
Comment. Math. Helv. 99 (2024), 769–797
DOI 10.4171/CMH/576

© 2024 Swiss Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

On the asymptotics of cubic fields ordered by general invariants

Arul Shankar and Frank Thorne

Abstract. In this article, we introduce a class of invariants of cubic fields termed “general-
ized discriminants”. We then obtain asymptotics for the families of cubic fields ordered by
these invariants. In addition, we determine which of these families satisfy the Malle–Bhargava
heuristic.

1. Introduction

A foundational result due to Davenport–Heilbronn [17] provides asymptotics for the
number of real and cubic fields, when these fields are ordered by their discriminants.
Specifically, the theorem is as follows.

Theorem 1 (Davenport–Heilbronn). Let N˙Disc.X/ be the number of cubic fields K,
up to isomorphism, that satisfy jDisc.K/j < X and˙Disc.K/ > 0. Then

NCDisc.X/ D
1

12�.3/
X C o.X/; N�Disc.X/ D

1

4�.3/
X C o.X/:

The above theorem, its extensions, and the methods of their proofs, have had a
host of applications. Among many other applications, they are used by Yang [38] to
verify the Katz–Sarnak heuristics [18] for low-lying zeroes of Dedekind zeta func-
tions of cubic fields; by Bhargava–Wood [11], Belabas–Fouvry [3], and Wang [36] to
prove Malle’s conjecture for various different Galois groups; by Martin–Pollack [24]
and Cho–Kim [12] to obtain the average value of the smallest prime satisfying certain
prescribed splitting conditions; and by Shankar–Södergren–Templier [30] to prove
that the Dedekind zeta functions of infinitely many S3-cubic fields have negative cen-
tral values.

Theorem 1 has also been generalized in a number of ways: Belabas–Bhargava–
Pomerance [2] prove power saving error terms; in [4, 6], Bhargava determines the
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asymptotics of quartic and quintic fields, when ordered by discriminant; Datskovsky–
Wright [16], Taniguchi [31], and Bhargava–Shankar–Wang [9] count cubic exten-
sions of number fields and function fields; Belabas–Fouvry [3] count subfamilies
of cubic fields satisfying congruence conditions on their discriminants; Terr [34]
proves that the “shapes” of cubic rings and fields are equidistributed (see also work
of Bhargava–Harron [7], who give a uniform proof that shapes of cubic, quartic, and
quintic rings and fields are equidistributed); Taniguchi–Thorne [32] and Bhargava–
Shankar–Tsimerman [8] compute secondary terms (of size � X5=6) for the asymp-
totics of N˙Disc.X/.

In this paper, we consider generalizations along a different direction: namely, we
determine asymptotics for families of cubic fields ordered by invariants more general
than the discriminant. Let C.K/ be the radical of jDisc.K/j. That is, we have

C.K/ WD
Y

pjDisc.K/

p:

We then prove the following result.

Theorem 2. Let N˙C .X/ denote the number of cubic fields K, up to isomorphism,
that satisfy C.K/ < X and˙Disc.K/ > 0. Then

NCC .X/ D
33

120

Y
p

�
1C

2

p

��
1 �

1

p

�2
X logX C o.X logX/;

N�C .X/ D
� 3
10
C
33

40

�Y
p

�
1C

2

p

��
1 �

1

p

�2
X logX C o.X logX/:

Note that we break up the main term in the asymptotics for N�C .X/ into two
summands; they correspond to what can be considered two disjoint subfamilies of
cubic fields, namely, the family of pure cubic fields and the family of non-pure cubic
fields.

Theorem 2 will be deduced as a special case of a more general result that counts
cubic fields ordered by various different types of invariants.

Generalized discriminants of cubic fields

Let M be a Galois sextic field with Galois group S3 over Q. Then K has three cubic
S3-subfields, which are conjugate to each other. One would therefore expect to be
able to understand the family of sextic S3-fields via the family of cubic S3-fields.
Bhargava–Wood [11] and Belabas–Fouvry [3] independently use this philosophy to
prove the following result.
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Theorem 3 (Belabas–Fouvry, Bhargava–Wood). Let N˙�6.X/ denote the number of
Galois sextic number fields M with Galois group S3, such that jDisc.M/j < X and
˙Disc.M/ > 0. Then, we have

N˙�6.X/ D
C˙

12

Y
p

cp �X
1=3
C o.X1=3/;

where CC D 1, C� D 3, the product is over all primes, and

cp D

´
.1 � p�1/.1C p�1 C p�4=3/ p ¤ 3;

.1 � 1
3
/.4
3
C

1

35=3
C

2

37=3
/ p D 3:

A power saving error term for the above quantity was obtained by Taniguchi–
Thorne in [33]. In this work, they also speculate about a possible secondary term, and
discuss tensions between theoretical predictions and the data.

Similarly to C.K/, we will regard jDisc.M/j as a “generalized discriminant” of
its cubic subfield. More specifically, let K be a non-Galois cubic field, and denote
the Galois closure of K by M . Then M has a unique quadratic subfield, denoted
by L. We say that L is the quadratic resolvent field of K. Denote the discriminant
of the quadratic resolvent L of K by D.K/. Then D.K/ j Disc.K/, and moreover,
Disc.K/=D.K/ is always a perfect integer square. Denote its positive integer square-
root by F.K/. We note that apart from a factor of a bounded power of 3, the quantity
F.K/ is simply the product of primes that totally ramify in K, where p is said to
totally ramify in K if p splits as p D p3. Similarly, up to a bounded power of 2, the
quantity D.K/ is the product of primes that ramify, but not totally, in K. For a cubic
S3-field K, let �6.K/ denote the discriminant of the Galois closure M of K. Then
we have the decompositions

Disc.K/ D D.K/F.K/2; �6.K/ D D.K/3F.K/4; C.K/ D jD.K/jF.K/;

where the final equality is true up to bounded factors of 2 and 3. For positive real
numbers ˛ and ˇ, we say that the invariant jDj˛Fˇ is a generalized discriminant. This
notion of generalized discriminant encompasses all three invariants we have seen so
far, namely, Disc.K/, �6.K/, and C.K/.

WhenK is a cyclic cubic field, the invariant�6.K/ has no special meaning but an
otherwise similar analysis holds with D.K/ WD 1. We also define the above quantities
analogously when K is a cubic étale extension of Qp .

Let † D .†v/v be a collection of cubic splitting types, where for each place v
of Q, the set †v is the set of cubic étale extensions of Qv with specified inertial and
ramification indices.1 The collection † is said to be a finite collection if for all large

1This is a less general notion than the one which allows †v to be an arbitrary subset of
étale cubic extensions of Qv . We restrict ourselves to this less general notion for two reasons.
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enough primes p,†p is the set of all cubic étale extensions of Qp (i.e., all inertial and
ramification indices are allowed). Throughout, we write P† for the product of those
primes where †p is a proper subset of these extensions.

Given a finite collection of cubic splitting types †, let F .†/ denote the set of
cubic fieldsK such thatK ˝Qv 2 †v for all v. For a generalized discriminant I , we
define

NI .†IX/ WD #¹K 2 F .†/ W I.K/ < X; D.K/ ¤ �3º:

As the pure cubic fields (those with D.K/ D �3) behave differently from those with
other quadratic resolvents, we will treat them separately.

The next result determines asymptotics for the family F .†/, excluding the pure
cubic fields, ordered by generalized discriminants.

Theorem 4. Fix positive real numbers ˛ and ˇ, and let I D jDj˛Fˇ be a generalized
discriminant. Let † be a finite collection of cubic splitting types. Then

(a) when ˛ < ˇ, we have

NI .†IX/ D
1

2

� X
K2†1

1

jAut.K/j

�
�

Y
p

� X
K2†p

jD.K/jpjF.K/j
ˇ=˛
p

jAut.K/j

��
1 �

1

p

�
�X1=˛

CO";I
��
X2=.˛Cˇ/C" CX5=.6˛/

�
P
2=3
†

�
:

(b) when ˛ > ˇ, we have

NI .†IX/ D
� X
d fund:disc¤�3

RessD1ˆ†;d .s/
jd j˛=ˇ

�
�X1=ˇ

CO";I
��
X3=.2˛Cˇ/C" CX2=.3ˇ/C"

�
P
1=3
†

�
;

where ˆ†;d .s/ are Dirichlet series introduced in Section 2.

