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Non-existence of cusps for a free-boundary problem
for water waves

Sean McCurdy

Abstract. In Varvaruca and Weiss (2011), Varvaruca and Weiss eliminate the existence of cusps for
a free-boundary problem for two-dimensional water waves under assumptions that hold for solutions
for which ¹u > 0º is a “strip-like” domain in the sense of Varvaruca (2008). In this paper, it is
proven that cusps do not exist in the natural setting for these free-boundary problems. In particular,
non-strip-like domains are also allowed. This qualitative result follows from quantitative results
which, roughly speaking, give lower bounds on the “slope” at which the free boundary approaches
a stagnation point. This builds upon recent work on non-existence of cusps in McCurdy and Naples
(2022) for local minimizers.

1. Introduction

In this note, we eliminate the existence of cusps in the free boundary for weak solutions
of the following free-boundary problem:

�u D 0 in ¹u > 0º \� � Rn;

jru.x1; : : : ; xn/j D jxnj
 on @¹u > 0º \�

(P )

for n D 2 any 0 <  . In particular, we eliminate cusps under more natural assumptions
(see Theorem 1.2) and prove some weak geometric conditions on the “slope” at which the
free boundary of weak solutions must approach ¹xn D 0º (see Theorem 1.7).

1.1. Background

For n D 2,  D 1
2

, the free-boundary problem (P ) has a history dating back to 1847
and the work of Stokes [8] on 2-dimensional inviscid, incompressible fluids acted upon
by gravity with a free surface. Stokes studied the profiles of standing waves for such a
fluid under the following: for�D Œ�1; 1�� Œ�D;1�, 1 < D �1, and imposed the phys-
ical boundary condition that u is constant on Œ�1; 1� � ¹�Dº. Stokes conjectured that
there was a one-parameter family of solutions to (P ) called stream functions which were
parametrized by wave height. This family of stream functions was conjectured to have
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a wave of maximal height for which the wave profile @¹u > 0º touches ¹x2 D 0º with
angle 2�

3
. In honor of Stokes, this extremal wave is called the Stokes wave. Points in

@¹u > 0º \ ¹x2 D 0º are called stagnation points. Under strong assumptions of symme-
try, monotonicity, and graphicality of @¹u > 0º, Toland [9] and McLeod [5] proved the
existence of extreme periodic waves for R D C1 and 0 < R < 1 (i.e., for waves of
infinite and finite depth). In 1982, Amick, Fraenkel, and Toland [1] and Plotnikov [6] both
independently proved the Stokes conjecture on the aperture of ¹u > 0º, where it touches
¹x2 D 0º for this extremal wave under similar assumptions. See [2,11] for more historical
details and the derivation of (P ) from physical principles.

Solutions to the free boundary problem (P ) are critical points of the corresponding
Alt–Caffarelli functional

J .v/ WD

Z
�

jrvj C x2n �¹u>0ºdx:

Because they are merely critical points and not minimizers, research on the Stokes wave
has typically proceeded by analyzing weak solutions [7,10]. These weak solutions assume
a modicum of regularity to @¹u > 0º away from ¹xn D 0º; see Definition 2.1. However,
in recent work [11], Varvaruca and Weiss introduced the notion of a variational solu-
tion (see [11, Definition 3.1]). This variational notion of a solution allows Varvaruca and
Weiss to employ geometric techniques to the study of the Stokes wave beyond the usual
assumptions of symmetry, monotonicity, and graphicality of @¹u > 0º. These geometric
techniques are based upon a monotonicity formula analogous to the quantity in [12] for
local minimizers of the Alt–Caffarelli functional J0. In particular, this allowed them to
obtain the following results.

