U;V/
induces a restrictable t-structure .��U; �ŠV/ in D.R=p/, and this latter t-structure is
induced by the codimension function dp. Since dp D ht C c for some constant c 2 Z,
the previous paragraph shows that CM.R=p/ is open in Spec.R=p/.

We are now ready to characterize when the t-structure .U;V/ is restrictable.

Theorem 5.4. LetR be a commutative noetherian ring of finite Krull dimension such that
there is a codimension function d on Spec.R/. Let .U;V/ be the compactly generated t-
structure induced by d and let C be the corresponding cosilting complex. The following
are equivalent:

(a) R is a CM-excellent ring,

(b) .U;V/ is restrictable,

(c) C is cotilting and HomR.C
~ ; C / is a flat R-module for each ~.

Proof. (a)) (b) Since C is cotilting and the cotilting heart is locally coherent by Propo-
sition 5.2, the restrictability follows from Theorem 4.1.

(b)) (c) This is Proposition 4.8 (i).
(c)) (a) It follows by Proposition 7.15 and Theorem 7.18 in [18] thatR is universally

catenary and all formal fibres of all stalk rings Rp are Cohen–Macaulay. By combining
Proposition 4.3 with Lemma 5.3, the Cohen–Macaulay locus of any module-finite R-
algebra A is open, and thus R is CM-excellent.

Remark 5.5. Question 7.8 in [18] asks whether the cosilting complex induced by a codi-
mension function is cotilting if and only if R is CM-excellent. As a particular answer, the
equivalence between (a) and (c) of Theorem 5.4 is proved in Theorem 7.19 of [18] for R
local. Our Theorem 5.4 thus improves our knowledge by removing the locality assumption
and introducing the restrictability condition (b) into the picture.
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The following consequence shows that the recent Takahashi’s generalization of Theo-
rem 6.9 in [1] from rings with classical dualizing complexes to CM-excellent rings is the
maximal generality, at least when assuming the existence of a codimension function.

Corollary 5.6. Let R be a commutative noetherian ring of finite Krull dimension with a
codimension function. The following are equivalent:

(a) any compactly generated t-structure which satisfies the weak Cousin condition is
restrictable,

(b) R is CM-excellent.

Proof. (a)) (b) If R is not CM-excellent, the t-structure induced by any codimension
function is not restrictable by Theorem 5.4, a contradiction.

(b)) (a) Proved in [52].

The following example shows that the assumption of having a codimension function
cannot be simply removed from Corollary 5.6.

Example 5.7. Let R be a non-catenary (thus, not CM-excellent) local normal 3-dimen-
sional domain, see [12] or Example 2.15 in [35]. We claim that the condition (a) of
Corollary 5.6 holds for R.

Let ˚ be an sp-filtration satisfying the weak Cousin condition and f the corresponding
order-preserving function Spec.R/! Z satisfying f.q/ � f.p/C ht.q=p/ for any p � q.
Let .U; V/ be the corresponding compactly generated t-structure. By shifting, we can
assume that f.0/ D 0. If f.p/ � 1 for all p 2 Spec.R/, then .U; V/ is Happel–Reiten–
Smalø, and thus restrictable. Since dimR D 3 and R is not catenary, we have f.p/ � 2
for any p 2 Spec.R/ by the weak Cousin condition. We thus have ˚.2/ D ; and we can
assume ˚.1/ ¤ ;. By the weak Cousin condition again, it follows that any p 2 ˚.i/ has
ht.p/ � i C 1 for i D 0; 1.

By Theorem 4.4 in [1], to check that .U;V/ is restrictable, it is enough to show that
H 1R�˚.1/.X/ is finitely generated for X 2 V 0 \Db

fg.R/, where

V 0 D ¹X 2 D�0 j Supp.H 0.X// � ˚.0/º:

Considering the soft truncation triangle H 0.X/! X ! �>0X
C
�! and applying R�˚.1/

yields an exact sequence

0! H 1R�˚.1/.H 0.X//! R�˚.1/.X/! R�˚.1/.�>0X/;

where R�˚.1/.�>0X/ is finitely generated as it is isomorphic to �˚.1/.H 1.X//. We
reduced the task to showing that H 1R�˚.1/.M/ is finitely generated for any finitely gen-
erated module M supported on ˚.0/. Any such M is torsion-free over the domain R,
and so there is a short exact sequence 0 ! M ! Rk ! N ! 0 for some k > 0, see
Lemma 16.1 in [9]. It follows that we have an exact sequence �˚.1/N !H 1R�˚.1/M !
H 1R�˚.1/Rk . As again �˚.1/N is always finitely generated, this reduced the task to
M D R. But since R is normal, Serre’s criterion, Lemma 10.157.4 in [50], yields that
depthRq � 2 for each q 2 ˚.1/, and thus H 1R�˚.1/R D 0.
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6. CM-excellent rings and derived equivalences