(c) when ˛ D ˇ, we have

NI .†IX/ D
1

2˛

� X
K2†1

1

jAut.K/j

�
�

Y
p

� X
K2†p

jD.K/jpjF.K/jp
jAut.K/j

��
1 �

1

p

�2
�X1=˛ logX

C o†;I .X
1=˛ logX/:

First, this is the more natural notion from the point of view of families of L-functions; see
the discussion on Sato–Tate equidistribution at the end of the introduction. Second, we did not
obtain a version of Theorem 11 valid in this generality. Although this seems likely to be possible,
it appears liable to be inelegant while presenting additional complications in the proof.
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For the pure cubic fields, Cohen and Morra proved [14, Corollary 7.4] that, when
†v D †

all
v for all v,

#¹K 2 F .†/ W D.K/ D �3; F.K/ < Zº

D C1Z.log.Z/C C2 � 1/CO.Z2=3C"/; (1)

where

C1 WD
7

30

Y
p

�
1C

2

p

��
1 �

1

p

�2
; C2 WD 2
 �

16

35
log.3/C 6

X
p

log.p/
p2 C p � 2

;

where the sum and product are over all primes p. This result also generalizes to arbi-
trary†; see (6). TakingZDX1=ˇ3�˛=ˇ , we see that adding the pure cubic fields adds
a term of order X1=ˇ log.X/, along with a secondary term of order X1=ˇ , to each of
the results in Theorem 4. For (a) this is subsumed by the error term, and the result
is unchanged; for (b), this new contribution dominates the asymptotics by a factor of
� logX , so that asymptotically 100% of cubic fields ordered by I will be pure cubic
fields; for (c) this contribution is of equal magnitude, and the pure and non-pure cubic
fields each constitute a positive proportion of cubic fields ordered by I .

We recover Theorem 3, with a power saving error term of O.X2=7C"/, by taking
˛ D 3 and ˇ D 4 in Theorem 4 and carrying out an appropriate calculation at the
2- and 3-adic places. (This was also noted in [10].) When ˇ

˛
> 7

5
, the error term

of O.X5=.6˛// in case (a) dominates the other error term and can be refined into
a secondary term extrapolating that proved in [8, 32] for ˛ D 1 and ˇ D 2. More
precisely, we have the following result.

Theorem 5. Let ˛ and ˇ be positive real numbers with ˇ
˛
> 7

5
, and let I D jDj˛Fˇ .

Then we have

NI .†IX/ D C1.I I†/ �X
1=˛
C C2.I I†/ �X

5=.6˛/

CO"
��
X2=.˛Cˇ/C" CX2=.3˛/C"

�
P
2=3
†

�
;

where C1.I I†/ is the leading constant appearing in the right-hand side of the dis-
played equation in part (a) of the above theorem, and

C2.I I†/ D C.1/
4�.1=3/

5�.2=3/3�.5=3/

�

Y
p

264PKp2†p.f /
jD.Kp/jp jF.Kp/j

.5ˇC2˛/=.6˛/
p

jAut.Kp/j

R
OKp npOKp

ŒOKp W ZpŒx��
2=3 dxP

Kp2†
all
p

jD.Kp/jp jF.Kp/j2p
jAut.Kp/j

R
OKp npOKp

ŒOKp W ZpŒx��
2=3 dx

375 ;
where C.1/ is 1,

p
3 or 1C

p
3 depending on whether †1 consists of R3, R˚C,

or both, respectively. Also, OK denotes the ring of integral elements in Kp .
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The Malle–Bhargava heuristics

In [22,23], Malle develops heuristics for asymptotics of the number of degree-n num-
ber fields with Galois group G and bounded discriminant, where n > 1 is any integer
and G is a finite group with an action on a set with n elements. These heuristics are
believed to be true in most cases. However, see [20], where Klüners demonstrates a
counter example in the case n D 3 and G D C3 o C2, and [35], where Türkelli modi-
fies Malle’s conjecture so that it holds in the above and similar cases. While Malle’s
conjecture has been formulated only for families of fields ordered by discriminant, the
same method applies to other orderings, in particular to the generalized discriminants
that we work with.

Interestingly, the leading constants appearing in front of Malle’s heuristics are still
shrouded with mystery. In the case of degree-n Sn number fields ordered by discrimi-
nant, Bhargava [5] formulates a conjecture for the leading coefficients, using a general
recipe which constructs these constants from mass formulas counting étale extensions
of local fields. Once again, this recipe is quite general, applying to any family of num-
ber fields constructed as follows: fix a degree n > 1 and a group G with a transitive
action on the set ¹1; : : : ; nº. Then this recipe applies to the family of all degree-n
number fields with Galois group G, satisfying any finite set of splitting conditions,
ordered by any generalized discriminant. (See also work of Kedlaya [19] describing
how these leading constants can be computed in the more general case of families
of Galois representations.) However, there are many instances where this prediction
gives the incorrect leading constant. The prototypical example is the family of quar-
tic D4-fields ordered by discriminant, where the asymptotic constant determined by
Cohen–Diaz y Diaz–Olivier [13] is not expected to equal the constant that this recipe
would predict. On the other hand, when quartic D4-fields are ordered by conductor,
Altuğ–Shankar–Varma–Wilson [1] establish that the leading asymptotic constant does
arise from the Malle–Bhargava recipe. This leads to the natural question, as discussed
by Bhargava in [5], of which families of number fields ordered by which invariants
satisfy this property.

We say that a family F of number fields, ordered by some generalized discrim-
inant, satisfies the Malle–Bhargava heuristic if the asymptotics of every subfamily
defined by prescribed splitting at finitely many primes are as predicted by the Malle–
Bhargava recipe. (Despite our terminology, we emphasize again that Bhargava con-
jectured this only for Sn, and did not predict that it should always hold.)

A necessary condition is that the splitting behavior of primes is independent. We
now precisely define this notion. Let G be a family of number fields having the same
degree n.2

2It is not entirely clear exactly what constitutes a family of number fields. Being the set of all
number fields having the same degree and the same Galois group is assumed to be a sufficient
though not a necessary condition. See [28], where a similar question is discussed in detail.
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Let † D .†v/v be a collection of degree-n splitting types, where for each place v
of Q,†v is the set of degree-n étale extensions of Qv satisfying specified inertial and
ramification behavior. For each place v, let †all

v denote the set of all degree-n étale
extensions of Qv . Then † is said to be finite if †p D †all

p for all sufficiently large
primes p. Let hW G ! R>0 be a height function (i.e., there are only finitely many
elements of G having bounded height). LetNh.G†IX/ denote the number of elements
in G satisfying † and having height less than X . Then we say that the family G

ordered by h satisfies independence of primes if the following is true. For all places v
of Q, there exist functions �vW†all

v ! R�0 withX
Kv2†

all
v

�v.Kv/ D 1;

such that the following condition is satisfied. For each finite collection of splitting
types †, we have

Nh.G†IX/ �

�Y
v

X
Kv2†v

�v.Kv/

�
�Nh.G IX/:

There are many known examples of families of number fields which do not satisfy
independence of primes. See for example [37], in which Wood studies families of
number fields with any fixed abelian Galois group, and proves in many cases that,
when ordered by discriminant, these families do not satisfy independence of primes.
We note that the notion of satisfying independence of primes is a weaker notion than
that of satisfying the Malle–Bhargava heuristic, when both these notions make sense.
Moreover, independence of primes can be defined for a wider class of families, for
example, this notion makes sense for the family of pure cubic fields, the family of
monogenic degree-n fields, and many other families for which the Malle–Bhargava
heuristics do not apply.

Next, we consider the family of all cubic fields. It is natural to partition this family
into two subfamilies: the family of pure cubics and the family of non-pure cubics. The
ordering on the family of pure cubic fields coming from any generalized discriminant
is the same (since we have D.K/ D �3 for every pure cubic field K). It follows from
the method of Cohen–Morra [14] described in Section 2.2 that the family of pure
cubic fields satisfies independence of primes. For the family of non-pure cubic fields
ordered by generalized discriminants, we have the following result.

Theorem 6. Let I D jDj˛Fˇ be a generalized discriminant. Then the family of all
non-pure cubic fields ordered by I satisfies independence of primes and the Malle–
Bhargava heuristic if and only if ˛ � ˇ.

For the ˛ � ˇ case, the above result is an immediate consequence of Theorem 4.
This ˛ > ˇ case requires a bit more work, since the residues of the Dirichlet series
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appearing in part (b) of Theorem 4 are not explicit. We give a general proof which also
applies to many different situations, such as the family of quartic D4-fields ordered
by discriminant.

