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Transverse measures to infinite type laminations

Mladen Bestvina and Alexander J. Rasmussen

Abstract. We study the cone of transverse measures to a fixed geodesic lamination on an
infinite type hyperbolic surface. Under simple hypotheses on the metric, we give an explicit
description of this cone as an inverse limit of finite-dimensional cones. We study the problem of
when the cone of transverse measures admits a base and show that such a base exists for many
laminations. Moreover, the base is a (typically infinite-dimensional) simplex (called a Choquet
simplex) and can be described explicitly as an inverse limit of finite-dimensional simplices. We
show that on any fixed infinite type hyperbolic surface, every Choquet simplex arises as a base
for some lamination. We use our inverse limit description and a new construction of geodesic
laminations to give other explicit examples of cones with exotic properties.

1. Introduction

Geodesic laminations on infinite type surfaces are currently poorly understood. How-
ever, they promise to be valuable tools in the study of the mapping class groups and
Teichmüller theory of infinite type surfaces. As an example, understanding geodesic
laminations would help to advance the study of hyperbolic graphs associated to infi-
nite type surfaces such as the ray graph ([4, 5]). What is missing is a structure theory
for laminations on infinite type surfaces.

Lacking such a structure theory, one may attempt to understand the ergodic theory
of infinite type laminations; i.e. the theory of transverse measures to infinite type lam-
inations. Such a goal has been undertaken recently ([8,22,23]). Both the structure and
the ergodic theory of laminations on finite type surfaces are well understood. Geodesic
laminations on finite type surfaces consist of finitely many minimal sub-laminations
together with finitely many isolated leaves (see e.g. [12, Theorem I.4.2.8]). The cone
of transverse measures to a finite type lamination is a finite-dimensional simplicial
cone. Its base is a simplex which embeds projectively into the Thurston boundary of
Teichmüller space. Moreover, the space of all measured laminations on a fixed closed
hyperbolic surface has a natural piecewise-linear structure. Our goals in this paper are
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to give a very explicit description of the cone of transverse measures to an infinite type
lamination and to highlight similarities and differences with the finite type theory as
well as connections with ergodic theory and functional analysis.

Fix a complete hyperbolic surface X of infinite type, without boundary, and a
geodesic lamination ƒ on X . We will assume that X is of the first kind, meaning
that the limit set of �1.X/ acting on the universal cover zX is the entire circle @ zX . A
transverse measure toƒ assigns to each arc transverse toƒ a finite Borel measure and
these measures are invariant under isotopies respecting ƒ. Transverse measures may
be compared to invariant measures of dynamical systems. The space of all transverse
measures toƒ has the structure of a topological convex cone with the weak� topology.
We denote it by M.ƒ/.

Our initial result gives a rough description of M.ƒ/. This will be refined momen-
tarily into a much more explicit description of M.ƒ/ as an inverse limit of finite-
dimensional cones. Here RC D Œ0;1/ � R.

Theorem A. The cone M.ƒ/ is linearly homeomorphic to a closed sub-cone of the
product RN

C cut out by countably many linear equations.

This appears to be related to the main result of [23], which describes the cone
of measured laminations carried by a train track via equations. However, Theorem A
does not follow immediately from this.

To understand the cone M.ƒ/ better, we fix an exhaustion of X , X1 � X2 � � � �;
by surfaces with geodesic boundary which are compact, minus finitely many punc-
tures. The intersectionƒ\Xn consists of finitely many compact minimal sub-lamina-
tions contained in the interior of Xn, geodesics spiraling onto these minimal sub-
laminations, plus some collection of proper arcs. Moreover, there are finitely many
proper arcs in ƒ \ Xn up to homotopy. We attach to each Xn a finite-dimensional
cone C.Xn/, which records all the transverse measures to the compact minimal sub-
laminations, plus assignments of non-negative numbers to all the homotopy classes of
proper arcs. There are natural transition maps �nWC.XnC1/! C.Xn/ which record
how the arcs and minimal sub-laminations in XnC1 traverse those in Xn. This leads
to our explicit description.

Theorem B. The cone M.ƒ/ is linearly homeomorphic to the inverse limit of the
cones C.Xn/ together with the transition maps �n.

The advantage of Theorem B is that the finite-dimensional cones C.Xn/ and tran-
sition maps �n are easily computable in practice, so that the theorem gives a very
explicit description of the cone M.ƒ/. As first examples, we construct a lamination
with a single non-zero transverse measure up to scaling (Example 4.6), and another
lamination with no non-zero transverse measures at all.
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Theorem C. Let X be a complete, infinite type hyperbolic surface of the first kind.
Then there exists a geodesic laminationƒ on X that has no non-zero transverse mea-
sures.

We next study the problem of when the cone M.ƒ/ admits a convex, compact
cross section (a base). We show that such bases do exist in many examples and are
examples of Choquet simplices. Choquet simplices are infinite-dimensional versions
of finite-dimensional simplices, familiar from dynamics and functional analysis. As
is well known, the space of invariant probability measures of a homeomorphism of a
compact metric space is always a Choquet simplex.

Theorem D. Suppose that there is a compact subsurface of X which intersects every
leaf of ƒ. Then M.ƒ/ has a base which is a compact metrizable Choquet simplex.
Further, there is an exhaustion X1 � X2 � � � � of X for which this Choquet simplex
is the inverse limit of bases of the cones C.Xn/ with the restrictions of the maps �n.

In particular, this theorem applies to any minimal lamination. Choquet simplices
can have exotic spaces of extreme points. For example, in Example 4.4 the space
of extreme points is homeomorphic to the ordinal ! C 1. In Example 4.5 the space
of extreme points is not closed. An even more exotic example is the Poulsen sim-
plex ([19]), which has a dense set of extreme points. Our next results show that cones
of transverse measures can be arbitrarily strange. Namely, there is no obstruction
whatsoever to the Choquet simplex that can appear as a base:

Theorem E. Let X be a complete, infinite type hyperbolic surface of the first kind.
Let� be a compact metrizable Choquet simplex. Then there exists a minimal geodesic
laminationƒ on X for which the cone M.ƒ/ has a base which is affinely homeomor-
phic to �.

Realization theorems of this type for Choquet simplices are familiar from dynam-
ics and algebra ([7, 14, 16, 17]). For instance, [14] shows that every Choquet simplex
arises as the space of invariant probability measures of a minimal compact dynamical
system.

Our main tool for proving Theorem E is a construction of laminations as inverse
limits of arcs on compact subsurfaces, together with a construction of such inverse
limits using planar maps of intervals. These constructions recover every geodesic lam-
ination without compact sub-laminations or leaves asymptotic to punctures, and we
anticipate that they can be used to construct examples of laminations with other exotic
properties.

Unfortunately, the cones M.ƒ/ do not always admit compact bases, the obstruc-
tion being sub-laminations disjoint from any given compact subsurface. We give
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examples in Section 8.2. One such example is a lamination with cone of transverse
measures RN

C .
It would be interesting to connect the methods of this paper with Teichmüller

theory. In [8], Bonahon–Šarić produce a Thurston boundary for the quasi-conformal
deformation space of an infinite type hyperbolic surface. This is the space of pro-
jective bounded measured laminations. It would be interesting to know whether the
cone of bounded transverse measures to an infinite type geodesic lamination (with
the uniform weak� topology) admits an explicit description as an inverse limit, sim-
ilar to Theorem B. One could then study bases for such cones and ask the following
question.

Question 1.1. Is there a Choquet simplex which does not embed projectively into the
Thurston boundary of the quasi-conformal deformation space of some infinite type
hyperbolic surface X?

Structure of the paper. In Section 2, we study the cone of finite measures on a com-
pact totally disconnected metrizable space. We show that it may be described as a
closed sub-cone of RN

C cut out by countably many linear equations. This fact is prob-
ably well known to the experts but we could not find it in the literature. The techniques
of Section 2 foreshadow those of Section 3, where we prove Theorem A describing
the cone of transverse measures M.ƒ/ to a lamination ƒ via equations. In Section 4
we prove Theorem B describing M.ƒ/ as an inverse limit. Namely, in Section 4.1 we
give a more precise version of Theorem B, in Section 4.2 we give explicit descrip-
tions of certain cones using Theorem B, and in Section 4.3 we complete the proof
of Theorem B. In Section 5, we prove Theorem D giving an explicit description of
bases for M.ƒ/ for certain laminations ƒ. We also give several explicit examples of
bases that arise easily. In Section 6, we give a construction of laminations on infinite
type surfaces as “inverse limits” of finite systems of arcs on compact subsurfaces.
We use this construction to prove Theorem E in Section 7. Finally, in Section 8, we
prove Theorem C and give some examples of laminations ƒ for which M.ƒ/ has no
compact base.

2. Borel measures on compact totally disconnected metrizable spaces

Before getting started we set up a few definitions. A cone C is a set endowed with
operations of addition and multiplication by scalars in RC D Œ0;1/ such that addi-
tion is associative and commutative and c � .v C w/ D c � v C c � w for c 2 RC and
v;w 2 C . A particular type of cone is a convex cone, which is a subset of a real vector
space which is closed under the ambient operations of addition and multiplication by
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scalars in RC. A map between convex sets f WC ! D is affine if

f .rv C sw/ D rf .v/C sf .w/

for r; s 2 RC with r C s D 1 and v; w 2 C . If C and D are convex cones, then
f WC !D is linear if additionally f .0/D 0. We introduce the following convention.

Convention 2.1. Unless stated otherwise, all cones will be assumed to be convex
cones. All maps between cones will be assumed to be linear. All maps between convex
subsets of cones will be assumed to be affine.

An n-dimensional simplicial cone is a sub-cone of Rm spanned by n linearly
independent vectors.

Our first theorem previews Theorem A, and illustrates many of the techniques that
we use to prove it. LetX be a compact, totally disconnected metrizable space (e.g. the
Cantor set). The theorem below is presumably known to the experts, but we could not
find it in the literature. Let M.X/ be the space of finite Borel measures on X with the
weak� topology. This is the weakest topology such that for every continuous function
f WX ! R, the function

M.X/! R; � 7!

Z
X

f d�

is continuous. By K.X/ denote the (finite or countable) collection of all clopen sub-
sets of X . Applying the definition to the characteristic function of any K 2 K.X/,
we see that the function

M.X/! RC; � 7! �.K/

is continuous. Putting all these maps together gives a continuous linear map

ˆWM.X/!
Y

K2K.X/

RC:

This product is homeomorphic to RnC for some n� 0 or to RN
C , depending on whether

K is finite or not. However, the mapˆ is usually not surjective. ForK 2K.X/ and a
point x 2

Q
K.X/RC, we let xK denote the coordinate of x corresponding toK. IfK

is the disjoint union ofK1; : : : ;Kr , then we have xK1
C � � � C xKr

D xK for any x in
the image of ˆ. We endow

Q
K.X/ RC with the product topology.

Theorem 2.2. The map ˆ is a linear homeomorphism onto the closed sub-cone

CX �
Y

K2K.X/

RC

cut out by the linear equations xK D xK1
C � � � C xKr

whenever K D
Fr
jD1Kj .



M. Bestvina and A. J. Rasmussen 722

To prove the theorem, we apply the following Portmanteau theorem.

Theorem 2.3 ([6, Theorem 2.3]). Let X be a compact, totally disconnected metriz-
able space. Let ¹�nº1nD1 and � be finite Borel measures on X . Then �n

weak�
���! � if

and only if �n.K/! �.K/ for every clopen subset K of X .

Proof of Theorem 2.2. The image is clearly contained in CX . That ˆ is a bijection
to this cone follows from the Carathéodory Extension theorem, which states that any
finite, additive measure on the algebra of sets K.X/ uniquely extends to a Borel mea-
sure onX (see e.g. [15, Section 7.4.2]). Finally, thatˆ�1WCX !M.X/ is continuous
follows from the Portmanteau Theorem 2.3.

In practice, one can use much smaller collections of clopen sets and explicitly
compute the cone CX . We fix a sequence Ai , i D 1; 2; : : : of finite families of clopen
subsets of X so that

(i) A1 D ¹Xº;

(ii) for each i > 1, Ai forms a finite partition of X that refines Ai�1; and

(iii) for some (any) metric on X the mesh of Ai goes to 0 as i !1.

Also let A D
S
i Ai .

Example 2.4. When X is the middle thirds Cantor set we can take Ai to consist of
the 2i�1 clopen sets obtained by intersecting X with the defining intervals at stage i .
That is,

A2 D

°h
0;
1

3

i
\X;

h2
3
; 1
i
\X

±
;

A3 D

°h
0;
1

9

i
\X;

h2
9
;
1

3

i
\X;

h2
3
;
7

9

i
\X;

h8
9
; 1
i
\X

±
; etc.

When X D ¹1=n W n D 1; 2; : : :º [ ¹0º we can take Ai for i > 1 to consist of the
singletons ¹1º; ¹1=2º; : : : ; ¹1=.i � 1/º and the set ¹1=n W n D i; i C 1; : : :º [ ¹0º.

Then one obtains a linear map

M.X/!
Y
A2A

RC;

which is a homeomorphism onto the sub-cone cut out by the equations xA D xA1
C

� � � C xAr
when A 2Ai , Aj 2AiC1 and AD

Fr
jD1Aj . The proof is the same as that

of Theorem 2.2, since both the Carathéodory and Portmanteau theorems hold for A.

Example 2.5. WhenX D ¹1=n W nD 1; 2; : : :º [ ¹0º, after removing redundant coor-
dinates and keeping only those corresponding to ¹1=n W n D i; i C 1; : : :º [ ¹0º, we
see that M.X/ can be identified with the sub-cone of RN

C defined by the inequalities
x1 � x2 � x3 � � � � :
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2.1. Bases and Choquet simplices

LetB be a compact convex set in a metrizable locally convex topological vector space,
such as RN with the product topology. Recall that an extreme point of B is a point
x 2 B that is not contained in the interior of any interval in B . The Krein–Milman
theorem states that B is the smallest closed convex set that contains the set Ext.B/ of
all extreme points of B (which form a Borel set by [21, Proposition 1.3]). A stronger
version of the Krein–Milman theorem is Choquet’s theorem, that for every point c 2B
there is a Borel probability measure � supported on the set of extreme points such that,
formally,

c D

Z
Ext.B/

x d�:

This means that for every affine function f WB ! R, we have

f .c/ D

Z
Ext.B/

f .x/ d�

(see [21, Sections 3, 4] for all this). This expression is a generalization of a convex
combination. In general, this measure � is not unique. For example, the center of the
square can be written as the midpoint of opposite vertices in two ways. A compact
convex set B as above is a Choquet simplex if the measure � is unique, for every
c 2 B . A compact convex set in Rn is a Choquet simplex if and only if it is a simplex.