Now the scene is set for us to characterize homomorphic images of Cohen–Macaulay rings
in terms of derived equivalences and dualities. Before that, we need to record a localization
property of product-complete tilting complexes.

Lemma 6.1. LetR be a commutative ring and T 2D.R/ a product-complete tilting com-
plex. Then for any prime ideal p 2 Spec.R/, Tp D T ˝R Rp is a product-complete object
in D.Rp/.

Proof. By Lemma 3.2, Add.T / is a definable subcategory of D.R/. In particular, Tp 2

Add.T /, because Tp D T ˝R Rp is a direct limit (and thus also a directed homotopy
colimit) of copies of T . Then Add.Tp/ � Add.T /, and in fact, Add.Tp/ D Add.T / \
D.Rp/. It follows that Add.Tp/ is closed under products both as a subcategory of D.R/

or D.Rp/.

Theorem 6.2. Let R be a commutative noetherian ring, and consider the following con-
ditions:

(a) R is a homomorphic image of a Cohen–Macaulay ring of finite Krull dimension.

(b) There is a locally coherent and locally coperfect abelian category C together with a
triangle equivalence Db.R/ Š Db.C/.

(c) There exists an artinian abelian category A together with a triangle equivalence
Db

fg.R/ Š Db.A/.

(d) There exists a noetherian abelian category B together with a triangle equivalence
Db

fg.R/ Š Db.B/op.

Then (a), (b)) (c), (d), and all the conditions are equivalent if R is of finite Krull
dimension.

Furthermore, if (a) and (b) hold, then C ŠHCM, AŠ fp.HCM/, and B Š fp.HCM/
op.

Proof. (a)) (b) Already proved in Proposition 4.9 and Theorem 3.6.
(b)) (a) Let W be an injective cogenerator of C (see Section 3.2). Let us denote

the derived equivalence as EWDb.C/
Š
�! Db.R/ and put C D E.W /. By (the proof of)

Theorem 2.3, C 2 D.R/ is a cotilting complex. By Corollary 2.14 in [17], the cotilting
t-structure .U;V/ induced by C is compactly generated, and note that this t-structure cor-
responds to the standard t-structure in Db.C/ under the equivalence. Since C is a cotilting
complex, .U; V/ is intermediate. Let ˚ be the sp-filtration on Spec.R/ corresponding
to .U; V/. Since HC is locally coherent and C is cotilting, .U; V/ is a restrictable t-
structure by Theorem 4.1 and ˚ satisfies the weak Cousin condition. It remains to show
that ˚ is a slice filtration, as then ˚ is induced by a codimension function d on Spec.R/.
Then R admits a codimension function, which together with the intermediacy of .U;V/
implies that dim.R/<1. By Theorem 5.4,R is CM-excellent, and so it is a homomorphic
image of a finite-dimensional Cohen–Macaulay ring by Theorem 5.1.

Towards contradiction, let p ¨ q be primes such that p;q2˚.n� 1/ n˚.n/. It follows
that Mod-.R=p/qŒ�n� � HC . Indeed, let M 2Mod-.R=p/q and recall the description of
the t-structure .U;V/ of Section 4.1 in terms of ˚ . Since Supp.M/ � ˚.n � 1/, MŒ�n�
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belongs to UŒ�1�. On the other hand, R�˚.k/.M/ is either isomorphic to M for k < n or
vanishes for k � n, and thus MŒ�n� 2 V . We showed that MŒ�n� 2 UŒ�1� \ V D HC .

Let T be a tilting complex such that TC is equivalent to C . By Theorem 3.6, T is
product-complete. It follows by Lemma 6.1 that Tq is a product-complete tilting complex
in D.Rq/ for any q 2 Spec.R/. Therefore, we can assume without loss of generality
that R is local with maximal ideal q. Then Mod-R=pŒ�n� �HC by the above, and so the
lattice of ideals of the ringR=p embeds into the lattice of finitely presentable subobjects of
.R=p/Œ�n� in HC . But since dim.R=p/ > 0, R=p is not a perfect ring and thus it follows
that .R=p/Œ�n� is not a coperfect object in HC .