Theorem 1.1 ([11, Lemma 4.2, Lemma 4.7, Proposition 5.5, Remark 5.9, Remark 6.2,
Proposition 8.1, Theorem 10.2]). Let n � 2,  D 1=2, � � Rn be open, and let u be a
weak solution of (P ) such that locally u satisfies

jruj � C0x
1
2
n : (1.1)

Then, if we denote† WD @¹u > 0º \ ¹xn D 0º \�, we may decompose† into the disjoint
union † D †cusps [†rect [†iso, where if we denote the weighted Q2 -density by

�n
Q2 ;¹u>0º

.x/ D lim
r!0C

1

!nrnC2

Z
Br .x/

Q2 .x/�¹u>0º.x/dH2.x/;

then this density exists and we define

†cusps WD
®
x 2 † W �n

Q2 ;¹u>0º
.x/ D 0

¯
†good WD

²
x 2 † W �n

Q2 ;¹u>0º
.x/ 2

�
0;

1

!nrnC2

Z
Br .x/

Q2 .x/�¹xn�0º.x/dH2.x/

�³
†iso WD

²
x 2 † W �n

Q2 ;¹u>0º
.x/ D

1

!nrnC2

Z
Br .x/

Q2 .x/�¹xn�0º.x/dH2.x/

³
:

Furthermore, these sets satisfy the following properties.
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(1) dimH .†good/ � n � 2, and if n D 2, then †good is locally isolated.

(2) †iso is closed, and if n D 2, then †iso is locally finite.

We note that the assumption (1.1) is absolutely essential to the project of [11]. As-
sumption (1.1) provides the compactness necessary to geometric blow-up analysis. And
it is also necessary in order to connect weak solutions and variational solutions, since any
weak solution of (P ) which also satisfies (1.1) is a variational solution. See [11, Lemma
3.4] for details.

1.2. Main results

The main qualitative result of this paper is to eliminate the set †cusps.

Theorem 1.2 (Main result). Let n D 2 and 0 <  . Let u be a weak solution to (P ) such
that for all .x; 0/ 2 � there exists a neighborhood K �� � of .x; 0/ and a constant
C <1 (possibly depending upon K) such that

jru.x1; x2/j � C jx2j
 (1.2)

for all .x1; x2/ 2 K. Then, †cusps D ;.

Theorem 1.2 is inspired by and improves upon the following result from [11].

Theorem 1.3 ([11, Lemma 4.4]). Let n D 2,  D 1
2

, and let u be a weak solution to (P )
satisfying

jru.x1; x2/j � jx2j
1
2 : (1.3)

Then, †cusps D ;.

Remark 1.4. The assumption (1.3) is much stronger than (1.2). In particular, it is not
known whether or not weak solutions, in general, satisfy (1.3). For example, local mini-
mizers of the corresponding Alt–Caffarelli functional J are weak solutions to (P ) and
satisfy (1.2) for a dimensional constant 1 < C D C.n; / [3]. One might expect weak
solutions, which are merely critical points, to be less well behaved than local minimizers.
In [10], it is proven that if u is a solution to (P ) for any 0 <  and ¹u > 0º is a “strip-like”
domain (see [10, Section 2.1]), then u satisfies (1.3) (see the proof of [10, Theorem 3.6];
in particular, it follows from the properties of the function Q in (4.19)). However, “strip-
like” domains do not allow for air bubbles, and therefore, Theorem 1.3 only represents a
partial solution to eliminating †cusps.

The central improvement of this paper is to eliminate the existence of †cusps under the
more natural assumption (1.1) and only using the local properties a cusp must satisfy. In
particular, this allows for ¹u > 0º which are not “strip-like” in the sense of [10] and for
solutions to (P ) which do not satisfy the boundary conditions of wave equations.

The method of proof for Theorem 1.2 was initially inspired by the proof of Theo-
rem 1.3. However, the improvement comes from a closer analysis of local cusp geometry
using ideas introduced in [4].
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In fact, Theorem 1.2 is a qualitative result which comes from a “quantitative” result
on the geometry of the free boundary @¹u > 0º. To state the result, we need to first define
a family of rescalings and a height function, which will be central to helping us control
the geometry of @¹u > 0º near .x; 0/ 2 @¹u > 0º \�.