Finally, our counting results also have implications towards families of Artin
L-functions associated to cubic S3-fields. Indeed, let �W S3 ! GLn.C/ be any rep-
resentation of S3. Given a cubic S3-field K, with normal closure M , we obtain a
Galois representation

Gal.xQ=Q/! Gal.M=Q/ Š S3 ! GLn.C/;

where the final map is �. We associate to this Galois representation its Artin L-
function, denoted L.sI �; K/. Throughout, we assume that � contains at least one
copy of the standard representation of S3, which is necessary to ensure that differ-
ent cubic fields give rise to different L-functions. Then, given a family F .†/ of
cubic S3-fields K, we obtain a family of Artin L-functions L.sI �;K/ that we denote
by L.�;†/. We order the L-functions in L.�;†/ by their conductors.

Ordering L.�; †/ by conductor corresponds to ordering F .†/ by a certain gen-
eralized discriminant I D jDj˛Fˇ depending on �. Indeed, we have

.˛; ˇ/ D c1.1; 2/C c2.1; 0/;

where c1 � 1 and c2 � 0 are the multiplicities of the standard and sign represen-
tations respectively, so that ˛ > 0 and ˇ > 0. A consequence of Theorem 4 is that
the family L.�; †/ satisfies Sato–Tate equidistribution in the sense of [28, Conjec-
ture 1]. Loosely speaking, a family of L-functions arising from number fields satisfies
Sato–Tate equidistribution when the asymptotics of these number fields, ordered by
the conductors of their L-functions, satisfy the Malle–Bhargava heuristics on average
over primes p. Identically to the arguments in [29, §3.1], when ˛ � ˇ, this follows
immediately from the shape of the leading constant in parts (a) and (c) of Theorem 4.
When ˛ > ˇ the situation is similar to the case of the family of Dedekind zeta func-
tions of D4-fields considered in [29, §6.2]. As there, we consider the family of cubic
fields ordered by I to be a countable union of subfamilies, one for each fixed quadratic
resolvent field. Since each of these subfamilies contributes a positive proportion to
the full family, Sato–Tate equidistribution for the full family follows from Sato–Tate
equidistribution for each subfamily. Thus, we have the following consequence to The-
orem 4.

Corollary 7. With notation as above, the families L.�;†/ satisfy Sato–Tate equidis-
tribution.

It is interesting to note that despite independence of primes not always holding,
Sato–Tate equidistribution is always satisfied for our families.
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Organization of the paper

We begin in Section 2 by considering families of cubic fields with one fixed invari-
ant. Invoking work of Bhargava–Taniguchi–Thorne [10] on the Davenport–Heilbronn
theorem, we obtain asymptotics for families of cubic fields with fixed F; using work
of Cohen–Morra [14] and Cohen–Thorne [15] on a Kummer–theoretic approach, we
deduce asymptotics for families of cubic fields with fixed D. The leading constants
appearing in the asymptotics for the latter family are somewhat inexplicit, but in Sec-
tion 3 we prove that the average values of these constants have an explicit description
given in terms of products of mass formulas.

The results of the previous two subsections allow us to determine asymptotics for
F .†/ ordered by generalized discriminants. This is accomplished in Section 4, and
we extract secondary terms and power saving error terms when possible. We then
establish exactly when independence of primes holds, thereby proving Theorem 6.
Finally, we conclude in Section 5 by presenting some numerical data.

Throughout, implied constants may depend on ", ˛, and ˇ, but not † unless oth-
erwise noted.

2. Families of cubic fields with a fixed invariant

Recall that for each cubic field or étale algebra K=Q or K=Qp , we have a decompo-
sition

Disc.K/ D D.K/F.K/2;

where D.K/ is the discriminant of the quadratic resolvent algebra ofK. WhenK is a
S3-cubic field D.K/ is the discriminant of the unique quadratic field contained in the
Galois closure of K, and when K is a cyclic cubic field D.K/ D 1. We decompose
these quantities into local factors

Disc.K/ D ˙
Y
p

Discp.K/; D.K/ D ˙
Y
p

Dp.K/; F.K/ D
Y
p

Fp.K/;

with Dp.K/ D pvp.D.K// and Fp.K/ D pvp.F.K//. Then these quantities enjoy the
following properties:

(a) when p > 3, then

.Dp.K/;Fp.K// 2 ¹.1; 1/; .p; 1/; .1; p/º;

with the three cases corresponding to the ramification type of p in K: unramified,
partially ramified, or totally ramified, respectively;
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(b) when p D 3, we have

.D3.K/;F3.K// 2 ¹.1; 1/; .p; 1/; .p; p/; .1; p2/; .p; p2/º:

Here p is unramified in the first case, partially ramified in the second case, and totally
ramified in the remaining cases;

(c) when p D 2, we have

.D2.K/;F2.K// 2 ¹.1; 1/; .p2; 1/; .p3; 1/; .1; p/º:

Here p is unramified in the first case, partially ramified in the next two cases, and
totally ramified in the last case.

Given a positive number f , squarefree away from 3, and indivisible by 27, we let
F .†/.f / denote the set of cubic S3-fields K 2 F .†/ with F.K/ D f . Given a fun-
damental discriminant d , we let F .†/d denote the set of cubic S3-fields K 2 F .†/

with D.K/ D d . (By convention, we consider 1 to be a fundamental discriminant.) In
this section, we obtain asymptotics for the number ofK 2 F .†/.f / with jD.K/j< Y
in Section 2.1, and the number of K 2 F .†/d with F.K/ < Z in Section 2.2. In
particular, we obtain error terms that control the dependence on †.

2.1. Counting cubic fields K with fixed F.K/

Let f be a fixed positive integer, squarefree away from 3. To count cubic fields K
where F.K/D f , we appeal to a strengthening of the Davenport–Heilbronn theorem.
Define the quantity

N.F .†/.f /IY / WD #¹K 2 F .†/.f / W jD.K/j < Y º:

Then we have the following result.

Theorem 8 ([10, Theorem 1.4]). We have

N
�
F .†/.f /IY

�
D C1.†; f / � Y C C2.†; f / � Y

5=6
CO

�
E.Y If;†/

�
(2)

for constants C1.†;f / and C2.†;f / described below, and with the following “aver-
aged” bound on E.Y I f; †/: for each f � F , choose independent and arbitrary
values Yf � Y . Then, we haveX

f�F

E.Yf If;†/�" Y
2=3C"F 4=3C"P

2=3
† ;

uniformly in F .
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The leading constant C1.†; f / is described as follows. First, for a prime p and a
positive integer f , define the set †p.f / of f -compatible algebras in †p to be those
étale cubic extensions Kp of Qp such that the powers of p dividing F.Kp/ and f are
the same. Then we have

C1.†; f / WD
1

2

� X
K12†1

1

jAut.K1/j

�Y
p

�� X
Kp2†p.f /

jD.Kp/jp
jAut.Kp/j

��
1 �

1

p

��
:

For each prime p > 3, when †p D †all
p , we have� X

Kp2†p.f /

jD.Kp/jp
jAut.Kp/j

��
1 �

1

p

�
D

´ �
1 � 1

p

�
when p j f ;�

1 � 1
p2

�
when p − f :

(3)

Meanwhile, the secondary constant C2.†; f / is given by

C2.†; f / WD C.1/
4�.1=3/

5�.2=3/3�.5=3/

Y
p

�p.†p; f /;

where C.1/ is 1,
p
3, or 1C

p
3 depending on whether †1 consists of R3, R˚C,

or both, respectively, and

�p.†p; f / WD

P
Kp2†p.f /

jD.Kp/jp jF.Kp/j
1=3
p

jAut.Kp/j

R
OKp npOKp

ŒOKp W ZpŒx��
2=3 dxP

Kp2†
all
p

jD.Kp/jp jF.Kp/j2p
jAut.Kp/j

R
OKp npOKp

ŒOKp W ZpŒx��
2=3 dx

:

Moreover, we have C1.†; f / < 1 and jC2.†; f /j � f �1=3 for all † and f .
To compute average values of these constants, we introduce the Dirichlet series

L1.†; s/ and L2.†; s/ given by

L1.†; s/ WD
X
f

C1.†; f /f
�s; L2.†; s/ WD

X
f

C2.†; f /f
�s:

These series satisfy the following Euler product decomposition in their domains of
absolute convergence.