A base of a cone C is a compact convex set that does not contain 0 and intersects
every ray in C based at the origin in exactly one point. For example, the space of prob-
ability measures P .X/ on X (where X is compact, totally disconnected, metrizable,
as above) is compact by the Banach–Alaoglu theorem, and so it is a base for M.X/.
A probability measure on X is extreme in P .X/ if and only if it is supported on one
point, and the space Ext.P .X// can be identified with X . We now see that P .X/ is
a Choquet simplex, since for a probability measure � on X , the required measure �
on Ext.P .X// D X is the measure � itself. As a simpler example, a base for the
simplicial cone RnC1C is the standard n-dimensional simplex.

In finite dimensions Choquet simplices are just the standard simplices, but in infi-
nite dimensions they can be quite pathological. The best behaved are Bauer simplices,
whose extreme points form a closed subset, but there are also Poulsen simplices,
whose extreme points are dense (see [1, 19] for more on these examples).

3. M.ƒ/ as a sub-cone of RN
C

Let ƒ be a geodesic lamination on a complete hyperbolic surface X . In the special
case that X is finite type we allow X to have geodesic boundary and we allow the
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leaves ofƒ to intersect the boundary transversely. All the definitions below will apply
to this special sub-case. Such surfaces with boundary will come up only when we
consider an exhaustion of a larger surface. If X is infinite type then we assume that it
is without boundary. In the case thatX does not have boundary, the universal cover zX
is homeomorphic to the hyperbolic plane H2 and �1.X/ acts on the compactification
zX [ @1 zX , where @1 zX is the Gromov boundary, i.e. a circle. Fixing any x 2 zX ,

the limit set of X is the closure of the orbit of x in zX [ @1 zX intersected with the
Gromov boundary. I.e. the limit set is �1.X/ � x \ @1 zX . We will assume throughout
the paper that X is of the first kind, meaning that the limit set is all of @1 zX . We have
the following theorem of Šarić.

Theorem 3.1 ([23, Theorem 1.1]). LetX be a complete hyperbolic surface of the first
kind and ƒ a geodesic lamination on X . Then ƒ is nowhere dense in X .

A transversal or transverse arc is an embedded smooth arc � � X with end-
points in X nƒ such that � is transverse to every leaf of ƒ. Two transversals �; � are
homotopic if there is a smooth map F W Œ0; 1� � Œ0; 1�! X so that the restrictions to
¹0º � Œ0; 1� and ¹1º � Œ0; 1� are diffeomorphisms onto � and � , respectively, and the
pre-image F �1.ƒ/ consists of horizontal segments Œ0; 1� � ¹tº. Such a map F is a
homotopy between � and � . Denote by f� W Œ0; 1�! � the map f� .�/ D F.0; �/, and
by f� W Œ0; 1�! � the map f� .�/ D F.1; �/. There is an induced diffeomorphism

f D f� ı f
�1
� W � ! �

that preserves intersections with ƒ.
A transverse measure to ƒ is a function � that to each transversal � associates a

finite Borel measure �� on � subject to the following conditions:

• if � 0 � � is a subarc which is also a transversal, then �� 0 is the restriction of �� ;
and

• ifF is a homotopy from � to � and f is the induced diffeomorphism f Df� ıf
�1
� ,

then �� is equal to the push-forward measure f�.�� /.

It follows from the definition that �� is supported on ƒ \ � .
Let M.ƒ/ be the set of transverse measures to ƒ. Transverse measures may be

added and multiplied by scalars in RC simply by performing these operations to each
measure �� . Thus M.ƒ/ is a cone. We endow M.ƒ/ with the weakest topology such
that the maps M.ƒ/!M.ƒ \ �/, � 7! �� are continuous for every transversal � .
This is called the weak� topology. The addition and scalar multiplication operations
are continuous in this topology.

Example 3.2. Let X be a complete hyperbolic surface with finite area and non-
empty totally geodesic boundary. Consider a nowhere dense lamination ƒ consisting
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of a family of proper arcs which are homotopic through homotopies preserving @X
setwise. For instance, ƒ could consist of homotopic compact arcs from the bound-
ary @X to itself. We may view ƒ as an embedding of A � I where A is compact and
totally disconnected, and I is an interval in R (possibly infinite) with A � @I map-
ping to @X . There is a transversal �0 which intersects each leaf ofƒ exactly once. We
have �0 \ƒ Š A and thus � 7! ��0 defines a linear map M.ƒ/!M.A/. This map
is a homeomorphism, since any other transversal to ƒ may be partitioned into sub-
transversals which are homotopic to sub-transversals of �0. Thus, any measure ��
is determined entirely by the measure ��0 2 M.A/. These laminations will turn up
extensively in Section 4.

In this section we prove Theorem A from the introduction.

Proof of Theorem A. Fix a family of transversals �1; �2; : : : such that every leaf inter-
sects at least one �j . Recall that for a totally disconnected compact metrizable spaceX,
K.X/ denotes the set of clopen subsets of X . For each �j , let Kj WD K.ƒ \ �j /.
Sending a transverse measure � to the restrictions ��i defines a map

ˆWM.ƒ/!
Y
j

M.ƒ \ �j / �
Y
j

Y
K2Kj

RC D RN
C ;

which is linear and continuous. The image is contained in the sub-cone Cƒ ofY
j

M.ƒ \ �j /

cut out by the following linear equations: xK D xL whenever there are K 2 Ki and
L 2Kj and transversals � � �i and � � �j withK Dƒ\ � , LDƒ\ � , such that �
is homotopic to � .

We now argue that ˆ is a homeomorphism onto Cƒ. We utilize the following
basic fact about homotopies. See e.g. [11, Section 4.2] for the argument.

Lemma 3.3. Let ƒ be a geodesic lamination on the hyperbolic surface X of the
first kind. Let p1; p2 be points lying on a common leaf of ƒ. Let �i be transversals
toƒ through the points pi . Then there are sub-transversals � 0i � �i containing pi for
i D 1; 2 such that � 01 is homotopic to � 02.

If �; �0 2 M.ƒ/ with � ¤ �0, then there is a transversal � so that the induced
measures �� and �0� are different. By uniqueness in the Carathéodory Extension the-
orem, after replacing � with a sub-transversal, we may assume that the total measures
�.�/ and �0.�/ are different. Since every leaf of ƒ intersects some �i , for each point
p 2 � \ ƒ, we may apply Lemma 3.3 to find a sub-transversal � � � containing p
which is homotopic into some �i . By compactness of � \ ƒ, we can sub-divide �
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into finitely many sub-transversals each of which is homotopic to a sub-transversal of
some �i . It follows that for some i the measures on ƒ \ �i induced by � and �0 are
distinct, showing that ˆ is injective.

Now, suppose we are given a point in the sub-cone Cƒ. This yields Borel mea-
sures on ƒ \ �i for every i , satisfying the homotopy invariance. If � is an arbitrary
transversal, we can sub-divide it as above into sub-transversals so that each is homo-
topic into some �i , and we can pull back the measures on �i to get a measure onƒ\ � .
If � D �1 [ � � � [ �r and � D � 01 [ � � � [ �

0
s are two different such partitions of � into

sub-transversals, then we may consider their common refinement � D
S
i;j .�i \ �

0
j /.

Using the equations defining Cƒ, we see that the measure on �i \ � 0j , and thus on � ,
is independent of the partition. Independence of the partition yields invariance of the
constructed measure under homotopies and passing to sub-transversals. This shows
that the image of ˆ is the entire sub-cone Cƒ.

Finally, we argue that ˆ�1WCƒ !M.ƒ/ is continuous. By the definition of the
topology on M.ƒ/, it suffices to argue that the composition ofˆ�1 with the restriction
to M.ƒ \ �/ is continuous, for every transversal � . When � D �i for some i this is
just a coordinate projection, so it is continuous. For an arbitrary � , sub-divide and
reduce to sub-transversals of �i ’s as above.

Corollary 3.4. Let ƒ be a geodesic lamination on a complete hyperbolic surface X
of the first kind. If there is a compact subsurface of X that intersects every leaf of ƒ
then M.ƒ/ admits a base.

Proof. In this case we can choose a finite collection of transversals that intersect every
leaf. Thus, the product

Q
j M.ƒ\ �j / is finite and each factor has its compact base of

probability measures. For convex cones the property of having a base passes to finite
products and closed sub-cones.

4. M.ƒ/ as an inverse limit

As before, X is hyperbolic of the first kind and ƒ � X is a geodesic lamination.
Since X is of the first kind, we may fix an exhaustion

X1 � X2 � � � �

of X , where each Xi is a finite area complete subsurface with totally geodesic bound-
ary (see [3]). Thus, Xi is a compact surface with boundary minus finitely many
points. We will sometimes refer to such surfaces as punctured compact subsurfaces.
In fact, the proof of [3, Proposition 3.1] shows that any exhaustion of X by finite
type subsurfaces straightens to an exhaustion by complete finite area subsurfaces with
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geodesic boundary. So we may blur the distinction between topological exhaustions
and exhaustions by complete finite area subsurfaces with geodesic boundary.

We will assume for convenience that the boundary components of Xi are trans-
verse to ƒ. This may be achieved as follows. Suppose that we have constructed a
sequence Y1 � Y2 � � � � � Yn of punctured compact subsurfaces such that Yi con-
tains Xi and @Yi is transverse to ƒ for each i � n. Choose m large enough that Xm
contains both Yn and XnC1. Choose p > m large enough that Xp contains @Xm in its
interior and q > p large enough that Xq contains @Xp in its interior. The components
of @Xp are contained in the interior of Xq n Xm. We may apply a mapping class f
supported on the components of Xq nXm, so that for any component c of @Xp , f .c/
intersects ƒ transversely (if at all). Then setting YnC1 D f .Xp/ yields Yn � YnC1,
XnC1 � YnC1, and @YnC1 is transverse to ƒ.

We will need the following structure theorem for ƒ \ Xi . Recall that the sup-
port of a transverse measure consists of the points p such that every transversal �
containing p has positive measure.

Proposition 4.1. Consider the lamination ƒi D ƒ \ Xi . It has a sub-lamination
consisting of finitely many compact minimal sub-laminations contained in the inte-
rior of Xi , plus finitely many parallel families A � I of proper arcs, with A compact
and totally disconnected and I a closed sub-interval of R. Any transverse measure
on ƒi is supported on this sub-lamination. Any leaf of ƒi that does not belong to this
sub-lamination accumulates on one or more of the compact minimal sub-laminations
of ƒi .

Proof. The lamination ƒi contains leaves of three possible types:

(1) arcs which on each end either (a) intersect a boundary component of Xi or (b)
are asymptotic to a puncture of Xi ;

(2) simple closed geodesics and bi-infinite geodesics which are contained in a
compact minimal sub-lamination in the interior of Xi ;

(3) rays and bi-infinite geodesics which accumulate onto minimal sub-laminations
on at least one end but are not contained in these minimal sub-laminations (we
will also say these geodesics spiral onto the minimal sub-laminations).

See Figure 1. There are finitely many arcs of type (1) up to homotopies preserving
the boundary components of Xi setwise. Moreover, removing the leaves of types (1)
and (3) and applying the classification theorem for laminations on finite type sur-
faces [12, Theorem I.4.2.9] yields that there are finitely minimal sub-laminations in
the interior. Considering all of the arcs of type (1) in a single homotopy class yields
a clopen subset of leaves of ƒi which is homeomorphic to A � I for some closed
sub-interval I of R (possibly all of R or a ray). The fact that A is totally disconnected
follows from Theorem 3.1. This proves the first claim.
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�i
2

�i
1

�i
3Xi `i

1

`i
2

`i
3

Figure 1. The various geodesics of ƒi . Boundary components of Xi are denoted by thick
black lines while punctures are denoted by small circles. Geodesics of ƒi are indicated by blue
lines. In this case there are three minimal sub-laminations and three homotopy classes of arcs.
Homotopy classes `i

j
are drawn as though they consist of a single arc for ease of presentation.

Other geodesics of ƒi accumulate onto compact minimal sub-laminations �i
j

on at least one
end.

Now we show that any transverse measure to ƒi is supported on the union of
the leaves of types (1) and (2). Let � be a transverse measure to ƒi and consider a
leaf L which accumulates onto a compact minimal sub-lamination � of ƒi but is not
contained in � . There is a transversal � through L and a direction such that all the
rays of ƒi through � in this direction are asymptotic, accumulate onto � , and never
return to � . To see the existence of such a � , we take S to be one of the following
surfaces: (i) if � is a closed geodesic then S is a collar neighborhood of � small
enough that any geodesic that intersects S and is disjoint from � spirals onto �; (ii)
if � is not a closed geodesic then S is the surface filled by � . We may take � to lie
inside of S n � and then all of the leaves of ƒi through � spiral onto � . By taking �
even smaller if necessary, such leaves never return to � . Taking � smaller again, such
leaves all exit the same cusp of S n � in case (ii) and they are all asymptotic, in either
case. Consider a transversal � which intersects � . Considering a point p 2 � \ � , we
see that L intersects � in infinitely many points limiting to p. We see that we may
homotope � to infinitely many disjoint sub-intervals of � . Since �.�/ <1, we must
have �.�/ D 0. This completes the proof.