Definition 1.5 (Rescalings). Let 0 <  , and let u be a weak solution to (P ) in the
domain �. For any set U � �, .x; 0/, and 0 < r , we define the rescalings

U.x;0/;r WD
U � .x; 0/

r
:

If .x0; 0/ 2 @¹u > 0º \�, then

u.x0;0/;r .x1; x2/ WD
u.rx1 C x0; rx2/

r

is a solution to (P ) in �.x0;0/;r and

¹u.x0;0/;r > 0º D ¹u > 0º.x0;0/;r :

If .x; 0/ 2 @¹u > 0º \�, then for any 0 < r there must be a component O.x;0/;r of
¹u.x;0/;r > 0º \ Œ�1; 1� � Œ�1; 1� such that .0; 0/ 2 @O.x;0/;r . Furthermore, it is clear that
we can choose the components O.x;0/;r in a consistent manner such that, for all 0 < r1 <
r2,

O.x;0/;r1 D .O.x;0/;r2/.0;0/; r1r2
:

Definition 1.6 (Height function). Let 0 <  , and let u be a weak solution to (P ) such that
.x; 0/ 2 @¹u > 0º \ �. Then, for any 0 < r � 2�1 dist..x; 0/; @�/ and any component
O.x;0/;r of ¹u.x;0/;r > 0º \ Œ�1; 1� � Œ�1; 1� such that .0; 0/ 2 O.x;0/;r , we define the
following function. For 0 < � � 1, we define

Height.�;O.x;0/;r / WD min¹1; sup¹jx2j W .x1; x2/ 2 O.0;0/;r ; jx1j D �ºº:

This function picks up the height of the component O.x;0/;r in the window Œ�1;1�� Œ�1;1�
at distance � from x D 0 by checking its intersection with both ¹.x1; x2/ W x1 D �º and
¹.x1; x2/ W x1 D ��º. Note that

Height.�;O.x;0/;r / D �Height.1;O.x;0/;�r / D
1

�r
Height.�r;O.x;0/;1/:

Theorem 1.7 (Quantitative result). Let nD 2 and 0 <  . Let u be a weak solution to (P )
with associated domain �. Suppose that

.x; 0/ 2 � \ @¹u > 0º

and u satisfies (1.2) in Br ..x; 0// �� with constant C <1. Then, Height.1;O.x;0/;�/ �
1
6C

for all 0 < � � r .
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Remark 1.8. The proofs of Theorems 1.2, 1.3, and 1.7 are essentially restricted to n D 2.
For recent results eliminating cusps in higher dimensions and arbitrary co-dimension,
see [4] which obtained an analogous macroscopic geometric description of @¹u > 0º for
local minimizers of an analogous Alt–Caffarelli functional J in n � 2.

It is unknown whether or not†cusps may be eliminated in n� 3. It is unknown whether
or not †iso may be eliminated in n � 2.

2. Preliminaries and reduction of Theorem 1.2 to Theorem 1.7

We begin by defining the appropriate notion of a solution to (P ).

Definition 2.1 (Weak solutions). Let � � Rn and 0 <  . A function u 2 W 1;2
loc .�/ is a

weak solution to (P ) if u satisfies the following.

(1) u 2 C 0.�/, u � 0 in �.

(2) u is harmonic in ¹u > 0º \�.

(3) For every � > 0, the topological free boundary, @¹u > 0º \�\ ¹jxnj> �º, can be
decomposed into an .n � 1/-dimensional C 2;˛-surface, denoted by @red¹u > 0º,
which is relatively open in @¹u > 0º; and a singular set with Hn�1-measure zero.

(4) For any open neighborhood V containing a point

x0 2 � \ ¹jxnj > �º \ @red¹u > 0º;

the function u 2 C 1.V \ ¹u > 0º/ and satisfies jruj2 D x2n on V \ @red¹u > 0º.

Remark 2.2. We note that, for physical reasons, the definition of a weak solution usually
includes the assumption u� 0 in�\ ¹xn � 0º. However, (P ) is only a physical problem
for n D 2 and  D 1=2. In this note, we work without this assumption to allow a wider
class of solutions.

In order to reduce Theorem 1.2 to the proof of Theorem 1.7, we need to following
compactness result.

Lemma 2.3. Let nD 2 and 0 <  . Let u be a weak solution which satisfies (1.2), .x; 0/ 2
†, and 0 < ri ! 0. Then, there is a .1C /-homogeneous function u1 2 W

1;2
loc .R

2/ and
a subsequence such that u.x;0/;ri ! u1 in W 1;2

loc .R
2/.