Proposition 9. For <.s/ > 1, we have

L1.†; s/ D
1

2

� X
K2†1

1

jAut.K/j

�Y
p

� X
K2†p

jD.K/jpjF.K/jsp
jAut.K/j

��
1 �

1

p

�
;

L2.†; s � 1=3/ D C.1/
4�.1=3/

5�.2=3/3�.5=3/

�

Y
p

264PKp2†p

jD.Kp/jp jF.Kp/jsp
jAut.Kp/j

R
OKp npOKp

ŒOKp W ZpŒx��
2=3 dxP

Kp2†
all
p

jD.Kp/jp jF.Kp/j2p
jAut.Kp/j

R
OKp npOKp

ŒOKp W ZpŒx��
2=3 dx

375 :
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Proof. To prove the first equality in the above displayed notation, note that we have

L1.†; s/ D
X
f�1

C1.†; f /

f s

D
1

2

� X
K2†1

1

jAut.K/j

�X
f�1

1

f s

Y
p

� X
K2†p.f /

jD.K/jp
jAut.K/j

��
1 �

1

p

�
D
1

2

� X
K2†1

1

jAut.K/j

�Y
p

� X
K2†p

jD.K/jpjF.K/jsp
jAut.K/j

��
1 �

1

p

�
;

as necessary. The second equality follows in identical fashion.

2.2. Counting cubic fields K with fixed D.K/

For each non-zero fundamental discriminant d , define a Dirichlet series

ˆ†;d .s/ WD cred C
X

K2F .†/d

1

F.K/s
;

where cred is either 1=2 or 0 depending on whether or not the étale cubic algebra
Q˚Q.

p
d/ satisfies the splitting conditions specified by †. Using Kummer theory

and class field theory, Cohen, Morra, and the second author [14, 15] proved the fol-
lowing explicit formula for ˆ†;d .s/ when P† D 1, i.e., for counting all cubic fields
whose quadratic resolvent is Q.

p
d/.

Theorem 10 ([15, Theorem 2.5]). For any non-zero fundamental discriminant d , we
have

cdˆd .s/ D
1

2
M1;d .s/

Y
p−3d

�
1C

1C .�3d=p/

ps

�
C

X
E2L3.d/

M2;E .s/
Y
p−3d

�
1C

!E .p/

ps

�
;

where

• cd D 1 if d D 1 or d < �3, and cd D 3 if d D �3 or d > 1;

• L3.d/ is the set of cubic fields of discriminant �d=3, �3d , and �27d (the first
case can of course only occur if 3 j d , and the second only if 3 − d );

• for any cubic field E and prime p − Disc.E/, we define

!E .p/ WD

8̂̂<̂
:̂
2 if p is totally split in E,

0 if p is partially split in E,

�1 if p is inert in E.

The 3-Euler factors M1;d .s/ and M2;E .s/ are given in Table 1 (taking k D 1).
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Condition on d M1;d .s/ M2;E .s/, Disc.E/ 2
¹�k2d=3;�3k2dº

M2;E .s/,
Disc.E/ D �27k2d

3 − d 1C 2=32s 1C 2=32s 1 � 1=32s

d � 3 .mod 9/ 1C 2=3s 1C 2=3s 1 � 1=3s

d � 6 .mod 9/ 1C 2=3s C 6=32s 1C 2=3s

C 3!E .3/=3
2s

1 � 1=3s

Table 1. Local Euler factors at 3.

We will use this result, together with standard analytic techniques, to count cubic
fields K with fixed D.K/ and varying F.K/. Such a result was given as [14, Propo-
sition 6.3] and we give a version where the dependence of the error term on D.K/ is
specified.

We also extend these results to P† > 1, counting cubic fields with specified
splitting types. The key result is where †p D Q3

p for each p j P†, corresponding
to a demand that each such p split completely in each cubic field being counted.
Write L3.P†; d / for the set of cubic fields whose discriminant is �k2d=3, �3k2d ,
or �27k2d , where k is any positive divisor of P†. Thus the quadratic resolvent of
every field in L3.P†; d / is Q.

p
�3d/.

Theorem 11. With †p D Q3
p for each p j P† and L3.P†; d / defined as above, we

have

cd3
!.P†/ˆ†;d .s/ D

1

2
M1;d .s/

Y
p−3dP†

�
1C

1C .�3d=p/

ps

�
C

X
E2L3.P†;d/

M2;E .s/
Y

p−3dP†

�
1C

!E .p/

ps

�
(4)

provided that d=p D 1 for every prime p j P†, and ˆ†;d .s/ D 0 otherwise. Here,
!.P†/ denotes the number of prime divisors of P†, and if 3 j P†, then the factors
M1;d .s/ and M2;E .s/ are to be omitted.

The special cases 3 j P† and/or d 2 ¹1;�3º are all allowed; if d D 1 thenˆ†;d .s/
counts cyclic cubic fields, and if d D �3 then the fields in L3.P†; d / are cyclic.

Remark 12. The explicit form of ˆ†;d stated in Theorem 11 will not be used in
the proofs of our main results. The “average residue computation” that is required for
our proofs will be obtained indirectly from results proved using geometry-of-numbers
methods.
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All that is necessary for us is an asymptotic formula for the partial sums of ˆ†;d
with bounds on the error; this is done in Theorem 13 by interpreting ˆ†;d as the
weighted sum of incomplete Dedekind zeta functions and incomplete Artin L-func-
tions, both having conductor�† d .

We then immediately show that ˆd;†.s/ can be written as such a weighted sum
in the case when † is an arbitrary finite collection of splitting types in the following
steps:

• The splitting type at infinity: the sign of the discriminant of a cubic field is the
same as the sign of the discriminant of its quadratic resolvent field. Hence, ˆ†;d
will be 0 if the prescribed splitting type at infinity is incompatible with the sign
of d , and unchanged if it is compatible.

• .21/ – A prime p is partially split in K if and only if it is unramified in K and
inert in Q.

p
d/. Therefore, if

�
d
p

�
D 1 for any such prime p then ˆ†;d .s/ D 0,

and otherwise we eliminate all of the p-Euler factors from ˆ†;d .s/.

• .121/ – A prime p is partially ramified inK if and only if it is ramified inQ.
p
d/;

therefore,ˆ†;d D 0 if p − d for any such p, and otherwiseˆ†;d .s/ is unchanged.

• .13/ – A prime p is totally ramified inK if and only if p j f .K/. Accordingly we
remove the constant terms from the p-Euler factors.

• The remaining primes p are required to have splitting types .111/ or .3/. We
handle the .111/ case by applying equation (4) directly, and the .3/ case by
inclusion-exclusion.

In summary, the proof of Theorem 11 follows from a careful reading of [14]
and [15]. The proof in [14] proceeds by setting L D Q.

p
d;
p
�3/, and enumerat-

ing those cyclic cubic extensionsNz=L which contain an appropriateK. By Kummer
theory, any such extension is of the form Nz D L.

3
p
˛/. Writing ˛ZL D a0a

2
1q
3 for

squarefree integral coprime ideals a0 and a1, the conductor f.N=Q.
p
d// is given

(see [14, Theorem 3.7]) by a0a1 times a 3-adic factor, and this 3-adic factor depends
on the solubility of x3 � ˛ modulo powers of 3.

The splitting conditions in K=Q are equivalent to solubility in L of x3 � ˛ mod-
ulo P†, or modulo 3P† if 3 j P†, and hence the existing machinery of [14] is well
suited to select for them. This is the reason that Theorem 11 has a very similar shape
to Theorem 10.

We now proceed to explain the proof of Theorem 11 in more detail. As discussed
above we may assume that d=p D 1 for every p j P†, as otherwise ˆ†;d .s/ D 0.
Write P D P† if 3 − P†, and P D 3P† if 3 j P†.
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Step 1 – Parametrization. Let L D Q.
p
d;
p
�3/ as before. In [14, Proposition 2.7],

Cohen and Morra enumerate the set of cubic fields K with resolvent Q.
p
d/; each

occurs as the cubic subextension (unique up to isomorphism) of a field Nz D L. 3
p
˛/

with ˛ D ˛0u, where ˛0 is determined by the class in I=I 3 of the ideal .˛/, and u
represents an element xu of a 3-Selmer group S3.L/ŒT �. The notation ŒT � indicates
that xu is annihilated by two particular elements of F3ŒGal.L=Q/� (one if d D 1 or
d D �3).