We denote by M.ƒi / the cone of transverse measures toƒi . By Example 3.2, we
can write M.ƒi / as a finite productY

�

M.�/ �
Y
A�I

M.A/;
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where � ranges over the compact minimal sub-laminations of ƒi and A � I over the
parallel families of proper arcs. There is an associated cone

Ci WD
Y
�

M.�/ �
Y
A�I

RC;

which is the quotient of M.ƒi / obtained by identifying all measures onA� I with the
same total mass. Each cone M.�/ is finite-dimensional (see e.g. [11, Section 1.9.1])
and thusCi is a finite-dimensional simplicial cone. We sometimes denoteCi byC.Xi /
to make the dependence on the surface Xi clear.

The situation is summarized in the following commutative diagram, where W.ƒ/

is the inverse limit of the bottom row. The maps ‰i WM.ƒi /! Ci are the quotient
maps just defined. The horizontal arrows �i on the top are restriction maps and on
the bottom �i are the induced maps on the quotient cones. One may check that the
maps �i are linear, since ‰iC1, �i , and ‰i are linear. The map ‰ is .‰1; ‰2; : : :/.

M.ƒ1/ M.ƒ2/ M.ƒ3/ � � � M.ƒ/

C1 C2 C3 � � � W.ƒ/

‰1

�1

‰2

�2

‰3

�3

‰

�1 �2 �3

We now state the main theorem of this section. Theorem B from the introduction
will follow immediately from it.

Theorem 4.2. The map ‰WM.ƒ/! W.ƒ/ is a linear homeomorphism.

The proof has the following outline:

(1) M.ƒ/ is the inverse limit of M.ƒi /.

(2) All vertical maps ‰i are proper and surjective.

(3) Consequently, ‰ is proper and surjective.

(4) Since X is of the first kind, ‰ is injective.

(5) Consequently, ‰ is a homeomorphism.

Fact (1) follows from the definitions and (2) is a consequence of the Banach–
Alaoglu theorem. Then (3) follows by a diagram chase. The main thing to be proved
is (4). Before giving the full proof we pause to consider the cones Ci , the transition
maps �i , and some examples of cones of measures that can be characterized using
Theorem B.

4.1. Cones of weights and transition maps

We pause to give a more complete and intuitive description of the maps �n. Denote
by `n1; : : : ; `

n
r.n/

the homotopy classes of proper arcs in ƒn and by �n1 ; : : : ; �
n
s.n/
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the compact minimal sub-laminations contained in the interior of Xn. Thus, the arcs
in the homotopy class `ni form some parallel family Ani � I

n
i where Ani is compact,

totally disconnected, and metrizable, and I ni is a closed (possibly infinite) interval
in R. There exists s0 � 0 such that �nC11 ; : : : ; �nC1s0

all intersectXn in some (possibly
empty) collection of arcs, while �nC1s0C1

; : : : ; �nC1
s.n/

are all contained in Xn. We have

M.ƒn/ D

r.n/Y
iD1

M.Ani / �

s.n/Y
iD1

M.�ni / and Cn D

r.n/Y
iD1

RC �
s.n/Y
iD1

M.�ni /:

Let enj be the basis element 1 in the j th factor RC in
Qr.n/
iD1 RC. Then we may write

an element of Cn as

w D

r.n/X
iD1

bni e
n
i C

s.n/X
iD1

�ni ;

where bni � 0 and �ni 2M.�ni / for each i . If � 2M.ƒn/, then

‰n.�/ D
X
i

bni e
n
i C

X
i

�ni ;

where (1) bni is the measure �.�ni / of a transversal �ni which intersects each arc
of `ni exactly once and is disjoint from ƒn n `

n
i ; and (2) �ni is the restriction of �

to �ni : �ni WD �j�
n
i . We think of an element of Cn as a weight, assigning a number

to each homotopy class of arcs `ni and a transverse measure to each minimal lamina-
tion �ni . We will refer to Cn as the cone of weights for ƒn. Finally, define �nC1i for
1 � i � r.nC 1/ to be a transversal intersecting each arc of `nC1i exactly once and
disjoint from ƒnC1 n `

nC1
i .

For 1� j � r.nC 1/, chooseL to be any arc in `nC1j . For 1� i � r.n/we denote
by aij the number of arcs of L\Xn which are homotopic to `ni . Thus, AnC1j � I nC1j

passes through Ani � I
n
i exactly aij times. Informally, we will say that `nC1j tra-

verses `ni aij times. From this, we see that we may partition �ni into sub-transversals,
aij of which are homotopic to �nC1j for each 1 � j � r.nC 1/, and the remaining
of which are disjoint from `nC11 [ � � � [ `nC1

r.nC1/
. The sub-transversals of �ni which are

disjoint from `nC11 [ � � � [ `nC1
r.nC1/

intersect the various minimal laminations �nC1j

for 1 � j � s0 and leaves which spiral onto such �nC1j , but are otherwise disjoint
from ƒnC1. Therefore, if � 2M.ƒnC1/, then

�.�ni / D

r.nC1/X
jD1

aij �.�
nC1
j /C

s0X
jD1

.�j�nC1j /.�ni /:
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`n
1 `n

2

`nC1
1

`nC1
2 `nC1

3

Figure 2. The figure illustrates two punctured disks Xn (the smaller punctured disk) contained
inside XnC1 (the larger punctured disk). There are two homotopy classes of arcs on Xn, `n

i
,

and three homotopy classes of arcs on XnC1, `nC1

j
.

Putting this together yields: if

w D

r.nC1/X
jD1

bnC1j enC1j C

s.nC1/X
jD1

�nC1j ;

then

�n.w/ D

r.n/X
iD1

r.nC1/X
jD1

aij b
nC1
j eni C

r.n/X
iD1

s0X
jD1

�nC1j .�ni /e
n
i C

s.nC1/X
jDs0C1

�nC1j

noting that for s0C 1� j � s.nC 1/, �nC1j lies in Cn since �nC1j is contained inXn.
The easiest case to understand is whenƒn andƒnC1 contain no compact minimal

sub-laminations ��� . Then Cn D Rr.n/C , CnC1 D Rr.nC1/C , and

�n.w/ D

r.n/X
iD1

r.nC1/X
jD1

aij b
nC1
j eni :

Thus, �n is represented by the r.n/ � r.nC 1/ matrix .aij /
r.n/;r.nC1/
iD1;jD1 .

Example 4.3. Consider the punctured disksXn andXnC1 pictured in Figure 2. There
are two homotopy classes of arcs `n1 , `n2 on Xn and three homotopy classes of arcs
`nC11 ; `nC12 , `nC13 on XnC1. The class `nC11 traverses `n1 three times, the class `nC12

traverses `n1 twice and `n2 once, while `nC13 does not traverse `n1 or `n2 . Thus, �n is
represented by the 2 � 3 matrix

�
3 2 0
0 1 0

�
.
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(a) The lamination from Example 4.4 is a union of countably many isolated proper leaves which
limit to a single non-isolated proper leaf.

(b) The lamination from Example 4.5 is a union of countably many isolated proper leaves which
limit to two non-isolated proper leaves.

(c) The lamination from Example 4.6 is the closure of the two pictured non-proper leaves.

Figure 3. The laminations from Examples 4.4–4.6.

4.2. Examples of cones of measures

In this section we use Theorem B to give explicit descriptions of cones of transverse
measures for certain examples of geodesic laminations.

Example 4.4. Consider the lamination ƒ in Figure 3(a). Thus ƒ consists of a count-
able collection of isolated proper leaves Li that converge to a single proper leaf L
(which is not isolated). Recall that a leaf is isolated when it has an open neighbor-
hood disjoint from the rest of the lamination. There is a transverse arc � intersecting
each leaf exactly once and one may check that M.ƒ/ is linearly homeomorphic to
M.ƒ \ �/. We verify this using inverse limits.

An exhaustion ¹Xnº is given by the surfaces bounded by the red curves. Thus
Xn has genus n and one boundary component. There are n homotopy classes of arcs
`n1; : : : ; `

n
n on Xn. Moreover, choosing the numbering correctly, `nC1i \ Xn is homo-

topic to `ni for 1 � i � n, whereas `nC1nC1 \ Xn is homotopic to `nn. Thus W.ƒ/ is the
inverse limit of

RC
�1
 � R2C

�2
 � R3C

�3
 � � � � ;
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where

�1 D
�
1 1

�
; �2 D

 
1 0 0

0 1 1

!
; �3 D

0B@1 0 0 0

0 1 0 0

0 0 1 1

1CA ;

�4 D

0BBB@
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

1CCCA ; : : : :

We claim that M.ƒ/ Š W.ƒ/ is linearly homeomorphic to the cone C � `1 defined
by

C D

²
.x; y1; y2; : : :/ W yi � 0 for all i and x �

1X
iD1

yi

³
;

where the space `1 of summable sequences is endowed with its weak� topology as
the dual of the space c0 of sequences convergent to 0, and C is endowed with the
subspace topology. We outline the proof. An element of the inverse limit W.ƒ/ has
the form

 
xD

0B@�x00� ; x11x12
!
;

0B@x21x22
x23

1CA ; : : :
1CA ;

where
x00 D x

1
1 C x

1
2 D x

1
1 C x

2
2 C x

2
3 D x

1
1 C x

2
2 C x

3
3 C x

3
4 D � � �

and
xnn D x

nC1
n D xnC2n D � � � for n � 1:

Thus, the element is determined by the sequence of non-negative numbers

.x00 ; x
1
1 ; x

2
2 ; : : :/:

Moreover, since x00 �
Pk
iD1 x

i
i for each k � 0, we have that

1X
iD1

xii � x
0
0 <1:

Define a function W.ƒ/! C by sending
 
x to .x00 ; x

1
1 ; : : :/, which lies in C . The

inverse is given by sending an element .x; y1; y2; : : :/ 2 C to the element0B@�x� ; y1

x � y1

!
;

0B@ y1

y2

x � y1 � y2

1CA ; : : :
1CA :
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One may check that these functions are linear and that the function C ! W.ƒ/ is
continuous since the coordinate functions x and yn are continuous. One may check
that W.ƒ/! C is continuous by using the fact that `1 is equipped with its weak�

topology from its predual c0.

Example 4.5. Consider the lamination ƒ pictured in Figure 3(b). Thus ƒ consists
of a countable collection of isolated proper leaves Li that converge to the union of
two disjoint proper leaves L and L0 (neither of which is isolated). An exhaustion is
given by the surfaces bounded by the red curves again. Thus Xn has genus nC 1 and
there are nC 1 homotopy classes of arcs `n1; : : : ; `

n
nC1 on Xn. The numbering can be

chosen so that `nC1i \Xn is homotopic to `ni for 1� i � nC 1 and so that `nC1nC2 \Xn

is homotopic to the union of `n1 and `n2 . Thus, W.ƒ/ is the inverse limit of

R2C
�1
 � R3C

�2
 � R4C

�3
 � : : : ;

where

�1 D

 
1 0 1

0 1 1

!
; �2 D

0B@1 0 0 1

0 1 0 1

0 0 1 0

1CA ; �3 D

0BBB@
1 0 0 0 1

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

1CCCA ; : : :

An element of the inverse limit has the form0BBB@
 
x01
x02

!
;

0B@x11x12
x13

1CA ;
0BBB@
x21
x22
x23
x24

1CCCA ; : : :
1CCCA ;

where

x01 D x
1
1 C x

1
3 D x

2
1 C x

1
3 C x

2
4 D x

3
1 C x

1
3 C x

2
4 C x

3
5 D � � � ;

x02 D x
1
2 C x

1
3 D x

2
2 C x

1
3 C x

2
4 D x

3
2 C x

1
3 C x

2
4 C x

3
5 D � � � ;

and
xnnC2 D x

nC1
nC2 D x

nC2
nC2 D � � � for n � 1:

Using similar techniques as in Example 4.4, one may show that M.ƒ/ Š W.ƒ/ is
isomorphic to the cone C � `1 defined by

C D
°
.x1; x2; y1; y2; y3; y4; : : :/ W yi � 0 for all i and x1 �

X
yi and x2 �

X
yi

±
;

where again `1 is endowed with its weak� topology as the dual of c0.
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Figure 4. The construction of the two leaves from Example 4.6. At each new step one arc is
extended to traverse both arcs from the previous step.

Example 4.6. Consider the lamination ƒ pictured in Figure 3(c). The figure shows
(the beginnings of) two leaves of the lamination. The lamination ƒ is the closure
of these two leaves. An exhaustion is given by the surfaces Xn bounded by the red
curves. Observe that any leaf of the closure ƒ intersected with Xn is homotopic to a
component of the intersection of either the blue leaf or the green leaf with Xn. Thus,
to describe the cone W.ƒ/ it suffices to study the intersections of the green leaf and
the blue leaf with the compact subsurfaces Xn. We refer the reader also to Figure 4.
This illustrates the construction of the blue and green leaves from Figure 3(c). The
reader may continue the construction inductively. Moreover, ƒ \ Xn consists of two
homotopy classes `n1 (the green arcs pictured in Figure 4) and `n2 (the blue arcs pic-
tured in Figure 4). At each step, there is a value of i for which `nC1i \Xn is homotopic
to `ni while for the other arc `nC13�i , `nC13�i \Xn consists of one arc homotopic to `n1 and
another arc homotopic to `n2 . Moreover, the value of i with this property alternates
between 1 and 2 at each step. Thus, W.ƒ/ is the inverse limit of

R2C
�1
 � R2C

�2
 � R2C

�3
 � � � � ;

where 
1 1

0 1

!
D �1 D �3 D �5 D � � � and

 
1 0

1 1

!
D �2 D �4 D �6 D � � �

Observe that

Mo WD �i ı �iC1 D

 
2 1

1 1

!
for i odd, and

Me WD �i ı �iC1 D

 
1 1

1 2

!
for i even:
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Figure 5. A lamination consisting of countably many isolated proper leaves.