(b)) (c) Recall that if C is a locally coherent abelian category then C is locally cop-
erfect if and only if fp.C/ artinian. We know that (b)) (c) because the cotilting derived
equivalence Db.R/ŠDb.HC / restricts to Db

fg.R/ŠDb.fp.HC //, by [19], Lemma 3.11.

(c)) (b) under dim.R/ <1. Assuming (c), the standard t-structure on Db.A/ is sent
to a t-structure in Db

fg.R/, and such a t-structure uniquely extends to a compactly generated
t-structure .U;V/ in D.R/, see Theorem 4.1. The heart H of .U;V/ satisfies fp.H /ŠA

by Theorem 6.3 in [44], and so H is a locally coherent and locally coperfect Grothendieck
category. Since .U;V/ is restrictable, it is cotilting by Theorem 4.1. Finally, .U;V/ is
intermediate because it arises from a weak Cousin filtration and dim.R/ <1, so we have
a triangle equivalence Db.R/ Š Db.H / by Theorem 2.3, cf. Section 4.1.

(c), (d) This is evident, as Db.A/ Š Db.Aop/op.
Finally, the proof of (b)) (a) shows that C ŠHCM, and the proof of (b), (c) shows

that A Š fp.C/ Š fp.HCM/.

Remark 6.3. There are rings R of infinite Krull dimension such that .c/ of Theorem 6.2
holds. Indeed, we can choose R with a (strongly pointwise) dualizing complex, so that
Db

fg.R/ Š Db
fg.R/

op, see, e.g., [29], cf. [32]. The proof of .c/) .b/ of Theorem 6.2
breaks because the compactly generated t-structure .U;V/, which extends the t-structure
induced in Db

fg.R/ by the duality, is not intermediate.

Corollary 6.4. Let R be a commutative noetherian ring. The following are equivalent:
(a) there is a product-complete tilting complex T 2 D.R/,

(b) R is a homomorphic image of a Cohen–Macaulay ring of finite Krull dimension.

In addition, if (a) holds, then T is induced by a codimension function on Spec.R/. In
particular, T is unique up to equivalence and a choice of shift constant on each connected
component of Spec.R/.

Proof. For the equivalence of (a) and (b), combine Theorem 6.2 with Theorem 3.6 and
Proposition 4.9. Furthermore, if T is a product-complete tilting complex, then the corre-
sponding sp-filtration has to be induced by a codimension function by Theorem 6.2 and
Theorem 3.6, which also yields the uniqueness statement.

Remark 6.5. In Theorem 3.18 of [16], it is shown that a commutative noetherian ring
admits a product-complete tilting module if and only if R is Cohen–Macaulay of finite
Krull dimension, and then such a tilting module is unique up to equivalence. Corollary 6.4
can be seen as a derived version of this result.
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7. Gorenstein complexes

An object D 2 Db
fg.R/ is called a dualizing complex if the functor RHomR.�; D/ yields

an equivalence Db
fg.R/

Š
�! Db

fg.R/
op. Equivalently, RHomR.X; D/ 2 Db

fg.R/ and the
canonical map X ! RHomR.RHomR.X;D/;D/ is an isomorphism for all X 2Db

fg.R/.
A dualizing complex is called classical if it is of finite injective dimension – this occurs
precisely if dim.R/ <1. To any dualizing complex D, the function dD W Spec.R/! Z,
defined by setting dD.p/ to be the unique integer so that HomD.R/.�.p/;DpŒdD.p/�/¤ 0,
is a codimension function. If .R;m/ is local, we call D a normalized dualizing complex
if dD.m/ D dim.R/; a normalized dualizing complex is essentially unique.

Remark 7.1. What we call a classical dualizing complex is traditionally called just a
dualizing complex. We follow the modern terminology of Neeman [32].

Following Grothendieck and Hartshorne [10], a complex G 2 Db
fg.R/ is a Cohen–

Macaulay complex (with respect to a codimension function dW Spec.R/! Z) if for each
p 2 Spec.R/, we haveH iR�pGp D 0 for all i ¤ d.p/. These are precisely the complexes
which are quasi-isomorphic to their Cousin complex, see Section IV.3 of [10]. We call G
a Gorenstein complex if, in addition, H d.p/R�pGp is an injective R-module. In this case,
the Cousin complex yields an injective resolution of G.