A prime p splits in such a K if and only if: (1) it splits in Q.
p
d/, and (2) every

prime pz of L above p splits completely in Nz . Since L contains the third roots of
unity, each such pz of L splits completely in Nz if and only if x3 D ˛ is soluble in
the completion of L at pz . By Hensel’s lemma, if 3 − pz this happens if and only if
x3=˛ � 1.mod �pz/ is soluble in L. Further, if ˛ is coprime to 3, the primes above 3
split in Nz=L if and only if x3=˛ � 1 is soluble modulo 9; to see this, note that if
v3.ˇ

3 � ˛/ > 3=2 with ˛; ˇ integral, then

v3..ˇ
0/3 � ˛/ > v3.ˇ

3
� ˛/ with ˇ0 WD ˇ �

ˇ3 � ˛

3ˇ2
;

yielding a sequence of ˇi converging to a solution of x3D˛ in each 3-adic completion
of L.

Step 2 – Conductors and Selmer group counting. In [14, Theorem 3.7], a formula is
given for the conductor f.N=Q.

p
d//. One writes ˛ZL D a0a

2
1q
3, where a0 and a1

are integral coprime squarefree ideals, has a0a1 D a˛ZL for an ideal a˛ of Q.
p
d/,

and has that f.N=Q.
p
d// is the product of a˛ times a complicated 3-adic factor,

depending on the solubility of x3=˛ � 1.mod �pnz/ for ideals pz over 3. They enu-
merate these 3-adic factors by inclusion-exclusion, involving a quantity

f˛0.b/ D #j¹xu 2 S3.L/ŒT �; x3=.˛0u/ � 1.mod �b/ soluble in Lºj;

where b ranges over (possibly fractional) powers of 3. This leads ([14, Proposi-
tion 4.6]) to a formula for ˆd .s/, where b ranges over a set of 3-adic ideals B, and
f˛0.b/ appears as a counting function for the number of ideals with fixed conductor.

As discussed above, the splitting conditions in places in S are equivalent to requir-
ing that x3=.˛0u/ � 1 be soluble modulo other ideals. If 3 − P†, multiply each b

by P . If 3 j P†, then 3 cannot ramify in any cubic field being counted: the sum over
b 2 B and all 3-adic factors disappear from ˆd .s/. In place of this sum, one takes b

equal to P .
The computation of f˛0.b/ is carried out in [14, Section 5], and also in Morra’s

thesis [25] where more detailed proofs are presented. One checks that, when varying b

as above, the proofs are identical through [14, Lemma 5.4].
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We diverge somewhat in [14, Lemma 5.6], which computes the size of .Zb=Z
3
b/ŒT �,

where Zb WD .ZL=bZL/�. By the Chinese remainder theorem, the size of this group
is multiplicative in b, so it suffices to carry out the computation for bD .9/ or bD .p/

for p a rational prime other than 3.
For F equal to L, Q.

p
�3D/, or Q write �F;b for the multiplicative group of

ZF =.ZF \b/modulo cubes, so that �L;bDZb=Z
3
b by definition. Then for d ¤ 1;�3

a “descent” argument similar to that presented in the proof of [15, Proposition 3.4]
yields an isomorphism

�L;bŒT � ' �Q.
p
�3d/;b

Œ1C ��;

and when d D 1 this holds (tautologically) as an equality. Similarly to [15, Lem-
ma 5.6], we obtain

j.Zb=Z
3
b/ŒT �j D

´
j�Q.

p
�3d/;b

j=j�Q;bj if d ¤ �3;

j�Q;bj if d D �3:
(5)

By direct computation, we readily check that the right side of (5) is 3 in all cases.
(Recall that d=p D 1.) This yields a version of [14, Theorem 6.1], which gives an
expression forˆd .s/ in terms of characters ofGb WD .Clb.L/=Clb.L/3/ŒT �, with the
following modifications:

• If 3 − P†, then each ideal b 2 B is multiplied by P , and j.Zb=Z
3
b/ŒT �j is multi-

plied by 3!.P†/.

• If 3 j P†, then the sum over b 2 B is replaced with the single choice b D P ;
.Zb=Z

3
b/ŒT � has size 3!.P†/.

Step 3 – Interpretation in terms of field counting. For d ¤ 1;�3 the analogue of [15,
Proposition 3.4] continues to hold, yielding a “descent” isomorphism Gb ' Ha0 ,
where a0 WD b \ ZQ.

p
�3d/

, and

Ha0 WD
�
Cla0

�
Q.
p
�3d/

�
=Cl3a0

�
Q.
p
�3d/

��
Œ1C ��:

Then, [15, Proposition 4.1] uses class field theory to establish a bijection between
pairs of non-trivial characters ofGb and cubic fieldsE. The same argument continues
to hold, with the set of cubic fieldsE is expanded to those whose discriminant is equal
to �3d times the square of any rational integer divisor of b. The second half of the
proof of [15, Proposition 4.1] is unnecessary, as the conclusion follows more simply
from earlier work of Nakagawa [26, Lemma 1.3, eq. (1.3)].

If d D 1 then as before the “descent” isomorphism is replaced by an equality and
we proceed identically. If d D �3, then we obtain

Gb ' Cla0.Q/=Cl3a0.Q/
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with a0 D b \ Z and a more direct application of class field theory establishes the
required bijection.

This completes the proof.

We turn now to the analytic consequences. Let d ¤�3 be a fundamental discrim-
inant and let † be a finite collection of splitting types such that F .†/d is non-empty.
In this case ˆ†;d .s/ is a Dirichlet series with non-negative coefficients, and we will
see that it has a simple pole at s D 1 with positive residue. Define the quantity

N.F .†/d IZ/ WD #
®
K 2 F .†/d W F.K/ < Z

¯
:

Then we have the following consequence of Theorem 11 and its extension to arbitrary
splitting conditions described after Remark 12.

Theorem 13. Let d and † be as above. Then we have

N.F .†/d IZ/ D RessD1.ˆ†;d .s// �Z CO"
�
jL3.P†; d /jjd j

1=6P
1=3
† Z2=3C"

�
:

Proof. As this is standard, we give a brief account. Write the left-hand side as

#
®
K 2 F .†/d W F.K/ < Z

¯
D

1

2�i

Z 2Ci1

2�i1

ˆ†;d .s/
Zs

s
ds:

We then write each Euler product in ˆ†;d .s/ as the product of a Dedekind zeta
function �Q.

p
�3d/

.s/ or an irreducible degree 2 Artin L-function, times a function
holomorphic and bounded in any half plane <.s/ � �0 > 1=2.

As all of the L-functions have conductor� jd jP 2†, the convexity bound yieldsˇ̌̌̌
ˆ†;d .s/ �

RessD1
�
ˆ†;d .s/

�
s � 1

ˇ̌̌̌
� jL3.P†; d /j � jd j

1=4..1C t /P†/
1=2;

uniformly in <.s/ D � C i t with 1 > � � �0.
Pick T > 1 to be optimized later. We shift the contour to the left, picking up one

residue at 1, ending up with a sum of the following integrals: from 1 C " ˙ iT to
1C "˙ i1; from 1C "˙ iT to �0˙ iT ; and from �0 � iT to �0C iT . The residue
gives the required main term, while the sum of these integrals is

� jL3.P†; d /j �
�Z1C"

T
CZ�0T 1=2jd j1=4P

1=2
†

�
:

The result now follows by optimizing the value of T to be Z1=3=.d1=6P 1=3† /.

Remark 14. The error terms in the above theorem can clearly be improved by using
subconvex estimates in place of the convexity bound. However, we do not state this
improvement since we have no need for it.
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In the case d D �3, the same result and proof hold, except that �3d=p D 1 for
all p − 3d , so that ˆ†;�3.s/ has a double pole at s D 1, as opposed to a simple
pole. Therefore, as explained in [14, Corollary 7.4], we obtain the asymptotic (1) for
P† D 1, and for P† > 1 this generalizes to

#¹K 2 F .†/ W D.K/ D �3;F.K/ < Zº

D C1.†/Z.log.Z/C C2.†/ � 1/CO.P
1=3C"
† Z2=3C"/; (6)

where

C1.†/ WD C1
Y
p jP†
p¤3

p

3p C 6
�

Y
p jP†
pD3

1

7
;

C2.†/ WD C2 C
X
p jP†
p¤3

2 logp
p C 2

C

X
p jP†
pD3

6

7
log 3:

3. The asymptotics of cubic fields with bounded invariants

For a finite collection † of splitting types and positive real numbers Y and Z, define

N.†IY;Z/ WD
®
K 2 F .†/ W 3 ¤ jD.K/j < Y; F.K/ < Z

¯
:

In this section, we compute asymptotics for N.†IY;Z/. We will handle the “large Y
case” (i.e., large log Y= logZ) using Theorem 8 and the “small Y case” using The-
orem 13. Our error terms are strong enough that these ranges of Y overlap, yielding
an asymptotic estimate for all Y and Z. Indeed, we obtain asymptotic formulas with
different expressions for the main terms, which we may then conclude are equal.