Consider the cones Cn D C.Xn/ D R2C and the intersection of the images of Cm
in Cn. That is, consider

1\
mDn

�nm.Cm/;

where �nm D �n ı �nC1 ı � � � ı �m�1. This is contained in the intersection of conesT1
jD0M

j
o .R2C/ or the intersection

T1
jD0M

j
e .R2C/ depending on whether n is odd

or even. In the odd case, this intersection is equal to the ray spanned by vo, where vo
is the (positive) attracting eigenvector vo D .�; 1/ of Mo, where � is the golden ratio
.1C

p
5/=2. In the even case the intersection is equal to the span RCve , where ve is

the attracting eigenvector ve D .� � 1; 1/ of Me . Thus, we see that W.ƒ/ is in fact
equal to the limit of an inverse system of rays

RCvo
�1
 � RCve

�2
 � RCvo

�3
 � RCve

�4
 � � � � ;

and one may check that each map �n in this inverse system is surjective. Thus W.ƒ/

is linearly homeomorphic to a ray RC. That is, ƒ has a single non-zero transverse
measure up to scaling.

Example 4.7. Consider the lamination ƒ in Figure 5, consisting of countably many
isolated proper leaves which exit out the single end of the surface. Using the pictured
exhaustion, we see that M.ƒ/ is the limit of

RC
�1
 � R2C

�2
 � R3C

�3
 � � � � ;

where

�1 D
�
1 0

�
; �2 D

 
1 0 0

0 1 0

!
; �3 D

0B@1 0 0 0

0 1 0 0

0 0 1 0

1CA ; : : :

From this we see that M.ƒ/ is linearly homeomorphic to RN
C , a countable product of

rays RC, with the product topology.
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4.3. Completing the proof of Theorem 4.2

In this section we complete the proof of Theorem 4.2. Our main new ingredient will
be used to show injectivity of the map ‰.

Lemma 4.8. Let ƒ be a geodesic lamination on the hyperbolic surface X of the first
kind. Let � be an arc transverse to ƒ. Consider the exhaustion X D

S1
nD1 Xn by

punctured compact subsurfaces and the homotopy classes of arcs ¹`ni º
r.n/
iD1 contained

in Xn for each n. Then for any m large enough, and any i between 1 and r.m/, all of
the arcs in the homotopy class `mi intersect � the same number of times.

Before giving the proof we give an informal description. Each homotopy class `ni
forms a strip Ani � I

n
i where Ani is compact totally disconnected and I ni is a closed

interval in R. The transversal � intersects these strips but may not pass all the way
through each time. Thus, � may turn around between two arcs L and M of Ani � I

n
i

or have an endpoint between them. For m � n the strips Amj � I
m
j traverse the strip

Ani � I
n
i and partition it. The partition is eventually fine enough to separate L and M

and this fixes the issue.
We also introduce some notation. If Y � zX is a closed convex subset, then @0Y

denotes the boundary of Y as a subset of zX . The notation @1Y denotes the limit set
of Y in @1 zX , i.e. the closure of Y in zX [ @1 zX intersected with @1 zX . Before proving
Lemma 4.8, we prove the following general fact, which will be used several times in
the sequel. Note that for a punctured compact subsurface Y � X , the pre-image of Y
in the universal cover zX consists of a family of disjoint closed convex subsets of zX .

Lemma 4.9. Let X be a hyperbolic surface of the first kind. Let X D
S1
nD1 Xn be

an exhaustion by punctured compact subsurfaces. Let zX be the universal cover of X ,
choose a basepoint � 2 zX in the pre-image ofX1, and let �Xn be the unique component
of the pre-image of Xn in zX containing �. Then

S1
nD1

�Xn D zX . Moreover, for two
distinct geodesics L;M � zX and any n sufficiently large, the arcs of intersection
L\ �Xn and M \ �Xn are not homotopic in �Xn through homotopies preserving @0 �Xn.

Proof. The component �Xn is invariant under the fundamental group �1.Xn/. Conse-
quently, the union

S1
nD1

�Xn is a convex subset of zX which is invariant under �1.X/,
and therefore we have

S1
nD1

�Xn D zX .
For the last sentence of the lemma, note that at least one endpoint of L in @1 zX

is not shared by M . Hence, for any n sufficiently large, either L has an endpoint
in @1 �Xn, which is not contained in M \ @1 �Xn, or L \ �Xn has an endpoint in @0 �Xn
which is not contained in M \ @0 �Xn. In either case, L \ �Xn is not homotopic to
M \ �Xn.

Proof of Lemma 4.8. Choose n large enough that � is contained in Xn. We consider
the lamination ƒn and the homotopy classes ¹`ni º

r.n/
iD1 . From ƒn, remove all of the
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compact minimal sub-laminations �ni and all of the geodesics accumulating onto
them. Denote byƒ0n the sub-lamination which remains after this operation, consisting
exactly of the arcs in all of the classes `ni .

We make one simplifying assumption on � , which we will remove at the end of
the proof: for each `ni , each arc in the homotopy class intersects � exactly 0 or 1 times.
This has the following consequence. If � intersects an arc in the homotopy class `ni
then either (1) � crosses every arc in `ni exactly once, or (2) it intersects some of them
once, and has an endpoint between two arcs in `ni . In particular, there are some values
of i such that � crosses all arcs in `ni once and at most two values of i such that �
crosses some of the arcs in `ni once and does not cross the others.

Consider the universal cover zX . Lift � to an arc z� . The arc z� is contained in a
unique component �Xn of the pre-image of Xn in zX . Thus, �Xn is a universal cover
for Xn. Define zƒ0n to be the pre-image of ƒ0n in �Xn. For each i , the arcs in the
pre-image of `ni are partitioned into families of arcs which are homotopic in �Xn
through homotopies preserving the boundary @0 �Xn setwise. Namely, if `ni joins p
to q, where p; q can each be either punctures or boundary components of Xn, then p
and q each either lift to geodesics of @0 �Xn (lifts of boundary components) or to ends
of @1 �Xn. A homotopic family of arcs in the pre-image of `ni joins a lift of p to a lift
of q. See Figure 6(a).

Consider the families of homotopic arcs in zƒ0n that intersect z� . This yields two
finite multi-sets A and B with jAj D jBj, such that

• each element of A (or B) is either a boundary component of �Xn in @0 �Xn or an
end of �Xn in @1 zX ;

• if we enumerate the elements of A as ¹a1; : : : ; arº and the elements of B as
¹b1; : : : ; brº, then z� intersects zƒ0n only in the arcs joining ai to bi for i D 1; : : : ; r .

We allow A and B to be multi-sets, since for instance, z� may be intersected by two
families of arcs which join a common boundary component of �Xn to two different
boundary components of �Xn. Moreover, we choose the numbering so that z� intersects
each arc of zƒ0n joining ai to bi exactly once unless i D 1 or r . For i D 1 or r , zƒ0n may
intersect only some of the arcs of zƒ0n joining ai to bi (again intersecting each arc at
most once).

Now, if the arcs joining a1 to b1 do not all intersect z� , then there is a last such
arc L which intersects z� , and a first such arcM which does not intersect z� . That is, L
and M separate all the arcs from a1 to b1 which do not intersect z� from all the arcs
from a1 to b1 which do. Similarly, among the arcs joining ar to br , there is (possibly)
a last such arcL0 which intersects z� and a first such arcM 0 which does not intersect z� .
Now L;M;L0;M 0 may be extended to bi-infinite geodesics in zX . By Lemma 4.9 for
any m large enough, we have that in �Xm, the unique component of the pre-image
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z�

a1 b1 D b2

a2

a3 b3

a4 b4

(a) The cover �Xn is bounded by the solid black geodesics. The lift z� is drawn in red along with
the strips of zƒn that intersect it. The elements of A are the ai and the elements of B are the bi .
Note that all ai and bi are geodesics of @0

�Xn except for a2 which is an end of �Xn. Note also
that b1 D b2.

(b) The cover �Xm is bounded by the solid black geodesics. Boundary components of �Xn are
indicated by dotted lines. For each strip of geodesics of zƒ in �Xm, its geodesics all either inter-
sect z� exactly once or all intersect it zero times.

Figure 6. Moving to a larger surface fXm to separate geodesics in fXn.

of Xm containing z� , the intersections L\ �Xm andM \ �Xm are not homotopic in �Xm
through homotopies preserving @0 �Xm and similarly for L0 and M 0. See Figure 6(b).

We claim that if m is large enough to satisfy this condition, then all arcs in `mi
for any i D 1; : : : ; r.m/ intersect � the same number of times. To see this, we con-
sider ƒ0m, the sub-lamination of ƒm consisting of all the arcs in all of the homotopy
classes `mi . We again consider the pre-image zƒ0m in �Xm, the pre-image z̀mi in �Xm
for each i , and our fixed lift z� . Any pre-image z̀mi is partitioned into families of arcs
in �Xm which are homotopic through homotopies preserving @0 �Xm. Moreover, if c
and d are components of @0 �Xm [ @1 �Xm, then the arcs of zƒ0m joining c to d either
all intersect z� or all miss z� by our choice of m. See Figure 7(a).
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a1 b1

c dL
M

(a) Consider c and d components of @0
�Xm [ @1 �Xm. If the arcs from c to d intersect z� and

intersect @�Xn in arcs from a1 to b1 then they all do so exactly once since L separates them
from M . Here dotted black lines indicate @0

�Xn, solid black lines indicate @0
�Xm, and z� is

indicated by a solid red line. There is a second (small) strip of geodesics which do not intersect z�
at all since they are separated from L by M .

a

b

(b) Consider a and b which are either boundary components in @0
�Xm or ends in @1 �Xm, and

the arcs from a to b. They may intersect multiple translates of �Xn and for each translate of �Xn

they intersect a translate of z� at most once. Here translates of z� are indicated by solid red lines.
Translates of �Xn are shaded in green.

Figure 7. Intersections of arcs of zƒ0m with lifts of the transversal � .

Thus, there are finite multi-sets A0 D ¹a01; : : : ; a
0
sº and B 0 D ¹b01; : : : ; b

0
sº, each

consisting of boundary components of @0 �Xm and/or ends of @1 �Xm, and such that the
arcs of zƒ0m intersecting z� are exactly those joining a0i to b0i for some i . Moreover, the
arcs of zƒ0m joining a0i to b0i all intersect z� exactly once. For each i D 1; : : : ; s there is a
sub-interval of z� , call it Ji , with endpoints in zƒ0m, containing all the intersections with
the arcs from a0i to b0i and no intersections with arcs from a0j to b0j for j ¤ i . Consider
the arcs in a homotopic family in zƒ0m joining a boundary component or end a to a
boundary component or end b. Whenever the family intersects a lift of � , the lift has
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the form gz� for some g 2 �1.Xm/. Translating by g�1, we see that all of the arcs from
a to b intersect the lift gz� exactly once, in the interval gJi for some i . See Figure 7(b).

Finally, we see from this that every arc in a class `mi intersects � a number of
time equal to the number of lifts of � that `mi intersects when we lift it to a family
of arcs homotopic through homotopies preserving @0 �Xm. This completes the proof
in the special case that every arc in every class `ni intersects � at most once. For the
case of a general transversal � , split � into transversals �1; �2; : : : ; �t such that each �i
intersects every arc in every class `ni at most once. Apply the previous arguments to
the arcs �i separately to find numbers mi � n as in the statement of the lemma for
each �i . Taking m D max¹m1; : : : ; mtº completes the proof.

Remark 4.10. Suppose that � is a transversal and n is large enough that every arc in
each equivalence class `ni intersects � the same number of times, for 1 � i � r.n/.
Let Ei be the number of times that � intersects any arc in `ni . Recall that �ni denotes
a transversal intersecting ƒn only in `ni and intersecting each arc of `ni exactly once.
We may partition � into (1) some arcs which intersect ƒn only in `ni , for one value
of 1 � i � r.n/, and intersect each arc in `ni at most once, plus (2) some arcs which
are disjoint from `n1 [ � � � [ `

n
r.n/

. The arcs of type (1) can be homotoped into �ni and
then their union covers the points of ƒ \ �ni uniformly Ei times. The arcs of type (2)
intersect ƒn only in the minimal sub-laminations �ni for 1 � i � s.n/ and leaves
spiraling onto them. Thus, for � any transverse measure,

�.�/ D

r.n/X
iD1

Ei�.�
n
i /C

s.n/X
iD1

.�j�ni /.�/:

In our second preliminary result M.ƒ/ is identified with the inverse limit of the
M.ƒn/’s. Denote by �n1 the linear map M.ƒ/!M.ƒn/ which restricts transverse
measures to ƒn: �n1.�/ D �jƒn.

Lemma 4.11. The restriction maps �n1 identify M.ƒ/ linearly homeomorphically
with the limit of the inverse system

M.ƒ1/
�1
 �M.ƒ2/

�2
 � � � � :

Proof. Since �n�1 ı �n1 D �.n�1/1, there is an induced continuous linear map

M.ƒ/! lim
 �

M.ƒn/:

On the other hand, there is a map

lim
 �

M.ƒn/!M.ƒ/

defined as follows. If .�n/1nD1 2 lim
 �

M.ƒn/, then its image � in M.ƒ/ is the trans-
verse measure defined by �� D .�n/� for any n large enough that � lies in Xn. The
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map lim
 �

M.ƒn/!M.ƒ/ is linear and continuous since these properties hold for each
map�n 7! .�n/� . One may check that these functions between M.ƒ/ and lim

 �
M.ƒn/

are mutually inverse.

Thus, we may define a map

‰WM.ƒ/ D lim
 �

M.ƒn/! lim
 �

Cn D W.ƒ/

by ‰ D .‰1; ‰2; ‰3; : : :/. Our last preliminary result will be used to show that ‰ is
proper and surjective.

Lemma 4.12. Each map ‰n WM.ƒn/! Cn is proper and surjective.

Proof. Since

M.ƒn/ D

r.n/Y
iD1

M.Ani / �

s.n/Y
iD1

M.�ni /; Cn D

r.n/Y
iD1

RC �
s.n/Y
iD1

M.�ni /;

‰n is defined component-wise, and the maps on the M.�ni / are identities, it suffices
to show that the maps M.Ani / ! RC defined by taking total mass are proper and
surjective. Given any c 2 RC we may consider cı where ı is a point mass at some
point of Ani . This shows that M.Ani / ! RC is surjective. On the other hand, it is
proper, since by the Banach–Alaoglu theorem the space of measures on Ani with total
mass bounded by some number E is compact in the weak� topology.