We gather some facts about Gorenstein complexes first.

Lemma 7.2. Let G be a Gorenstein complex in Db
fg.R/ and let S D EndD.R/.G/ be its

endomorphism ring. Then:
(i) a dualizing complex is a Gorenstein complex,

(ii) HomD.R/.G;GŒi �/ D 0 for any i ¤ 0,

(iii) for any p 2 Spec.R/, Gp is a Gorenstein complex in Db
fg.Rp/,

(iv) if R is local, then yG D G ˝R yR is a Gorenstein complex over the completion yR,

(v) if R is local, then there is k > 0 such that yG Š Dk
yR
Œdim.R/ � d.m/�, where D yR is

the normalized dualizing complex over yR and d is the codimension function associ-
ated to G,

(vi) S is a module-finite and projective R-algebra and there is k > 0 such that yS D
S ˝R yR is isomorphic as an yR-algebra to Mk. yR/, the ring of k � k matrices
over yR.

Proof. (i) See p. 287 of [10]. (ii) Proposition 6.2.5 (a) in [30]. (iii) Clear from definition.
(iv) Remark 6.3.5 in [30]. (v) Combine (i), (iv), and Theorem 6.2.6 in [33]. (vi) The first
statement follows from Proposition 6.2.5 (a) in [30]. Furthermore, we have

yS D S ˝R yR D EndD.R/.G/˝R yR Š End
D. yR/

. yG/ D End
D. yR/

.Dk
yR
/ DMk. yR/:

Remark 7.3. There are more results available in the literature about the special case of
a Gorenstein module. Sharp [48] introduced the Gorenstein modules; these are precisely
those finitely generated R-modules which happen to be Gorenstein complexes as objects
of D.R/. If a Gorenstein module exists, then R is Cohen–Macaulay with Gorenstein
formal fibres [49]. In particular, not every Cohen–Macaulay ring admits a Gorenstein



M. Hrbek and L. Martini 2362

complex. In Theorem 7.10, we shall prove that the existence of a Gorenstein complex
implies that R is CM-excellent.

Lemma 7.4. Let R be a commutative noetherian ring and d a codimension function on
Spec.R/. An object X 2 Db

fg.R/ is a Cohen–Macaulay complex with respect to d if and
only if it belongs to H d

CM.

Proof. Let .U;V/ be the compactly generated t-structure corresponding to d, so that its
heart is H d

CM. By the description discussed in Section 4, X 2 V if and only if R�pXp 2

D�d.p/ for all p 2 Spec.R/. Therefore, we can further assume that X satisfies both these
conditions, and it remains to show that X 2UŒ�1� if and only if X is a Cohen–Macaulay
complex.

If X is Cohen–Macaulay then we can assume it being represented by its Cousin com-
plex. By the construction of the Cousin complex, the i -th component ofX is supported on
primes p with d.p/� i . Then the same is true forH i .X/, and soX 2UŒ�1�. Assume con-
versely thatX 2UŒ�1� and let p 2 Spec.R/, and let us show that R�pXp 2D�d.p/. Since
X if a finite extension of its cohomology stalks H i .X/Œ�i �, i 2 Z, we can assume that
X D MŒ�i �, where M is an R-module supported on primes p with d.p/ � i . Passing to
localization, we can assume thatR is local with maximal ideal p, and also that d.p/ � i . It
follows that dim.Supp.M// � d.p/� i , and thus the vanishing theorem of Grothendieck,
see Lemma 51.4.7 and Proposition 20.20.7 in [50], implies R�pXp 2 D�d.p/.

Remark 7.5. Assume that R is a homomorphic image of a finite-dimensional Cohen–
Macaulay ring. By Theorem 5.4, we know that any codimension t-structure then restricts
to Db

fg.R/. Combined with Theorem 6.3 in [44], Lemma 7.4 then shows that the Cohen–
Macaulay complexes with respect to d in Db

fg.R/ are precisely the objects in fp.H d
CM/,

the heart of the restricted t-structure. This can be seen as an affine version of Theorem 6.2
in [56], but valid in the absence of a dualizing complex.