These results will be used in the proofs of Theorems 2 and 4 (c), where D and F
are given equal weight. For parts (a) and (b) of Theorem 4, we will instead use a more
direct approach so as to optimize the error terms. All of these proofs will be given in
Section 4.

We begin with the following important uniformity estimate due to Davenport–
Heilbronn (see, e.g., [2, Lemma 3.3]).

Lemma 15. The number of cubic fields K such that jDisc.K/j < X and F.K/ D f
is bounded by O".X1C"=f 2/.

The key result of this section is the following proposition.
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Proposition 16. Let † be an finite collection of splitting types, and let Y and Z be
positive real numbers. Then

N.†IY;Z/ D

�X
f <Z

C1.†; f /

�
� Y CO"

�
Y 5=6Z2=3 C Y 2=3C"Z4=3P

2=3
†

�
;

N.†IY;Z/ D

� X
jd j<Y

fund:disc¤�3

RessD1ˆ†;d .s/
�
�Z CO";†

�
Y 7=6C"Z2=3C"P

1=3C"
†

�
:

Proof. To prove the first equality, we fiber by F.K/ and apply Theorem 8 (Davenport–
Heilbronn), obtaining

N.†IY;Z/ D
X
f <Z

N.F .†/.f /IY /

D

� X
f <Z

C1.†; f /

�
� Y CO

�X
f <Z

�
f �1=3Y 5=6 CE.Y If;†/

��
D

� X
f <Z

C1.†; f /

�
� Y CO

�
Y 5=6Z2=3 C Y 2=3C"Z4=3P

2=3
†

�
;

as necessary. To prove the second equality, we fiber by D.K/ and apply Theorem 13
(Cohen–Morra):

N.†IY;Z/ D
X
jd j<Y

fund:disc¤�3

N.F .†/d IZ/

D

� X
jd j<Y

fund:disc¤�3

RessD1ˆ†;d .s/
�
�Z

CO†;"

� X
jd j<Y

fund:disc¤�3

jL3.P†; d /jjd j
1=6Z2=3C"P

1=3
†

�

D

� X
jd j<Y

fund:disc¤�3

RessD1ˆ†;d .s/
�
�Z CO†;"

�
Y 7=6C"Z2=3C"P

1=3C"
†

�
;

where the bound on the sum over d of the sizes of L3.P†;d / follows from Lemma 15.
This concludes the proof of the proposition.

Next, we estimate the leading constant in the right-hand side of the first equation
of Proposition 16.
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Proposition 17. We haveX
f <Z

C1.†; f / D
1

2

� X
K2†1

1

jAut.K/j

�Y
p

� X
K2†p

jD.K/jpjF.K/jp
jAut.K/j

��
1 �

1

p

�2
�Z

CO".Z
3=5C"/:

Proof. Recall the Dirichlet series

L1.†; s/ WD
X
f

C1.†; f /f
�s

from Section 2.1. It is easy to see that L1.†; s/ is holomorphic to the right of <.s/ >
1=2 with a simple pole at s D 1. Indeed, the shape of C1.†; f / described in (3)
implies that L1.†; s/=�.s/ converges absolutely and is bounded uniformly in† and s
to the right of <.s/ D � for any � > 1=2. Pick a real number T to be optimized later.
Following the proof of Theorem 13, we haveX

f <Z

C1.†; f / D

Z
<.s/D2

L1.†; s/.s/
Zs

s
ds

D RessD1L1.†; s/ �Z CO"
�Z1C"

T
CZ1=2C"T 1=4

�
;

where we use the convex bound to estimate the growth of �.s/, and thereforeL1.†;s/,
on the line <.s/ D 1=2C ". From the Euler product expansion of L1.†; s/ derived
in Proposition 9, it follows that the residue of L1.†; s/ at s D 1 is given by

RessD1L1.†; s/ D
1

2

� X
K2†1

1

jAut.K/j

�Y
p

� X
K2†p

jD.K/jpjF.K/jp
jAut.K/j

��
1 �

1

p

�2
:

The proposition follows by choosing T D Z2=5.

The above two propositions have the following consequence.

Corollary 18. We have

1

Y

X
jd j<Y

fund:disc¤�3

RessD1ˆ†;d .s/ D
1

2

Y
p

� X
K2†p

jD.K/jpjF.K/jp
jAut.K/j

��
1 �

1

p

�2
CO";†.Y

�1=12C"/:

Proof. The result follows from Propositions 16 and 17 by setting Z D Y 3=4.

In particular, the two estimates of Proposition 16 are asymptotic formulas for Y >
Z1C" and Y <Z2�", respectively. Since these ranges overlap, we obtain the following
result.
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Theorem 19. We have

N.†IY;Z/ D
1

2

� X
K2†1

1

jAut.K/j

�Y
p

� X
K2†p

jD.K/jpjF.K/jp
jAut.K/j

��
1 �

1

p

�2
� YZ

C o†.Y /Z C Yo†.Z/:

Proof. Combining the above results yields the claimed result with an error term

�";† .YZ/
"
�
YZ3=5 C Y 11=12Z Cmin

�
Y 2=3Z4=3; Y 7=6Z2=3

��
;

which is sufficiently small.

4. Ordering cubic fields by generalized discriminants

In this section we determine asymptotics for the number of cubic fields with bounded
generalized discriminant, thereby proving Theorem 4. We also then determine which
generalized discriminants I are such that the family of cubic fields ordered by I
satisfy independence of primes, thus also proving Theorem 6.

For a generalized discriminant I D jDj˛Fˇ , after normalizing we may assume
that one of ˛ or ˇ equals 1 and the other is � 1. We handle each of the three possible
cases in turn.

Proposition 20. For a finite collection † of cubic splitting types and a real number
ˇ > 1, we have

NjDjF ˇ .†IX/ D L1.†; ˇ/ �X C L2.†; 5ˇ=6/X
5=6

CO";ˇ
��
X2=.ˇC1/C" CX2=3C"

�
P
2=3
†

�
;

with L1.†; ˇ/ and L2.†; 5ˇ=6/ as given in Proposition 9.

Proof. We fiber over f � 1 and write

NjDjF ˇ .†;X/ D
X
f

N
�
F .†/.f /If 2�ˇX

�
CO

�
X1=ˇ log.X/

�
;

where N.F .†/.f /I f 2�ˇX/ denotes the number of cubic fields K 2 F .†/.f / such
that jDisc.K/j < f 2�ˇX , and the error term accounts for the pure cubic fields. For
any 1 < Y � X1=ˇ , by Lemma 15 we haveX

f�Y

N.F .†/.f /If 2�ˇX/�"

X
f�Y

f 2�ˇC"X1C"

f 2
�"

X1C"

Y ˇ�1�"
:
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For f < Y , by Theorem 8 we haveX
f <Y

N
�
F .†/.f /If 2�ˇX

�
D

X
f <Y

�
C1.†; f /

f ˇ
X C

C2.†; f /

f 5ˇ=6
X5=6 CO

�
E.X=f ˇ If;†/

��
:

The error term is bounded byX
k<log2 Y

X
2k�f <2kC1

E.X=f ˇ If;†/�
X

k<log2 Y

X2=3C".2k/4=3�2ˇ=3C"P
2=3
†

� X2=3C"P
2=3
† �max

�
Y 4=3�2ˇ=3C"; 1

�
:

Meanwhile, the two main terms areX
f <Y

C1.†; f /

f ˇ
D

X
f�1

C1.†; f /

f ˇ
COˇ .Y

1�ˇ / D L1.†; ˇ/COˇ .Y
1�ˇ /;

X
f <Y

C2.†; f /

f 5ˇ=6
D

X
f�1

C2.†; f /

f 5ˇ=6
COˇ .Y

1�5ˇ=6/ D L2.†; 5ˇ=6/COˇ .Y
1�5ˇ=6/:

Optimizing (in X aspect), we pick Y D X1=.ˇC1/ and obtain the result.