Finally, we prove Theorem 4.2.

Proof of Theorem 4.2. The map ‰ D .‰1; ‰2; : : :/ is continuous and linear since
each ‰i is. We now check that ‰ is proper and surjective. If K � W.ƒ/ is com-
pact and non-empty then its images Ki in Ci are each compact and non-empty. Each
‰�1i .Ki / is compact and non-empty by Lemma 4.12. Finally, ‰�1.K/ is equal to the
inverse limit of the sets‰�1i .Ki / with the transition maps �i ([9, Section I.4.4, Corol-
lary to Proposition 9]). An inverse limit of non-empty compact Hausdorff spaces is
non-empty and compact ([9, Section I.9.6, Proposition 8]). Thus ‰�1.K/ is compact
and non-empty so that ‰ is proper and surjective. A proper map between metrizable
spaces is closed, so ‰ is closed since W.ƒ/ and M.ƒ/ are metrizable (as subsets of
countable products of metrizable spaces).

To complete the proof, it suffices to show that ‰ is injective. Suppose that �;�0 2
M.ƒ/ with � ¤ �0. Then choosing a transversal for which �� ¤ �0� and possibly
passing to a sub-transversal, we may suppose that �.�/ ¤ �0.�/. By Lemma 4.8, we
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may choose a surface Xn large enough that for each 1 � i � r.n/, each arc in the
homotopy class `ni intersects � the same number of times Ei . By Remark 4.10,

�.�/ D

r.n/X
iD1

Ei�.�
n
i /C

s.n/X
iD1

.�j�ni /.�/;

and similarly for �0. Consequently, we must have �.�ni / ¤ �
0.�ni / or �j�ni ¤ �

0j�ni
for some i . These are the components of the image of � in Cn, so ‰.�/ ¤ ‰.�0/.
This completes the proof.

As noted earlier, Theorem B follows immediately.

4.4. Effectivizing the linear homeomorphism

We showed that the map ‰WM.ƒ/! W.ƒ/ is a linear homeomorphism. However,
the inverse ‰�1 remains mysterious from this point of view. Defining ‰�1 would
yield a more effective result, in that one could explicitly construct a transverse mea-
sure from any element of the inverse limit W.ƒ/. We outline how to do this, leaving
the details to the interested reader.

Consider an element .wn/1nD1 2 lim
 �

Cn. We wish to construct a transverse mea-
sure � to ƒ from .wn/n. To do this, we construct approximate measures. Consider
a transversal � to ƒ. It is contained in Xn for all n sufficiently large. Set Eni to be
the maximum number of times that any arc in the homotopy class `ni intersects � (the
number of intersection points may vary by arc). If

wn D

r.n/X
iD1

bni e
n
i C

s.n/X
iD1

�ni ;

then we define

wn.�/ D

r.n/X
iD1

bni E
n
i C

s.n/X
iD1

�ni .�/;

which we think of as an approximate measure of � . We emphasize that this does not
define an actual transverse measure toƒ but only an approximation. We take limits to
find honest measures:

Proposition 4.13. Let � be a transversal toƒ and .wn/1nD12W.ƒ/. Then the approx-
imate measures wn.�/ are decreasing with n and therefore limn!1wn.�/ exists.

One now defines a pre-measure �� by setting �.�/ D limn!1 wn.�/ for any
sub-transversal � of � and extending over disjoint unions of such sub-transversals.
An application of the Carathéodory Extension theorem yields an honest measure ��
on � .
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Proposition 4.14. Let .wn/1nD1 2 W.ƒ/ and define the limits �� as above for any
transversal � to ƒ. Then the Borel measures �� define a transverse measure to ƒ.
Moreover, setting ‰�1..wn/1nD1/ D � defines the inverse homeomorphism to the
homeomorphism ‰WM.ƒ/! W.ƒ/.

5. Bases for cones of measures

In Corollary 3.4, we showed that M.ƒ/ admits a base whenever there is a compact
subsurface of X intersecting every leaf of ƒ. This criterion is sufficient but not nec-
essary for the existence of a compact base. Thus, the question of which cones of
transverse measures admit bases is not completely straightforward. An example of a
cone of transverse measures which has no compact base is the infinite product of rays,
RN
C (see Example 4.7). This example recurs repeatedly. In Section 8, we give other

examples of cones without bases.
Even when a base does exist, its structure is not transparent from Corollary 3.4.

In this section we make the structure more transparent by proving Theorem D from
the introduction. First consider the case of an inverse system of finite-dimensional
simplicial cones

C1
f1
 � C2

f2
 � C3

f3
 � � � � ;

Here the maps fnWCnC1 ! Cn are linear. For n � m, we denote by fnmWCm ! Cn

the composition fnm WD fn ı fnC1 ı � � � ı fm�1.

Lemma 5.1. Let C be the limit of an inverse system

C1
f1
 � C2

f2
 � C3

f3
 � � � �

of finite-dimensional simplicial cones with linear maps fn. Suppose that the maps fn
satisfy the property that fn.v/D 0 only if vD 0. LetB1 be a base forC1 and defineBn
to be the inverse image f �11n .B1/. Then the inverse limit of the basesBn is a base for C

and it is a compact metrizable Choquet simplex.

The condition fn.v/D 0 only if vD 0 is not equivalent to injectivity of fn. Rather,
fn may be extended to a linear map on some Rm and the condition says that the kernel
of the extension intersects Cn only at 0. To prove this lemma we use the following
important theorem of Davies–Vincent-Smith.

Theorem 5.2 ([13, Theorem 13]). Consider an inverse system

B1
f1
 � B2

f2
 � B3

f3
 � � � �

of Choquet simplices with affine maps fn. Then the limit B of this inverse system is a
Choquet simplex.
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Proof of Lemma 5.1. As in the statement, choose a base B1 for C1 and define Bn to
be the inverse image f �11n .B1/ in Cn. One may check that Bn is convex using that B1
is convex. For v 2 Cn n ¹0º, there is a unique r > 0 with rf1n.v/ 2 B1, and therefore
r > 0 is the unique number with rv 2 Bn; i.e. Bn is a base.

We obtain by restriction an inverse system

B1
f1
 � B2

f2
 � B3

f3
 � � � �

of finite-dimensional simplices. Define B to be the inverse limit of this system. It is a
subspace of C . We claim that in fact B is a base for C . Consider an element .vn/1nD1 2
C n ¹0º. We have v1¤ 0. Thus there is a unique r > 0with rv1 2B1. Then for each n,
we have rvn 2 f �11n .B1/D Bn. Thus, r.vn/1nD1 2B and r is the unique number with
this property. We may verify that B is convex by using the convexity of each Bn.
This proves that B is a base, as desired. By Theorem 5.2, B is a Choquet simplex.
As an inverse limit of countably many compact metrizable spaces, B is compact and
metrizable.

A problem with applying Lemma 5.1 to our cones of measures is that the transition
maps �n do not generally satisfy the condition �n.wn/ ¤ 0 if wn ¤ 0. To utilize
Lemma 5.1 it will thus be necessary to modify our inverse system.

5.1. Modifying exhaustions and inverse systems

In this section we wish to prove Theorem D from the introduction. Consider the hyper-
bolic surfaceX endowed with an exhaustionX1 �X2 � � � � as considered earlier and
a lamination ƒ. Thus Xn is a punctured compact subsurface with geodesic boundary.
As before we consider the laminationsƒn Dƒ\Xn. Eachƒn contains finitely many
homotopy classes of arcs ¹`ni º

r.n/
iD1 and finitely many compact minimal sub-laminations

¹�ni º
s.n/
iD1 in the interior of Xn. We let Cn be the cone for ƒn defined in Section 4 and

�nWCnC1 ! Cn the resulting transition maps. Then M.ƒ/ is linearly homeomorphic
to the inverse limit W.ƒ/ of the cones Cn with the maps �n.

Remark 5.3. Note that if each homotopy class of arcs `nC1i on XnC1 and each com-
pact sub-lamination �nC1i on XnC1 intersects Xn, then �n satisfies the property that
�n.w/ D 0 only if w D 0. If this property is satisfied for each n, then Lemma 5.1
will show that M.ƒ/ has a base which is a compact metrizable Choquet simplex. The
property may not be satisfied for every lamination though, since there may be arcs or
minimal sub-laminations of ƒnC1 which do not intersect Xn (see e.g. Example 4.7).

Thus, we will attempt to modify our exhaustion X1 � X2 � : : : to have this prop-
erty. The key lemma to prove is the following result.
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Lemma 5.4. LetU�V be punctured compact subsurfaces ofX with geodesic bound-
ary. Letƒ be a geodesic lamination onX such that every leaf ofƒ intersects U . Then
there is a larger punctured compact subsurfaceW � V with geodesic boundary such
that every geodesic of ƒ \W intersects U .

Proof. The idea of the proof is that we will construct W by gluing on strips Œ0; 1� �
Œ0; 1� to the boundary of V . We will do this as follows: if a geodesic of ƒ \ V does
not hit U then we may extend the geodesic in one direction until it does hit U . The
extended geodesic leaves V finitely many times and then eventually enters U . We
will add on a strip containing each arc where the extended geodesic leaves V . The
resulting subsurface may not be essential so we finish the proof by adding on disks
and punctured disks and homotoping the boundary components to geodesics.

Every leaf of ƒ which is contained entirely in V must intersect U by hypothesis.
So we focus on geodesics of ƒ \ V which have at least one endpoint on @V . Con-
sider p 2 @V \ ƒ. It is contained in a leaf L of ƒ. Choose an orientation for the
geodesic L and denote by LjŒp;1/ and Lj.�1; p� the rays of L based at p which
are oriented away from p and towards p, respectively. At least one of these two rays
intersects U ; say LjŒp;1/, without loss of generality. Consider the first intersection
point q of LjŒp;1/ with U . This gives rise to a sub-arc LjŒp; q� of L from p to q.
There is a small open arc Ip of @V containing p for which all rays of ƒ through Ip
in the direction of LjŒp;1/ contain a sub-arc with endpoints in Ip and @U which is
homotopic to LjŒp; q� (through homotopies preserving the boundary components).

The arc LjŒp; q� leaves V at most finitely many times and then hits @U at q.
We may take a small neighborhood of LjŒp; q� containing all the homotopic arcs
through Ip and @U . In the complement of V , this consists of a finite disjoint union Sp
of strips Œ0; 1� � Œ0; 1� such that

(1) the horizontal boundary components Œ0; 1�� ¹0º and Œ0; 1�� ¹1º are contained
in @V ;

(2) the vertical boundary components are disjoint from ƒ; and

(3) any leaf of ƒ through a point in Ip contains a sub-arc in V [ Sp homotopic
to LjŒp; q�. In particular, any leaf of ƒ which passes through Ip contains a
sub-arc in V [ Sp which intersects U .

Now, the arcs Ip form an open cover of the compact setƒ\ @V . Consider a finite
sub-cover Ip1

[ � � � [ Ipk
. We form the subsurface

V0 WD V [

k[
iD1

Spi
:

Note that the boundary of V0 consists of some subset of @V along with subsets of the
vertical boundary components of the strips in the finite unions Spi

. Since the vertical
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p

q

Sp

Sp

U V

Figure 8. Adding on strips Œ0; 1� � Œ0; 1� to form the surface V0. In a small neighborhood of
p 2 @V \ƒ, all geodesics fellow travel the ray LjŒp;1/ long enough to have an arc homotopic
to LjŒp; q�. All such homotopic arcs are contained in the union of V with Sp , which consists of
two strips.

boundary components of all the strips are disjoint from ƒ, ƒ \ @V0 is contained in
ƒ\ @V . Thus, every point ofƒ\ @V0 lies in Ipi

for some i and therefore the geodesic
of ƒ \ V0 through such a point intersects U . See Figure 8.

Now, the subsurface V0 may not be essential: some of its boundary components
may bound disks or once-punctured disks. Form V1 by taking the union of V0 with
all disks or once-punctured disks bounded by any of the components of @V0. Any
geodesic in V1 \ƒ contains at least one geodesic (and possibly multiple geodesics)
of V0 \ƒ. Hence, any geodesic in V1 \ƒ intersects U .

Finally, we form the subsurfaceW by homotoping the boundary components of V1
to their geodesic representatives. Since V1 contains V , so does W . Finally, we claim
that every geodesic of ƒ \W intersects U . Consider a connected component zW of
the pre-image of W in the universal cover zX and let �1.W / act on zX stabilizing
this component. Then there is a unique component zV1 of the pre-image of V1 which
is also stabilized by �1.W /. Consider a geodesic of W \ ƒ with at least one end-
point on @W . It is contained in a leaf L of ƒ. This geodesic of W \ ƒ lifts to a
geodesic contained in zW with one endpoint on a geodesic p of @0 zW and the other
endpoint in a component of @0 zW [ @1 zW , which we call q. This lifted geodesic is
also contained in a lift zL of L. There is a component of @0 zV1 with the same endpoints
as p and similarly a component of @0 zV1 [ @1 zV1 corresponding to q. Since any arc
of L \ V1 intersects U , any arc of zL \ zV1 intersects some lift of U . There is thus
a component g of the pre-image of @U separating the components of @0 zV1 [ @1 zV1
corresponding to p and q. The component g therefore also separates p and q. Thus
our lifted geodesic intersects a lift of U .
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Now we may prove Theorem D.

Proof of Theorem D. Begin with an exhaustion X1 � X2 � � � � of X by punctured
compact subsurfaces of X with geodesic boundary. We will modify the Xi to an
exhaustion Y1 � Y2 � Y3 � : : : such that every geodesic of ƒ \ Yi intersects Y1 for
each i (and in particular every geodesic of ƒ \ Yi intersects Yi�1). First choose Xn
large enough that every leaf of ƒ intersects Xn. Set Y1 D Xn. Now XnC1 is a subsur-
face containing Y1 and by Lemma 5.4 there is a punctured compact subsurface Y2 con-
taining XnC1 with the property that every geodesic in ƒ \ Y2 intersects Y1. Choose
m>nC 1 large enough thatXm�Y2. Again by Lemma 5.4, there is a punctured com-
pact subsurface Y3 containing Xm such that every geodesic in ƒ \ Y3 intersects Y1.
Repeat this process inductively to form the desired exhaustion Y1 � Y2 � Y3 � : : :.