Proof. The case  D 1=2 is proven in [11, Lemma 4.1] under the physical assump-
tions on weak solutions in Remark 2.2. This argument holds verbatim for 0 <  < 1.
To wit, the assumption (1.2) implies that for 0 < R < 1 and all sufficiently large i
(depending upon R) the functions u.x;0/;ri are uniformly bounded in W 1;2.BR.0//. By
Rellich–Kondrachov compactness and lower semicontinuity, it remains to show that if
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u.x;0/;ri * u1 in W 1;2.BR.0//, thenZ
R2

jru1j
2�dH2

� lim sup
i!1

Z
R2

jru.x;0/;ri j
2�dH2

for all � 2 C 10 .BR.0//. By assumption (1.2) and Arzela–Ascoli, u1 is continuous and
u.x;0/;ri ! u1 uniformly in BR.0/. Since u.x;0/;ri are harmonic in ¹u.x;0/;ri > 0º, u1 is
also harmonic in ¹u1 > 0º. Therefore, by integration by parts, we calculateZ

R2

jru.x;0/;ri j
2�dH2

D �

Z
R2

u.x;0/;riru.x;0/;ri � r�dH2

! �

Z
R2

u1ru1 � r�dH2
D

Z
R2

jru1j
2�dH2:

It remains to show that u1 is .1 C /-homogeneous. This is proven in [3, Theo-
rem 5.11] for n D 2, k D 1; and � D ¹x2 D 0º for local minimizers of J . However,
since weak solutions which satisfy (1.2) also satisfy the monotonicity formula in [3, The-
orems 4.3 and 5.11] the argument demonstrating homogeneity holds for them as well.

2.1. The reduction of Theorem 1.2 to Theorem 1.7

If we assume Theorem 1.7, then Theorem 1.2 will follow if it can be shown that if .x; 0/ 2
†cusps, then for any 0 < C2 < 1 there exists a radius 0 < r such that Height.1;O.x;0/;r / �
C2. This follows from an argument analogous to [11, Lemma 4.4]. Consider �u as a
non-negative Radon measure supported on @¹u > 0º. Then, �u satisfies the following
inequality:

�u.�/ WD �

Z
R2

ru � r�dH2 for � 2 C1c .R
2/

�u.U / WD sup¹�u.�/ W � 2 C1c .U /; j�j1 � 1º

�

Z
@red¹u>0º\U

jx2j
d�.x1; x2/:

Now, let u.x;0/;r be the rescaling of u, and let u.x;0/;r jO.x;0/;r be the piecewise function

u.x;0/;r jO.x;0/;r D

´
u.x;0/;r in O.x;0/;r ;

0 elsewhere:

For 0 < r small enough, u.x;0/;r jO.x;0/;r is a weak solution in B2.0; 0/, and hence, by
Lemma 2.3, there exists a function u0 2 W

1;2
loc .R

2/ such that u.x;0/;r jO.x;0/;r ! u0 in
W
1;2

loc .R
2/ as r ! 0. By the assumption that �2

Q2 ;O
.x; 0/ D 0 and the fact that u0 is

homogeneous, we have that

u0 � 0 and �u0 � 0:
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Thus, �.u.x;0/;r jO.x;0/;r / * �u0 as r ! 0 and

�u.x;0/;r jO.x;0/;r .B
2
2 .0; 0//

�

Z
@redO.x;0/;r\B

2
2 .0;0/

jyjd�

&
ˇ̌

sup
0<�<1

¹jx2j W .x1; x2/ 2 @O.x;0/;r \ B
2
2 .0; 0/; jx1j D �º

ˇ̌2
! 0: (2.1)

Thus, Theorem 1.2 follows from Theorem 1.7.

3. Proof of Theorem 1.7

3.1. Main geometric observations

The following geometric observation was inspired by the insight that if .x; 0/ 2 †cusps,
then @¹u > 0º must approach ¹x2 D 0º tangentially in the sense of (2.1). That is,

�2
Q2 ;O

.x; 0/ D 0;

and (2.1) implies that Height.1;O.x;0/;r /! 0 as r ! 0. Therefore, we may not expect a
component of ¹u > 0º which touches .x; 0/ to be contained in a set of the form ¹.x1; x2/ W
jx2j � mjx1jº in any neighborhood of .x; 0/ for any 0 < m. The content of the lemma
below is that if we weaken this to consider sets of the form ¹.x1; x2/ W jx2j � mjx1j � bº,
then for appropriate choices of 0 < m; b we can find a neighborhood in which a large
piece of @¹u > 0º is contained in such a set.