Proposition 21. For a finite collection † of cubic splitting types and a real number
˛ > 1, we have

NjDj˛F.†IX/ D

� X
d fund:disc¤�3

RessD1ˆ†;d .s/
jd j˛

�
�X

CO";˛
��
X3=.2˛C1/C" CX2=3C"

�
P
1=3
†

�
:

Proof. We fiber over d and write

NjDj˛F.†;X/ D
X

d fund:disc¤�3

N
�
F .†/d IX=jd j

˛
�
:

Pick a real number 1 < Y � X1=˛ to be optimized later. For each fundamental dis-
criminant d such that jd j � Y , the condition jd j˛f < X implies that f < X=Y ˛ .
Hence, by Lemma 15 we haveX

d fund:disc¤�3
jd j�Y

N
�
F .†/d IX=jd j

˛
�

�

X
f <X=Y ˛

#
®
K 2 F .†/.f / W jDisc.K/j < X1=˛f 2�1=˛

¯
�

X
f <X=Y ˛

X" � .X=f /1=˛ �
X1C"

Y ˛�1
:
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To estimate the main term, we use Theorem 13 to writeX
d fund:disc¤�3
jd j<Y

N
�
F .†/d IX=jd j

˛
�
D

� X
d fund:disc¤�3
jd j<Y

RessD1ˆ†;d .s/
jd j˛

�
�X CO.E/;

where the error term E is easily bounded by breaking up the sum over d into dyadic
ranges and using Lemma 15 to estimate the size of L3.P†; d /:

E �
X

d fund:disc¤�3
jd j<Y

jL3.P†; d /j � jd j
1=6P

1=3
†

�
X=jd j˛

�2=3C"
� X2=3C" max

�
Y 7=6�2˛=3; 1

�
P
1=3
† :

Optimizing, we pick Y D X2=.2˛C1/ and obtain the required result.

Theorem 22. We have

NjDjF.†IX/ D
1

2

� X
K2†1

1

jAut.K/j

�
�

Y
p

� X
K2†p

jD.K/jpjF.K/jp
jAut.K/j

��
1 �

1

p

�2
�X logX

C o.X logX/: (7)

Proof. Given " > 0, choose "0 < " so that the interval Œ1;
p
X/may be divided exactly

into 1
2
."0�1 CO.1// logX intervals of the form Œ.1C "0/k; .1C "0/kC1/, and write

Yk WD .1C "
0/k and Zk WD

X

.1C "0/k
:

By Theorem 19, we have that

N.†IYkC1; Zk/ �N.†IYk; Zk/ D C1.DF; †/ � "0X C o.Yk/Zk;

where C1.DF;†/ is the constant in (7), and the same is true with the roles of Y andZ
reversed. Since every field counted byNjDjF.F .†/IX/ is counted in one of the above
rectangles, we obtain

NjDjF
�
F .†/IX

�
� C1.DFI†/X logX �

�
1CO."/C "0�1oX .1/

�
:

Choosing "! 0 as X !1, we obtain the result as an upper bound. To obtain the
lower bound, proceed analogously, choosing Zk WD X=.1C "0/kC1 and subtracting
the O.X/ fields in N.†I

p
X;
p
X/ which are counted twice.
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Theorems 4 and 5 follow immediately from Propositions 20 and 21, and Theo-
rem 22. We conclude by proving Theorems 2 and 6.

Proof of Theorem 2. For a prime p > 3 and étale cubic extensionKp of Qp , as noted
previously we have that p2 − D.K/F.K/. Therefore, for a cubic field K, we have

rad.Disc.K// D D.K/F.K/

up to sign and bounded powers of 2 and 3. Let ı2 and ı3 be powers of 2 and 3,
respectively. For p D 2; 3, let S.ıp/ be the set of cubic étale extensions Kp of Qp for
which D.Kp/F.Kp/ has p-adic part ıp , and let †.ı2; ı3/ be the finite collection of
cubic splitting types defined by†2 D S.ı2/,†3 D S.ı3/, and†v D †all

v for all other
places v. Then we have

#
®
K 2 F .†/ W C.K/ < X; D.K/ ¤ �3; ˙Disc.K/ > 0

¯
D NjDjF

�
†I

ı2ı3

rad.ı2ı3/
�X

�
D

1

2�˙
C.ı2/C.ı3/

Y
p�5

�
1C

2

p

��
1 �

1

p

�2
�X logX C o.X logX/;

where �C D 6 and �� D 2 are the sizes of the automorphism groups of R3 and R�C,
respectively, and

C.ı2/ D
�
1 �

1

2

�2 X
K22S.ı2/

rad.ı2/�1

jAut.K2/j
; C.ı3/ D

�
1 �

1

3

�2 X
K32S.ı3/

rad.ı3/�1

jAut.K3/j
:

Summing over all ı2 and ı3, we obtain

#
®
K 2 F W C.K/ < X; D.K/ ¤ �3; ˙Disc.K/ > 0

¯
D

1

2�˙

Y
p

C.p/
�
1 �

1

p

�2
�X logX C o.X logX/;

where for any prime p, the quantity C.p/ is defined to be

C.p/ WD
X
K2†all

p

j rad.jD.K/jF.K//jp
jAut.K/j

:

To compute these constants, we use the database of local fields [21], which lists each
quadratic or cubic ramified extension of Q2 and Q3 with its Galois group; we obtain
that C.2/ D 3 and C.3/ D 11=3.

Finally, to count the contribution of the pure cubic fields, observe that we haveX
D.K/D�3

C.K/�s D �
1

2
� 3�s C

3

2
� 3�s

Y
p¤3

�
1C

2

ps

�
:



On the asymptotics of cubic fields ordered by general invariants 793

by [14, Proposition 7.3]. By an argument identical to that of Theorem 13 or [14,
Proposition 7.4], we have

#
®
K 2 F W C.K/ < X; D.K/ D �3; ˙Disc.K/ > 0

¯
D

3

10

Y
p

�
1C

2

p

��
1 �

1

p

�2
�X logX C o.X logX/;

thereby completing the proof.

Proof of Theorem 6. For ˛�ˇ this follows immediately from the shape of the leading
asymptotics in parts (a) and (c) of Theorem 4. It remains to prove the result when
˛ > ˇ, and as before we may assume that ˇ D 1. For fixed " > 0 let N."/ be the
smallest positive integer such that the following inequality is satisfied:

" �
RessD1ˆ†all;5

5˛
>

X
jd j>N."/
fund:disc:

ResdD1ˆ†all;d

jd j˛
: (8)

Such an N."/ exists for each " since the sum of ResdD1.ˆ†all;d /=jd j
˛ is convergent,

as can be seen from Corollary 18, for example.
For each fundamental discriminant d with 3; 5¤ jd j �N."/, now let pd ¤ 7 be a

prime such that the splitting types of pd at Q.
p
5/ and Q.

p
d/ differ. (For d D 1, we

choose p1 to be inert in Q.
p
5/.) Define†."/pd to be the set of all étale cubic extensions

of Qpd whose quadratic resolvents are equal to Qpd .
p
5/˚Qpd . We then define the

collection †."/ by taking †."/pd as above, and choosing †."/p D †all
p for p not equal to

any of the pd .
Then (8) holds with †all replaced by †" and jd j > N."/ replaced by d ¤ �3; 5,

as the newly imposed splitting conditions do not exclude any of the fields counted on
the left, nor do they include any of the fields added to the right. Since K ˝Q7 6Š Q3

7

for any K with resolvent Q.
p
5/, this implies that

0 < lim
X!1

#¹K 2 F .†."// W D.K/ ¤ �3; D.K/˛F.K/ < X; K ˝Q7 Š Q3
7º

#¹K 2 F .†."// W D.K/ ¤ �3; D.K/˛F.K/ < Xº

<
"

1C "
< ":

In particular, since 7 does not split in Q.
p
5/, the probability of the prime 7 split-

ting completely in F .†."// goes to 0 as " tends to 0. Moreover, the probability that 7
splits completely in F .†all/ is positive, since 7 splits completely a positive proportion
of the time in cubic fields with resolvent, say, Q.

p
�19/. The result now follows from

the fact that †."/7 is constant for all ".
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5. Numerical data

As a double check on our work we numerically verified Theorem 11 (the explicit
Dirichlet series counting cubic fields with local conditions, by quadratic resolvent),
and the ˛ D ˇ D 1 case of Theorem 4 (counting cubic fields with jDjF < X). Our
code can be readily modified to cover additional cases of Theorem 4.