Set Ci to be the cone C.Yi / of weights on ƒ \ Yi for each i . There is an inverse
system

C1
�1
 � C2

�2
 � C3

�3
 � : : : :

By Remark 5.3 and Lemma 5.1, the inverse limit M.ƒ/ Š lim
 �

Ci has a base lim
 �

Bi

where Bi is a base of Ci and lim
 �

Bi is a compact metrizable Choquet simplex.

5.2. Examples of bases

In this section we re-visit the laminations of Examples 4.4 and 4.5 from Section 4.2
and describe bases for them as Choquet simplices.

Example 5.5. Consider the lamination ƒ in Example 4.4. The cone of transverse
measures is the cone C � `1 defined by

C D
°
.x; y1; y2; : : :/ W yi � 0 for all i and x �

X
yi

±
with the weak� topology obtained from the pre-dual c0. A base for C is given by the
convex set B defined by x D 1. Thus,

B D
°
.1; y1; y2; : : :/ W yi � 0 for all i and 1 �

X
yi

±
:

The base B is a Choquet simplex. Its extreme points are

e D .1; 0; 0; : : :/ and ei D .1; 0; 0; : : : ; 0; 1; 0; : : :/;

where ei has a 1 in the i th position. The points ei are isolated in the space Ext.B/ of
extreme points while ei ! e as i !1. Thus Ext.B/ is homeomorphic to the ordinal
! C 1. We may also identify the extreme points ei and e with explicit measures onƒ.
Namely, denote by Li the isolated leaves of ƒ and by L the non-isolated leaf, so that
Li ! L as i !1. Then ei is identified with the ı-mass on Li for each i (which
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assigns to a transversal its number of intersections with Li ), while e is identified with
the ı-mass on L.

By choosing bases Bn for the cones Cn D C.Xn/ as in Lemma 5.1 (where X1 �
X2 � � � � is the exhaustion chosen in Example 4.4) we may consider B to be the
inverse limit lim

 �
Bn. The base Bn has n vertices vn1 ; : : : ; v

n
n . The map BnC1 ! Bn

is defined by vnC1i 7! vni for 1 � i � n and vnC1nC1 7! vnn . It is instructive to consider
what the extreme points of the inverse limit are. They are

ei D .v
1
1 ; v

2
2 ; : : : ; v

i
i ; v

iC1
i ; viC2i ; : : :/ and e D .v11 ; v

2
2 ; : : : ; v

n
n ; : : :/:

Example 5.6. Consider the lamination ƒ in Example 4.5. The cone of transverse
measures is now the set C � `1 consisting of sequences .x1; x2; y1; y2; y3; : : :/ with
yi � 0 for all i and xj �

P
i yi for j D 1; 2. A Choquet simplex base B is defined

by x1 C x2 D 1 (and yi � 0, x1; x2 �
P
i yi ). Its extreme points are

f1 D .1; 0; 0; 0; : : :/; f2 D .0; 1; 0; 0; : : :/; and ei D
�1
2
;
1

2
; 0; 0; : : : ; 0;

1

2
; 0
�
;

where ei has a 1=2 in the i th position. The set of extreme points Ext.B/ is not closed:
f1; f2; and ei are all isolated in Ext.B/ while ei ! 1

2
f1 C

1
2
f2, which does not lie

in Ext.B/. Here f1 and f2 are identified with ı-masses on the proper non-isolated
leaves L and L0, respectively. The points 2ei are identified with ı-masses on the
proper isolated leaves Li , which converge to L [ L0 as i !1.

Again consider the cones Cn D C.Xn/ and suitable bases Bn for Cn. Then Bn has
nC 1 vertices vni . The map BnC1 ! Bn is defined by

vnC1i 7! vni for 1 � i � nC 1; and vnC1nC2 7!
1

2
vn1 C

1

2
vn2 :

The extreme points are f1 D .v11 ; v
2
1 ; v

3
1 ; : : :/, f2 D .v

1
2 ; v

2
2 ; v

3
2 ; : : :/, and

ei D
�1
2
v11 C

1

2
v12 ;

1

2
v21 C

1

2
v22 ; : : : ;

1

2
vi1 C

1

2
vi2; v

iC1
iC2 ; v

iC2
iC2 ; v

iC3
iC2 ; : : :

�
:

6. Inverse limit laminations

In this section we consider a construction of laminations as “inverse limits” of systems
of arcs. We consider the hyperbolic surfaceX of the first kind and an exhaustionX1 �
X2 � � � � by punctured compact subsurfaces with geodesic boundary. We consider
the universal cover zX , which is isometric to the hyperbolic plane and fix a basepoint
� 2 zX in the pre-image of X1. By Lemma 4.9, if �Xn is the unique component of the
pre-image of Xn containing �, we have that

zX D

1[
nD1

�Xn:
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Consider the compactification zX [ @1 zX where @1 zX Š S1 is the Gromov bound-
ary. Recall that @1 �Xn denotes the intersection of the closure of �Xn in zX [ @1 zX
with @1 zX . The complement @1 zX n @1 �Xn is a countable collection of open inter-
vals. If n � m, then the (interval) components of @1 zX n @1 �Xm are nested in the
components of @1 zX n @1 �Xn. Since

S1
nD1

�Xn D zX , we have the following fact: if In
are components of @1 zX n @1 �Xn with I1 � I2 � � � � , then the intersection

T1
nD1 In

consists of a single point of @1 zX . For each component I of @1 zX n @1 �Xn, there is a
unique component of @0 �Xn (the topological boundary of �Xn as a subset of zX ) joining
its endpoints.

For each n, fix a (finite) collection An of pairwise disjoint, pairwise non-homo-
topic, homotopically non-trivial arcs in Xn with both endpoints on @Xn. We suppose
without loss of generality that each ` 2 An has been chosen to be a geodesic, so that
it intersects Xm minimally for each m � n. We say that the system (set) ¹Anº1nD1 is
directed if it satisfies the following conditions:

(1) for each ` 2 AnC1, the arcs of the intersection ` \ Xn are homotopic to arcs
in An; and

(2) for each ` 2 An, there is an arc `0 2 AnC1 such that `0 \ Xn contains an arc
homotopic to `.

Fix a directed system of collections of arcs ¹Anº1nD1. We will now construct a lami-
nation ƒ on X . The lamination ƒ will consist of all geodesics on X which intersect
each Xn in a family of arcs homotopic to the arcs in An. To verify that this is a lami-
nation will take a bit of work.

Each ` 2 An lifts to an infinite set of arcs in �Xn. Consider two (interval) compo-
nents I and J of @1 zX n @1 �Xn. There are geodesics B and C of @0 �Xn with the same
endpoints as I and J , respectively. We say that I and J are joined by An if there is
an arc ` 2 An and a lift z̀with one endpoint on B and the other endpoint on C . We
say that ` joins B and C . We define a set of geodesics zƒ as follows: if p; q 2 @1 zX
and p ¤ q then the geodesic Œp; q� from p to q in zX lies in zƒ if for some n0 � 1, we
have

p D

1\
nDn0

In and q D

1\
nDn0

Jn

where

In0
� In0C1 � In0C2 � � � � and Jn0

� Jn0C1 � Jn0C2 � � � �

are nested sequences of arcs of @1 zX n @1 �Xn with the property that In is joined to Jn
by An for each n � n0. See Figure 9.

It is notable that every lamination onX without compact sub-laminations or leaves
asymptotic to isolated punctures arises in this way, as may be seen by considering the
arcs of intersection with each subsurface Xn. Thus, the construction is reversible.
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zX1
zX2zX3

p q

zA2

zA3 zA4

Figure 9. A geodesic Œp; q� in zX . Dotted green lines denote lifts of arcs in An, joining compo-
nents of @0

�Xn. The geodesic Œp; q� lies in zƒ since there are elements of zAn joining the pairs of
intervals containing p and q, respectively. Here we may take n0 D 2.

Next we investigate the properties of zƒ and show that it descends to a lamination
on X . By the invariance under �1.Xn/ of the property of intervals of @1 zX n @1 �Xn
being joined by An, one sees that zƒ is invariant under �1.X/. Moreover, we have the
following lemma.

Lemma 6.1. No two geodesics of zƒ cross.

Proof. Consider Œp; q� and Œp0; q0� geodesics of zƒ. We must show that the pairs ¹p;qº
and ¹p0; q0º do not separate each other as pairs of points in the circle. For n0 suffi-
ciently large, we may write

p D

1\
nDn0

In; q D

1\
nDn0

Jn; p0 D

1\
nDn0

I 0n; q0 D

1\
nDn0

J 0n;

where In and Jn are joined by An for each n and similarly for I 0n and J 0n. If ¹p; qº
separates ¹p0;q0º then for all n sufficiently large, In and Jn separate I 0n and J 0n. Denote
byBn;Cn;B 0n; and C 0n the components of @0 �Xn with the same endpoints as In; Jn; I 0n;
and J 0n, respectively. Then there are `; `0 2 An with lifts z̀, z̀0 with endpoints on Bn
and Cn and on B 0n and C 0n, respectively. But then for n� 0, Bn and Cn separate B 0n
and C 0n so that z̀ and z̀0 cross, and the same is true for ` and `0. This contradicts that
the arcs in An are pairwise disjoint.

Hence the image of zƒ inX is a family of pairwise non-crossing simple geodesics.
Denote this image by ƒ. In order to show that ƒ is a geodesic lamination, it suffices
to show that zƒ is closed.

Lemma 6.2. The set zƒ is closed in zX . Hence, ƒ is closed in X .
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Proof. We must show the following: if p;q 2 @1 zX , p ¤ q, and Œpi ; qi � are geodesics
of zƒ with pi ! p and qi ! q, then Œp; q� � zƒ. First we show that no ray of Œp; q� is
contained in �Xn for any n.

So suppose that a ray of Œp; q� is contained in �Xn for some n. Thus, one of the
endpoints, say p, is contained in the closure of �Xn in zX [ @1 zX . Then p is either
an endpoint of a geodesic of @0 �Xn or it is not. We deal with the latter case first. In
this case, for all sufficiently large i , Œpi ; qi � intersects �Xn. Denote by Ii and Ji the
arcs of @1 zX n @1 �Xn containing pi and qi , respectively. Then the arcs Ii converge
to p. The arcs Ji lie in some common neighborhood of q. Let `i be an arc of An
joining Ii and Ji . Then we see that the length of `i goes to infinity as i !1. This is
a contradiction, since An is finite.

Now we consider the case that p is an endpoint of a geodesic of @0 �Xn. In this case,
for any m > n sufficiently large, p is contained in @1 �Xm but is not the endpoint of
a geodesic of @0 �Xm; hence, this case reduces to the previous after replacing n by m.
Thus we have shown that no ray of Œp; q� is contained in �Xn for any n.

Choosing n0 sufficiently large, Œp; q� intersects �Xn for each n � n0. Moreover,
since neither endpoint lies in @1 �Xn by what we showed above, we have p 2 In and
q 2 Jn for two components In and Jn of @1 zX n @1 �Xn. Consider the sequence Œpi ; qi �
of geodesics in zƒ for each i . Then for all i sufficiently large, we also have pi 2 In
and qi 2 Jn. Thus, An joins In to Jn for each n � n0. We have p D

T1
nDn0

In and
q D

T1
nDn0

Jn, so that Œp; q� � zƒ.

Combining Lemmas 6.1 and 6.2 we have the following.

Theorem 6.3. Let An be a finite collection of homotopically non-trivial, pairwise
disjoint, pairwise non-homotopic arcs on Xn. Assume that the system ¹Anº1nD1 is
directed. Then the set ƒ obtained from ¹Anº1nD1 is a geodesic lamination on X .

We call ƒ the inverse limit of the system ¹Anº1nD1. One nice application is that
inverse limits allow us to easily construct examples of minimal laminations.

Definition 6.4. Let ƒ be a geodesic lamination. We say that ƒ is minimal if it has no
proper sub-laminations.

Equivalently, a lamination is minimal exactly when all of its leaves are dense in
the lamination.

Proposition 6.5. Let An be a finite set of pairwise non-homotopic, pairwise disjoint,
homotopically non-trivial arcs on Xn and suppose that ¹Anº1nD1 is directed. Suppose
that ¹Anº1nD1 has the following property: for each ` 2 An, there is m0 � n, such that
if m � m0 then for each `0 2 Am, `0 \ An contains an arc homotopic to `. Then the
inverse limit lamination ƒ of ¹Anº is minimal.
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Proof. Let L be a leaf ofƒ. Let zLD Œp; q� be a lift of L to zX . It suffices to show that
for any other leaf M of ƒ, there is a lift of M to zX with endpoints on @1 zX which
are arbitrarily close to p and q. By definition of ƒ, there is n0 � 0 such that

p D

1\
nDn0

In and q D

1\
nDn0

Jn;

where In and Jn are arcs of @1 zX n @1 �Xn which are joined by An, and we have

In0
� In0C1 � � � �

and similarly for the Jn. Since the In nest down to p and the Jn nest down to q, it
suffices to show that there is a lift of M with endpoints in In and Jn for any n � n0.
Fix an n� n0. Let Bn and Cn be the geodesics of @0 �Xn with the same endpoints as In
and Jn, respectively. Then there is an arc ` 2 An and a lift z̀ to zX with endpoints on
Bn and Cn.

For any m sufficiently large compared to n, each arc of Am traverses each arc
of An. Choose any m with this property and with the property that M intersects Xm.
Then M \ Xm contains an arc which is homotopic to some `0 2 Am. Therefore,
M \Xn contains `0 \ Xn, which contains an arc homotopic to `. Lifting this arc
of M \ Xn and extending it to a lift of M , we see that there is a lift zM of M which
intersects Bn and Cn transversely, and therefore zM has endpoints in In and Jn. This
completes the proof.