Lemma 3.1 (Main geometric observation). Let nD 2, 0 <  , and let u be a weak solution
to (P ) that satisfies (1.2). Assume that .x; 0/ 2 †cusps with ı D dist..x; 0/; @�/. Let O be
a component of ¹u > 0º \ Bı..x; 0// such that .x; 0/ 2 @O. For any 0 < C2 � 1

2
, if there

exists a radius 0 < r0 � ı such that

Height.1;O.x;0/;r0/ � C2;

then there exists a 0 < � � r0 such that Height.1;O.x;0/;�/ � C2 and one of the following
conditions hold:

Height.r;O.x;0/;�/ � 3Height.1;O.x;0/;�/r � 2Height.1;O.x;0/;�/ (3.1)

for all r 2 Œ2=3; 1�, or

Height.r;O.x;0/;�/ � �3Height.1;O.x;0/;�/r � 2Height.1;O.x;0/;�/ (3.2)

for all r 2 Œ�1;�2=3�.

Remark 3.2. The lines described by equality in (3.1) and (3.2) are the lines which inter-
sects the points .˙1;Height.1;O.x;0/;�// and .˙2=3; 0/, respectively.
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Proof. Let u, 0 < r0, and 0 < C2 < 1=2 be given. For ease of notation, we note that,
by reflection across the x- and y-axes if necessary, we may assume that u attains
Height.1;O.x;0/;r0/ in ¹.1; x2/ W x2 2 RCº and not ¹.1; x2/ W x2 2 R�º or ¹.�1; x2/ W
x2 2 Rº.

Let Lr be the line given by the graph of the function

x2 D 3Height.r;O.x;0/;r0/x1 � 2Height.r;O.x;0/;r0/:

We claim that we can find an 0 < 1
2
< r � 1 such that

Height.x1;O.x;0/;r0/ � 3Height.r;O.x;0/;r0/x1 � 2Height.r;O.x;0/;r0/

for all 2
3
r � x1 � r . If we can find such a radius, then � D r � r0 proves the lemma.

To prove the claim, we argue by contradiction. Let r1 D 1. If ri does not satisfy the
claim, then there must exist a radius 2

3
ri < r < ri such that

Height.r;O.x;0/;r0/ < 3Height.ri ;O.x;0/;r0/r � 2Height.ri ;O.x;0/;r0/: (3.3)

Let riC1 2 Œ2ri=3; ri � be defined by

riC1 WD inf¹r 2 .2ri=3; ri / W (3.3) holdsº:

Observe that by construction

Height.riC1;O.x;0/;r0/ < Height.ri ;O.x;0/;r0/: (3.4)

If the inductively defined sequence ¹riºi does not terminate in finitely many steps with
a radius which satisfies the claim, then ¹riºi forms a monotonically decreasing sequence
in Œ1=2; 1�, and there is a limit point r1 2 Œ12 ; 1� such that ri ! r1. By (3.4), there are two
possibilities: either Height.r1;O.x;0/;r0/ > 0 or Height.r1;O.x;0/;r0/D 0. The latter case
contradicts the assumption that O.x;0/;r0 is a connected component which touches .0; 0/.
Therefore, we may assume that Height.r1;O.x;0/;r0/ > 0. We claim that r1 D r .