Assume that Spec.R/ admits a codimension function d. The codimension function
on Spec.R/ restricts to a codimension function dp on Spec.Rp/. Consider the Cohen–
Macaulay heart H d

CM in D.R/ as well as the Cohen–Macaulay heart H dp
CM in D.Rp/.

Then H dp
CM D H d

CM \D.Rp/, and the inclusion H dp
CM � H d

CM has a left adjoint induced
by the localization functor Rp ˝R �.

Lemma 7.6. Let R be a CM-excellent ring of finite Krull dimension with a codimension
function. Then Rp ˝R � induces a functor fp.H d

CM/ ! fp.H dp

CM/ which is essentially
surjective up to direct summands.

Proof. By the assumption, the t-structure corresponding to any codimension function is
restrictable both in D.R/ and D.Rp/ by Theorem 5.4. We thus have fp.H d

CM/ D H d
CM \

Db
fg.R/ and fp.H dp

CM/ D H dp
CM \Db

fg.Rp/. It follows that we have a well-defined functor
fp.H d

CM/ ! fp.H dp
CM/. Let X 2 fp.H dp

CM/. Consider X as an object in H d
CM and write

X D lim
�!i2I

Fi as a direct limit of finitely presentable objects of H d
CM. Now, since direct

limits inside H d
CM are computed as directed homotopy colimits, we have

X Š Rp ˝R X D Rp ˝R lim
�!
i2I

Fi Š lim
�!
i2I

.Rp ˝R Fi /:
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The last direct limit can be viewed as computed in H dp
CM, and each Rp ˝R Fi is a

finitely presentable object in H dp
CM. It follows that there is i 2 I such that X is a direct

summand of Rp ˝R Fi .

Remark 7.7. In what follows, we will consider the existence of an injective cogenera-
tor of the category fp.C/ of finitely presentable objects of a locally coherent category C .
Note that this situation is more general than the existence of an injective cogenerator of
the unrestricted category C , which happens to be finitely presentable. In fact, W 2 fp.C/
is an injective object of the category fp.C/ if and only if W is fp-injective as an object
of C . Here, we call an object G 2 C fp-injective if Ext1C .F; G/ D 0 for all finitely pre-
sentable objects F 2 C . Finally, the full subcategory of fp-injective objects of C is equal
to Def.W /, the definable closure of an injective cogenerator W in H (cf. Example 5.11
in [24]).

Proposition 7.8. Let R be a CM-excellent ring of finite Krull dimension with a codimen-
sion function d. Then an object G 2 Db

fg.R/ is a Gorenstein complex with respect to d
if and only if it is an injective object in fp.H d

CM/. As a consequence, the following are
equivalent for R:

(a) there is a Gorenstein complex G in Db
fg.R/,

(b) fp.HCM/ admits an injective cogenerator.

Proof. First, letG be a Gorenstein complex and assume that d is the codimension function
associated to G. By Lemma 7.4, G belongs to H d

CM. Since .U; V/ is a restrictable t-
structure by Theorem 5.4, we have fp.H d

CM/ D H d
CM \Db

fg.R/ by Theorem 6.3 in [44],
and thus G 2 fp.H d

CM/. We claim that G is an injective cogenerator in the latter abelian
category. Let F 2 fp.H d

CM/. Then

Ext1
H d

CM
.F;G/ Š HomD.H d

CM/
.F;GŒ1�/ Š HomD.R/.F;GŒ1�/

vanishes if and only if

HomD.R/.F;GŒ1�/˝R Rm Š HomD.Rm/.Fm; GmŒ1�/

vanishes for each maximal ideal m of R; the last isomorphism follows since F 2Db
fg.R/,

and G is up to quasi-isomorphism a bounded complex of injectives. Similarly, we can
check the vanishing of HomH d

CM
.F; G/ locally. Since Gp is a Gorenstein complex in

Db
fg.Rp/ by Lemma 7.2, and Fp belongs to fp.H dp

CM/ by Lemma 7.6, the question reduces
to .R;m/ being a local ring.