6.1. Cones of transverse measures for inverse limit laminations

We note that if ¹Anº1nD1 is a directed system of arcs and ƒ is the inverse limit lami-
nation, then ƒ consists of exactly the simple bi-infinite geodesics L on X for which
each intersection L \ Xn consists of a (possibly empty) set of arcs all homotopic to
arcs in An. As already used implicitly earlier, if L is a leaf of ƒ then it satisfies this
property. On the other hand if, for each n, L \Xn consists of arcs homotopic to arcs
inAn, then we may liftL to a geodesics zLD Œp;q�. Then zL intersects �Xn0

for n0 large
enough and for each n � n0, zL\ �Xn is an arc from a component Bn of @1 zX n @1 �Xn
to a component Cn and Bn is joined to Cn by An for each such n. Thus L lies in ƒ.

Finally, for each ` 2 An there is a leaf L of ƒ such that L \ Xn contains an arc
homotopic to `. To see this, set `n D `, and inductively for i > n, set `i 2 Ai to be an
arc such that `i \Xi�1 contains `i�1. Choose In; Jn � @1 zX n @1 �Xn to be intervals
joined by `n. Inductively, we may choose arcs In � InC1 � � � � and Jn � JnC1 � � � � ,
which are joined by `i for i � n. Setting

p D

1\
iDn

In and q D

1\
iDn

Jn;
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we have that zL D Œp; q� is a geodesic of zƒ and its image L in X is a leaf of ƒ
satisfying that L \Xn contains `.

Using this discussion, we may read off the cone of transverse measures M.ƒ/.
Denote the elements of An by ¹`ni º

jAnj

iD1 . We have shown that ƒ \Xn consists exactly
of the homotopy classes of arcs inAn for each n� 1. By the discussion in Section 4.1,
we have the following lemma.

Lemma 6.6. Let ¹Anº1nD1 be a directed system of arcs on Xn. Then the cone M.ƒ/

is linearly homeomorphic to the limit of the inverse system

RjA1j

C

�1
 � RjA2j

C

�2
 � RjA3j

C

�3
 � � � � ;

where �n is the jAnj � jAnC1j matrix whose .i; j /-entry counts the number of arcs of
`nC1j \Xn which are homotopic to `ni .

7. Realizing Choquet simplices

In this section we prove Theorem E from the introduction. To do this, we use several
tools. First we have the following realization theorem of Lazar–Lindenstrauss.

Theorem 7.1 ([18, Corollary to Theorem 5.2]). Let � be a compact metrizable Cho-
quet simplex. Then there exists a sequence of finite-dimensional simplices�n together
with surjective affine maps fnW�nC1 ! �n such that � is affinely homeomorphic to
the limit of the inverse system

�1
f1
 � �2

f2
 � �3

f3
 � � � � :

Our other main tool is an approximation theorem of Brown ([10]). First we set
the notation. If f WX ! Y and gWX ! Y are maps between compact metric spaces
thenD.f;g/ denotes the supremum distanceD.f;g/D sup¹d.f .x/; g.x// W x 2 Xº.
Suppose that

X1
f1
 � X2

f2
 � X3

f3
 � � � �

is an inverse system of topological spaces and X is the inverse limit. Recall that for
i � j , fij WXj ! Xi denotes the composition fi ı fiC1 ı � � � ı fj�1. We denote by
fi1WX ! Xi the natural projections, which satisfy fij ı fj1 D fi1 for each i � j .

Theorem 7.2 ([10, Theorem 2]). Let ¹Xiº1iD1 be a sequence of compact metric spaces
and let fi WXiC1! Xi and gi WXiC1! Xi be maps. Let X;Y be the inverse limits of
.Xi ;fi / and .Xi ;gi /, respectively. Then for each i , there is a constantL.g1; : : : ;gi�1/
> 0 depending only on g1; : : : ; gi�1 such that if

D.fi ; gi / < L.g1; : : : ; gi�1/ (�)



Transverse measures to infinite type laminations 755

for each i , then the following properties are satisfied. For each i , the function Fi WX!
Xi defined by Fi D limj!1 gij ı fj1 is well defined and continuous. Moreover, the
function F WX ! Y defined by F.s/ D .F1.s/; F2.s/; : : :/ is a homeomorphism.

Our strategy to prove Theorem E will be to choose a Choquet simplex and an
inverse system of finite-dimensional simplices �n with that Choquet simplex as an
inverse limit, as given by Theorem 7.1. We interpret a simplex �n as the base of
a cone of weights of a system of dim.�n/ C 1 arcs on a punctured disk. We may
do the same for �nC1. The map fnW�nC1 ! �n may not be realized by including
the surface with arcs realizing �n into the surface with arcs realizing �nC1. So we
perturb fn by a small amount to be realized by an inclusion of punctured disks. We
then take advantage of Theorem 7.2.

The following lemma is the essential part of the inductive step of the proof. For
the statement, we define a punctured disk to be a closed disk minus at most finitely
many interior points. If U is a punctured disk andA is a collection of pairwise disjoint
arcs on U with endpoints on @U , then we may consider the dual graph T to A. Thus,
T has one vertex for each component of U nA and two vertices are joined by an edge
if the corresponding components are separated by a single arc of A. One may check
that T is a tree.

Lemma 7.3. Let U be a punctured disk. Let A be a finite collection of r disjoint,
homotopically distinct, homotopically non-trivial arcs on U such that the dual tree
toA is homeomorphic to the interval Œ0;1�. Let RsC be a cone with s > 0, and � WRsC!
RrC a linear map whose matrix representative (with respect to the standard bases) has
entries which are all positive odd integers. ThenU is contained in a punctured disk V ,
together with a finite collection B of s disjoint, homotopically distinct, homotopically
non-trivial arcs such that

• the arcs of B \ U are homotopic to the arcs in A;

• the dual tree to B is homeomorphic to an interval; and

• the induced map on cones of weights C.V /! C.U / for A and B is given by � .

Proof. Set � D .aij /
r;s
iD1;jD1. Let T be the dual tree to A. Embed T in U in such a

way that a vertex of T lies in the region of U n A that it represents and an edge of T
intersects A in exactly one point, which lies on the arc that it represents. Choose an
ordering of the vertices v0; v1; : : : ; vr of T such that the edges ei of T join vi�1 to vi
for each i . Denote by `U1 ; : : : ; `

U
r the arcs in A corresponding to e1; : : : ; er . Now,

sub-divide each edge ei into
Ps
jD1 aij edges for each 1 � i � r .

Having sub-divided the edges of T , we label the new vertices of T as follows.
We start from the first vertex v0 of e1 and traverse the new vertices in order until
we reach v1. We label v0 with a 1. We label the next vertex of e1 with a 2. We then
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continue alternating between labels of 1 and 2 until we have crossed a11 (sub-)edges
of e1. Since a11 is odd, the final label of a vertex of e1 that we put down will be
a 2. We then consider the next a12 edges of e1, starting with the last vertex labeled 2.
We label them alternately 2 and 3 until we have crossed a12 edges. Since we started
with a 2 and a12 is odd, our last label will be a 3. Continue in this way, alternating
between 3 and 4, with the next a13 edges of e1 and so on, until we have traversed
all
Ps
jD1 a1j edges of e1. The last a1s edges of e1 will have vertices labeled by s

and s C 1 and the final vertex v1 of e1 will be labeled by s C 1. Now we will label
the vertices of the first a2s edges of e2. The first vertex v1 of e2 has already been
labeled s C 1. We label the next a2s vertices alternately by s and s C 1 and therefore
the final vertex labeled in this way will be labeled by s. We then label the vertices of
the next a2.s�1/ edges of e2 alternately s and s � 1, the vertices of the next a2.s�2/
edges of e2 alternately s � 1 and s � 2, and so on. The final a21 edges of e2 will be
labeled alternately 2 and 1 and the final vertex v2 of e2 will be labeled 1. We then
repeat the process, labeling the first a31 edges of e3 alternately 1 and 2 and so on, and
continue until we have labeled all the vertices of T . See Figure 10(a) for an example.

Now, embed U into a larger disk V by gluing on a closed annulus to the boundary
component of U . We construct a set B of arcs on V with the desired properties. To do
this, we construct for each 1 � j � s an arc `Vj on V . The arc `Vj will intersect U inPr
iD1 aij arcs. The first time `Vj traverses U it will cross through the first edge of T

(closest to v0) with endpoints labeled j and j C 1. The next time it traverses U it will
cross through the second edge of T (second closest to v0) with endpoints labeled j
and j C 1, and moreover do so in the opposite direction to the first traversal. We
continue this process inductively from the lowest edge with endpoints j and j C 1
to the highest, switching directions through U each time. Each time `Vj traverses U it
crosses an edge contained in ei for some i and when it does so we require the arc of
intersection of `Vj with U to be homotopic to `Ui . See Figure 10(b) for an example.
We claim that one may use this recipe for each 1 � j � s to construct the arcs `Vj in
such a way that they are pairwise disjoint.

To see this last claim, construct the arc `V1 as described. The intersection `V1 \ U
separates the vertices labeled 1 from the vertices labeled 2; : : : ; sC 1 in U . Moreover,
between any two vertices labeled 1 there are an even number of edges with vertices
labeled 2 and 3. This ensures that `V2 may be constructed, disjoint from `V1 , using
the same recipe. The intersection `V2 \ U separates the vertices labeled 1 and 2 from
the vertices labeled 3; : : : ; s C 1 and between any two vertices labeled 2 there are
an even number of edges with vertices labeled 3 and 4. This ensures that `V3 may be
constructed disjoint from `V1 and `V2 . Inductively, we construct `V4 ; : : : ; `

V
s . We denote

by B the union of `V1 ; : : : ; `
V
s . Then for each j , `Vj intersects U in aij arcs homotopic

to `Ui , for each i .
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1 2 3 4 3 4 5 4 3 4 3 2 1 2 1 2 3 2 3 4 5

(a) Step 1 of constructing the arcs B from the arcs A and the matrix � . The punctured disk U
contains three homotopy classes of arcs drawn from left to right. The dual tree is embedded
in U and the edges of T are sub-divided into 6, 8, and 6 edges, respectively.

(b) Step 2 of constructing the arcs B . The punctured disk V is obtained by adding an annulus
to U . For each 1 � i � s, one arc is drawn through all the edges of T with endpoints labeled
by i and i C 1. There are four homotopy classes in B in this case.

Figure 10. Constructing a punctured disk V and a system of arcs B from the punctured disk U
together with the arcs A and the transition matrix

�
1 1 3 1
3 1 3 1
1 3 1 1

�
.

By construction, `Vi separates `Vi�1 from `ViC1. Thus, the dual tree to B is an inter-
val. Finally, we need to ensure that the `Vj are homotopically non-trivial and pairwise
non-homotopic. To do this, we add one puncture to each component of .V n U/ n B .
This completes the proof.

We will use one other easy technical lemma to prove Theorem E. If � is a finite-
dimensional simplex then we may endow it with the `1-distance d1 defined as
follows. Denoting by v1; : : : ; vk the vertices of�, we may represent each point p 2�
uniquely as a convex combination

p D

kX
iD1

aivi ;
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where 0� ai � 1 for each i and
P
ai D 1. The numbers a1; : : : ;ak are the barycentric

coordinates of the point p. If

p D

kX
iD1

aivi and q D

kX
iD1

bivi

are points of �, then their `1-distance is

d1.p; q/ D sup¹jai � bi j W 1 � i � kº:

As in Theorem 7.2, D.� ; �/ denotes the L1-distance between maps with the same
domain and codomain. The proof of the following lemma is standard and left to the
reader.

Lemma 7.4. Let �1 and �2 be finite-dimensional simplices endowed with their `1

metrics. Let F; GW�1 ! �2 be affine maps. Suppose that d1.F.v/; G.v// � " for
all vertices v of �1. Then D.F;G/ � ".

Let f W�!�0 be an affine map from a .q � 1/-simplex� to a .p� 1/-simplex�0.
Choosing an ordering v1; : : : ; vq of the vertices of � and an ordering w1; : : : ; wp of
the vertices of �0 gives a representation of f by a p � q matrix M . Namely, the i th
column of M gives the barycentric coordinates of f .vi / with respect to w1; : : : ; wp .
In particular, all entries are non-negative and all column sums are 1. We will consider
matrices representing affine maps which have nice properties as described below.

Lemma 7.5. LetM be a p � q matrix with non-negative entries, all of whose column
sums are equal to one. For any " > 0, there is a p � q matrix M 0 such that

• all entries of M 0 are positive and all of its column sums are one;

• all entries of M 0 differ from the corresponding entries of M by < "; and

• there is a scalar multiple of M 0 which is a matrix with odd integer entries.

Proof. If p D 1 there is nothing to do, so we assume p � 2. Let K > max¹p; 1="º
be an odd integer. The matrix pKM has column sums pK. The largest entry in each
column is � K. In each column, replace the smaller p � 1 entries by nearest odd
positive integers, and replace the largest entry by the integer that keeps the column
sum pK. This last entry is then odd and positive and differs from the original entry
by � p � 1. After dividing by pK we get the desired matrix M 0.

Proposition 7.6. Every Choquet simplex� is affinely homeomorphic to the limit of an
inverse system .�n;gn/1nD1 where:�n is a finite-dimensional simplex, gnW�nC1!�n
is affine, and, choosing orderings for the vertices of �n, the matrix representative
for gn in barycentric coordinates has a scalar multiple with positive odd entries.
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Proof. Represent � as the inverse limit of .�n; fn/ given by Theorem 7.1. Using
Lemma 7.5 with " D L.g1; : : : ; gn�1/, inductively approximate each bonding map
fnW�nC1 ! �n by an affine map gnW�nC1 ! �n, so that the conditions of Theo-
rem 7.2 are satisfied. Namely, Lemma 7.5 gives

d1.fn.v/; gn.v// < L.g1; : : : ; gn�1/

at the vertices, and therefore

D.fn; gn/ < L.g1; : : : ; gn�1/

by Lemma 7.4. Let�0 be the inverse limit of .�n; gn/. It is a Choquet simplex by [13,
Theorem 13]. The map F W�! �0 from the conclusion of Theorem 7.2 is an affine
homeomorphism. This follows, since each Fn is the limit of gnm ı fm1, both maps
in the composition are affine, and a limit of affine maps is affine.