By the convergence of ¹riº and the fact that ¹Height.ri ; O.x;0/;r0/ºi also forms a
Cauchy sequence, the sets ¹Lri \ Œ�1; 1�

2º converge in the Hausdorff metric on com-
pact subsets to the set Lr1 \ Œ�1; 1�

2. And since 0 < Height.r1;O.x;0/;r0/ � 1=2, we
may estimate slope.Lr1/ 2 .0; 2=3�. Therefore, for any 0 < ı, there exists an i.ı/ 2 N
such that

distH .Lr1 \ Œ�1; 1�
2; Lrj \ Œ�1; 1�

2/ � ı

for all j � i.ı/. Therefore, if r 0 2 Œ2ri.ı/=3; r1� and�
3Height.r1;O.x;0/;r0/r

0
� 2Height.r1;O.x;0/;r0/

�
� Height.r 0;O.x;0/;r0/ � 4ı > 0;

then�
3Height.rj ;O.x;0/;r0/r

0
� 2Height.rj ;O.x;0/;r0/

�
� Height.r 0;O.x;0/;r0/ � ı > 0;
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and by the minimality in the definition of riC1, for all j � i.ı/ r 0 62 Œ2rj =3; r1/. Letting
j !1, we may assume that r 0 62 .2r1=3; r1/. Repeating the argument for ı! 0 shows
that the claim holds. This proves the lemma.

Using orthogonal projection, we obtain the following simple corollary.

Corollary 3.3. Let n D 2, 0 <  , and let u; .x; 0/;O; C2; r0; � be as in the statement of
Lemma 3.1. Then,Z

@O.x;0/;�\Œ�1;1�
2

jx2j
d� �

Z
O.x;0/;�\@Œ�1;1�

2

1

6C2
jx2j

d�:

Proof. By reflection, without loss of generality, we may assume that

O.x;0/;� \ Œ�1; 1�
2
� Œ0; 1�2:

Define @CO.x;0/;� to be the set

@CO.x;0/;�

WD ¹.x1; x2/ 2 @O.x;0/;� W x2 D Height.jx1j;O.x;0/;�/; 2=3 � x1 � 1º

\ ¹.x1; x2/ 2 @O.x;0/;� W x2 � 3Height.1;O.x;0/;�/x1 � 2Height.1;O.x;0/;�/º:

Let �1 be an orthogonal projection onto ¹x2 D 0º, and let �2 be an orthogonal projection
onto the line ¹x1 D 1º. If f is the linear function such that Lr D graphR.f /, define

�Lr W R
2
! Lr

to be the function �Lr .x1; x2/ D .x1; f .x1//. Note that, for C2 � 1=2, jrf j � 3=2.
We observe that, for any set U � R2,

H1.U / � H1.�1.U //

�
1p

1C .3=2/2
H1.�Lr .U // >

1

2
H1.�Lr .U //:

Then, (3.1), Definition 2.1 (3), and the choice of C2 � 1
2

imply thatZ
@O.x;0/;�\Œ�1;1�

2

jx2j
d� �

Z
@CO.x;0/;�\Œ�1;1�

2

jx2j
d�

�
1

2

Z
�Lr .@

CO.x;0/;�/\.Œ
2
3 ;1��Œ0;1�/

jx2j
d�

�
1

2

Z
�2.Lr\.Œ

2
3 ;1��Œ0;1�//

p
.3C2/�2 C 1jx2j

d�

�
1

2

Z
O.x;0/;r2\.¹1º�Œ0;1�/

1

3C2
jx2j

d�:
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3.2. Proof of Theorem 1.7

Let u satisfy (1.2) with constantC <1 inBr ..x;0//��. We argue by contradiction. Let
0 < r0 be such that 0 < Height.1;O.x;0/;r0/� C2 � 1=2. Let 0 < � � r0 as in Lemma 3.1.
We consider

V WD O.x;0/;� \ @Œ�1; 1�
2:

And note that Z
V

jx2j
d� �

Z
@D\Œ�1;1�2

jx2j
d�

for any set D which is relatively open in Œ�1; 1�2 and satisfies V � .@Œ�1; 1�2 \D/.
Next, use Definition 2.1 (3), the divergence theorem, and (1.2) to calculateZ

@O.x;0/;�\Œ�1;1�
2

jx2j
d� � �u

�
O.x;0/;� \ Œ�1; 1�

2
�

D

Z
V

ru � E�d�

�

Z
V

C jx2j
d�:

But, by Corollary 3.3,Z
@O.x;0/;�\Œ�1;1�

2

jx2j
d� �

Z
Vr

1

6C2
jx2j

d�:

Therefore, taking 6C2 � 1
C

, we have a contradiction. This proves Theorem 1.7.
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