By shifting, we can assume that d is the standard codimension function over the local
ring R. By Lemma 7.2, yG is a Gorenstein complex in Db

fg. yR/ and yG Š D
k
yR

for some
k > 0, where D yR is the normalized dualizing complex over yR. It follows that there is a
pure monomorphism G ,! yG Š Dk

yR
in D.R/, and thus G 2 Def.C /, where

C D
Y

p2Spec.R/

D yRp
Œht.p/ � d.p/�

is the cotilting complex corresponding to d, see Section 5 of [18]. In view of Remark 7.7,
G is an fp-injective object of H d

CM, and thus an injective object of fp.H d
CM/. Finally, let us
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show that HomD.R/.F; G/ is non-zero for any non-zero object F 2 fp.H d
CM/. It suffices

to show the non-vanishing of

HomD.R/.F;G/˝R yR Š Hom
D. yR/

. yF ; yG/ D Hom
D. yR/

. yF ;Dk
yR
/:

Since F 2 H d
CM, the vanishing of the last Hom-module actually implies the vanishing of

RHom yR. yF ;D yR/, a contradiction with yF ¤ 0.
LetC be the cotilting complex inducing the Cohen–Macaulay heart H d

CM. Assume that
we have an injective cogenerator G 2 fp.H d

CM/. As above, this implies G 2 Db
fg.R/ and

so G is a Cohen–Macaulay complex by Lemma 7.4. Fix p 2 Spec.R/. Using Lemma 7.6,
we easily infer thatGp is injective in fp.H dp

CM/ for each p 2 Spec.R/. Therefore, we reduce
the claim to R, a local ring with maximal ideal p. In view of Remark 7.7, G belongs to
Def.C /, where C is the cotilting complex corresponding to the codimension function d.
It follows that injdimRG � d.p/, which in turn implies injdimRR�pG � d.p/. Since we
already know that G is a Cohen–Macaulay complex, R�pG is quasi-isomorphic to a stalk
complex of an injective R-module in degree d.p/. Thus, G is a Gorenstein complex with
respect to d.

Proposition 7.9. LetG be a Gorenstein complex in Db
fg.R/ and S DEndD.R/.G/

op. Then
there is a triangle equivalence Db

fg.R/ Š Db.mod-S/op induced by RHomR.�; G/.

Proof. Let A D dgEndR.G/
op so that A is quasi-isomorphic to Sop and G is an A-R-dg-

bimodule. There is the dual adjunction

Db
fg.R/

RHomR.�;G/

55 D
b.dgMod-A/op

mod-S ;

RHomA.�;G/
uu

where Db.dgMod-A/mod-S is the full subcategory of D.dgMod-A/ consisting of those
dg-modules Z such that

L
i2Z H

i .Z/ is a finitely generated S -module. Composing this
with the natural equivalence "WD.dgMod-A/ Š D.S/, which clearly restricts to another
equivalence "WDb.dgMod-A/mod-S Š Db.mod-S/, we get a dual adjunction

Db
fg.R/

"RHomR.�;G/

66 D
b.mod-S/op:

RHomA."�1.�/;G/
uu

Let us denote the unit and counit of the latter dual adjunction as

�X WX ! RHomA."�1"RHomR.X;G/;G/ Š RHomS .RHomR.X; "G/; "G/;

�Z WZ ! "RHomR.RHomA."�1Z;G/;G/ Š RHomR.RHomS .Z; "G/; "G/;

where X 2 Db
fg.R/ and Z 2 Db.mod-S/; for the claimed isomorphisms, we use Theo-

rem 12.7.2 in [54], and note that G Š "G as objects of Db
fg.R/. Our goal is to show that

both �X and �Z are quasi-isomorphisms.
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A standard argument shows that the above setting is compatible with localization at
a prime ideal. Since quasi-isomorphisms are detected locally on maximal ideals, we can
without loss of generality assume that R is a local ring and d is the standard codimension
function. Applying �˝R yR to �X and �Z , we obtain the unit and counit map,

� yX W
yX ! RHom

Mk. yR/
.RHom yR. yX; �"G/; �"G/;

� yZ W
yZ ! RHom yR.RHom

Mk. yR/
. yZ; �"G/; �"G/;

using that fact that all the objects considered belong to Db
fg.R/, together with Lemma 7.2.

We have �"G ŠDk
yR

by Lemma 7.2, and this isomorphism lives both in D. yR/ and D. yS/Š

D.Mk. yR//. Hence, � yX and � yZ are the unit and counit morphisms of the dual adjunction

Db
fg.R/

RHomR.�;Dk
yR
/

55 D
b.mod-Mk. yR//

op;

RHom
Mk.

yR/
.�;Dk

yR
/

uu

for objects yX 2 Db
fg.R/ and yZ 2 Db.mod-Mk. yR//. But this latter adjunction arises as

the duality on Db
fg.R/ induced by D yR composed with the Morita equivalence, that is,

Mod- yR Š Mod-Mk. yR/.