The proof of Theorem E now follows quickly.

Proof of Theorem E. Let � be a compact metrizable Choquet simplex. By Proposi-
tion 7.6 we may represent � as an inverse limit of

�1
f1
 � �2

f2
 � �3

f3
 � � � � ;

where fn is represented in barycentric coordinates by a matrix which has a scalar
multiple whose entries are positive odd integers. Choose Kn a scalar such that Knfn
has positive odd integer entries. Let Dn be the dimension of �n. We will construct a
sequence of punctured disks Xn together with systems of arcs An, such that ¹Anº1nD1
is directed and such that the transition map �nWC.XnC1/! C.Xn/ is exactly Knfn.
To do this, we choose X1 to be any punctured disk containing D1 C 1 pairwise dis-
joint, homotopically distinct, homotopically non-trivial arcs forming the system A1.
Given the pair .Xn; An/ for any n, we may use Lemma 7.3 to construct a punctured
diskXnC1 containingXn and a system of arcs AnC1 onXnC1 for which the transition
map �nWC.XnC1/! C.Xn/ is exactly Knfn.

Denote Cn D C.Xn/. Now, we choose as a base†1 for the cone C1 D RD1C1
C the

convex hull of the standard basis vectors ei D .0; : : : ; 0; 1; 0; : : : ; 0/. We choose as
a base for Cn D RDnC1

C the inverse image †n WD ��11n .†1/. Since the column sums
of �n areKn,†n is the convex hull of the multiples .1=.K1 � � �Kn//ei and the induced
map †nC1 ! †n is exactly fn, in barycentric coordinates. Thus the inverse limit of
.†n; �n/

1
nD1 is affinely homeomorphic to �.

To finish the proof, for an arbitrary infinite type hyperbolic surface X of the first
kind, we need to produce an example of a minimal lamination ƒ on X whose cone
of transverse measures has a base affinely homeomorphic to �. First consider the
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case that X is the flute surface (genus zero with countably many punctures, exactly
one of which is non-isolated). Note that such a hyperbolic metric of the first kind X
on the flute surface exists, e.g. by [2, Theorem 4]. We may choose an exhaustion
Y1 � Y2 � Y3 � � � � , where Yn is a disk with the same number of punctures as Xn
for each n. By choosing a homeomorphism of X1 with Y1, we may embed X1 in X .
By choosing a homeomorphism from the annulus Y2 n Y1 to the annulus X2 n X1,
we may extend the embedding of X1 to an embedding of X2. Continue this process
inductively. Thus, X1 � X2 � � � � is identified with the exhaustion Y1 � Y2 � � � � and
the directed system of arcs ¹Anº1nD1 pushes forward to a directed system of arcs onX .
Thus, we may assume that X1 � X2 � � � � is an exhaustion of X and that ¹Anº1nD1
is a directed system of collections of arcs on the subsurfaces Xn of X . Let ƒ � X be
the inverse limit lamination of ¹Anº1nD1. Then M.ƒ/ is affinely homeomorphic to the
limit of the inverse system

C1  C2  C3  � � �

described earlier. Hence, M.ƒ/ has a base affinely homeomorphic to �. By Proposi-
tion 6.5, ƒ is minimal.

Finally, we consider the case of an arbitrary X . Replace the isolated punctures of
the flute surface Y by boundary components. There is a topological embedding of Y
intoX (see e.g. [20, Lemma 3.2]). The exhaustion of Y described in the last paragraph
pushes forward to an exhaustion Y1 � Y2 � � � � of the subsurface Y in X . This also
embeds the collections of arcs ¹Anº1nD1 as collections of arcs on the subsurfaces Yn
ofX . Extend the exhaustion Y1 � Y2 � � � � of Y to an exhaustion ofX as follows. The
surfaceX is the union of Y with at most countably many pairwise disjoint subsurfaces
Z1; Z2; : : : meeting Y only along their boundary components. Choose an exhaustion
Zi1 � Z

i
2 � � � � of each Zi by punctured compact subsurfaces. Then we define an

exhaustion X1 � X2 � � � � by taking Xn to be the union of Yn with Zin for all i
such that Zin meets Yn (along the boundary). One may verify that this does define an
exhaustion of X by punctured compact subsurfaces and by [3, Proposition 3.1] we
may assume the Xn have geodesic boundary (after a homotopy). Then for each n, An
is a finite collection of arcs on Xn and ¹Anº1nD1 is directed. Taking the inverse limit
lamination ƒ of ¹Anº1nD1, we see that the cones Cn D C.Xn/ are unchanged, as are
the transition maps CnC1 ! Cn. Hence, M.ƒ/ has a base affinely homeomorphic
to � and ƒ is minimal, as desired.

8. Cones of measures without Choquet simplex bases

In the case that there is no compact subsurface intersecting every leaf of ƒ, the cone
of transverse measures M.ƒ/ may be badly behaved. In fact, the cone may have no
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compact base or no non-zero elements at all. We explore examples of these properties
in this section.

8.1. A lamination with no non-zero transverse measures

Here we construct a lamination with no non-zero transverse measures. The idea is
to construct an inverse limit lamination with the following properties. Consider an
exhaustion X1 � X2 � � � � by punctured compact subsurfaces together with a system
of arcs ¹Anº1nD1 which is directed. Going from .XnC1;AnC1/ to .XnC2;AnC2/, most
of the traversals of arcs of AnC1 by arcs of AnC2 are on the arc of AnC1, which is
disjoint from Xn. This effect is compounded at later stages so that a huge majority of
the transversals of arcs of AnC1 by arcs of AnCk for k � 0 are on the arc of AnC1
disjoint from Xn. This will force any transverse measure to assign measure 0 to any
leaf of the inverse limit lamination ƒ which intersects Xn (for any n).

We will construct nested punctured disks X1 � X2 � � � � together with systems
of arcs An such that ¹Anº1nD1 is directed and such that the inverse system

C.X1/ C.X2/ � � �

is exactly
RC

�1
 � R2C

�2
 � R3C

�3
 � � � � (���)

where

�1 D
�
1 0

�
; �2 D

 
1 0 0

2 1 0

!
; �3 D

0B@1 0 0 0

2 1 0 0

2 2 1 0

1CA ;

�4 D

0BBB@
1 0 0 0 0

2 1 0 0 0

2 2 1 0 0

2 2 2 1 0

1CCCA ; : : :

The construction of the disks Xn and arcs An is analogous to that of Lemma 7.3 and
Theorem E.

We start by defining X1 to be a punctured disk containing a single homotopi-
cally non-trivial arc, which forms the collection A1. Suppose that X1; : : : ; Xn and
A1; : : : ; An have been constructed such that the transition map from AiC1 to Ai is
exactly �i for each i < n and such that the dual tree toAi is an interval Œ0; 1� for i � n.
We wish to construct XnC1 and AnC1 such that ¹AiºnC1iD1 is directed and the transi-
tion map from AnC1 to An is �n. Embed the dual interval Tn to An in Xn in such a
way that the vertices of Tn lie in the regions of Xn n An that they represent and an
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1 2 1 2 3 2 1 2 3 4 3 2 1 2 3 4 5

(a) Realizing the transition matrix �4. The dual interval T4 is embedded in X4 and its edges are
sub-divided.

(b) The arcsA5 onX5. The arc `nC1

j
crosses through the edges labeled Œj; j C 1� for 1� j � n,

while `nC1
nC1

is disjoint from Xn.

Figure 11. Constructing .X5; A5/ inductively from .X4; A4/ and the transition matrix �4.

edge of Tn intersects An in exactly one point, which lies on the arc that it represents.
Denote by `n1; : : : ; `

n
n the arcs of An. Order the vertices v0; v1; : : : ; vn of Tn and edges

e1; : : : ; en of Tn such that ei joins vi�1 to vi for each i and ei represents `ni . See
Figure 11(a). Sub-divide ei into 2i � 1 edges for 1 � i � n. Label the vertices of ei ,
in order from vi�1 to vi , by

i; i � 1; i � 2; : : : ; 2; 1; 2; : : : ; i � 1; i; i C 1:

We form a larger disk by gluing a closed annulus to the boundary component of Xn.
On Xn we place one arc `nC1i for each 1 � i � nC 1 which crosses through all the
edges of Tn with endpoints labeled by i; i C 1. The arc `nC1i will alternate direc-
tions through Xn each time it crosses it, and whenever it passes through a sub-edge
of ej , it will traverse an arc homotopic to `nj . See Figure 11(b). The `nC11 ; : : : ; `nC1n

may be constructed such that `nC1j separates `nC1j�1 from `nC1jC1 . We additionally con-
struct one more arc `nC1nC1 on XnC1 which is disjoint from Xn and is separated from
`nC1n�1 by `nC1n . We set AnC1 D ¹`nC1i º

nC1
iD1 and place a puncture in each component

of .XnC1 nXn/ nAnC1. The arcs ofAnC1 are then disjoint, homotopically non-trivial,
and homotopically distinct, the dual tree to AnC1 is an interval, and the transition map
is exactly �n, as desired.
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Now we can prove Theorem C from the introduction.

Proof of Theorem C. Set ƒ to be the inverse limit lamination of ¹Anº1nD1. The cone
M.ƒ/ is the limit of the inverse system (���). The transition matrix

�nm D �n ı �nC1 ı � � � ı �m�1

for m � n may be determined as follows. Set i D m � n. Then

�nm D

0BBBBBBBB@

1 0 0 : : : 0 0 : : : 0

ai1 1 0 : : : 0 0 : : : 0

ai2 ai1 1 : : : 0 0 : : : 0

ai3 ai2 ai1 : : : 0 0 : : : 0
:::

:::
:::

: : :
:::

:::
: : :

:::

ain�1 ain�2 ain�3 : : : 1 0 : : : 0

1CCCCCCCCA
;

where �nm is n � m, there are m � n columns of zeroes on the right, and aij is the
.j; 1/-entry of the i th power of the infinite matrix

A WD

0BBBBBB@
1 0 0 0 : : :

2 1 0 0 : : :

2 2 1 0 : : :

2 2 2 1 : : :
:::

:::
:::

:::
: : :

1CCCCCCA :

We claim that aij is a polynomial in the variable i of degree j . To see this, write

A D I C T;

where I is an infinite identity matrix and T D A � I is lower triangular. Then

Ai D

iX
kD0

�
i

k

�
T k

and, by examining the powers T k , we see that

aij D c0

�
i

0

�
C c1

�
i

1

�
C � � � C cj

�
i

j

�
;

where ck is a fixed (positive) entry of T k . Since
�
i
k

�
is a polynomial in i of degree k,

the claim follows.
Hence, for j 0 > j , we have

aij

aij 0
D
Pj .i/

Pj 0.i/
! 0 as i !1:
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Fixing n, we therefore have that the non-zero columns of �nm converge projectively
to .0; 0; : : : ; 0; 1/ 2 RnC asm!1. Thus, the intersections of the images of the maps
�nm in RnC are contained in the sub-cone

0n�1 �RC D ¹.0; 0; : : : ; 0; x/ W x � 0º:

So the inverse limit M.ƒ/ coincides with the limit of the inverse system

RC
�1
 � 0 �RC

�2
 � 02 �RC

�3
 � 03 �RC

�4
 � � � � :

However, the map �n restricted to the cone 0n � RC is just 0. So the inverse limit
M.ƒ/ is 0. As in Theorem E, the lamination ƒ may be realized on any infinite type
surface.

We mention an alternative way to prove that M.ƒ/ D 0. Construct ƒ as above.
By studying the construction, one may notice thatƒ consists of a countable collection
L1;L2; : : : of leaves. The leafLi accumulates ontoLiC1 for each i andL1 is isolated,
L2 becomes isolated after removing L1, L3 becomes isolated after removing L2, and
so on. Since L1 is isolated but accumulates onto L2, it lies outside the support of
any measure. The same holds inductively for Li , by removing L1; : : : ; Li�1. Thus,
M.ƒ/ D 0.

8.2. Laminations without compact bases

In this section we give a couple of examples of laminationsƒ which support non-zero
transverse measures but for which the cones M.ƒ/ nonetheless lack compact bases.
Necessarily, each such laminationƒ contains sub-laminations disjoint from any given
finite type subsurface. In particular,ƒ cannot be a minimal lamination in any of these
cases.

Example 8.1. Consider the lamination ƒ of Example 4.7. The cone M.ƒ/ Š RN
C

has no compact base. For if B were a base, then B would contain a multiple of ei D
.0; : : : ; 0; 1; 0 : : :/ for each i � 1 (where ei has a 1 in entry i ). Thus, aiei 2 B for
some ai > 0. We see that aiei ! 0 as i !1, regardless of the values of ai . Since 0
does not lie in B , it cannot be compact.

Example 8.2. Consider the lamination ƒ on the infinite type surface X in Figure 12.
Thus,X has a Cantor set of ends, all accumulated by genus. The laminationƒ consists
of countably many isolated simple closed curves �1; �2; : : : plus countably many
proper leaves L1; L2; : : : such that �j converges to the union

S1
iD1 Li as j !1.

Using an appropriate exhaustion of X shows that M.ƒ/ is affinely homeomorphic to
the cone C � `1 �RN

C defined by

C D
°�
.yi /

1
iD1; x1; x2; : : :

�
2 `1 �RN

C W yi � 0 for all i and xj �
X

yi for all j
±
:
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Figure 12. A lamination on the surface with a Cantor set of ends accumulated by genus, con-
sisting of countably many isolated simple closed curves which limit to a countable union of
proper leaves.

Here `1 is endowed with its weak� topology as the dual of c0, `1 � RN
C with its

product topology, and C with the subspace topology. The `1 coordinates yi of the
cone correspond to weights on the simple closed curves �i while the coordinates xi
correspond to weights on the proper leaves Li . As in the last example, C has no
compact base.
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