We used the PARI/GP programming language [27], and our source code and data
may be downloaded from GitHub3: a program cm-test.gp4 to compute instances
of Theorem 11, and compare against known data when possible; a program cubic-
count.gp5 to generate the data below; and lists of cubic fields (rcf-1500k.gp6 and
icf-1000k.gp7) obtained from LMFDB [21].

For counting cubic fields with jDjF < X , Table 2 presents a comparison (for rel-
atively small X ) of the asymptotics proved in Theorem 4 (c) with the data:

X Theorem 4 (c) Actual data

100 50 38

1000 748 629

10000 9977 9181

20000 21456 20044

30000 33502 31427

Table 2. Comparison of Theorem 4 (c) with numerical data.

We note the apparent presence of one or more negative lower order terms. There
are at least three possible explanations for the discrepancy between the data and the
asymptotics:

• the negative secondary term in the Davenport–Heilbronn theorem (2);

• the exclusion of D D �3 from our counts, which is not “visible” in the main term
of Theorem 4 (c);

• the natural tendency for asymptotics with logarithmic terms to have lower order
terms without the logarithms, e.g., the divisor sum estimateX

n<X

d.n/ D X logX C .2
 � 1/X CO.
p
X/:

We leave a more detailed analysis for followup work.

3httpsW//thornef.github.io
4httpsW//thornef.github.io/cm-test.gp
5httpsW//thornef.github.io/cubic-count.gp
6httpsW//thornef.github.io/rcf-1500k.gp
7httpsW//thornef.github.io/icf-1000k.gp

https://thornef.github.io
https://thornef.github.io/cm-test.gp
https://thornef.github.io/cubic-count.gp
https://thornef.github.io/rcf-1500k.gp
https://thornef.github.io/icf-1000k.gp
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[1] S. A. Altuğ, A. Shankar, I. Varma, and K. H. Wilson, The number ofD4-fields ordered by
conductor. J. Eur. Math. Soc. (JEMS) 23 (2021), no. 8, 2733–2785 Zbl 1473.11203
MR 4269426

[2] K. Belabas, M. Bhargava, and C. Pomerance, Error estimates for the Davenport-Heilbronn
theorems. Duke Math. J. 153 (2010), no. 1, 173–210 Zbl 1227.11114 MR 2641942

[3] K. Belabas and É. Fouvry, Discriminants cubiques et progressions arithmétiques. Int. J.
Number Theory 6 (2010), no. 7, 1491–1529 Zbl 1225.11139 MR 2740719

[4] M. Bhargava, The density of discriminants of quartic rings and fields. Ann. of Math. (2)
162 (2005), no. 2, 1031–1063 Zbl 1159.11045 MR 2183288

[5] M. Bhargava, Mass formulae for extensions of local fields, and conjectures on the density
of number field discriminants. Int. Math. Res. Not., (2007), no. 17, article no. rnm052
Zbl 1145.11080 MR 2354798

[6] M. Bhargava, The density of discriminants of quintic rings and fields. Ann. of Math. (2)
172 (2010), no. 3, 1559–1591 Zbl 1220.11139 MR 2745272

[7] M. Bhargava and P. Harron, The equidistribution of lattice shapes of rings of integers in
cubic, quartic, and quintic number fields. Compos. Math. 152 (2016), no. 6, 1111–1120
Zbl 1347.11074 MR 3518306

[8] M. Bhargava, A. Shankar, and J. Tsimerman, On the Davenport–Heilbronn theorems and
second order terms. Invent. Math. 193 (2013), no. 2, 439–499 Zbl 1294.11191
MR 3090184

[9] M. Bhargava, A. Shankar, and X. Wang, Geometry-of-numbers methods over global
fields I: Prehomogeneous vector spaces. 2015, arXiv:1512.03035v1

[10] M. Bhargava, T. Taniguchi, and F. Thorne, Improved error estimates for the Davenport–
Heilbronn theorems. Math. Ann. 389 (2024), 3471–3512 MR 4768704

https://doi.org/10.4171/jems/1070
https://doi.org/10.4171/jems/1070
https://zbmath.org/?q=an:1473.11203
https://mathscinet.ams.org/mathscinet-getitem?mr=4269426
https://doi.org/10.1215/00127094-2010-007
https://doi.org/10.1215/00127094-2010-007
https://zbmath.org/?q=an:1227.11114
https://mathscinet.ams.org/mathscinet-getitem?mr=2641942
https://doi.org/10.1142/S1793042110003605
https://zbmath.org/?q=an:1225.11139
https://mathscinet.ams.org/mathscinet-getitem?mr=2740719
https://doi.org/10.4007/annals.2005.162.1031
https://zbmath.org/?q=an:1159.11045
https://mathscinet.ams.org/mathscinet-getitem?mr=2183288
https://doi.org/10.1093/imrn/rnm052
https://doi.org/10.1093/imrn/rnm052
https://zbmath.org/?q=an:1145.11080
https://mathscinet.ams.org/mathscinet-getitem?mr=2354798
https://doi.org/10.4007/annals.2010.172.1559
https://zbmath.org/?q=an:1220.11139
https://mathscinet.ams.org/mathscinet-getitem?mr=2745272
https://doi.org/10.1112/S0010437X16007260
https://doi.org/10.1112/S0010437X16007260
https://zbmath.org/?q=an:1347.11074
https://mathscinet.ams.org/mathscinet-getitem?mr=3518306
https://doi.org/10.1007/s00222-012-0433-0
https://doi.org/10.1007/s00222-012-0433-0
https://zbmath.org/?q=an:1294.11191
https://mathscinet.ams.org/mathscinet-getitem?mr=3090184
https://arxiv.org/abs/1512.03035v1
https://doi.org/10.1007/s00208-023-02684-w
https://doi.org/10.1007/s00208-023-02684-w
https://mathscinet.ams.org/mathscinet-getitem?mr=4768704


A. Shankar and F. Thorne 796

[11] M. Bhargava and M. M. Wood, The density of discriminants of S3-sextic number fields.
Proc. Amer. Math. Soc. 136 (2008), no. 5, 1581–1587 Zbl 1171.11058 MR 2373587

[12] P. J. Cho and H. H. Kim, The smallest prime in a conjugacy class and the first sign change
for automorphic L-functions. Proc. Amer. Math. Soc. 149 (2021), no. 3, 923–933
Zbl 1473.11176 MR 4211852

[13] H. Cohen, F. Diaz y Diaz, and M. Olivier, Enumerating quartic dihedral extensions of Q.
Compositio Math. 133 (2002), no. 1, 65–93 Zbl 1050.11104 MR 1918290

[14] H. Cohen and A. Morra, Counting cubic extensions with given quadratic resolvent. J. Alge-
bra 325 (2011), 461–478 Zbl 1239.11115 MR 2745550

[15] H. Cohen and F. Thorne, Dirichlet series associated to cubic fields with given quadratic
resolvent. Michigan Math. J. 63 (2014), no. 2, 253–273 Zbl 1305.11091 MR 3215550

[16] B. Datskovsky and D. J. Wright, Density of discriminants of cubic extensions. J. Reine
Angew. Math. 386 (1988), 116–138 Zbl 0632.12007 MR 0936994

[17] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II. Proc.
Roy. Soc. London Ser. A 322 (1971), no. 1551, 405–420 Zbl 0212.08101 MR 0491593

[18] N. M. Katz and P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy.
Amer. Math. Soc. Colloq. Publ. 45, American Mathematical Society, Providence, RI, 1999
Zbl 0958.11004 MR 1659828

[19] K. S. Kedlaya, Mass formulas for local Galois representations. Int. Math. Res. Not. (2007),
no. 17, article no. rnm021 Zbl 1175.11071 MR 2354797

[20] J. Klüners, A counterexample to Malle’s conjecture on the asymptotics of discriminants.
C. R. Math. Acad. Sci. Paris 340 (2005), no. 6, 411–414 Zbl 1083.11069 MR 2135320

[21] The LMFDB Collaboration, The L-functions and modular forms database. 2022, httpW//
www.lmfdb.org, visited on 21 June 2024

[22] G. Malle, On the distribution of Galois groups. J. Number Theory 92 (2002), no. 2, 315–
329 Zbl 1022.11058 MR 1884706

[23] G. Malle, On the distribution of Galois groups. II. Experiment. Math. 13 (2004), no. 2,
129–135 Zbl 1099.11065 MR 2068887

[24] G. Martin and P. Pollack, The average least character non-residue and further variations
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