The following is a characterization of the existence of a Gorenstein complex in terms
of the existence of a generalized duality Db

fg.R/ Š Db.mod-S/op to a category mod-S of
finitely presented right modules over a ring S .

Theorem 7.10. Let R be a commutative noetherian ring of finite Krull dimension. The
following are equivalent:

(a) there is a Gorenstein complex in Db
fg.R/,

(b) R is a homomorphic image of a Cohen–Macaulay ring, and there is a ring S such
that fp.HCM/

op Š mod-S .

In addition, the ring S of (b) is an Azumaya algebra over R.

Proof. (b)) (a) This follows from Proposition 7.8 by noting that mod-S has a projective
generator S , which in turn implies that fp.HCM/ has an injective cogenerator.

(a)) (b) By Proposition 7.9, we have the equivalence Db
fg.R/ Š Db..mod-S/op/,

where S D EndD.R/.G/
op. Then S is a module-finite R-algebra, in fact, it is an Azumaya

R-algebra by Theorem 6.3.8 in [30]. Then S is noetherian on both sides, and so .mod-S/op

is an artinian category. It follows that R is a homomorphic image of a Cohen–Macaulay
ring by Theorem 6.2, which also shows that .mod-S/op Š fp.HCM/.

Corollary 7.11. Let R be a commutative noetherian ring of finite Krull dimension. The
following are equivalent:

(a) there is a dualizing complex over R,

(b) there is a triangle equivalence Db
fg.R/ Š Db

fg.R/
op,

(c) R is a homomorphic image of a Cohen–Macaulay ring and fp.HCM/Š .mod-R/op.



M. Hrbek and L. Martini 2366

Proof. (a)) (b) By definition.
(b)) (c) The assumption yields a derived equivalence Db

fg.R/ Š Db..mod-R/op/.
Since .mod-R/op is artinian, Theorem 6.2 implies (c).

(c)) (a) As in Theorem 7.10, we see that R admits a Gorenstein complex D such
that EndD.R/.D/ Š R. Then D is a dualizing complex by Proposition 7.9.

It is well known that a dualizing complex is a cotilting object in the category Db
fg.R/,

see Remark 7.7 in [18] for a discussion. We conclude by extending this to a tilting theoretic
characterization of Gorenstein complexes.

Proposition 7.12. Let G 2 Db
fg.R/. Then G is a Gorenstein complex if and only if it is a

cotilting object in Db
fg.R/.

Proof. LetG be a Gorenstein complex. By Proposition 7.9, we have a triangle equivalence
Db

fg.R/
Š
�! Db.mod-S/op induced by RHomR.�; G/ and RHomA.�; G/, where S D

EndD.R/.G/
op and A is its dg-resolution. Since S is a tilting object in Db.mod-S/, the

equivalence implies that G Š RHomA.A;G/ is a cotilting object in Db
fg.R/.

For the converse, let G 2 Db
fg.R/ be a cotilting object. By definition, we have a t-

structure .U0;V0/ D .?�0G; ?>0G/ in Db
fg.R/, and using Theorem 4.1, this t-structure

extends to a restrictable intermediate t-structure .U;V/ in D.R/. By Theorem 4.1, the
heart H of .U;V/ is locally coherent and this t-structure is cotilting as well. We thus
have a triangle equivalence D.R/

Š
�! D.H /, which restricts to a triangle equivalence

Db
fg.R/

Š
�! Db.fp.H // (Lemma 3.13 in [19]). Since G is cotilting in Db

fg.R/, G is an
injective cogenerator in fp.H / by Proposition 4.3 in [41], and so fp.H /op Š mod-S ,
where S D EndD.R/.G/

op. Since G 2 Db
fg.R/, S is a module-finite R-algebra, and thus

a right noetherian ring in particular. It follows that fp.H / is an artinian abelian cate-
gory, and thus R is a homomorphic image of a finite-dimensional Cohen–Macaulay ring
Theorem 6.2. The proof of Theorem 6.2 shows that .U;V/ is induced by a codimension
function on Spec.R/, and so H is the Cohen–Macaulay heart. Then Proposition 7.8 shows
that G is a Gorenstein complex.
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